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ABSTRACT the expression level of gerggin samples. Analysis of

We present and review coupled two-way clustering, a  such massive amounts of data poses a serious challenge for
method designed to mine gene expression data. The  the development and application of novel methodologies.
method identifies submatrices of the total expression We present hereoupled two-way clustering (CTWC), a
matrix, whose clustering analysis reveals partitions of  recently introduced method (Getzal., 2000a), designed
samples (and genes) into biologically relevant classes. to ‘mine’ gene expression data, and demonstrate its
We demonstrate, on data from colon and breast cancer,  strength by applying it to breast cancer and colon cancer
that we are able to identify partitions that elude standard  data. The CTWC software is accessible at http://ctwc.

clustering analysis. weizmann.ac.il (Getz and Domany, 2003).

Availability: Free, at http://ctwc.weizmann.ac.il. CTWC is based onclustering, and as such it is

Contact: eytan.domany@weizmann.ac.il unsupervised and capable of discovering unanticipated

Supplementary information: http://www.weizmann.ac.il/  partitions of the data, exploring its structure on the basis

physics/complex/compphys/bioinfo2/ of correlations and similarities that are presentin it. In the
context of gene expression, such analysis has two obvious

INTRODUCTION goals:

Two nearly concurrent recent advances—the development 1y Find groups of genes that have correlated expression

of high density DNA chips and the deciphering of profiles. The members of such a group may take part

the human genome—hold great promise for significant in the same biological process.

progress in biomedical research. A large umber of studies
have been published within the last years, attempting to
classify, explain and perhaps help cure several human
diseases, on the basis of gene expression levels measured
for populations of diseased and healthy subjects. Different
forms of cancer have been at the focus of such studies from The straightforward way to carry out such analysis is to
early on, using all available chip technologies. cluster the data itwo ways. Denote the set of all genes

A DNA chip measures simultaneously the expressionhat passed a threshold &1 and the set of all samples
levels of thousands of genes for a particular sampleby S1. Each gene is a point in a81| dimensional space;
Since a typical experiment on human subjects providethe first clustering operatiog1(Sl), clusters all genes on
the expression profiles of several tens of samples (sathe basis of their expression levels over all samples. The
Ns ~ 100), over several thousandNg) genes whose complementary operatior§1(G1), clusters the samples
expression levels passed some threshold, the outcon@n the basis of their expression levels over@ll| genes.
of such an experiment contains betweer? Bhd 16 A variety of clustering methods have been used to perform
numbers. These are summarized iy Ns expression these operations. Clustering is based on some measure
table; each row corresponds to one particular gene an@f similarity of pairs of samples, s’ which, in turn, is

each column to a sample, with the enys representing  governed by their ‘distance’ in th&1| dimensional space
of expression levels.

*To whom correspondence should be addressed. As several groups noticed (Peretial., 2000; Cheng

(2) Divide the tissues into groups with similar gene
expression profiles. Tissues that belong to one group
are expected to be in the same biological (e.g.
clinical) state.
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and Church, 2000; Califanet al., 2000; Ihmelset al., set S1) and 19 cell lines, using cDNA microarrays,
2002; Tanayet al., 2002), one runs into a severe difficulty representing 8,102 human genes. Twenty of the 65 tumors
with this simple ‘all against all' clustering approach. were sampled twice; 18 from patients who were treated
The reason is that in general only a small subseNof with doxorubicin (chemotherapy) for an average of 16
relevant genes is involved in one particular biologicalweeks, with surgical biopsy donlesfore and after the
process of interest. Since usualy « |G1|, the ‘signal’ treatment, and two more tumors were paired with a lymph
provided by this subset may be completely masked by theode metastasis from the same patient. The 25 remaining
‘noise’ generated by the much larger number of the othespecimens included 22 tumors and three samples from
genes. Furthermore, it may well happen that in order taormal breast tissues (nevertheless, we refer to these also
assign samples into two clinically meaningful classes (e.gas ‘tumors’). The full expression matrix included 8,102
adenoma and carcinoma) on the basis of Xperelevant  rows, each corresponding to a gene, and 84 columns, each
genes, one must first remove a previously identifieccorresponding to a sample. PAL first selected the subset
group of samples (e.g. healthy tissue), and cluster onlpf genes whose expression varied by at least four-fold
the remainingN; < Ns tumors (using only theN,  from the median of the samples, in at least three of the
relevant genes). Thus one should look for speldiak N, samples tested. This filtering process left the Gét of
submatrices of the total expression matrix; such a search1753 genes, each of which is represented by 84 expression
is problematic since an exhaustive enumeration of sucMaues. In the final expression matrix PAL split the data
submatrices is of exponential complexity. CTWC providesinto two submatrices; one of tissues and one of cell lines.
a heuristic method to search for such submatrices. It hashe two submatrices were, separately, median polished
been used successfully to mine data (Gattal., 2000a) (the rows and columns were iteratively adjusted to have
from experiments on colon cancer (Alenal., 1999) and Mmedian 0) before being rejoined into a single matrix.
leukemia (Golubet al., 1999), glioblastoma (Godaret ~ The expression matrix was two-way clustered; clustering
al., 2003), breast cancer (Kela, 2002) and antigen chipe genes on the basis of the 84 samples [operation
(Quintanaet al., 2003). We present here results obtainedG1(S)], and clustering the 65 tumors using all 1753 genes
by a new, more interactive usage of CTWC on cDNA[SL(GD)]. Since S1(G1) did not yield any meaningful
microarray data from breast cancer (Pemlﬂ]., 2000, partition, PAL concluded that the 1753 genes were not
referred to a®AL ; Sorlieet al., 2001, referred to aSAL)  an optimal set to classify the tumors, and they selected a

and on oligonucleotide microarray data from colon cancepubseG '™ of 496 ‘intrinsic’ genes in the following way.
patients (Nottermagt al., 2001). They calculated for each gene an index that measures the

The analysis of Nottermast al. stopped at two way variation of ijcs expression between different tumors versus
clustering, which is the first step of CTWC—here our between paired samplgs fromt'he.sametumor. They ranked
aim is to demonstrate that by going beyond this step wéll 8102 genes according to this index, and chose the 496
uncover new partitions of the samples. The situation witdOP Scorers. They argued that the expression levels of the

the breast cancer data is more interesting. PAL noticed th&fP Scorers on this list represent inherent properties of the
simple two way clustering did not partition the samplestumors themselves rather than just differences between

in a meaningful way, and pruned their original set ofdifferent samplings. From this point on they used the
IG1] = 1753 down to 496 ‘intrinsic genes’, that were 496 x 65 expression level matrix to cluster the genes of
selected in a knowledge based way (which can be applie@’(I " and the tumorsL. This data is publicly available at
only if the data contains pairs of samples taken from thdn€ Stanford website (see PAL).

same patients). CTWC also identifies (much smaller) sets The second study of breast cancer, by SAL, character-
of genes that are used to cluster the samples, but it i£€d 9ene expression profiles of 85 tissue samples repre-

done in an automated, objective, generally applicable Wa>§enting 84 individuals. 78 of these were bre_ast carc_inqmas
It was not clear a priori that CTWC will reproduce the (71 ductal, five lobular, and two ductal carcinomas in situ,

valuable observations of PAL and SAL. and even less tha! btained from 77 different individuals; two tumors were
it will yield new results of possible biological or clinical "oM one individual, diagnosed at different times) three
significance. were fibroadenomas and four normal breast tissue sam-

ples were also included; three of these were pooled normal
breast samples from multiple individuals (CLONTECH).
MATERIALS AND METHODS These 85 samples included 40 tumors that were previously
Expression data—breast cancer. We studied two data analyzed and described by PAL. Fifty-one of the patients
sets on breast cancer. The first expression matrix wasere part of a prospective study on locally advanced breast
measured and analyzed by PAL and the second by SAlcancer (T3/T4 and/or N2 tumors) treated with doxorubicin
The PAL study characterizes gene expression profiles ahonotherapy before surgery followed by adjuvant tamox-
84 samples (the se&f), composed of 65 tumors (sample ifen in the case of positive ER and/or progesterone re-
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ceptor (PgR) status (Geislet al., 2001). All but three clinical disease stage and the mRNA extraction protocol
patients were treated with tamoxifen. ER and PgR stathat has been used.

tus was determined by using ligand-binding assays, and

mutation analysis of the TP53 gene was performed as dgxL GORITHM

scribed in Geisleet al.. The cDNA microarrays used in gjince hoth SPC and CTWC have been described in detalil

this study were from several different print runs that allg|se\yhere, we present here only brief, albeit self-contained
contained the same core set of 8,102 genes. In total, the 83, iews of the procedures.

microarray experiments were carried out by using six dif-
ferent batches of microarrays and three different batcheSuper par amagnetic clustering—SPC

of common reference, each independently produced. SAlkpe jgea hehind this algorithm is rooted in the physics

performed cluster analysis on two sgbsets of genes. Ong 4 phase transitions of disordered magnets ((Btat.,
subset, of 456 cDNA clones (427 unique genes), was Serggg): for a detailed description see Blattal., 1997).

lected from the 496 ‘intrinsic’ gene list, previously de- tpe toyr-step procedure presented here uses terminology
scribed by PAL. The second subset consisted of 264 cDNA¢ graph partitioning, which is more familiar to computer

clones, that exhibit high correlation with patient survival, ¢jentists.

selected from the s&1 of 1753 genes. Clustering analy-

sis and patient classifications were based on the total set &ep 1. Weighted graph. N data points are associated
78 malignant breast tumors. Survival analysis was basedith ‘positions’ X; in a D-dimensional space; they
on 49 patients with locally advanced tumors and no diseonstituteN nodes of a graph. Each nodis connected by
tant metastases (two of the 51 patients from this prospe@n edgei j) to its neighborg . We identify the neighbors
tive study were retrospectively recorded to have a minorj of nodei on the basis of the distancdg = |Xi — X;|";
lung deposit and a liver metastasis, respectively) that werthe two points are neighbors jfis one of theK closest
treated with neoadjuvant chemotherapy and adjuvant tazeighbors ofi, and vice versa To each edgeij) we
moxifen (Geisleet al., 2001) assign a weightlj = f(dij) where f (x) is a decreasing

. . ) functior? of x.
Expression data—colon cancer In addition, we studied

a data set on colon cancer, previously published bystep 2: Cost function for graph partitions. To character-
Nottermaret al.. The data set contains 22 tumor samplesjze a partition of the graph, we assign to every veitex
18 carcinoma and four adenoma, and their paired normain integer label (a Potts spin variable in Physics termi-
samples. The experiments with carcinoma and pairedology), S = 1,2,...q9". Any particular assignment of
normal tissue were performed with the Human 6500abels,{S;, S, ... Sy} corresponds to a partition of the
GeneChip Set (Affymetrix), and the experiments withgraph, and is denoted Hy5} (in the physics terminology
the adenomas and their paired normal tissue were petS} is referred to as a ‘spin configuration§. = §j indi-
formed with the Human 6800 GeneChip Set (Affymetrix). cates that in the partitiofS}, nodes andj belong to the
First, following Notterman et.al, we created a compositesame component, where§s# S; means that they are in
database that included only accession numbers repréifferent components. We use the cost function
sented on both GeneChip versions. Values lower than 1
were adjusted to 1. Prior to application of CTWC, we HU{S) = Z Jj (1- 83,5,»). Q)
filtered the data using a filtering operation very close (.0
to that used by Nottermast al., remaining with 1592 N
genes. Data from the two different chips were brought! N sum runs over all the edgesj) of the graph.
to the same average expression level. The data was thp penalty is associated witkij) if nodesi and j
log-transformed, centered about the mean and normalizef€!0ng to the same component. If they belong to different
Second, we studied the 18 paired carcinoma samples sef?Mmponents, edggj) picks up a penaltyd;;. Since for
arately. Of the 6600 cDNAs and ESTs represented on theMalldij the value ofJ;j is high, this cost function places
array, only genes for which the standard deviation of thei@Nigh penalty for assigning two similar nodes to different
log-transformed expression values was greater than £omponents. The lowest cost{({S}) = 0 is obtained
were selected. After this filtering process we remain withr . ,
. ormally Euclidean distances are used.

768 genes. These values were centered and normalizeg is a parameter of the algorithm - for genes we use<l® < 20. By
prior to application of the CTWC algorithm. The samplessuperimposing the minimal spanning tree, we ensure that all vertices belong
were labeled according to additional information about asingle connected component of the graph.
the histological characteristics of the tumor samples, the!eusef 00 = (/ v2rajexpl—x*/2a° (@ s the average ).

. . . . n many of the applications we tried, Potts spins wjth= 20 states were
estimated percentage of contamination with non'tumoﬁsed.q has nothing to do with the number of clusters determined by the
cells, the presence of mutations in the p53 gene, thelgorithm - see below.
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when all data points are in the same group; the highesibject is the correlation function:
cost is reached if no point is in the same group as any
of its neighbors. Hence the value #f({S}) reflects the Gij = <5S,Sj)7 (4)

resolution at which the partitior(S} views the data. Gij is the probability to find, at the resolution set by

Sep 3: Ensemble of partitions. Rather than choosing the data points, j assigned to the the same component.
any particular partition (say by minimizing the cost By the relation to granular ferromagnets we expect that
function), we consider all configurationsS} that have the distribution ofG;; is bimodal; if both spins belong to
(nearly) the same value oK({S}) = E; to each of the sameordered grain (cluster), their correlation is close
these we give thesame statistical weight, whereas all to 1; if they belong to two clusters that are not relatively
{S} that correspond to different resolutions (and hencérdered, the correlation is close tgdl

H({S}) # E) get vanishing probability. This assignment
of equal probabilitied ({S}) is the result of maximizing
the entropy in order to generate an ensemble of partitio
{S}, for which the only available information is that they
have a particular fixed value of the cdst The resulting (1) Build the clusters’ ‘core’ by thresholdinG;;. For
ensemble of partitions is the microcanonical ensemble of  ewery pair of neighbors and j, check whether

Sep 4: ldentifying clusters. To produce ‘hard’ clusters
on the basis of th&ij, we construct a new graph, in a
r“ﬁwee-step procedure.

Statistical Mechanics. For each valuetbbne can sample Gij > 6 = 0.5; if true, set a 'link’ between, j.
this ensemble and measure average values of any quantity ~ Because of the bimodality of the distribution @f;
of interest (see below). It is, howeveechnically more the decision to link, j depends very weakly on the

convenient to use for such measurements the canonical value of .
ensemble. In this ensemble the weight§ S}) are again
assigned by maximizing the entropy. However, rather than
allowing only partitions with a fixed resolution or cost
‘H = E, one requires that the ensemble averadk téikes

(2) Capture points lying on the periphery of the clusters
by linking each point to its neighborj of maximal
correlationG;j.

the valueE: (3) Data clusters are identified as the linked components
of the graphs obtained in steps 1,2.
(H) = {23}: PASHH({SH = E. (@) At T = 0 this procedure generates a single cluster of

all N points. AtT = oo we haveN independent spins,
ﬁmd the procedure yields clusters, with a single point in

This requirement is imposed as a constraint under whic h H i te a dend ;
entropy is maximized, by means of a Lagrange multiplier,eac - MENCE as Increases, we generate a dendrogram o

. : g lusters of decreasing sizes.
denoted IT. In sics terminologyT is called the ©YSY ) .
temperaturle Ratheprr1 )':han working a? i‘/ier one works This algorithm has several attractive features (Béatt

, 1997). One of these is the ability to identify stable
(generates samples and takes averages—see below)a}:lt - o .

fixed T. By fixing the value ofT one controls, in effect, the (and st§t|stlcally S|gn|f|canF) 9Iusters, which makes SPC
resolutionE; the two ensembles are completely equivalen ost suitable to be used within the framework of CTWC.

in the limit of large number of data points (or spins). In the urthermore, it allows a quantitative estimation of the

resulting canonical statistical ensemble of partitions eacP{alude Of. a ch(LjJs';erlngdo%erallét_lon,trt])yfclu?_term? _re?eatedly
{S}) appears with the statistical (Boltzmann) weight randomized data and checking the fraction orinstances in

which stable clusters (i.e. as stable as those obtained for
non random data) appeared. We identify stable clusters as

P(S) = e~ H{SH/T Ze—H({SD ] (3) follows. As we heat the system up, we record for every
S cluster two temperaturedj, a which it is ‘born’ (splits
from its parent cluster) antp, a which it ‘dies’ (splits into
At T = 0 only groupings withE = 0 hawe non- siblings). The ratioR = To/T; is a measure of a cluster’s

vanishing weight; atT = oo all partitions have equal stability. For example, in (Getet al., 2000a) we set the
weight. For a sequence of values Dfwe calculate, by thresholdR;, beyond which a cluster is considered stable,
Monte Carlo simulation, the equilibrium averagd) of  at a value for which not even one of 500 experiments on
several quantities\ of interest, such as the magnetization,randomized data gave a cluster wRh> Rc.

susceptibility and correlation of neighbor spins. The SPC was used in a variety of contexts, ranging from
latter is the most important quantity we measure—thecomputer vision (Domangt al., 1999) to speech recogni-
corresponding ‘operator’ i®\ = dg s, i.e. an indicator tion (Blattet al., 1997). Its first direct application to gene
which takes the value 1 if poinisand j are in the same expression data has been (Getal., 2000b) for analysis
component in partitiodS}. The ensemble average of this of the temporal dependence of the expression levels in a
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synchronized yeast culture (Eisehal., 1998), identify- This heuristic identification of relevant gene sets and
ing gene clusters whose variation reflects the cell cycle. submatrices is nothing but an exhaustive search among the

Subsequently, SPC was used to identify primary targetstable clusters that were generated. The number of these,
of p53 (Kannaret al., 2001) and p73 (Fontemagdial.,  emerging fromG1(Sl), is afew tens, wherea§1(G1)

2002). usually generates only a few stable sample clusters. Hence
i the next stage typically involves less than a hundred

Coupled two way clustering—CTWC clustering operations. These iterative steps stop when no

The main motivation for introducing CTWC (Ge¢ral., new stable clusters beyond a preset minimal size are

2000a) was tdncrease the signal to noise ratio of the  generated, which usually happens after the first or second
expression data. The method is designed to overcomkevel of the process.

two different kinds of ‘noise’. The first was mentioned Since the N; relevant genes are expected to have
above; say only a small subset bf genes participate correlated expression levels over at least a significant
in a biological process of interest, associated with asubset of the samples, we can expect at least a subset of
particular diseaséA. In this case we expect theds, them to form a stable cluster. Then when the members
genes to have correlated expressions over subjects withf such a cluster are used to recluster the samples, the
diseaseA. This correlation could, in principle, identify the noise generated by the very many irrelevant genes will
diseased subjects as ‘close’ in expression space—but, e filtered out and we will get a clear separation of
fact, forN, « |G1] the non-participatingG1|— N; genes the samples to the desired classes. When CTWC was
completely mask the effect of the relevant ones on thdirst introduced (Getzet al., 2000a), we also studied
distance between two diseased subjects. Hence as far several cases of artificially generated expression data, into
the process of interest is concerned, the non-participatingshich various correlations, partitions and sub-partitions
|G1| — N genes contribute nothing but noise, that masksvere incorporated and then masked. CTWC successfully
the signal of theN, relevant ones. CTWC eliminates this unraveled all this hidden structure from these toy problems
noise by discarding the irrelevant genes. (see link in Supplementary Information).

The second noise-reducing feature of CTWC is that In a typical analysis we generate between 10 and 100
it uses the expression levels of a a set of genes, rathériteresting partitions, which are searchéat biologically
than one gene at a time. Thereby intrinsic noise in ther clinically interesting findings, on the basis of the genes
expression averages out. that gave rise to the partition and on the basis of available

CTWC is an iterative process, whose starting point isclinical labels of the samples. It is important to note that
the standard two way clustering mentioned above, i.ethese labels are usedposteriori, after the clustering has
the clustering operationS1(G1) and G1(S1). We keep  taken place, to interpret and evaluate the results.
two registers—one for stable gene clusters and one for
stable sample clusters. Initially we pla@l in the first RESULTS

and SL in the second. FronS1(G1) and G1(S1) we Lists of the genes that constitute each of the clusters

identify stable clusters of samples and genes, respectiveléI mentioned below are given in the supplementary

I.e. those for which the SPC stability indéx exceeds a information. One should note that in the experiments

critical value and whose size is not too small. Stable gene .
analyzed here no replicates of the measurements were

clusters are denoted &l with | = 2,3, ... and stable made
sample clusters aSJ, J = 2, 3, ... In the next iteration '
we use every gene clust@l (including! = 1) asthe preast cancer—PAL

feature set, to characterize and cluster every sample
SJ. These operations are denoted 8y(G1); (note that

SL(GI) was already performed'). In effect, we use every (1) Do our methods of analysis reproduce the results

stable gene cluster as a possible ‘relevant gene set’; the obtained by PAL?

submatrices defined B§J andGlI are the ones we study.

Similarly, all the clustering operations of the fo@& (SJ) (2) Can we make observations that seem to be of interest
are also carried out. In all clustering operations we check ~ and were not reported by PAL?

for the emergence of partitions into stable clusters, of

genes and samples. If we obtain a new stable cluster, wS {0 the first question—CTWC reproduced all the main

add it to our registers and record its members, as well ad"dings of PAL directly, starting from the entire sel

the clustering operation that gave rise to it. If a certain®f 1753 genes, without filtering them to the intrinsic set.

CIUStermg operation did not give rise 10 new Slgnlflcant" This search is done in an automated manner, calculating various figures

partitions, we move (_jown the list of gene and Sampleof merit for each stable cluster, defined on the basis of clinical or genetic
clusters to the next pair. information.

S\?\}e posed the following questions:
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Second, we found new tumor classifications that were natluster from the other sample&21 is homologous to
mentioned by PAL. gene cluster d from Figure 3 of PAL; its expression is high

) in the Erb-B2+ tumors.
Reproducing the results of PAL. PAL used lower case

letters to identify gene clusters, and colors for samples (seldew observations (beyond PAL). Of several new find-
their Figures 1 and 3). We use below their notation wherings (Kela, 2002) we chose to highlight here one that bears
comparisons are made. on an issue that has been considered important by PAL:
G1(S): Following PAL, we used the same feature s&t, that of separating the ER+ and ER- tumors on the basis of
of all samples and cell lines, to clustér, the full set of their expression levels. We present two such classifiers,
1753 genes. Since we also used the same normalizatiowhich demonstrate two different advantages of CTWC.
this operation provides a direct comparison of AverageThe first classifiercould have been discovered by PAL,
Linkage (the clustering method used by PAL) and SPCsince it is based on genes thdat belong to PAL’s intrin-
All the gene clusters that were marked as interesting byic set, but their effect is masked by the large humber of
PAL, were also found by our clustering operation (Kela, the 496 ‘intrinsic’ genes; to see it, one has to zero in on a
2002). small subset, as is done by CTWC. The second classifier
S(G1): Next, we clustered (separately) the cell lines andcould not have been discovered by PAL’s analysis since it
the tumors, using all 1753 genes. Since our normalizatiors based on genes that a@ included in their intrinsic set.
here differs from that of PAL, we cannot compare directly S1(G4): The clusterG4 (10 genes) was described
our results. However, in agreement with PAL, we alsoabove—it is practically identical to cluster j from Figure 1
did not find any meaningful partitions of the tumors, of PAL and to cluster ¢ of their Figure 3. It contains the
S1, from this operation, leading to the same conclusiorestrogen receptor and three other transcription factors (see
as reached by PAL: namely, th&l is not suitable to supplementary information of PAL) related to the estrogen
classify the tumors and we should characterize them usingeceptor pathway. The operatiddl(G4) generated the
different subsets of genes. From here on CTWC deviatedendrogram presented in Figure 1A. The variation in the
from the procedure of PAL, who selected their ‘intrinsic expression levels of th&4 genes correlates well with the
set’ of 496 genes in a way that (a) necessitates havindirect clinical measurements of the ER protein levels in
paired samples from the same patierisfdre and after ~ the tumors (supplementary information of PAL).
chemotherapy), and (b) assumes that only genes that meetn the dendrogram Figure 1A the boxes representing
their criteria (similarity of matched samples) are to besample clusters were colored according to the percentage
used. CTWC, on the other hand, is an automated processf ER- samples, ranging from red (100%) to blue (0%).
performing operation§1(Gl), i.e. clustering the tumors In Figure 1B the samples were ordered according to the
S1 using different stable gene clustégd , one at a time. dendrogram, and the colors represent the expression levels
Clustering the 65 samples on the basis of these smatif the 10 genes. SPC generated three main branches
subsets of genes, one at a time, enabled us to identify tHelusters); the uppea with highest expression values,
subclasses of tumors that PAL found using their intrinsicb intermediate and the lowest Clustera, the biggest
set. (41 samples), contains all but two of the tumors of the
S1(G4): Cluster G4 (that was obtained by the G1(S) luminal-like (blue) cluster of PAL (see their Figure 3).
clustering process) has 10 genes—it is our homologue d¥lore interestingly, clusters. and b, contain 45 out of
cluster j of PAL (see their Figure 1). The operatiel{G4) 48 of the ER+ tumors (see blue leaves). Clustés rich
generates a stable sample cluster which is quite similafseven out of 11) in ER- tumors. DesignatingeaR+ the
to the ER+/luminal-like (blue) cluster of PAL (see their samples inNOT(c) (i.e. thatdo not belong toc), we get
Figure 3); its members have high expression levels4f our best classifier, with efficiency (defined as the fraction
S1(G4) identifies also PAL's basal-like (yellow) group, of ER+ ‘caught’ inNOT(c)) E = 45/48 = 0.94 and
characterized by low expression levels of tBé genes. purity (defined as the fraction of ER+ among members of
S1(G46), S1(G9): G46 is a cluster of 33 genes that NOT(c)) P = 0.83. The corresponding numbers obtained
are part of the proliferation cluster found by PAL. The by PAL (for their ‘luminal-like’ cluster) wereE = 0.66
operationS1(G46) produces a good homologue of their andP = 0.89.
normal-like (green) cluster. Members of this group show S1(G30): G30 is a cluster of 15 genes, related to cell
low expression levels 0f546 genes. The normal-like cycle proliferation. Only one of the 15 were included in
samples are also identified in the operat®l{G9): the  PAL's intrinsic set. Clustering the 65 tumors using the
13 genes ofG9 are a subgroup of cluster g of PAL. expression levels of these genes generated the dendrogram
Normal-like tissues have high expression levels of@® presented in Figure 7A (see supplementary information).
genes. The boxes that represent sample clusters are colored
S1(G21): This operation separates the Erb-B2+ (red)according to their relative content of ER- samples. The
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Figs 14, Breast cancer. Fig. 1. S1(G4): clustering 65 tumors using the expression levels of gene cl@er(A) The boxes in the
dendrogram represent clusters; they are colored according to their percentage of ER-tumors (see color baByrCleftje(sa,b,c are
characterized, respectively, by high, intermediate and low expression levels (see color bar ofidgRt)S1(G10): clustering 84 breast

cancer samples according to the expression levels of gene cluster G10. The boxes in the denAjoggmesent sample clusters. They are
colored according to the median value of the survival of the patients contained in each cluster, ranging from dark red (median survival of
100 months) to blue (median of 4 months)—see left color EBrQlustersa andb exhibit high and low expression levels (see color bar at
right), respectively. The central color bar represents p53 status: red—mutant, blue—wt and grey—unknown. Memdrerstadracterized

by low expression, low survival and mutant pFdg. 3. S1(G33): the boxes in the dendrogram) represent sample clusters that are
colored according to the median value of the survival of the patients contained in each cluster, ranging from dark red (median survival of
100 months) to blue (median—4 months)—see left color ). The clustersa, b and ¢ exhibit high, intermediate and low expression

levels (see color bar at right). The central color bar represents p53 status: red—mutant, blue—wt and white—unknown. Marabers of
characterized by high expression, low survival and mutant B 4. S1(G36): (A) The genes 06536 gave rise to a very clear partition of

the breast cancer samples to high (clusdeaind low expression levelsB) No clinical interpretation of this partition has been found yet.
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dendrogram exhibits a clear partition of the tumors intocoefficient between survival and the average expression
clustersa with high expression levels of the30 genes levels of theG10 genes i9.47. The Wilcoxon rank-sum
and ¢ with intermediate expression levels, as seen irtest (WRST) indicated that the distributions of survival
Figure 7B. Clusterc contains 44 tumors, 38 of which times of patients in clustdr and of the rest of the patients
were classified as ER+, three as ER- and three unknoware significantly different®-value= 3.7 - 10~4); patients
Hence this cluster captured the ER+ group with efficiencythat exhibit low expression levels of tl&10 genes have

of E = 38/48 = 0.79 and purityP = 38/44 = 0.86.  short survival.

Clustera contains a high proportion of ER- tumors; its To indicate the p53 status, we placed a color bar next to
sub-clusteb consists of five special ER+ tumors that havethe leaves of the dendrogram, on which the patients with

relatively high expression levels of tl&&30 genes. mutant p53 are labeled red and the p53 wt—blue. Patients
with unknown p53 status were labeled white. Note that
Breast cancer—SAL the 17 patients of clustdy exhibit low expression levels

Again we have two kinds of observations; those madef the G10 genes. Ten of these 17 are p53 mutant, five
using genes that were not included by SAL in theirhave unknown labels and only two are wt. Hence low
intrinsic set, and hence could not have been found by thengxpression levels of th&510 genes seem to go along
and observations made using genes that were included with a mutated p53. The correlation coefficient of the
the previous analysis. average expression levels @10 with p53 status i9.4;

Since there is considerable overlap between the samplé@s particular, low expression is a good predictor of mutant
of PAL and SAL, we did not repeat our attempt to p53. To substantiate the last statement, we compared the
reproduce all their findings. We did, however, study somalistributions (using WRST) of the median expression
aspects related to the clinical labels, that were the maitevels of patients with mutant p53 to wt. We found that
additional feature of the SAL data. We emphasize her¢he two distributions are significantly differer®{value=
our findings concerning survival and p53 status. We found..2 - 10~%); the wt p53 patients exhibit high expression
correlations between expression levels of several genlevels and the mutant p53 exhibit lower expression levels
clusters and survival, and that the expression levels off the G10 genes.
these genes is also a predictor of p53 mutation status. S1(G33): ClusterG33 contains 36 genes, related to cell
We also present a very clear partition of the patients intgoroliferation, which include 10 out of the 15 members
two groups, for which we do not yet have any clinical of cluster G30 found by CTWC in our analysis of the
interpretation. PAL data. Clustering the 85 samples using the expression

S1(G10): ClusterG10 contains 15 genes that are relatedlevels of these genes generated the dendrogram presented
to the ER pathway, including five of the 10 membersin Figure 3A. The boxes are colored similarly to Figure 1;
of G4 mentioned in our analysis of PAL, (such asaccording to the median survival (in months), of the
GATA-binding protein three). Clustering the 85 samplespatients that belong to each cluster. TS0 genes
(S1) using G10, generates the dendrogram presented ipartition the samples into three main clustaasp and
Figure 2A. The boxes that represent sample clusters a® as shown in the dendrogram. The correspond®g3
colored according to the median value of the survival ofexpression levels, as seen in Figure 3B, are of high,
the patients contained in each cluster, ranging from reéhtermediate and low levels, respectively. The average
(median survival of 100 months) to dark blue (4 months).expression level of th&30 genes is inversely correlated
Similarly to the results shown in Figure 1, the variation inwith survival (correlation coefficient0.24). Clustera
the expression levels of tl&10 genes correlates well with contains patients with high expression and short survival;
the direct clinical measurements of the ER protein level®nly one of its 21 members survived beyond 43 months,
in the tumors. The dendrogram of Figure 2A exhibits twowhereas clusters andc contain long (up to 100 months)
main clustersa contains most of the ER+ tumors, that as well as short survival. Comparison of the distributions
exhibit higher expression levels of tli&10 genes, as seen of the survival times of the patients in clusiito those
in Figure 2B, andb, which contains mainly ER-tumors in clustersb and c indicates that there is a significant
that exhibit low expression levels of tii&10 genes. difference P-value= 0.0016).

Analyzing the correlation with the p53 status, wild As to p53 status, we note that among the 21 patients
type (wt) vs mutant, and with the survival parameterin clustera, 13 were mutant p53 and four had unknown
we get similar results as were obtained by SAL. Theystatus. Clustec, of low expression levels, contains only
showed that the basal-like samples, corresponding to ouwo mutant p53 patients (out of 16 members of the
clusterb, come from patients with the shortest survival cluster). The correlation coefficient between the average
times and a high frequency of p53 mutations. Two ofexpression levels 0f533 genes and p53 status -€).4.
the 17 members of clustér survived for 41 months and Hence high expression levels of these genes is a good
all the others—for less than 26 months. The correlatiorpredictor for mutant p53, whereas low expression predicts
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wt p53. Comparison of the distributions of the medianrelated to colon cancer or other forms of neoplasma e.g.

expression levels between the p53—-mutant and the p53myc, matrilysin, GROy (see Nottermaret al., 2001),

wt patients yields significantly different distributionB{ and additional genes which may very well be related to

value=4.5-10%). colon cancer. Clustering the 36 samplessaf using the
S1(G36): Cluster G36 contains genes that are relatedexpression levels of the gene clusté25, gave rise to

to apoptosis suppression (e.g. bcl-2) and cell growtha clear partition of the samples into two clusters; one

inhibition (e.g. INK4C cyclin-dependent kinase inhibitor of normal samplesa), and the other of tumor samples

2c). Using the expression levels of this set of genegb), with relatively high expression levels of th&25

to cluster the 85 samples, we generate the dendrogragenes in the tumor cluster (see Figure 8, supplementary

presented in Figure 4A. The boxes are colored similarly tanformation).

Figure 3A, according to the median survival of the patients )

in each cluster. The dendrogram exhibits partition of thé\éw observations (protocols AB). S1(G3): Two ex-

samples into two very distinct clustegscontains patients Perimental protocols that were used; 16 RNA samples

with high expression levels anb—patients with low. (Paired samples 3-6,8-10,11) were extracted using a

We found no correlation between membership in eithefmnethod that isolates mRNA prior to reverse transcription

of these clusters and any of the clinical labels that werd Protocol A), and the other 20 samples (paired samples

reported by SAL. However, the clarity of the partition 12,27,28-29,32-35,39-40) were prepared by extracting

calls for further investigation of the two groups of patients,0tal RNA from the cells (‘protocol B’). Clustering the

which may reveal some so far unknown role played by theX® carcinoma samples, using the expression levels of

genes ofG36 in breast cancer. the 27 genes of clusteg3, exhibits a clear partition of
the samples into two clusters (see Figure 6A). Clubter
Colon cancer contains 20 tissues of protocB| and clustera contains

We applied CTWC to the colon data set of Nottermané4 trissues ?fproftocd_\. This separ?tion has two mistak_es;
et al., containing 18 paired carcinoma and four paired?th samples of patient 9 were labelécand appear in

adenoma samples. We refer to the set of all 44 samples a2 cluster of protocds.

and to the 36 paired carcinoma samples as S1. We prese(k observations (unknown interpretation).  S10(G24),
gene clusters which differentiate the samples according t%lO(G?) S10(G12): Clustering only the 18 carcinoma
the known normal/tumor classification, previously ShOW”sampIes'$10 obtained in a previous CTWC iteration) on

by Nottermaret al.. Furthermore, we show the advantagehe pasis of their expression over different sets of genes,
of CTWC in mining new partitions which have not been (g ealed the following partitions:

found using ot.her_clustering methods and may contain The clustering operatiolS10(G24) generated a clear

relevant biological information. separation of the tumor samples into two clusters. Samples
. ; 33,34,35,40 are clustered togetherbpand show high

S(GB): G contains 55 aqexpression levels of th&24 genes (Fig. 9, supplementary

formation).

he operation S10(G7) separated tumor samples

32,33,40 from the other 14; the small group has

W expression levels of theé57 genes (Figure 10,
supplementary information).

S10(G12) clustered tumor samples 33,34,35,12,40 to-
gether (clusteb in Figure 11, supplementary informa-
c}ion); the expression levels of tH@12 genes are high in
these 5 samples. Hence we discovered that tumor samples
d). Clustersc and d contain all the normal samples _33’40 and 35 W_ere_rept_aatedly separated_from the remain-
(both carcinoma and adenoma)-the tumor carcinoma ing tumors, which |mpI|e_s t_hat these patients may share
samples and—the tumor adenoma samples. The colorsSOMe common characteristics, perhaps representing a true

(see bar on the right-hand side of the expression matrix—210/0gical meaning. However, due to lack of additional in-
mation about the patients we were unable to determine

see reordered data) represent the expression levels of t i _ . ; ;

genes inG8, with red (blue) denoting high (low) values. the biological origin of this separation.
S1(G25): The data set we analyzed next contains the

18 carcinoma and their paired normal samplgk, The DISCUSSION AND CONCLUSION

group G25 contains 51 genes, some of which are knownWe described theCoupled Two Way Clustering method

to be over expressed in carcinoma and are found to band demonstrated its ability to extract useful information

Tumor—Normal separation.
genes, which show high expression levels in the norm
samples compared to the adenoma and carcinoma. Seve
genes within this cluster are known to be repressed ir&7
colorectal neoplasms; for example, guanilyn and DRA™ "’
(down-regulated in adenoma). Some of these genes we
previously mentioned by Nottermaah al.. Clustering the
44 samples, using the expression level$&8f generated
the dendrogram shown in Figure 5A.

The dendrogram exhibits a clear separation into tw:
large clusters g and b) and two small onesc(and
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Fig. 5. S(G8): A clear separation of the tumor carcinoma and ade-
noma samples from the normal samples, using@8group of
genes. ) The boxes are colored (see supplementary information
according to the percentage of the tumor sampBlsThe expres-
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from breast cancer and colon cancer data. For both data
sets we reproduced the findings of previous analyses
and discovered new structure of biological significance,
demonstrating the advantages of CTWC compared to
standard clustering techniques.

The central strategy of CTWC is to cluster the samples
on the basis of their expression levels over small, corre-
lated sets of genes, and vice versa. The relevant sets of
genes and samples are found by using, one at a time, sta-
ble clusters of genes (or samples), that were identified in
preceding iterations of the algorithm. Whenever such a
clustering operation generates new, statistically significant
partitions of the clustered objects, the result is recorded, to
be used in further iterations and to be scanned for possible
biological or clinical interpretation.

Perouet al. also reached the conclusion that performing
an ‘all against all’ analysis does not reveal the effects of
relatively small groups of relevant genes. They were able
to produce significant findings only after reduction of the
genes used to a smaller number. The smaller ‘intrinsic set’
was identified using a particular guiding principle, one
}hat can be used only when there are at least two samples
from each of several patients. Furthermore, the selection

sion level matrix ofS1(G8). Rows correspond to all the samples Criteria used exclude genes that, according to our findings,

and the columns correspond to the genes of clus&rThe ma-
trix shows relatively high expression levels of t88 genes in the

normal samples compared to the tumor samples.
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do contain important information.

CTWC does not only generate the important partitions
of the samples; it also identifies small groups of genes
that are responsible for the separation of different classes.
For both breast and colon cancer we found partitions
that have no clear interpretation at the moment, a fact
that demonstrates the strength of unsupervised approaches
such as clustering; unsuspected structure buried in the data
can be revealed.
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