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ABSTRACT
We present and review coupled two-way clustering, a
method designed to mine gene expression data. The
method identifies submatrices of the total expression
matrix, whose clustering analysis reveals partitions of
samples (and genes) into biologically relevant classes.
We demonstrate, on data from colon and breast cancer,
that we are able to identify partitions that elude standard
clustering analysis.
Availability: Free, at http://ctwc.weizmann.ac.il.
Contact: eytan.domany@weizmann.ac.il
Supplementary information: http://www.weizmann.ac.il/
physics/complex/compphys/bioinfo2/

INTRODUCTION
Two nearly concurrent recent advances—the development
of high density DNA chips and the deciphering of
the human genome—hold great promise for significant
progress in biomedical research. A large umber of studies
have been published within the last years, attempting to
classify, explain and perhaps help cure several human
diseases, on the basis of gene expression levels measured
for populations of diseased and healthy subjects. Different
forms of cancer have been at the focus of such studies from
early on, using all available chip technologies.

A DNA chip measures simultaneously the expression
levels of thousands of genes for a particular sample.
Since a typical experiment on human subjects provides
the expression profiles of several tens of samples (say
Ns ≈ 100), over several thousand (Ng) genes whose
expression levels passed some threshold, the outcome
of such an experiment contains between 105 and 106

numbers. These are summarized in anNg × Ns expression
table; each row corresponds to one particular gene and
each column to a sample, with the entryEgs representing

∗To whom correspondence should be addressed.

the expression level of geneg in samples. Analysis of
such massive amounts of data poses a serious challenge for
the development and application of novel methodologies.

Wepresent herecoupled two-way clustering (CTWC), a
recently introduced method (Getzet al., 2000a), designed
to ‘mine’ gene expression data, and demonstrate its
strength by applying it to breast cancer and colon cancer
data. The CTWC software is accessible at http://ctwc.
weizmann.ac.il (Getz and Domany, 2003).

CTWC is based onclustering, and as such it is
unsupervised and capable of discovering unanticipated
partitions of the data, exploring its structure on the basis
of correlations and similarities that are present in it. In the
context of gene expression, such analysis has two obvious
goals:

(1) Find groups of genes that have correlated expression
profiles. The members of such a group may take part
in the same biological process.

(2) Divide the tissues into groups with similar gene
expression profiles. Tissues that belong to one group
are expected to be in the same biological (e.g.
clinical) state.

The straightforward way to carry out such analysis is to
cluster the data intwo ways. Denote the set of all genes
that passed a threshold byG1 and the set of all samples
by S1. Each gene is a point in an|S1| dimensional space;
the first clustering operation,G1(S1), clusters all genes on
the basis of their expression levels over all samples. The
complementary operation,S1(G1), clusters the samples
on the basis of their expression levels over all|G1| genes.
A variety of clustering methods have been used to perform
these operations. Clustering is based on some measure
of similarity of pairs of sampless, s′ which, in turn, is
governed by their ‘distance’ in the|G1| dimensional space
of expression levels.

As several groups noticed (Perouet al., 2000; Cheng
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and Church, 2000; Califanoet al., 2000; Ihmelset al.,
2002; Tanayet al., 2002), one runs into a severe difficulty
with this simple ‘all against all’ clustering approach.
The reason is that in general only a small subset ofNr
relevant genes is involved in one particular biological
process of interest. Since usuallyNr � |G1|, the ‘signal’
provided by this subset may be completely masked by the
‘noise’ generated by the much larger number of the other
genes. Furthermore, it may well happen that in order to
assign samples into two clinically meaningful classes (e.g.
adenoma and carcinoma) on the basis of theNr relevant
genes, one must first remove a previously identified
group of samples (e.g. healthy tissue), and cluster only
the remainingN ′

s < Ns tumors (using only theNr
relevant genes). Thus one should look for specialNr × N ′

s
submatrices of the total expression matrix; such a search
is problematic since an exhaustive enumeration of such
submatrices is of exponential complexity. CTWC provides
a heuristic method to search for such submatrices. It has
been used successfully to mine data (Getzet al., 2000a)
from experiments on colon cancer (Alonet al., 1999) and
leukemia (Golubet al., 1999), glioblastoma (Godardet
al., 2003), breast cancer (Kela, 2002) and antigen chips
(Quintanaet al., 2003). We present here results obtained
by a new, more interactive usage of CTWC on cDNA
microarray data from breast cancer (Perouet al., 2000,
referred to asPAL; Sorlieet al., 2001, referred to asSAL)
and on oligonucleotide microarray data from colon cancer
patients (Nottermanet al., 2001).

The analysis of Nottermanet al. stopped at two way
clustering, which is the first step of CTWC—here our
aim is to demonstrate that by going beyond this step we
uncover new partitions of the samples. The situation with
the breast cancer data is more interesting. PAL noticed that
simple two way clustering did not partition the samples
in a meaningful way, and pruned their original set of
|G1| = 1753 down to 496 ‘intrinsic genes’, that were
selected in a knowledge based way (which can be applied
only if the data contains pairs of samples taken from the
same patients). CTWC also identifies (much smaller) sets
of genes that are used to cluster the samples, but it is
done in an automated, objective, generally applicable way.
It was not clear a priori that CTWC will reproduce the
valuable observations of PAL and SAL, and even less that
it will yield new results of possible biological or clinical
significance.

MATERIALS AND METHODS
Expression data—breast cancer. We studied two data
sets on breast cancer. The first expression matrix was
measured and analyzed by PAL and the second by SAL.
The PAL study characterizes gene expression profiles of
84 samples (the setS), composed of 65 tumors (sample

set S1) and 19 cell lines, using cDNA microarrays,
representing 8,102 human genes. Twenty of the 65 tumors
were sampled twice; 18 from patients who were treated
with doxorubicin (chemotherapy) for an average of 16
weeks, with surgical biopsy donebefore and after the
treatment, and two more tumors were paired with a lymph
node metastasis from the same patient. The 25 remaining
specimens included 22 tumors and three samples from
normal breast tissues (nevertheless, we refer to these also
as ‘tumors’). The full expression matrix included 8,102
rows, each corresponding to a gene, and 84 columns, each
corresponding to a sample. PAL first selected the subset
of genes whose expression varied by at least four-fold
from the median of the samples, in at least three of the
samples tested. This filtering process left the setG1 of
1753 genes, each of which is represented by 84 expression
values. In the final expression matrix PAL split the data
into two submatrices; one of tissues and one of cell lines.
The two submatrices were, separately, median polished
(the rows and columns were iteratively adjusted to have
median 0) before being rejoined into a single matrix.
The expression matrix was two-way clustered; clustering
the genes on the basis of the 84 samples [operation
G1(S)], and clustering the 65 tumors using all 1753 genes
[S1(G1)]. Since S1(G1) did not yield any meaningful
partition, PAL concluded that the 1753 genes were not
an optimal set to classify the tumors, and they selected a
subsetG(int) of 496 ‘intrinsic’ genes in the following way.
They calculated for each gene an index that measures the
variation of its expression between different tumors versus
between paired samples from the same tumor. They ranked
all 8102 genes according to this index, and chose the 496
top scorers. They argued that the expression levels of the
top scorers on this list represent inherent properties of the
tumors themselves rather than just differences between
different samplings. From this point on they used the
496× 65 expression level matrix to cluster the genes of
G(int) and the tumorsS1. This data is publicly available at
the Stanford website (see PAL).

The second study of breast cancer, by SAL, character-
ized gene expression profiles of 85 tissue samples repre-
senting 84 individuals. 78 of these were breast carcinomas
(71 ductal, five lobular, and two ductal carcinomas in situ,
obtained from 77 different individuals; two tumors were
from one individual, diagnosed at different times) three
were fibroadenomas and four normal breast tissue sam-
ples were also included; three of these were pooled normal
breast samples from multiple individuals (CLONTECH).
These 85 samples included 40 tumors that were previously
analyzed and described by PAL. Fifty-one of the patients
were part of a prospective study on locally advanced breast
cancer (T3/T4 and/or N2 tumors) treated with doxorubicin
monotherapy before surgery followed by adjuvant tamox-
ifen in the case of positive ER and/or progesterone re-

1080



Coupled two-way clustering analysis

ceptor (PgR) status (Geisleret al., 2001). All but three
patients were treated with tamoxifen. ER and PgR sta-
tus was determined by using ligand-binding assays, and
mutation analysis of the TP53 gene was performed as de-
scribed in Geisleret al.. The cDNA microarrays used in
this study were from several different print runs that all
contained the same core set of 8,102 genes. In total, the 85
microarray experiments were carried out by using six dif-
ferent batches of microarrays and three different batches
of common reference, each independently produced. SAL
performed cluster analysis on two subsets of genes. One
subset, of 456 cDNA clones (427 unique genes), was se-
lected from the 496 ‘intrinsic’ gene list, previously de-
scribed by PAL. The second subset consisted of 264 cDNA
clones, that exhibit high correlation with patient survival,
selected from the setG1 of 1753 genes. Clustering analy-
sis and patient classifications were based on the total set of
78 malignant breast tumors. Survival analysis was based
on 49 patients with locally advanced tumors and no dis-
tant metastases (two of the 51 patients from this prospec-
tive study were retrospectively recorded to have a minor
lung deposit and a liver metastasis, respectively) that were
treated with neoadjuvant chemotherapy and adjuvant ta-
moxifen (Geisleret al., 2001)

Expression data—colon cancer In addition, we studied
a data set on colon cancer, previously published by
Nottermanet al.. The data set contains 22 tumor samples;
18 carcinoma and four adenoma, and their paired normal
samples. The experiments with carcinoma and paired
normal tissue were performed with the Human 6500
GeneChip Set (Affymetrix), and the experiments with
the adenomas and their paired normal tissue were per-
formed with the Human 6800 GeneChip Set (Affymetrix).
First, following Notterman et.al, we created a composite
database that included only accession numbers repre-
sented on both GeneChip versions. Values lower than 1
were adjusted to 1. Prior to application of CTWC, we
filtered the data using a filtering operation very close
to that used by Nottermanet al., remaining with 1592
genes. Data from the two different chips were brought
to the same average expression level. The data was then
log-transformed, centered about the mean and normalized.
Second, we studied the 18 paired carcinoma samples sep-
arately. Of the 6600 cDNAs and ESTs represented on the
array, only genes for which the standard deviation of their
log-transformed expression values was greater than 1,
were selected. After this filtering process we remain with
768 genes. These values were centered and normalized,
prior to application of the CTWC algorithm. The samples
were labeled according to additional information about
the histological characteristics of the tumor samples, the
estimated percentage of contamination with non-tumor
cells, the presence of mutations in the p53 gene, the

clinical disease stage and the mRNA extraction protocol
that has been used.

ALGORITHM
Since both SPC and CTWC have been described in detail
elsewhere, we present here only brief, albeit self-contained
reviews of the procedures.

Superparamagnetic clustering—SPC
The idea behind this algorithm is rooted in the physics
and phase transitions of disordered magnets ((Blattet al.,
1996); for a detailed description see Blattet al., 1997).
The four-step procedure presented here uses terminology
of graph partitioning, which is more familiar to computer
scientists.

Step 1: Weighted graph. N data points are associated
with ‘positions’ Xi in a D-dimensional space; they
constituteN nodes of a graph. Each nodei is connected by
an edge〈i j〉 to its neighborsj . We identify the neighbors
j of nodei on the basis of the distancesdi j = |Xi − X j |†;
the two points are neighbors ifj is one of theK closest
neighbors ofi , and vice versa‡. To each edge〈i j〉 we
assign a weightJi j = f (di j ) where f (x) is a decreasing
function§ of x .

Step 2: Cost function for graph partitions. To character-
ize a partition of the graph, we assign to every vertexi
an integer label (a Potts spin variable in Physics termi-
nology), Si = 1, 2, . . . q¶. Any particular assignment of
labels,{S1, S2, . . . SN } corresponds to a partition of the
graph, and is denoted by{S} (in the physics terminology
{S} is referred to as a ‘spin configuration’).Si = S j indi-
cates that in the partition{S}, nodesi and j belong to the
same component, whereasSi �= S j means that they are in
different components. We use the cost function

H({S}) =
∑
〈i, j〉

Ji j
(
1 − δSi ,S j

)
. (1)

The sum runs over all the edges〈i j〉 of the graph.
No penalty is associated with〈i j〉 if nodes i and j
belong to the same component. If they belong to different
components, edge〈i j〉 picks up a penaltyJi j . Since for
smalldi j the value ofJi j is high, this cost function places
ahigh penalty for assigning two similar nodes to different
components. The lowest cost,H({S}) = 0 is obtained

† Normally Euclidean distances are used.
‡ K is a parameter of the algorithm - for genes we use 10≤ K ≤ 20. By
superimposing the minimal spanning tree, we ensure that all vertices belong
to a single connected component of the graph.
§ Weuse f (x) = (1/

√
2πa)exp[−x2/2a2] (a is the average ofdi j ).

¶ In many of the applications we tried, Potts spins withq = 20 states were
used.q has nothing to do with the number of clusters determined by the
algorithm - see below.
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when all data points are in the same group; the highest
cost is reached if no point is in the same group as any
of its neighbors. Hence the value ofH({S}) reflects the
resolution at which the partition{S} views the data.

Step 3: Ensemble of partitions. Rather than choosing
any particular partition (say by minimizing the cost
function), we consider all configurations{S} that have
(nearly) the same value ofH({S}) = E ; to each of
these we give thesame statistical weight, whereas all
{S′} that correspond to different resolutions (and hence
H({S′}) �= E) get vanishing probability. This assignment
of equal probabilitiesP({S}) is the result of maximizing
the entropy in order to generate an ensemble of partitions
{S}, for which the only available information is that they
have a particular fixed value of the costE . The resulting
ensemble of partitions is the microcanonical ensemble of
Statistical Mechanics. For each value ofE one can sample
this ensemble and measure average values of any quantity
of interest (see below). It is, however,technically more
convenient to use for such measurements the canonical
ensemble. In this ensemble the weightsP({S}) are again
assigned by maximizing the entropy. However, rather than
allowing only partitions with a fixed resolution or cost
H = E , one requires that the ensemble average ofH takes
the valueE :

〈H〉 =
∑
{S}

P({S})H({S}) = E . (2)

This requirement is imposed as a constraint under which
entropy is maximized, by means of a Lagrange multiplier,
denoted 1/T . In physics terminologyT is called the
temperature. Rather than working at fixedE one works
(generates samples and takes averages—see below) at
fixedT . By fixing the value ofT one controls, in effect, the
resolutionE ; the two ensembles are completely equivalent
in the limit of large number of data points (or spins). In the
resulting canonical statistical ensemble of partitions each
{S}) appears with the statistical (Boltzmann) weight

P({S}) = e−H({S})/T

/∑
{S′}

e−H({S′}) . (3)

At T = 0 only groupings with E = 0 have non-
vanishing weight; atT = ∞ all partitions have equal
weight. For a sequence of values ofT we calculate, by
Monte Carlo simulation, the equilibrium average〈A〉 of
several quantitiesA of interest, such as the magnetization,
susceptibility and correlation of neighbor spins. The
latter is the most important quantity we measure—the
corresponding ‘operator’ isA = δSi ,S j , i.e. an indicator
which takes the value 1 if pointsi and j are in the same
component in partition{S}. The ensemble average of this

object is the correlation function:

Gi j = 〈
δSi ,S j

〉
, (4)

Gi j is the probability to find, at the resolution set byT ,
the data pointsi, j assigned to the the same component.
By the relation to granular ferromagnets we expect that
the distribution ofGi j is bimodal; if both spins belong to
the sameordered grain (cluster), their correlation is close
to 1; if they belong to two clusters that are not relatively
ordered, the correlation is close to 1/q.

Step 4: Identifying clusters. To produce ‘hard’ clusters
on the basis of theGi j , we construct a new graph, in a
three-step procedure.

(1) Build the clusters’ ‘core’ by thresholdingGi j . For
every pair of neighborsi and j , check whether
Gi j > θ = 0.5; if true, set a ‘link’ betweeni, j .
Because of the bimodality of the distribution ofGi j
the decision to linki, j depends very weakly on the
value of θ .

(2) Capture points lying on the periphery of the clusters
by linking each pointi to its neighborj of maximal
correlationGi j .

(3) Data clusters are identified as the linked components
of the graphs obtained in steps 1,2.

At T = 0 this procedure generates a single cluster of
all N points. At T = ∞ we haveN independent spins,
and the procedure yieldsN clusters, with a single point in
each. Hence asT increases, we generate a dendrogram of
clusters of decreasing sizes.

This algorithm has several attractive features (Blattet
al., 1997). One of these is the ability to identify stable
(and statistically significant) clusters, which makes SPC
most suitable to be used within the framework of CTWC.
Furthermore, it allows a quantitative estimation of theP-
value of a clustering operation, by clustering repeatedly
randomized data and checking the fraction of instances in
which stable clusters (i.e. as stable as those obtained for
non random data) appeared. We identify stable clusters as
follows. As we heat the system up, we record for every
cluster two temperatures:T1, at which it is ‘born’ (splits
from its parent cluster) andT2, at which it ‘dies’ (splits into
siblings). The ratioR = T2/T1 is a measure of a cluster’s
stability. For example, in (Getzet al., 2000a) we set the
thresholdRc, beyond which a cluster is considered stable,
at a value for which not even one of 500 experiments on
randomized data gave a cluster withR ≥ Rc.

SPC was used in a variety of contexts, ranging from
computer vision (Domanyet al., 1999) to speech recogni-
tion (Blatt et al., 1997). Its first direct application to gene
expression data has been (Getzet al., 2000b) for analysis
of the temporal dependence of the expression levels in a
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synchronized yeast culture (Eisenet al., 1998), identify-
ing gene clusters whose variation reflects the cell cycle.

Subsequently, SPC was used to identify primary targets
of p53 (Kannanet al., 2001) and p73 (Fontemaggiet al.,
2002).

Coupled two way clustering—CTWC
The main motivation for introducing CTWC (Getzet al.,
2000a) was toincrease the signal to noise ratio of the
expression data. The method is designed to overcome
two different kinds of ‘noise’. The first was mentioned
above; say only a small subset ofNr genes participate
in a biological process of interest, associated with a
particular diseaseA. In this case we expect theseNr
genes to have correlated expressions over subjects with
diseaseA. This correlation could, in principle, identify the
diseased subjects as ‘close’ in expression space—but, in
fact, forNr � |G1| the non-participating|G1|− Nr genes
completely mask the effect of the relevant ones on the
distance between two diseased subjects. Hence as far as
the process of interest is concerned, the non-participating
|G1| − Nr genes contribute nothing but noise, that masks
the signal of theNr relevant ones. CTWC eliminates this
noise by discarding the irrelevant genes.

The second noise-reducing feature of CTWC is that
it uses the expression levels of a a set of genes, rather
than one gene at a time. Thereby intrinsic noise in the
expression averages out.

CTWC is an iterative process, whose starting point is
the standard two way clustering mentioned above, i.e.
the clustering operationsS1(G1) and G1(S1). We keep
two registers—one for stable gene clusters and one for
stable sample clusters. Initially we placeG1 in the first
and S1 in the second. FromS1(G1) and G1(S1) we
identify stable clusters of samples and genes, respectively,
i.e. those for which the SPC stability indexR exceeds a
critical value and whose size is not too small. Stable gene
clusters are denoted asG I with I = 2, 3, . . . and stable
sample clusters asS J, J = 2, 3, . . . In the next iteration
we use every gene clusterG I (including I = 1) as the
feature set, to characterize and cluster every sample set
S J . These operations are denoted byS J (G I ); (note that
S1(G1) was already performed). In effect, we use every
stable gene cluster as a possible ‘relevant gene set’; the
submatrices defined byS J andG I are the ones we study.
Similarly, all the clustering operations of the formG I (S J )

are also carried out. In all clustering operations we check
for the emergence of partitions into stable clusters, of
genes and samples. If we obtain a new stable cluster, we
add it to our registers and record its members, as well as
the clustering operation that gave rise to it. If a certain
clustering operation did not give rise to new significant
partitions, we move down the list of gene and sample
clusters to the next pair.

This heuristic identification of relevant gene sets and
submatrices is nothing but an exhaustive search among the
stable clusters that were generated. The number of these,
emerging fromG1(S1), is a few tens, whereasS1(G1)

usually generates only a few stable sample clusters. Hence
the next stage typically involves less than a hundred
clustering operations. These iterative steps stop when no
new stable clusters beyond a preset minimal size are
generated, which usually happens after the first or second
level of the process.

Since the Nr relevant genes are expected to have
correlated expression levels over at least a significant
subset of the samples, we can expect at least a subset of
them to form a stable cluster. Then when the members
of such a cluster are used to recluster the samples, the
noise generated by the very many irrelevant genes will
be filtered out and we will get a clear separation of
the samples to the desired classes. When CTWC was
first introduced (Getzet al., 2000a), we also studied
several cases of artificially generated expression data, into
which various correlations, partitions and sub-partitions
were incorporated and then masked. CTWC successfully
unraveled all this hidden structure from these toy problems
(see link in Supplementary Information).

In a typical analysis we generate between 10 and 100
interesting partitions, which are searched‖ for biologically
or clinically interesting findings, on the basis of the genes
that gave rise to the partition and on the basis of available
clinical labels of the samples. It is important to note that
these labels are useda posteriori, after the clustering has
taken place, to interpret and evaluate the results.

RESULTS
Lists of the genes that constitute each of the clusters
G I mentioned below are given in the supplementary
information. One should note that in the experiments
analyzed here no replicates of the measurements were
made.

Breast cancer—PAL
Weposed the following questions:

(1) Do our methods of analysis reproduce the results
obtained by PAL?

(2) Can we make observations that seem to be of interest
and were not reported by PAL?

As to the first question—CTWC reproduced all the main
findings of PAL directly, starting from the entire setG1
of 1753 genes, without filtering them to the intrinsic set.

‖ This search is done in an automated manner, calculating various figures
of merit for each stable cluster, defined on the basis of clinical or genetic
information.
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Second, we found new tumor classifications that were not
mentioned by PAL.

Reproducing the results of PAL. PAL used lower case
letters to identify gene clusters, and colors for samples (see
their Figures 1 and 3). We use below their notation when
comparisons are made.

G1(S): Following PAL, we used the same feature set,S,
of all samples and cell lines, to clusterG1, the full set of
1753 genes. Since we also used the same normalization,
this operation provides a direct comparison of Average
Linkage (the clustering method used by PAL) and SPC.
All the gene clusters that were marked as interesting by
PAL, were also found by our clustering operation (Kela,
2002).

S(G1): Next, we clustered (separately) the cell lines and
the tumors, using all 1753 genes. Since our normalization
here differs from that of PAL, we cannot compare directly
our results. However, in agreement with PAL, we also
did not find any meaningful partitions of the tumors,
S1, from this operation, leading to the same conclusion
as reached by PAL: namely, thatG1 is not suitable to
classify the tumors and we should characterize them using
different subsets of genes. From here on CTWC deviates
from the procedure of PAL, who selected their ‘intrinsic
set’ of 496 genes in a way that (a) necessitates having
paired samples from the same patients (before and after
chemotherapy), and (b) assumes that only genes that meet
their criteria (similarity of matched samples) are to be
used. CTWC, on the other hand, is an automated process,
performing operationsS1(G I ), i.e. clustering the tumors
S1 using different stable gene clustersG I , one at a time.
Clustering the 65 samples on the basis of these small
subsets of genes, one at a time, enabled us to identify the
subclasses of tumors that PAL found using their intrinsic
set.

S1(G4): Cluster G4 (that was obtained by the G1(S)
clustering process) has 10 genes—it is our homologue of
cluster j of PAL (see their Figure 1). The operationS1(G4)

generates a stable sample cluster which is quite similar
to the ER+/luminal-like (blue) cluster of PAL (see their
Figure 3); its members have high expression levels ofG4.
S1(G4) identifies also PAL’s basal-like (yellow) group,
characterized by low expression levels of theG4 genes.

S1(G46), S1(G9): G46 is a cluster of 33 genes that
are part of the proliferation cluster found by PAL. The
operationS1(G46) produces a good homologue of their
normal-like (green) cluster. Members of this group show
low expression levels ofG46 genes. The normal-like
samples are also identified in the operationS1(G9): the
13 genes ofG9 are a subgroup of cluster g of PAL.
Normal-like tissues have high expression levels of theG9
genes.

S1(G21): This operation separates the Erb-B2+ (red)

cluster from the other samples.G21 is homologous to
gene cluster d from Figure 3 of PAL; its expression is high
in the Erb-B2+ tumors.

New observations (beyond PAL). Of several new find-
ings (Kela, 2002) we chose to highlight here one that bears
on an issue that has been considered important by PAL:
that of separating the ER+ and ER- tumors on the basis of
their expression levels. We present two such classifiers,
which demonstrate two different advantages of CTWC.
The first classifiercould have been discovered by PAL,
since it is based on genes thatdo belong to PAL’s intrin-
sic set, but their effect is masked by the large number of
the 496 ‘intrinsic’ genes; to see it, one has to zero in on a
small subset, as is done by CTWC. The second classifier
could not have been discovered by PAL’s analysis since it
is based on genes that arenot included in their intrinsic set.

S1(G4): The cluster G4 (10 genes) was described
above—it is practically identical to cluster j from Figure 1
of PAL and to cluster c of their Figure 3. It contains the
estrogen receptor and three other transcription factors (see
supplementary information of PAL) related to the estrogen
receptor pathway. The operationS1(G4) generated the
dendrogram presented in Figure 1A. The variation in the
expression levels of theG4 genes correlates well with the
direct clinical measurements of the ER protein levels in
the tumors (supplementary information of PAL).

In the dendrogram Figure 1A the boxes representing
sample clusters were colored according to the percentage
of ER- samples, ranging from red (100%) to blue (0%).
In Figure 1B the samples were ordered according to the
dendrogram, and the colors represent the expression levels
of the 10 genes. SPC generated three main branches
(clusters); the uppera with highest expression values,
b intermediate and the lowestc. Cluster a, the biggest
(41 samples), contains all but two of the tumors of the
luminal-like (blue) cluster of PAL (see their Figure 3).
More interestingly, clustersa and b, contain 45 out of
48 of the ER+ tumors (see blue leaves). Clusterc is rich
(seven out of 11) in ER- tumors. Designating asE R+ the
samples inNOT(c) (i.e. thatdo not belong toc), we get
our best classifier, with efficiency (defined as the fraction
of ER+ ‘caught’ in NOT(c)) E = 45/48 = 0.94 and
purity (defined as the fraction of ER+ among members of
NOT(c)) P = 0.83. The corresponding numbers obtained
by PAL (for their ‘luminal-like’ cluster) wereE = 0.66
andP = 0.89.

S1(G30): G30 is a cluster of 15 genes, related to cell
cycle proliferation. Only one of the 15 were included in
PAL’s intrinsic set. Clustering the 65 tumors using the
expression levels of these genes generated the dendrogram
presented in Figure 7A (see supplementary information).
The boxes that represent sample clusters are colored
according to their relative content of ER- samples. The
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Figs 1–4, Breast cancer. Fig. 1. S1(G4): clustering 65 tumors using the expression levels of gene clusterG4. (A) The boxes in the
dendrogram represent clusters; they are colored according to their percentage of ER-tumors (see color bar on left). (B) Clustersa,b,c are
characterized, respectively, by high, intermediate and low expression levels (see color bar on right).Fig. 2. S1(G10): clustering 84 breast
cancer samples according to the expression levels of gene cluster G10. The boxes in the dendrogram (A) represent sample clusters. They are
colored according to the median value of the survival of the patients contained in each cluster, ranging from dark red (median survival of
100 months) to blue (median of 4 months)—see left color bar. (B) Clustersa andb exhibit high and low expression levels (see color bar at
right), respectively. The central color bar represents p53 status: red—mutant, blue—wt and grey—unknown. Members ofb are characterized
by low expression, low survival and mutant p53.Fig. 3. S1(G33): the boxes in the dendrogram (A) represent sample clusters that are
colored according to the median value of the survival of the patients contained in each cluster, ranging from dark red (median survival of
100 months) to blue (median—4 months)—see left color bar. (B) The clustersa, b andc exhibit high, intermediate and low expression
levels (see color bar at right). The central color bar represents p53 status: red—mutant, blue—wt and white—unknown. Members ofa are
characterized by high expression, low survival and mutant p53.Fig. 4. S1(G36): (A) The genes ofG36 gave rise to a very clear partition of
the breast cancer samples to high (clustera) and low expression levels. (B) No clinical interpretation of this partition has been found yet.
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dendrogram exhibits a clear partition of the tumors into
clustersa with high expression levels of theG30 genes
and c with intermediate expression levels, as seen in
Figure 7B. Clusterc contains 44 tumors, 38 of which
were classified as ER+, three as ER- and three unknown.
Hence this cluster captured the ER+ group with efficiency
of E = 38/48 = 0.79 and purityP = 38/44 = 0.86.
Clustera contains a high proportion of ER- tumors; its
sub-clusterb consists of five special ER+ tumors that have
relatively high expression levels of theG30 genes.

Breast cancer—SAL
Again we have two kinds of observations; those made
using genes that were not included by SAL in their
intrinsic set, and hence could not have been found by them,
and observations made using genes that were included in
the previous analysis.

Since there is considerable overlap between the samples
of PAL and SAL, we did not repeat our attempt to
reproduce all their findings. We did, however, study some
aspects related to the clinical labels, that were the main
additional feature of the SAL data. We emphasize here
our findings concerning survival and p53 status. We found
correlations between expression levels of several gene
clusters and survival, and that the expression levels of
these genes is also a predictor of p53 mutation status.
We also present a very clear partition of the patients into
two groups, for which we do not yet have any clinical
interpretation.

S1(G10): ClusterG10 contains 15 genes that are related
to the ER pathway, including five of the 10 members
of G4 mentioned in our analysis of PAL, (such as
GATA-binding protein three). Clustering the 85 samples
(S1) usingG10, generates the dendrogram presented in
Figure 2A. The boxes that represent sample clusters are
colored according to the median value of the survival of
the patients contained in each cluster, ranging from red
(median survival of 100 months) to dark blue (4 months).
Similarly to the results shown in Figure 1, the variation in
the expression levels of theG10 genes correlates well with
the direct clinical measurements of the ER protein levels
in the tumors. The dendrogram of Figure 2A exhibits two
main clusters;a contains most of the ER+ tumors, that
exhibit higher expression levels of theG10 genes, as seen
in Figure 2B, andb, which contains mainly ER-tumors
that exhibit low expression levels of theG10 genes.

Analyzing the correlation with the p53 status, wild
type (wt) vs mutant, and with the survival parameter
we get similar results as were obtained by SAL. They
showed that the basal-like samples, corresponding to our
clusterb, come from patients with the shortest survival
times and a high frequency of p53 mutations. Two of
the 17 members of clusterb survived for 41 months and
all the others—for less than 26 months. The correlation

coefficient between survival and the average expression
levels of theG10 genes is0.47. The Wilcoxon rank-sum
test (WRST) indicated that the distributions of survival
times of patients in clusterb and of the rest of the patients
are significantly different (P-value= 3.7 · 10−4); patients
that exhibit low expression levels of theG10 genes have
short survival.

To indicate the p53 status, we placed a color bar next to
the leaves of the dendrogram, on which the patients with
mutant p53 are labeled red and the p53 wt—blue. Patients
with unknown p53 status were labeled white. Note that
the 17 patients of clusterb exhibit low expression levels
of the G10 genes. Ten of these 17 are p53 mutant, five
have unknown labels and only two are wt. Hence low
expression levels of theG10 genes seem to go along
with a mutated p53. The correlation coefficient of the
average expression levels ofG10 with p53 status is0.4;
in particular, low expression is a good predictor of mutant
p53. To substantiate the last statement, we compared the
distributions (using WRST) of the median expression
levels of patients with mutant p53 to wt. We found that
the two distributions are significantly different (P-value=
1.2 · 10−4); the wt p53 patients exhibit high expression
levels and the mutant p53 exhibit lower expression levels
of theG10 genes.

S1(G33): ClusterG33 contains 36 genes, related to cell
proliferation, which include 10 out of the 15 members
of cluster G30 found by CTWC in our analysis of the
PAL data. Clustering the 85 samples using the expression
levels of these genes generated the dendrogram presented
in Figure 3A. The boxes are colored similarly to Figure 1;
according to the median survival (in months), of the
patients that belong to each cluster. TheG30 genes
partition the samples into three main clusters,a, b and
c, as shown in the dendrogram. The correspondingG33
expression levels, as seen in Figure 3B, are of high,
intermediate and low levels, respectively. The average
expression level of theG30 genes is inversely correlated
with survival (correlation coefficient−0.24). Cluster a
contains patients with high expression and short survival;
only one of its 21 members survived beyond 43 months,
whereas clustersb andc contain long (up to 100 months)
as well as short survival. Comparison of the distributions
of the survival times of the patients in clustera to those
in clustersb and c indicates that there is a significant
difference (P-value= 0.0016).

As to p53 status, we note that among the 21 patients
in clustera, 13 were mutant p53 and four had unknown
status. Clusterc, of low expression levels, contains only
two mutant p53 patients (out of 16 members of the
cluster). The correlation coefficient between the average
expression levels ofG33 genes and p53 status is−0.4.
Hence high expression levels of these genes is a good
predictor for mutant p53, whereas low expression predicts
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wt p53. Comparison of the distributions of the median
expression levels between the p53–mutant and the p53–
wt patients yields significantly different distributions (P-
value= 4.5 · 10−5).

S1(G36): Cluster G36 contains genes that are related
to apoptosis suppression (e.g. bcl-2) and cell growth
inhibition (e.g. INK4C cyclin-dependent kinase inhibitor
2c). Using the expression levels of this set of genes
to cluster the 85 samples, we generate the dendrogram
presented in Figure 4A. The boxes are colored similarly to
Figure 3A, according to the median survival of the patients
in each cluster. The dendrogram exhibits partition of the
samples into two very distinct clusters;a contains patients
with high expression levels andb—patients with low.
We found no correlation between membership in either
of these clusters and any of the clinical labels that were
reported by SAL. However, the clarity of the partition
calls for further investigation of the two groups of patients,
which may reveal some so far unknown role played by the
genes ofG36 in breast cancer.

Colon cancer
We applied CTWC to the colon data set of Notterman
et al., containing 18 paired carcinoma and four paired
adenoma samples. We refer to the set of all 44 samples as S
and to the 36 paired carcinoma samples as S1. We present
gene clusters which differentiate the samples according to
the known normal/tumor classification, previously shown
by Nottermanet al.. Furthermore, we show the advantage
of CTWC in mining new partitions which have not been
found using other clustering methods and may contain
relevant biological information.

Tumor—Normal separation. S(G8): G8 contains 55
genes, which show high expression levels in the normal
samples compared to the adenoma and carcinoma. Several
genes within this cluster are known to be repressed in
colorectal neoplasms; for example, guanilyn and DRA
(down-regulated in adenoma). Some of these genes were
previously mentioned by Nottermanet al.. Clustering the
44 samples, using the expression levels ofG8, generated
the dendrogram shown in Figure 5A.

The dendrogram exhibits a clear separation into two
large clusters (a and b) and two small ones (c and
d). Clusters c and d contain all the normal samples
(both carcinoma and adenoma),a—the tumor carcinoma
samples andb—the tumor adenoma samples. The colors
(see bar on the right-hand side of the expression matrix—
see reordered data) represent the expression levels of the
genes inG8, with red (blue) denoting high (low) values.

S1(G25): The data set we analyzed next contains the
18 carcinoma and their paired normal samples,S1. The
groupG25 contains 51 genes, some of which are known
to be over expressed in carcinoma and are found to be

related to colon cancer or other forms of neoplasma e.g.
myc, matrilysin, GRO-γ (see Nottermanet al., 2001),
and additional genes which may very well be related to
colon cancer. Clustering the 36 samples ofS1, using the
expression levels of the gene clusterG25, gave rise to
a clear partition of the samples into two clusters; one
of normal samples (a), and the other of tumor samples
(b), with relatively high expression levels of theG25
genes in the tumor cluster (see Figure 8, supplementary
information).

New observations (protocols A,B). S1(G3): Two ex-
perimental protocols that were used; 16 RNA samples
(paired samples 3–6,8–10,11) were extracted using a
method that isolates mRNA prior to reverse transcription
(‘protocol A’), and the other 20 samples (paired samples
12,27,28–29,32–35,39–40) were prepared by extracting
total RNA from the cells (‘protocol B’). Clustering the
36 carcinoma samples, using the expression levels of
the 27 genes of clusterG3, exhibits a clear partition of
the samples into two clusters (see Figure 6A). Clusterb
contains 20 tissues of protocolB, and clustera contains
14 tissues of protocolA. This separation has two mistakes;
both samples of patient 9 were labeledA and appear in
the cluster of protocolB.

New observations (unknown interpretation). S10(G24),
S10(G7), S10(G12): Clustering only the 18 carcinoma
samples (S10, obtained in a previous CTWC iteration) on
the basis of their expression over different sets of genes,
revealed the following partitions:

The clustering operationS10(G24) generated a clear
separation of the tumor samples into two clusters. Samples
33,34,35,40 are clustered together inb, and show high
expression levels of theG24 genes (Fig. 9, supplementary
information).

The operation S10(G7) separated tumor samples
27,32,33,40 from the other 14; the small group has
low expression levels of theG7 genes (Figure 10,
supplementary information).

S10(G12) clustered tumor samples 33,34,35,12,40 to-
gether (clusterb in Figure 11, supplementary informa-
tion); the expression levels of theG12 genes are high in
these 5 samples. Hence we discovered that tumor samples
33,40 and 35 were repeatedly separated from the remain-
ing tumors, which implies that these patients may share
some common characteristics, perhaps representing a true
biological meaning. However, due to lack of additional in-
formation about the patients we were unable to determine
the biological origin of this separation.

DISCUSSION AND CONCLUSION
We described theCoupled Two Way Clustering method
and demonstrated its ability to extract useful information
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Fig. 5. S(G8): A clear separation of the tumor carcinoma and ade-
noma samples from the normal samples, using theG8 group of
genes. (A) The boxes are colored (see supplementary information)
according to the percentage of the tumor samples. (B) The expres-
sion level matrix ofS1(G8). Rows correspond to all the samples
and the columns correspond to the genes of clusterG8. The ma-
trix shows relatively high expression levels of theG8 genes in the
normal samples compared to the tumor samples.
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Fig. 6. S1(G3): Separation of the colon cancer samples according
to protocolsA andB. (A) The boxes are colored (see supplementary
information) according to the percentage of protocolA samples
(indicated by red). (B) The expression level matrix of S1(G3). Rows
correspond to all the samples and the columns correspond to the
genes of cluster G3.

from breast cancer and colon cancer data. For both data
sets we reproduced the findings of previous analyses
and discovered new structure of biological significance,
demonstrating the advantages of CTWC compared to
standard clustering techniques.

The central strategy of CTWC is to cluster the samples
on the basis of their expression levels over small, corre-
lated sets of genes, and vice versa. The relevant sets of
genes and samples are found by using, one at a time, sta-
ble clusters of genes (or samples), that were identified in
preceding iterations of the algorithm. Whenever such a
clustering operation generates new, statistically significant
partitions of the clustered objects, the result is recorded, to
be used in further iterations and to be scanned for possible
biological or clinical interpretation.

Perouet al. also reached the conclusion that performing
an ‘all against all’ analysis does not reveal the effects of
relatively small groups of relevant genes. They were able
to produce significant findings only after reduction of the
genes used to a smaller number. The smaller ‘intrinsic set’
was identified using a particular guiding principle, one
that can be used only when there are at least two samples
from each of several patients. Furthermore, the selection
criteria used exclude genes that, according to our findings,
do contain important information.

CTWC does not only generate the important partitions
of the samples; it also identifies small groups of genes
that are responsible for the separation of different classes.
For both breast and colon cancer we found partitions
that have no clear interpretation at the moment, a fact
that demonstrates the strength of unsupervised approaches
such as clustering; unsuspected structure buried in the data
can be revealed.
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