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Abstract

We predict the CATH architecture (Orengo et al. 1997) of 165 single{domain proteins that

were not yet processed by CATH, using the FSSP Z-scores (Holm and Sander 1996). The

architecture assignment in the CATH database is performed manually, while the FSSP

Z-scores are computed automatically. We predict the architecture by applying standard

and newly proposed automatic classi�cation algorithms to the Z-scores; therefore, our

procedure can save human e�ort in the enhancement of CATH.

In order to perform the classi�cation we introduce improved similarity measures be-

tween the proteins; direct measures are derived using local normalization of the original

similarities, and indirect measures are based on the outcome of hierarchical clustering

methods. Finally, we suggest a new classi�cation scheme which uses relationships be-

tween the unclassi�ed proteins as part of the classi�cation.



Chapter 1

Overview

Proteins are chain-like molecules that fold into di�erent three dimensional structures.

The biological function of a protein is determined mainly by its structure. Therefore,

the structure is a very important characteristic of a protein and is widely studied. Many

researchers classify proteins into groups of similar structures, using di�erent techniques to

organize the structures in groups. Some researchers use automatic structure comparison

algorithms, while others view the structures and use human judgment based on experience

and visual criteria to decide how to group the proteins.

The goal of this work is to use a pairwise structural similarity measure (FSSP score)

calculated by one group of researchers to automatically predict an aspect of classi�cation

that is determined manually by another group (CATH). Such a procedure saves human

intervention and helps to increase the number of classi�ed proteins easily.

Usually, machine learning and pattern recognition techniques, such as nearest{neighbor

classi�cation, are used to give automatic predictions of classi�cation. In this work we

tested several classi�cation algorithms to perform the automatic class prediction. At

�rst, a nearest{neighbor classi�cation algorithm was chosen. The performance of this

algorithm depends on the similarity measure determined for the proteins. Hence, in or-

der to increase the prediction ability of the algorithm, we propose and evaluate several

similarity measures derived from the FSSP distances. A set of robust similarity mea-

sures are generated by �rst utilizing a hierarchical clustering algorithm that groups the

1



1.1. Thesis Outline 2

proteins into families of similar structures and, then, de�ning a new similarity measure

using the produced hierarchy. We tested several clustering algorithms for this task. For

comparison, the clustering outcome was used in a more direct manner to perform the clas-

si�cation. Finally, we suggest a new heuristic classi�cation procedure combining clutering

and classi�cation features in one algorithm.

The success rate of the proposed algorithms is estimated by testing them on a set

of classi�ed proteins. Finally, we use our methods to classify a set of yet unclassi�ed

proteins.

1.1 Thesis Outline

The thesis consists of �ve chapters. The second Chapter, the introduction, includes

a background on protein structure and protein classi�cation and presents the di�erent

databases from which the data for this work were taken. It also describes the motivation

for the work. The third Chapter gives a formal de�nition of the problem. It presents

the input data and the desired output, together with the description of the evaluation

procedure. Chapter 4 deals with the classi�cation methods, presenting the algorithms used

and similarity measures that were evaluated. We proposed several similarity measures;

direct ones, that are locally derived form the \raw" similarity measures, as well as indirect

ones that use clustering as a preprocessing stage to calculate a new set of similarities.

A summary of the prediction ability of all the methods, as tested on classi�ed proteins,

and our resulting predicted class for the yet unclassi�ed proteins are given in Chapter 5.

The main new results of the thesis on protein structure prediction are summarized in

tables 4.2 and 5.2 through 5.6. The �rst of these lists several proteins that we believe

have been misclassi�ed in the CATH database. The other tables contain our predicted

classi�cation for 165 proteins that have not yet been considered by CATH.



Chapter 2

Introduction

This Chapter contains a general background on protein structure. It includes, in the

�rst section, a brief summary of protein structures and a description of protein structure

studies that are relevant to this work. In the second section the motivation for this work

is given. Terms and nomenclature used throughout the work are explained and appear in

boldface.

2.1 Background on Proteins

2.1.1 Protein structure

Since the �rst three-dimensional structure of a protein was discovered four decades ago,

a lot of research has been done on protein structures. Today it is well documented and

agreed [7] that a protein's functional properties and evolutionary relations depend mainly

on its three dimensional structure. In spite of many years of research, many questions

about protein structures remain unsolved.

A protein consists of one or several poly-peptide chains of amino acids that act

together to perform some biological task. There are 20 types of amino acids, all having

a common central carbon atom (C�) to which a hydrogen atom, an amino group (NH2),

and a carboxy group (COOH) are attached. The di�erence between amino acids is the

side chain which is attached to the fourth C� bond. When a protein is synthesized, the

amino acids are joined by connecting the amino group of one acid to the carboxy group

3



2.1. Background on Proteins 4

of the next, while emitting a water molecule (creating a peptide bond). One can assign a

direction to the amino acid chain since it has two distinct ends (amino and carboxy). By

convention, the chain is said to run from the amino end to the carboxy end. The sequence

of a protein, also called its primary structure, is encoded in the DNA. A human DNA,

for example, encodes about 100,000 di�erent proteins. Many of these sequences and also

non-human ones are already known [16].

The di�erent three-dimensional structures of proteins arise from the di�erent inter-

actions between parts of the protein with each other and with their surrounding. There

are several kinds of interactions: between side chains and the water around them, inter-

actions between two side chains (along the same poly-peptide chain or from other close

chains) and interactions between atoms on the main chain. The protein uses the rota-

tional degrees of freedom of the bonds along the main chain to fold into the lowest energy

con�guration. The energy of a con�guration depends on all the interactions mentioned

above.

Most of the three dimensional structure of a protein, especially its core, is stable and

can be viewed as a function of the sequence alone. The key problem of molecular biology is

to be able to predict the three dimensional structure and, therefore, functional properties

of the protein from its amino acid sequence. This problem is usually called the folding

problem.

A protein's structure can be described using a bottom-up approach; starting from the

\primary structure" (the amino acid sequence) up to the entire three dimensional structure

of the whole protein. Di�erent parts of the protein form a local regular structure, such as

�-helices or �-strands; these are called secondary structures. Most protein structures are

a combination of secondary structure elements connected by loop regions of various

lengths and irregular shape. Figure 2.1 shows a three{dimensional structure of a protein.

Secondary structures combine to form higher level structures. �-strands usually combine

to form a �-sheet, which is several �-strands aligned next to each other to form a sheet
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in space. Note that similar three dimensional shapes can be formed by many di�erent

connectivity orders and directions of the secondary structure elements that form them.

For example, a �-sheet can be formed by combining parallel or anti-parallel �-strands.

The secondary structures of a protein usually combine to form one or several globular

structures which are called domains or tertiary structures. A domain is de�ned as a

poly-peptide chain or part of a chain that can independently fold into a stable structure.

Homologous amino acid sequences, i.e. similar sequences that are usually evolutionary

related, form similar tertiary structures in di�erent proteins. The domains also have a

functional role. Often, each domain in a protein is associated with a di�erent biological

function. Due to the domain's structural independence, many research groups study and

classify domain structures rather than whole proteins.

Most domain structures can be divided into three classes, according to the secondary

structures found in their core: mainly-�, mainly-� and �-� domains. The remaining

domains are built of few isolated �-helices and �-strands and can be considered as a small

fourth class.

Many proteins are made of a single poly-peptide chain. There are, however, cases

where several chains, often replicas of the same one, combine to form a single functional

protein. The structure of these multi-chained proteins is described by the quaternary

structure, which is the highest level model of protein structure.

2.1.2 Structure research

Three dimensional structures of proteins are collected and stored in a computerized archive

called the Brookhaven Protein Data Bank (PDB) [3][1]. The number of known structures

is constantly increasing and passed 9000 at the end of 1997 (the latest version from Au-

gust 13, 1998 includes 11912 protein structures) [27]. The collection and study of protein

structures can help the pursuit of a practical solution to the folding problem. Since evolu-

tion has created many proteins with practically identical structures and similar sequences,

one can infer the structure and function of a protein of known sequence, provided a close
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Figure 2.1: Three dimensional structure of the protein Deoxyribonuclease I (PDB code
3DNI). On the left, a space�ll view of the protein. On the right, a cartoon plot showing
�-helices and �-strands as ribbons, and loops as strings. This shape is called �� 4-layer
sandwich because it has 4 layers, the outer ones are made of �-helices and the inner ones
are �-sheets.

sequence neighbor with known characteristics can be identi�ed [17].

During evolution, a protein responsible for a speci�c biological task tends to keep

its three dimensional structure over much longer periods than it maintains its sequence.

Consequently, two proteins that have more than 30% sequence identity (i.e. close in

evolutionary distance) have almost certainly the same fold [26]. However, there are many

cases in which proteins with very low sequence identity (that share a distant common

ancestor) do have the same fold [16]. Thus, studying the space of all protein folds (fold

space) can teach more about evolutionary and functional relations than studying sequence

resemblance alone.

Several research groups are studying the structural relationships between proteins,

trying to �nd out whether certain structures are more frequent than others and what

is the relationships and correlation to the protein function. Most of the groups divide

the fold space into structural hierarchies (nested groups) describing di�erent levels of

similarity [15][26][22][30]. Many of these groups make their classi�cation and identi�ed
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structural relationships publicly available in their web sites (see Appendix C for a list of

all web sites referred to in this work).

Each research group has its own way to compare and group the proteins. Holm and

Sander use a fully automatic structure comparison algorithm, DALI (Distances ALIgn-

ment algorithm), to calculate a pairwise similarity measure (S-score) between protein

chains; the more similar are two chains, the higher the similarity measure assigned to

them. Holm and Sander maintain a database of fold classi�cations, named FSSP (Fold

classi�cation based on Structure-Structure alignment1 of Proteins), based on calculating

a structural similarity measure for all pairs in a representative sub-set of the PDB [15][18].

The result of this all-against-all comparison is reported in the form of a fold tree gener-

ated by a hierarchical clustering algorithm (the algorithm is described in 4.5.5). Using

the fold tree one can �nd proteins with similar structure at varying degrees of statistical

signi�cance.

The similarity measure, S-score, between protein chains i and j, denoted as Sij, is

calculated by comparing the structures of aligned sub-chains in the two proteins. The

sub-chain alignment used in the calculation is selected so that the outcome S-score is

maximal. The S-scores, fSijg, are then normalized, to give statistical meaning, by shifting

and scaling them according to their average value and standard deviation. The scaled

values are called Z-scores, fZijg. A more detailed description of the FSSP database and

similarity measure is given in Appendix A.

The group of Orengo et al. uses a combination of automatic and manual procedures to

create a hierarchical classi�cation of domains (CATH) [26]. They arrange the domains

in a four level hierarchy of families according to the protein class (C), architecture (A),

topology (T) and homologous superfamily (H). The hierarchy of CATH is demonstrated

in �gure 2.2. In the �gure all the class types and most of the architecture types are listed,

1A structure-structure alignment is a correspondence between amino-acids of two proteins. Corre-
sponding amino-acids are positioned in similar geometrical places relative to the whole protein three-
dimensional structure.
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but in the topology and homologous superfamily levels only representatives appears.

-αβ

Non-bundle
Bundle
Few SS

Ribbon
Single Sheet
Roll
Barrel
Clam
Sandwich
Distorted sandwich
Trefoil

Three-layer (aba) sandwich

Orthogonal prism

1wkt

Aligned prism
Four-propellor
Six-propellor
Seven-propellor
Eight-propellor
Complex

Roll
Barrel
Two-layer sandwich
Three-layer sandwich

Four-layer sandwich
Box
Horseshoe
Complex

Iregular

Architecture

Three-layer (bba) sandwich

Class Topology

Few SS

Mainly- β

Mainly- α

Gamma-B Crystallin, domain 1

superfamily
Homologous

Cytochrome C Oxidase, chain F
1amm dom 1

Figure 2.2: CATH hierarchical classi�cation tree. Only representative types are listed.

The class level describes the secondary structures found in the domain and is created

automatically. The architecture level, on the other hand, is assigned manually (using

human judgement) and describes the shape created by the relative orientation of the

secondary structure units. The shape families are chosen according to a commonly used

structure classi�cation of Richardson [28] and other reported shapes, like barrel, sandwich,

roll, etc. Figure 2.3 depicts the shapes of representatives from 6 frequent architecture

families.

The topology level groups together all structures with similar sequential connectivity

between their secondary structure elements. For example, two similar shapes that include

a �-sheet with di�erent relative direction of its �-strands will be assigned to di�erent

topology groups. Structures with high structural and functional similarity are put in
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(a) Mainly-�, Non-bundle (b) Mainly-�, Bundle

(c) Mainly-�, Sandwich (d) Mainly-�, Ribbon

(e) Mainly-�, Barrel (f) �-� , Barrel

Figure 2.3: Cartoon plots of representatives from 6 frequent architecture types. The
�gures were taken from the CATH web site (see Appendix C).
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the same fourth level family, called homologous superfamily. Such structures may have

evolved from a common ancestor. Both the topology and homologous superfamily levels

are assigned by thresholding a structural similarity measure (SSAP) at two di�erent

levels, respectively [32][24]. This measure is calculated automatically between the proteins.

Assigning two domains to the same homologous superfamily requires a similar function

in addition to high structural resemblance. An elaboration on the CATH database is

presented in Appendix B.

The task of de�ning structural relationships between proteins is further complicated by

the existence of multi-domain proteins. It is not obvious what similarity value should be

assigned between a single-domain protein that is similar to one of the domains of a multi-

domain protein. Several research groups, including Orengo et al. , tackle this problem by

�rst separating the proteins into domains and then studying the structural resemblance

between domains. There are several algorithms for domain identi�cation. The domains

identi�ed in di�erent proteins are also publicly available on the web in several databases

(see Appendix C). In this work we used the 3Dee database of Siddiqui and Barton [36][30].

2.2 Motivation

The motivation for this work originated from a paper published by Holm and Sander [15]

describing the FSSP database and the similarity measure used to create it. They showed

that by using the similarity scores from an all-against-all comparison, one can separate

the protein folds into groups that correspond to known structural families. On the other

hand, the CATH database, which also classi�es proteins into structural families, includes

a manual procedure in order to identify the protein architecture. This gave rise to the

question whether the FSSP similarity measure can be used to give an automatic

prediction of the CATH architecture. Such a prediction can be used to enlarge the

CATH database without the necessary manual intervention.

Furthermore, the FSSP database uses an average linkage clustering algorithm to ob-
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tain its hierarchy of fold families. Recently, a robust clustering algorithm, based on the

behavior of inhomogeneous magnets (SPC), was proposed by Blatt et at. [4]. Naturally,

the next question is whether the SPC algorithm can be applied to the FSSP data

and how it compares to the average linkage algorithm in identifying structurally

related families.

Therefore, the goal of this work was set to address the above problems by proposing

a robust automatic algorithm that can predict the CATH architecture for chains that are

included in the FSSP database but have not yet been assigned a CATH classi�cation.



Chapter 3

Problem de�nition

In this chapter we de�ne the problem we want to solve and the criteria used to evaluate the

alternative solutions. As mentioned previously (Section 2.2), we want to automatically

predict the architecture classi�cation of CATH, using the similarity measure of FSSP.

To deal with the architecture prediction using a statistical pattern recognition frame-

work, we have to de�ne the input data and desired output. The input data is a set of n

protein entries, fEigni=1, that appear in both FSSP and CATH. From the FSSP we obtain

the pairwise similarity measures for all protein pairs, Sij and Zij, and from CATH we take

the classi�cation data, Ci = fCC
i ; C

A
i ; : : :g. These data sets are used to build and test the

classi�cation algorithms. We seek an algorithm that predicts the correct architecture with

the highest probability.

Before getting into details, it is important to state that the above data, together with

the evaluation method, are all that is needed to properly de�ne the problem of �nding

a good classi�cation algorithm. In addition, we collected from other proteins databases

a set of entries that were not processed by CATH, for which we can predict the yet

undetermined architecture. Following is a more detailed description of how we assembled

the protein data sets and the method used to evaluate the classi�cation algorithms.

12
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3.1 Getting the data

The input data used in this work are the FSSP S and Z scores. The S and Z matrices

of the FSSP version from December 25, 1997 were obtained from Liisa Holm (one of the

FSSP creators). A Z-score matrix that contains Z values with Z > 2:0, can be obtained

directly from the FSSP web site [10]. The December 1997 version of the FSSP database

included 1188 protein chains which represent 9153 PDB structures (see appendix A). The

lengths of all FSSP chains were extracted from the FSSP �les. The length, which is not

part of the de�ned problem, is used for an initial analysis of the data. We denote the

lengths vector as L = fligNi=1.
The next step is to �nd which of the FSSP chains appears in CATH. Due to the fact

that CATH handles domains whereas FSSP deals with chains, we decided to use only

chains which have a single domain and, therefore, will appear as a single entry in both

databases. The list of 1188 FSSP chain names was checked against the CATH database.

Out of the 686 proteins that appear in CATH, 479 were single domains and had a single

classi�cation in CATH, whereas the remaining 207 were multi-domained and therefore

had several classi�cations, one for each of their domains.

We retrieved and collected all the CATH classi�cations of the 479 single-domain chains.

Not all of the CATH families had representatives in the 479 sample; especially small

families at the topology and homologous superfamily levels were missing. Therefore, we

renumbered the obtained class types of the chains in every CATH hierarchy level. In the

�rst level, the class level, there were representatives from all four class types (numbered

1 to 4). In the second, architecture level, the 479 chains covered 29 di�erent architecture

types. Table 3.1 lists the 29 architecture families grouped according to their class.

The indices of the families at all CATH levels of the proteins are denoted by Ci =

fCC
i ; C

A
i ; : : :g where CC

i = 1; : : : ; 4 and CA
i = 1; : : : ; 29 and so on.

We de�ne the dataset PR479 as the list of these 479 single-domain chain entries, E,

with their corresponding FSSP similarity matrices S and Z, their lengths vector L, and
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# C Class C.A Architecture Number
1 1 Mainly � 1.10 Non-bundle 72
2 1.20 Bundle 29
3 1.30 Few SS 24
4 2 Mainly � 2.10 Ribbon 23
5 2.20 Single Sheet 4
6 2.30 Roll 10
7 2.40 Barrel 23
8 2.50 Clam 1
9 2.60 Sandwich 52
10 2.70 Distorted sandwich 6
11 2.80 Trefoil 4
12 2.90 Orthogonal prism 1
13 2.100 Aligned prism 1
14 2.110 Four-propellor 2
15 2.120 Six-propellor 2
16 2.130 Seven-propellor 1
17 2.140 Eight-propellor 1
18 2.170 Complex 1
19 3 �-� 3.10 Roll 25
20 3.20 Barrel 26
21 3.30 Two-layer sandwich 64
22 3.40 Three-layer (���) sandwich 61
23 3.50 Three-layer (���) sandwich 1
24 3.60 Four-layer sandwich 1
25 3.70 Box 1
26 3.80 Horseshoe 1
27 3.90 Complex 14
28 3.100 Few SS 13
29 4 Few SS 4.10 Irregular 15

Table 3.1: List of CATH architecture families that have representatives in PR479. The
second and fourth columns are the original CATH classi�cation of the architectures.
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CATH classi�cations C.

PR479 = fE;S;Z; L;Cg : (3.1)

Of the 1188 FSSP entries, 503 chains were not processed by CATH. Some of these

chains are single-domained and some are multi-domained. In order to identify the single-

domain chains, these 503 chains were checked against a di�erent database, the 3Dee

database [36] (see Appendix C for the database web site), which includes an indication

whether a chain is single or multi-domained. This way, 165 single-domain chains, which

were not yet processed by CATH, were identi�ed. These are candidates for new CATH

entries, for which we predict the class and architecture levels. The dataset that contains

these yet unclassi�ed proteins is called PR165. The dataset of the combined list of

protein entries is referred to as PR644.

To demonstrate the problem, consider �gure 3.1, which shows the Z-score matrix

between all proteins in PR644 (Z-scores larger than 2.0 are represented by black dots). The

�rst 479 proteins constitute PR479, for which the CATH classi�cation is known. Proteins

numbered from 480 to 644 are PR165, for which we want to predict a classi�cation. The

order of the proteins within PR479 and PR165 is according to the original index in FSSP

and has no particular meaning.

One can identify three parts in the Z-score matrix that are treated di�erently by

classi�cation algorithms; The Z-scores between PR479 proteins and themselves (upper

left square sub-matrix); The Z-scores among the PR165 proteins (lower right square sub-

matrix) and the Z-scores between PR479 and PR165 (the remaining rectangles). We will

refer to these sub-matrices in the next chapter. The diagonal elements of the matrix,

which represent the self-similarity of the proteins, are also important. Notice that, as

expected, all the proteins are similar to themselves.
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1

480

644

Figure 3.1: Z-score matrix between PR644 proteins. A black dot represents Z > 2:0.
Larger Z corresponds to more similar proteins. For the �rst 479 proteins the CATH
classi�cation is known. For the last 165 proteins we predict the classi�cation.
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3.2 Problem Setting

This section describes the mathematical setting of the problem. We are seeking an algo-

rithm which predicts the true classi�cation of new proteins with high probability. Such

classi�cation problems are addressed by statistical pattern recognition, which gives the

mathematical formulations and tools to deal with such problems [9][11].

Consider a set of n protein entries, E = fEigni=1, and a set of c classes !i where

i = 1; : : : ; c. For the �rst m proteins the classi�cation is known and is denoted by

C = fCigmi=1, where Ci 2 f1; : : : ; cg and indicates that Ei 2 !Ci . Note that in our

problem each protein has several classi�cations, one for each level in the CATH hierarchy.

Because we want to predict the architecture level of the protein, we de�ne our classes

according to architecture.

From the FSSP we obtain the pairwise similarity measures, S = fSijgni;j=1 and Z =

fZijgni;j=1. A classi�cation algorithm, A, can use all the known information to predict the

class of the unclassi�ed proteins entries fEigni=m+1, i.e

^fCig
n

i=m+1 = A (Z;S; C) (3.2)

where ^fCig
n

i=m+1 represent predicted classi�cation.

The statistical approach assumes that there is some probability function that governs

the protein's classes and similarity measures and that the datasets (PR479, PR644) are

samples drawn according to that probability [9][11]. It also states that in order to make

the minimal number of misclassi�cations (on average), one should classify each protein of

the set PR165 to the class to which it belongs with highest probability, given all the known

information. This method is also known as maximum a-posteriori probability classi�cation

(MAP) or Bayes rule. For proteins fEigni=m+1 we choose the predicted classes to satisfy

the condition

^fCig
n

i=m+1 = argmax
Ci

P
�
fCigni=m+1 jZ;S; C

�
: (3.3)

Note that, in general, the assigned classes are not independent and that the S and Z
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matrices include elements also between unclassi�ed proteins.

In any classi�cation problem, even the optimal classi�cation algorithm has inherent

errors since there are situations where the information given to the algorithm is not

su�cient to make a decision. The minimum error rate is called the Bayes error and is

obtained when using the Bayes rule (3.3) for classi�cation.

3.3 Evaluating the prediction

In order to choose the best of all the suggested classi�cation algorithms, we need to know

how to evaluate an algorithm's quality. Assessment of the quality of the classi�cation

algorithm, like the classi�cation itself, is studied in a statistical framework. One wishes

to estimate Perror, the probability that the algorithm will misclassify new proteins, or

Psuccess = 1� Perror =
Nsuccess

Ntest
: (3.4)

Usually, this is done by dividing the set of proteins with known classi�cation into two

subsets; one is used for training the algorithm, i.e. assign parameters in the algorithm

according to the desired output, and the other set, of Ntest proteins, is used to test the

algorithm, by comparing its prediction to the true classi�cation. Such a procedure imitates

the real situation where one has a set of classi�ed proteins (PR479) and tries to predict

the class of a di�erent set of proteins (PR165).

A more robust method to estimate the error is called cross-validation [31]. In this

method one repeats the above procedure T times with di�erent partitionings of the data.

In each trial, the test set is randomly selected out of the data with known classi�cation,

using a certain train/test ratio. The error rate of the classi�cation algorithm is then

estimated by the average of the error rates of the individual trials. Formally,

P̂error = 1=T
TX
t=1

P t
error ; (3.5)

where P̂error is the estimate for the error probability and P t
error is the error for the in-

dividual trial t. Using cross-validation reduces the variance of the estimator and, there-
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fore, gives a more robust estimate for the error rate of new predictions. Cross-validation

schemes di�er by the train/test ratio used and by the number of trials made.

An extreme case of cross-validation is the leave-one-out estimation method, in which

for each data point a model is trained on all the data but itself and then the model's

prediction for the left-out point is tested. The error rate is then estimated by the number

of prediction errors divided by the number of data points,

P̂ leave-one-out

error =
Nerrors

N
: (3.6)

The leave-one-out estimate gives, on average, an underestimation of the error rate [11].

Intuitively, this is so because the trained models are biased towards the left out point. If,

for example, there is a distant set of proteins that for some reason are not present in the

sample data, the trained models will perform much worse on them compared to a single

point taken out from the sample. Such an example can occur if there is some technical

di�culty, that is later overcome, to obtain the structures of proteins from a certain family.

Therefore we evaluate the error rate using cross-validation at various train/test ratios.

For each of 11 di�erent sizes we randomly selected 50 test sets out of PR479. The sizes

taken were ni = 1; 10; 20; 30; 40; 50; 60; 70; 80; 90; 95 percent out of 479. The prediction

rate is plotted as a function of the test set percentage, which we call the dilution because

the data set is diluted by removing the test set. Leave-one-out corresponds to a dilution

of 1=479 averaged on the 479 di�erent possibilities. For each prediction rate the standard

deviation of the estimated error is plotted as an error bar, i.e. the standard deviation of

the T = 50 cases divided by
p
50.

Figure 3.2 presents the success rate of a nearest-neighbor classi�cation method, which

classi�es a protein according to its nearest classi�ed one (the method is discussed in detail

in the next Chapter). Note that the success rate decreases as the dilution is increased.

This behavior is common because there is less data to train the model on and, therefore,

less information to base the prediction on.

Classi�cation algorithms do not always give a prediction; these cases are called rejec-
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Figure 3.2: Success rate of a nearest-neighbor classi�cation using Z-score as similarity
measure. The rate is estimated using cross-validation of 50 random sets as a function of
the dilution percentage. The non-rejection rate is plotted as a dashed line

tions. A common rejection case is when a nearest neighbor algorithm is asked to predict

the class of a data point that has no close neighbors. Therefore, the rejection rate, Preject,

is also an important factor when evaluating a classi�cation algorithm. The purity of an

algorithm is de�ned as the probability of correct prediction out of the non-rejected ones,

Psuccess =
Nsuccess

Ntest
=

Ntest �Nreject �Nerror

Ntest
(3.7)

Pnon�reject = 1� Preject =
Ntest �Nreject

Ntest

(3.8)

Ppure =
Nsuccess

Ntest �Nreject
=

Psuccess

1� Preject
: (3.9)

Figure 3.2 also shows the non-rejection rate as a function of the dilution. The purity

is the ratio between the lower and upper lines. Naturally, the success rate is always less

than the non-rejected rate because a rejection is not considered a success. In the case of

nearest{neighbor classi�cation, the rejection rate is increasing with the dilution because

more data points are left without close classi�ed neighbors.
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Obviously, a classi�cation algorithm with higher success rate is considered better.

However, as will be seen in Chapter 4, some algorithms are better at low dilutions and

others are better at high dilutions. If so, which algorithm should we use to predict the

PR165 proteins? Our case of predicting 165 out of 644 corresponds to a dilution of 25%,

but it is not guaranteed that if an algorithm predicts 25% out of the 479 proteins better

it is also the best choice for predicting the additional 165 proteins. If, for example, the

165 proteins have few neighbors within the classi�ed proteins, which corresponds to a

high dilution, then it is preferable to use an algorithm which performes better at high

dilutions. We will address these issues when our prediction of the 165 yet unclassi�ed

proteins is given in Chapter 5.



Chapter 4

Classi�cation - methods and results

This Chapter describes the techniques tested in this work for the protein architecture

classi�cation. Each classi�cation technique is evaluated using the methods described in

the previous Chapter.

As a �rst step, we analyze the raw FSSP data on the proteins and check how they

relate to the proteins' CATH classi�cations (Sec. 4.1). Then we describe our approach to

slove the fully automatic classi�cation problem (Sec. 4.2). We chose to use classi�cation

algorithms of the nearest{neighbor type using, �rst, the original similarity measures and

then improve them by deriving new similarity measures based on the original ones. The

classi�cation algorithms we use are described in Section 4.3. In Section 4.4 we discuss

and evaluate two types of similarity measures, direct (Sec. 4.4) and indirect (Sec. 4.5),

which are used in combination with the classi�cation algorithms. Finally, we describe, in

Section 4.6, a newly suggested classi�cation scheme that incorporates aspects of indirect

similarities in the classi�cation process.

The work described in this chapter is the basis for our decision with which classi�cation

methods to predict the architectures of the 165 yet unclassi�ed proteins. The selection of

classi�cation method and it's prediction is reported in Chapter 5. As a byproduct of the

FSSP and CATH analysis, we report (on page 34) a list of already classi�ed proteins out

of PR479 that may have been misclassi�ed in the CATH database.

22
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4.1 Initial analysis

First we performed an initial analysis of the data obtained from FSSP and CATH. The

purpose of the analysis is to get a deeper understanding of the data and to look for

correlations between the raw FSSP data and the CATH classi�cations. This analysis

enables us to appreciate the complexity and solubility of the problem and help us choose

the right approach to the solution.

4.1.1 Z and S properties

The S-score is de�ned as a positive score measuring the structural similarity between pro-

teins. The S-score is symmetric with respect to the two proteins compared, therefore S is

a symmetric matrix. It is useful to study separately the diagonal elements, which repre-

sent self-similarity of the proteins, and the o�-diagonal ones which represent similarities

between di�erent proteins. Deeper analysis of the S-score is described in appendix A.

The S-matrix is very sparse, i.e. most if its elements are zero. The S matrix for

PR479, for example, is a 479-by-479 matrix with 114481 (479 � 478=2) o�-diagonal upper
triangle elements (Si>j) out of which only 3636 elements are non-zero (3.1%). A zero

S-score means that the DALI algorithm, which is used to create the FSSP, could not �nd

any part of the two compared protein that have a su�ciently similar structure.

The Z-score, which is the scaled version of the S-score, can in principle be positive

or negative as it measures standard deviation from the mean. However, the Z-matrix,

obtained from Holm, includes only positive elements located where the S-matrix elements

are non-zero. Note that the Z-scores that can be obtained from the FSSP web site are all

above 2.0, which is regarded as signi�cant similarity.

One can view the Z or S matrices as representing a weighted graph, where each vertex

in the graph is a protein and the weights on the edges are the Z (or S) scores between the

proteins. Edges with zero (or less) weight are absent. Following this representation, we

call proteins that are connected via an edge - neighbors. In other words, the neighbors of



4
.1
.
In
itia

l
a
n
a
ly
sis

2
4

p
rotein

en
try

E
i
are

all
th
e
p
rotein

sfE
j g

for
w
h
ich

Z
ij
>
0.

T
h
e
sp
arsity

of
th
e
sim

ilarity
m
atrices

m
akes

th
e
classi�

cation
task

m
ore

d
i�
cu
lt

sin
ce

m
an
y
p
rotein

s
h
ave

few
n
eigh

b
ors

to
b
ase

th
e
p
red

iction
on
.
T
h
e
average

n
u
m
b
er

of
n
eigh

b
ors

in
P
R
479

is
15.2

an
d
th
ere

are
70

p
rotein

s
(14.6%

)
w
ith

3
or

less
n
eigh

b
ors.

4
.1
.2

C
la
ss
a
n
d
A
rch

ite
c
tu
re

d
istrib

u
tio

n

B
efore

try
in
g
to

classify
n
ew

p
rotein

s,
w
e
stu

d
y
th
e
d
istrib

u
tion

of
classes

w
ith

in
th
e
al-

read
y
classi�

ed
on
es
in
P
R
479.

In
a
statisticalsen

se,
w
e
w
an
t
to

learn
th
e
p
rior

p
rob

ab
ility

th
at

a
p
rotein

b
elon

gs
to

a
certain

class,
P
(E

2
!
i ).

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
0 10 20 30 40 50 60 70 80

number of proteins

A
rchitechture

M
a
in
ly

�
8
-
C
la
m

1
8
-
C
o
m
p
le
x

2
6
-
H
o
rse

sh
o
e

1
-
N
o
n
-b
u
n
d
le

9
-
S
a
n
d
w
ic
h

2
7
-
C
o
m
p
le
x

2
-
B
u
n
d
le

1
0
-
D
isto

rte
d
sa
n
d
w
ic
h

�
-�

2
8
-
F
e
w
S
S

3
-
F
e
w
S
S

1
1
-
T
re
fo
il

1
9
-
R
o
ll

1
2
-
O
rth

o
g
o
n
a
l
p
rism

2
0
-
B
a
rre

l
F
e
w

S
S

M
a
in
ly

�
1
3
-
A
lig

n
e
d
p
rism

2
1
-
T
w
o
-la

y
e
r
sa
n
d
w
ic
h

2
9
-
Irre

g
u
la
r

4
-
R
ib
b
o
n

1
4
-
F
o
u
r-p

ro
p
e
llo

r
2
2
-
T
h
re
e
-la

y
e
r
(
�
�
�
)
sa
n
d
w
ic
h

5
-
S
in
g
le
S
h
e
e
t

1
5
-
S
ix
-p
ro
p
e
llo

r
2
3
-
T
h
re
e
-la

y
e
r
(
�
�
�
)
sa
n
d
w
ic
h

6
-
R
o
ll

1
6
-
S
e
v
e
n
-p
ro
p
e
llo

r
2
4
-
F
o
u
r-la

y
e
r
sa
n
d
w
ic
h

7
-
B
a
rre

l
1
7
-
E
ig
h
t-p

ro
p
e
llo

r
2
5
-
B
o
x

F
igu

re
4.1:

H
istogram

of
th
e
29

C
A
T
H
arch

itectu
res

th
at

ap
p
ear

in
P
R
479.

D
ash

ed
lin

es
sep

arate
for

fou
r
class

fam
ilies.

In
F
igu

re
4.1

w
e
p
lotted

a
h
istogram

of
th
e
P
R
479

p
rotein

s
accord

in
g
to

th
eir

C
A
T
H



4.1. Initial analysis 25

architecture. Dashed lines separate the four class families. It is evident from the �gure

that the architecture distribution is far from uniform and that there are only 14 architec-

tures with ten or more proteins which, together, amount to 451 proteins (94%). Of the

remaining architectures, there are 12 with one or two proteins only. This non-uniform

distribution clearly makes it di�cult to predict the less-frequent architectures. Therefore,

when we evaluate the performance of a classi�cation algorithm, we compare it to an upper

bound (see 4.4.1) which takes into account the non-uniformity of the architectures.

4.1.3 Z ordered by CATH

As explained earlier, for each of the PR479 we obtain CATH classi�cations for all levels.

Using these we can change the order of the PR479 set, which is originally set by FSSP

according to the PDB entry. We can �rst order the proteins by their class; within the

class, by the architecture and, within it, by the topology, and so on. As an example, in

the new order all mainly-� proteins are numbered from 1 to 125. Using this order, one can

reorder the columns and rows of the Zmatrix. The reordered Z-matrix incorporates all the

information we have to perform the classi�cation; the matrix itself holds the similarities

between the proteins and the order is set according to the CATH classi�cation. By viewing

the reordered Z matrix, one can get a clear idea of the extent to which the FSSP Z-scores

re
ect the CATH classi�cation and, hence, how di�cult is the task at hand.

Figure 4.2 depicts the ordered Z-matrix with a grid separating the proteins according

to their CATH class. Figure 4.3 is the same matrix with additional grid placed at bound-

aries between the architectures. These matrices are the same as the upper{left sub-matrix

of �gure 3.1, that corresponds to PR479, only reordered according to CATH classi�cation.

One can see from in �gure 4.3 that there are no edges with Z > 2:0 in region A,

that connect the mainly-� class and the mainly-� class. On the other hand, both of

these classes are connected with proteins from the �-� class (region B), which is perfectly

reasonable because a mainly-� protein can be similar to the � part of an �-� protein.

Moreover, one can see that there are architecture families which are highly connected
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Figure 4.2: The PR479 Z-matrix ordered according to CATH classi�cation. Each black
dot represents Z > 2:0. The full{line grid separates the class level families.
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within themselves , e.g. �-� barrels (283-308: region C), and others which are very

sparse. The connections within the mainly-� sandwich family (186-238: region D) have

two relatively distinct subgroups which suggest an inner structure corresponding to the

lower levels in the CATH hierarchy. Checking the topology level (the third CATH level),

one indeed �nds two large topology sub-families, the Immunoglobolin-like proteins (189-

209: upper left part of region D) and the Jelly-Rolls (214-235: lower right part of region D),

which correspond to these sub-groups. Noticing topology level structure in the Z-matrix

is expected because the Z-score measures structural similarity of two aligned proteins,

while keeping their connectivity order. Such similarity corresponds to the topology level

in CATH. Overall, there are still many connections between proteins of di�erent topology

but of the same architecture and class that can be used for architecture classi�cation.

4.2 Solution approach

As discussed in the previous Chapter, we want to �nd an algorithm that correctly classi�es

yet unclassi�ed proteins. In particular, we chose to use nearest{neighbor type algorithms

for the automatic architecture prediction, and as will be explained later it was the obvious

choice in our case.

We tackle the classi�cation problem using a series of techniques, trying to improve

the classi�cation ability at each step. We start from commonly used methods, like simple

nearest{neighbor classi�cation [9][11] using the similarity measures taken from the FSSP.

We continue to improve the outcome by deriving new similarity measures based on the

original ones, and use them with standard classi�cation techniques to perform the clas-

si�cation. We identify two types of methods to derive new similarity measures; direct

methods use only local considerations to alter the similarity measure, whereas indirect

methods use global aspects of the original similarities to calculate new ones. Finally, we

introduce a classi�cation method that uses indirect considerations as part of the classi�-

cation procedure.
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The following sections describe and evaluate the algorithms and similarity measures

used. Section 4.3 describes the nearest{neighbor algorithms we chose to use for the

classi�cation task. Section 4.4 discusses and evaluates the direct similarity measures,

which include the original similarities and our proposed ones. The indirect similarities

are dealt with in Section 4.5.

4.3 Nearest{neighbor algorithms

4.3.1 Background

Nearest{neighbor (NN ) algorithms are widely known and studied [9][11]. A NN algorithm

classi�es a protein according to the class of its nearest neighbors, where nearest is de�ned

using some similarity measure or distance. The simplest NN algorithm is the single

nearest{neighbor, 1NN , in which the predicted class of a data point is the class of its

closest or most similar classi�ed neighbor, i.e. the one with highest similarity measure

value with it.

Other NN methods use k neighbors in order to predict the class. One of them is

the kNN method [11] which predicts the unknown class by a majority vote between

k neighbors. Weighted kNN methods assign a weight to each of the neighbors' vote

according to their distance and class. It is clear from the NN algorithm's de�nition that

only similarities (or distances) between the data points are needed in order to predict the

class of an unclassi�ed point.

The 1NN algorithm is widely used because of its simplicity and relative success. It

can be shown that the 1NN error rate, in the limit of large sample size, is bound by only

twice the Bayesian error (the minimal error), which is quite remarkable for such a simple

algorithm [9]. The disadvantage of NN {type algorithms is that the whole database of

classi�ed points has to be kept in memory and for each classi�cation of a new point one

has to �nd its closest points within the database. For very large databases this search

could cause practical problems.
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In our case NN algorithms are the obvious choice, since we already have pairwise

similarities between the proteins. Other classi�cation methods require that the items for

classi�cation be represented as vectors in some metric feature space. There are methods

that �rst embed the points in some metric space while trying to maintain their given

distances and then use other metric-space techniques for classi�cation [12]. We decided

to use NN algorithms using similarity measures. The size of our database is not large

and therefore it causes no problems.

We tested two types of NN classi�cation methods; The 1NN method and a weighted

kNN method which we call max�eld.

4.3.2 Formulation

In the statistical sense, NN classi�cation methods assume that the probability for the

assignment of the unclassi�ed points to classes can be separated into a product of single

point probabilities, which means that these probabilities are assumed to be independent.

Moreover, NN methods assume that a certain point belongs to a class with a probability

that depends only on the classes of its close classi�ed neighbors. Both assumptions are

generally not ful�lled in real life situations, and therefore NN classi�cation may not be

optimal. These issues are further discussed in Sec. 4.6.

In our case, these assumptions mean that a protein's class depends only on those

classi�ed proteins which have non-zero similarity with it. Formally, Equation 3.3 in the

previous Chapter can be written under these assumptions as

^fCig
n

i=m+1 = argmax
Ci

P
�
fCigni=m+1 jZ;S; C

�
= (4.1)

argmaxCi
Qn

i=m+1 P(Cij fZijg ; fSijg ; fCjg) 8j = 1; : : : ; m such that Sij; Zij > 0 :

The maximum of this product of independent probabilities is obtained by maximizing

each of the terms. Therefore the choice of class for each unclassi�ed protein can be

performed separately,

Ĉi = argmax
Ci

P(CijfZijg ; fSijg ; fCjg 8j = 1; : : : ; m such that Sij; Zij > 0) (4.2)
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where i = m + 1; : : : ; n.

In the 1NN algorithm the meaning of selecting the class of the nearest neighbor

corresponds to formally assuming that this class is maximizing the above probability.

We tested a weighted kNN algorithm, which we call max�eld1. The max�eld method

takes into account all the classi�ed neighbors by assigning the similarity as the weight of

each such neighbor. Hence the nearest neighbor (the one with the highest similarity) has

the largest contribution to the class decision, but in cases where the nearest neighbor's

class does not agree with several next nearest neighbors, the class prediction can change.

The max�eld algorithm assigns a protein to the class which has the maximal overall

similarity with it. In order to calculate the overall similarity with a certain class, one

adds the similarity of all the neighbors from that given class. Formally,

Ĉi = argmax
Ci

mX
j=1

Sij�(Ci; Cj) 8 i = m+ 1; : : : ; n ; (4.3)

where Sij is any similarity measure and the � is Kronecker's �-function. Note that the

sum is over all classi�ed proteins. Proteins that have zero similarity with the classi�ed

protein do not a�ect the classi�cation.

The max�eld algorithm can be introduced using a more statistical approach, giving

a statistical meaning to the similarity score. Since this algorithm is related to the SPC

clustering algorithm, the statistical representation is explained in Sec. 4.5.4.

NN algorithms have two types of rejections. The �rst type occurs when there are

no close neighbors with known classi�cation to base the prediction on, i.e. Sij = 0 for

all j = 1; : : : ; n where S is any similarity measure and i is the index of the unclassi�ed

protein. The second type is when there is a tie between several classes and therefore no

prediction can be made. A 1NN algorithm returns a type-two rejection when the point to

be classi�ed has several neighbors with identical similarity that belong to di�erent classes.

In this case, the algorithm can not decide which class to assign to the unclassi�ed point.

1The name max�eld is used by an analogy to physics of inhomogenous magnets. This analogy is
discussed in Sec. 4.6.
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When we apply a NN algorithm for the classi�cation of an unclassi�ed protein we

search for neighbors only among the set of classi�ed proteins. To view this graphically,

return to the Z-matrix in �gure 3.1 (page 16). NN classi�cation methods utilize only the

rectangles in the matrix that represent similarities between the classi�ed and unclassi�ed

proteins. The upper{left and lower{right square sub-matrices, which correspond to con-

nections within the classi�ed proteins (PR479) and within the unclassi�ed ones (PR166)

are disregarded.

4.4 Direct Similarities

We tested the classi�cation methods using four direct similarity measures, two of which

are the original S and Z scores obtained from the FSSP and the other two are derivatives

of them, CS and CZ (de�ned in 4.4.2), which are normalized versions of the S and Z, that

take into account the self-similarity of the pair of compared proteins. The results of these

methods are described below.

Before testing the direct similarities, we analyze the distribution of the data in order

to reach an upper bound for the success rate of the algorithms.

4.4.1 Upper bound analysis

In order to obtain an upper bound on nearest-neighbor success, we examined the neighbor-

hoods of the proteins in PR479. We characterize the neighborhood of a protein according

to the kinds of its neighbors. There are four possible cases:

A. \Islands" - The protein has no neighbors.

B. \Colonies" - It has no neighbors of its own kind.

C. \Border" - It has neighbors of its own kind as well as of other kinds.

D. \Interior" - The protein has only neighbors of its own kind.
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Using these de�nitions we can arrange the proteins in PR479 in 7 groups according

to their neighborhood type at the class and architecture levels. The 7 possible groups

are 1(AA), 2(BB), 3(CB), 4(CC), 5(DB), 6(DC), 7(DD), where the �rst letter de�nes the

neighborhood at the class level and the second letter speci�es the architecture surrounding.

Group 5, for example, includes those proteins whose neighborhood consists of proteins

of the same CATH class as their own (Type D) but di�erent architecture from its own

(Type B).

Using this partitioning, one can calculate an upper bound for a leave{one{out suc-

cess rate estimate of a nearest{neighbor algorithm. When calculating a leave{one{out

estimate, one tries to predict the class of a protein using all others. Therefore, proteins

which do not have neighbors of their own type could never be classi�ed correctly by a

nearest{neighbor algorithm. This includes proteins with neighborhoods from types A and

B; thus only proteins that belong to groups 4,6 and 7 can attain their correct class and

architecture assignment.

Group number Class level Architecture level
of points 1NN (Bound) 1NN (Bound)

1 (AA) 24 0 (0) 0 (0)
2 (BB) 17 0 (0) 0 (0)
3 (CB) 32 23 (32) 0 (0)
4 (CC) 250 236 (250) 216 (250)
5 (DB) 9 9 (9) 0 (0)
6 (DC) 102 102 (102) 95 (102)
7 (DD) 45 45 (45) 45 (45)
Total 479 415 (438) 356 (397)

Table 4.1: Number of correct predictions using the 1NN algorithm with Z-score similarity
measure. The bound for the classi�cation appears in parenthesis.

Using the above 7 groups, one can calculate the bound for predicting the class and

the architecture. Table 4.1 lists the number of proteins in each group and the number of

correct predictions made by 1NN algorithm using the Z-score as similarity measure. In

the table rejections are counted as not correct. The bounds for the classi�cation appear
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in parenthesis.

The class prediction success rate is bound by 91.4% (438=479) which is the percentage

of proteins in groups 3,4,5,6 and 7 together. These groups include the proteins with at

least one neighbor from their own class. The architecture prediction rate is bound by

82.9% (397=479) which is the percentage of proteins in groups 4,6, and 7.

The leave{one{out success rate estimate of 1NN using Z-score as a similarity measure,

can be read o� table 4.1. For class prediction it is 86.7% (415=479) and for architecture

prediction it is 74.3% (356=479). One can see that the margin between the estimates for

the 1NN architecture prediction rate and the upper bound is only 8.6%.

It is important to keep in mind that there are possible mistakes in the CATH classi�-

cation. For example, proteins in group 2 do not have any neighbor of their own kind, not

even at the class level. This means that the FSSP similarity measure �nds these proteins

similar only to proteins of di�erent classes and obviously di�erent architectures. This

makes their CATH classi�cation questionable.

PDB CATH No. of FSSP Most frequent No. of neighbors
entry arch. neighbors neighbor arch. from that arch.
1rboC 21 7 9 7
2cas 18 22 9 20
1hgeA 27 21 9 18
1regX 27 9 21 7
1celA 10 18 9 13

Table 4.2: List of our suspected misclassi�cations in the CATH database.

One of the 17 proteins in group 2 is PDB entry 1rboC, which is assigned to architec-

ture 21 (�-� : Two-layer sandwich), but all of its 7 neighbors are assigned to architecture

9 (mainly-� : Sandwich). One could argue that architecture 21 is a very small family

and that the protein happens to be more similar to proteins of a di�erent family. But

this is not the case since both of these architecture families have more than 50 proteins

in PR479. This protein may be a misclassi�ed in the CATH database. We suspect as
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misclassi�cations proteins from group 2 and 3 which have more than 5 neighbors out of

which at least 70% are from the same kind. A list of these proteins is given in 4.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

dilution percentage

pe
rc

en
ta

ge

Success rate upper bound

Figure 4.4: The upper bound for classi�cation using any similarity measure that corre-
sponds to a sub-graph of the original one.

We repeated the above upper bound calculation for all the realizations at the 11

dilution values used to evaluate the classi�cation performance (see Sec. 3.3). For a given

realization at a certain dilution value, one can calculate what is the percentage of points in

the test set that have at least one neighbor from the training set of their own kind. This

percentage is an upper bound for the performance of a nearest{neighbor classi�cation

method on this speci�c realization. In �gure 4.4 we plot the average of this percentage

over our realizations. Notice that the average is very stable, i.e. the error-bars are small

and therefore this average is a good estimation for the true bound at these dilution values.

We shall plot this bound using dotted lines on all the evaluation �gures from now on. This

bound takes into account the non-uniformity of the architectures in the data (see 4.1.2)

since non-frequent architectures are likely to be diluted and leave their members without

any neighbors of their kind.
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The above bounds are applicable to any similarity matrix that corresponds to a sub-

graph of the original one, i.e. it has non-zero elements positioned where S (or Z) is

non-zero. Any such similarity measure can only reorder or break edges in the graph and,

therefore, all proteins with no neighbors of their own kind will stay in that situation.

4.4.2 Z and S scores

The straightforward direct similarity measures are the original FSSP S and Z scores

obtained from Liisa Holm (one of the creators of the FSSP database). We tested the 1NN

and max�eld classi�cation algorithms using each of these similarities. We will refer to a

test by specifying the classi�cation algorithm and in parenthesis the similarity measure

used, e.g. 1NN (Z) means classifying using 1NN and Z as similarity measure.
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Figure 4.5: The success (lower lines) and non-rejection (upper lines) rates for the 1NN
algorithm using S and Z similarity measures.

Figure 4.5, shows the cross-validation results for a 1NN classi�cation algorithm using

these scores at di�erent dilution percentages. One can see that the Z score performs

better than the S score at all dilution rates. At 30% dilution, for example, the 1NN
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Figure 4.6: The success (lower lines) and non-rejection (upper lines) rates for the max�eld
algorithm using S and Z similarity measures compared to the 1NN algorithm using Z.

using the Z score has a success rate of 69:2� 0:5% whereas the performance using the S

score is 66:8 � 0:5%, which is a di�erence of above 4 standard deviations. In addition ,

the rejection rate of 1NN (S) is lower than the one of 1NN (Z), which makes the purity

(success out of the non-rejected proteins) di�erence even bigger. Figure 4.6 depicts the

max�eld cross-validation results using S and Z scores compared to the 1NN (Z). The plot

shows that the MF(Z) performs slightly better than the others. When using the original

scores, the best classi�cation can be achieved using MF(Z).

4.4.3 CS and CZ scores

This section describes two direct similarity measures, CS and CZ, derived from the original

S and Z scores, respectively. These measure are based on our understanding that the S

and Z scores behave like a dot product between two unnormalized vectors (see Appendix

A). For simplicity, we de�ne the similarity measure CZ in terms of Z, but the same

de�nition is applied for CS.
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Each protein is treated as a vector in some inner{product{space, where the Z score is

considered the outcome of a dot product between two proteins. The self-similarity of the

proteins is, therefore, the squared norm of the vector. Following this picture, we de�ne a

new similarity measure, CZ, as the cosine of the angle between the vectors, i.e.

CZij =
Zijq
ZiiZjj

: (4.4)

Surprisingly, the S and Z scores agree with this measure and all the fCZi6=jg are less
than 1, as expected from a cosine measure. Note, that all the CZij are positive since all

the S and Z scores are positive.

The advantage of using the cosine score is that it takes into account the self-similarity of

the proteins. As explained in Appendix A, the S and Z scores are higher when the aligned

segments of the compared proteins are longer. Consider two short mainly-� proteins from

the same architecture family, and suppose 70% of their residues are aligned. In addition,

consider a long �-� protein that in its � part there is a segment that is aligned to 80%

of one of the mainly-� proteins. In this case, it is possible that the Z (and S) score for

the pair of short proteins will be smaller than the score of the short-long pair, and could

cause a misclassi�cation of the short protein.

We tested the CS and CZ similarities using both 1NN and max�eld classi�cation

algorithms. The results compared to MF(Z) appear in �gures 4.7 and 4.8. From �gure

4.8 we learn that the success rate of MF(Z), MF(CS) and MF(CZ) are practically the

same. In �gure 4.7 we see that the 1NN classi�cation algorithm using CZ is slightly

better than MF(Z) at low dilutions. Note that the non-rejection rates of all methods are

identical, as can be seen in both �gures. Therefore, the best combination of algorithm

and direct similarity measure is 1NN (CZ).

Note that in order to change the 1NN algorithm's performance by using a new similar-

ity measure derived from the original ones, one has to apply a non-monotonous transfor-

mation on the scores. The transformation has to reorder the similarities between neighbors

of a protein to change the 1NN classi�cation. The CZ transformation is non-monotonous
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Figure 4.7: The success (lower lines) and non-rejection (upper lines) rates for the 1NN
algorithm using CZ, CS similarity measures compared to the max�eld algorithm using Z.
The non-rejection rates of all methods coincide.
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Figure 4.8: The success (lower lines) and non-rejection (upper lines) rates for the max�eld
algorithm using CZ, CS and Z direct similarity measures. The non-rejection rates of all
methods coincide.
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with respect to Zij and indeed improves the 1NN classi�cation. In the max�eld case,

there is no need for a non-monotonous transformation, even a slight shift in the scores

can change the algorithm's outcome.
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4.5 Indirect similarities

In this section we describe our proposed indirect similarity measures. These measures use

non-local properties of the original similarities to calculate new ones. The classi�cation,

using these measures, is a two staged process. First, we calculate the new similarities

based on the direct ones and then we apply a 1NN algorithm for the classi�cation.

Indirect similarities do not assume that the class probabilities of the unclassi�ed pro-

teins are independent. They try to incorporate the correlations between the proteins into

the new similarities, i.e. move correlated points closer together. The indirect similari-

ties take into account the direct similarities between all the proteins, classi�ed as well as

unclassi�ed, when calculating the new similarities.

We propose and evaluate several indirect similarity measures which are all based on

pre-clustering the data. Data clustering (or \unsupervised learning") is an important as-

pect of data analysis, where one learns about the data by investigating its distribution and

identifying in it distinct groups or hierarchies of groups [19][9][6]. Clustering techniques

use only measurements regarding the objects to be clustered and do not use any external

category labels. This is the distinction between clustering and classi�cation techniques.

In other words, clustering algorithms make use of the similarity matrix, S, between all the

proteins, classi�ed and unclassi�ed, but they do not use the known labels of the classi�ed

proteins, fCigmi=1.
We test a number of clustering methods for the preprocessing stage: The �rst method,

the K-mutual-neighborhood-value (KMNV) [4] (see 4.5.1), removes connections from the

similarity matrix using correlations between close neighborhoods of the compared pro-

teins; therefore, this method is still rather local. The next two methods are a modi�ed

version of the super para-magnetic clustering algorithm (SPC) [4] (see 4.5.4) and the

average{linkage algorithm (AVL) [19] (see 4.5.5). Both these algorithms are hierarchical

clustering methods (see 4.5.2) that produce a tree of nested partitions of the data called

a dendrogram. We use the dendrogram to create new similarities.
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Figure 4.9: \stray" B-type point is the nearest neighbor of the unclassi�ed point.

Using clustering in order to increase classi�cation performance is based on the following

notion: consider a classi�cation problem with two di�erent classes, A and B, that have

overlapping distributions, meaning that there are A points within the B regions and vise

versa (see �gure 4.9). In such a case there are many A-type points along the borders , such

that within their close neighborhood there are \stray" B-type points and are therefore

likely to be classi�ed wrongly by nearest{neighbor techniques. If, however, we assume that

the classes form separate clusters, we can �rst use a clustering algorithm to bind together

points of the same cluster (and class). Then, we can perform the classi�cation based on

the points of known classes from the same cluster and may improve the performance.

The e�ect of using clustering can be even more noticeable as the data get more diluted.

This is due to the fact that at high dilutions more points are at the border between

classi�ed points of di�erent classes, meaning that the closest classi�ed point (to the one

of unknown class) may often belong to a di�erent class. Moreover, at high dilutions, the

fraction of unclassi�ed points is higher and the information contained in their distribution,

which is disregarded by direct similarities, can help the clustering methods to separate
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Figure 4.10: Highly diluted distribution; the nearest labeled neighbor of the unclassi�ed
point x is a B-type point. On the other hand, a clustering algorithm will assign point x
to a cluster that contains classi�ed points of type A.

the classes. Such a case is presented in �gure 4.10.

Notice that all these methods are \additive", in the sense that we can apply them

consecutively. For example, we can use the KMNV method to cluster the data on the

basis of the CZ direct similarities; use the resulting clustering to create new similarities,

and then apply the SPC clustering method using these new similarities as input in order

to generate the �nal similarities that then are used for classi�cation.

We now describe each of the clustering methods and evaluate their performance using

a 1NN classi�cation. We continue with the same notation as for the direct similarities,

but now we specify also the clustering techniques used as part of the similarity measure;

For example, 1NN (SPC-K10-CZ) refers to the 1NN algorithm applied to the combined

similarities SPC-K10-CZ. These are produced by �rst applying the KMNV method (with

K = 10) to the CZ direct similarities and then using the SPC algorithm to generate a

dendrogram from which new similarities are produced (that are used as inputs of the
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1NN algorithm).

4.5.1 K mutual neighborhood value method (KMNV)

The task of the K-mutual-neighbors-value method (KMNV) is to remove (prune) edges

from a similarity graph or, in other words, setting some similarity values to zero. One

can summarize the algorithm as follows:

Step 1. For each point i, order all of its neighbors j by their similarities to i and set kij

to the ordinal number of neighbor j. Note that in general kij 6= kji.

Step 2. Keep only connections for which kij � K and kji � K, meaning that point i and

point j are at most the K-th neighbors of each other. All other connections are set

to zero.

The number of connections that are removed by KMNV depend on the integer param-

eter K. For large K values, (K > n number of points), no connections are removed. Small

K values leave only few connections. The maximum number of connections that are kept

is, of course, K � n.
This algorithm was used by Blatt et al. [4] in order to save computation time of the

SPC algorithm by reducing the number of connections in the graph. In the problems they

dealt with the SPC's performance was not sensitive to the value of K. When testing the

SPC clustering algorithm on the protein data, we found out that the results do depend

on K and that this preprocessing step plays an important part in the clustering.

We analyzed the e�ect of using this algorithm and found that it separates (i.e. re-

moves connections between) regions that have di�erent densities. In order to explain this

behavior, picture the points in some metric space and use distances instead of similarities.

Using this picture it is convenient to state the algorithm as follows: Consider a sphere

around each data point that includes its K nearest neighbors. The connection between

two points is kept only if both are within the spheres of each other.
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In a uniform density, see �gure 4.11, it is likely that if point i is inside the sphere of

point j then also point j is inside the sphere of point i. Therefore, in the uniform density

case, as a �rst approximation, points that are closer than the average distance to the

K-th neighbor will be connected. On the other hand, if there is a gradient in the density

(see �gure 4.12) on the scale of the average K-th neighbor distance, then spheres around

points in the dilute region will include points from the dense region, whereas points in

the dense region will have small spheres around them which will not include the points

in the dilute region; hence two such points will not be connected. Therefore, the overall

e�ect of the KMNV algorithm is to remove the connections between regions of di�erent

densities.

Note that because the KMNV algorithm can only remove connections, the upper

bounds on the classi�cation performance obtained in Sec. 4.4.1 are still valid when clas-

sifying using the new similarities.

The KMNV algorithmmay help the classi�cation by removing connections between the

� and the �-� proteins and � and �-� proteins. The �-� proteins have large similarities

between them which corresponds to a dense region in space, whereas, the similarities

between the � proteins and themselves (and the � proteins and themselves) are relatively

lower which corresponds to low density regions. Since the KMNV algorithm separates

regions of di�erent density it might help to classify the proteins. On the other hand,

removing connections also reduces information in the data that is used by classi�cation

methods. Hence, we expect that there will be an optimal K value for each classi�cation

method.

The KMNV's performance depends on its parameter K. In order to select a range for

the values for K, we examined the distribution of number of neighbors in the PR479 direct

similarities. We chose to test the following K values: 5, 10, 15, 20, 25, 30. It is obvious

that large K values will not have a large e�ect on the similarity and the classi�cation

performance since most of the direct similarities are kept.
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We created a set of 12 similarity matrices based on 2 direct similarities Z and CZ, which

gave the best performance when used alone, using the 6 di�erent K values. Overall, the

KMNV algorithm does not improve the classi�cation beyond the best algorithm so far.

The performance of the classi�cation using K=25 and 30 was practically the same and

very similar to the performance of the direct similarities with out the KMNV. The KMNV

algorithm slightly improved the classi�cation performance of the Z direct similarity, but

did not improve the CZ direct similarity. This can be the case if the KMNV has a similar

e�ect on the similarity matrix as the transformation from Z to CZ. The CZ transformation

reduces the relative similarity between a pair of proteins that di�er in their self-similarity.

For example, suppose an � protein, that has small self-similarity, has higher Z value with

an �-� neighbor compared to other � neighbors. The CZ value with the �-� neighbor can

be lower than CZ value with the � neighbors since the self-similarity of the �-� protein is

large. Thus, the CZ value behaves like the KMNV and separates the � proteins from the

�-� proteins.
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Figure 4.13: The best KMNV similarities (K = 20) and the best direct similarity
1NN (CZ) success (lower) and non-rejection (upper) rates.
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Figure 4.14: The purity obtained using the best KMNV similarities (K = 20) and the
best direct similarity 1NN (CZ).

For comparison we plot the best direct similarity classi�cation which was 1NN (CZ)

together with the best of the KMNV (K = 20) similarities in �gure 4.13. Notice that all

the KMNV performance does not improve the overall success rate of the classi�cation.

However, if one considers the purity, i.e. the number of correct classi�cation out of the

non-rejected ones, the 1NN (K20-CZ) has slightly higher purity for at all dilutions (see

�gure 4.14).

4.5.2 Similarities based on hierarchical clustering methods

This section describes how we use hierarchical clustering methods to produce new simi-

larity measures.

Hierarchical clustering methods produce a sequence of nested2 partitions to describe

the data [19]. Such a sequence can be described by a tree which is called a dendrogram

(see �gure 4.15).

2Partition A is nested in partition B, if each set in A is a proper subset of a set in B.
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Figure 4.15: A dendrogram which describes the sequence of partitions listed on the right.

The dendrogram provides a picture of the clustering that can be easily interpreted.

Cutting the dendrogram at any level de�nes a particular clustering, or partition, in the

sequence. The level itself which is the index in the sequence of partitions, in general, has

no direct correspondence to the original similarities that are used to create the clustering.

The leaves of the dengrogram are the individual data points; at the lowest level each

points constitutes its own cluster.

Using the dendrogram one can de�ne a new similarity measure between the data

points, called the cophenetic similarity [19]. The cophenetic similarity, SC
ij , between two

given points is de�ned as the lowest level in the dendrogram at which the two points are

still in one cluster. The levels are numbered in increasing order from zero at the root

towards the leaves. The cophenetic proximity is a similarity measure since two points

which stay together at the same \branch" in the dendrogram, i.e. remain members of the

same cluster, get a higher cophenetic proximity than points that split to di�erent clusters

close to the root.

Note that the cophenetic similarity is an integer valued variable that could be at most

n� 1 for a dendrogram that splits, at each level, one point out of the main cluster. Since

there are at most n di�erent values for n � (n� 1)=2 relationships, there are many pairs



4.5. Indirect similarities 50

which have the same cophenetic similarity.

We suggest to use the cophenetic similarity as our new similarity measure. Finally,

the classi�cation is performed by applying a 1NN algorithm to the new similarities.

One can express graphically the classi�cation procedure as follows: in order to classify

a yet unclassi�ed point, one starts going up towards the root from the leaf that corresponds

to that point in the dengrogram. At each step, which corresponds to a lower cophenetic

similarity, more points join the cluster of the unclassi�ed point. The �rst time one (or

more) classi�ed points join the cluster, one performs a majority vote between their classes

to obtain the predicted class of the unclassi�ed point. In the case where a single classi�ed

point joins the cluster, the prediction is based only on a single point's class. This �ts the

1NN algorithm. However, when several classi�ed points join at the same level, meaning

that there are several points with the same cophenetic similarity, one has to perform a

kNN type decision. We chose to use a majority vote between the classes and demand

that at least 70% of the votes are for a certain class, otherwise a rejection of the second

type (see Sec. 4.3) is returned.

4.5.3 Direct classi�cation using the dendrogram

We compare the results of the 1NN algorithm applied to the cophenetic similarity measure

to a more direct classi�cation method (denoted by D) that uses the resulting dendrogram

with a top-down approach. The algorithm is as follows: �rst, we identify large and pure

clusters by going down the dendrogram and stopping whenever a cluster is larger than 5

proteins and its purity exceeds 80%, meaning that more than 80% of its classi�ed members

are of the same architecture. Then, all unclassi�ed members of these clusters are assigned

to the class of the majority. The remaining unclassi�ed proteins that belong to small or

non-pure clusters are rejected. Figure 4.20 (on page 58) shows the dendrogram created

using the SPC algorithm. The clusters that are plotted in the �gure coincide with those

used for classi�cation in the direct algorithm.
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4.5.4 Super Paramagnetic Clustering algorithm (SPC)

The �rst type of hierarchical clustering method we used is the Super Paramagnetic Clus-

tering algorithm (SPC) which was introduced by Blatt et al. [4][5][6]. We modi�ed the

algorithm in order to use it as a hierarchical clustering method. The algorithm, which

was �rst motivated by properties of inhomogeneous magnets, will be described here in

terms closer to those used in the machine learning literature.

Each protein Ei is assigned an integer random variable, ci, describing its \color" out

of q possible colors, i.e. ci = 1; : : : ; q. For each coloring con�guration C = fcig a cost

is assigned that penalizes assigning di�erent colors to any pair of similar proteins. We

choose the similarity measure of proteins i and j, Sij, which can be any of the similarity

measures we used, as the value of this penalty. The cost function is de�ned as the sum of

penalties for all protein pairs hi; ji,

E(C) = X

hi;ji

Sij [1� �(ci; cj)] : (4.5)

Note that if a pair of proteins hi; ji has Sij = 0 it does not contribute to the cost func-

tion. Hence, the cost function depends only on colors of neighboring proteins in the

corresponding weighted graph.

The general idea of the algorithm is to measure correlations between colors assigned to

proteins at di�erent values of average cost. Then, for each average cost value, one creates

clusters by joining together all protein pairs whose correlation exceeds some threshold.

The average cost at which the correlations are measured controls the size of the clusters

and, hence, the resolution at which we view the data. By increasing the average cost,

one gets a hierarchy of clusters, starting from the root where all the proteins are in one

cluster and going towards the leaves where each protein forms its own cluster.

Setting the average cost to a speci�c value and using the maximum entropy principle

[20] implies a Gibbs distribution over all possible con�gurations. The maximum entropy

principle states that in order to infer an unknown distribution given some prior knowledge,
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one should select the distribution with maximum entropy that satis�es the prior knowledge

constraints. In our case, the constraint is the average cost value. The distribution that

maximize the entropy, given this constraint, is the Gibbs distribution,

P(C) = exp [�E (C) =T ]
Z

; (4.6)

where Z is a normalization factor and 1=T is the Lagrange coe�cient coupled to the

average cost constraint. T has a one-to-one monotonic relation with the average cost,

hence can be used to control it. In statistical physics terminology, Z is called the partition

function and T is the temperature.

For each value of T one can form clusters using the two-point correlations of the colors.

The two-point correlation function Gij(T ) is de�ned as,

Gij(T ) =
X
C

P(C)�(ci; cj) ; (4.7)

where �(ci; cj) = 1 if i and j have the same color in the assignment C, otherwise �(ci; cj) =
0. Gij(T ) is the expectation of proteins i and j having the same color at a given average

cost. The clusters are built by connecting all neighboring pairs that are highly correlated,

i.e. Gij > �; The threshold � is usually taken to be 0:5. The clusters represent a typical

color assignment of the proteins for a given average cost.

In order to form a hierarchy, one should make sure that if two proteins are in di�erent

clusters at T = T1 then they stay in di�erent clusters for any T > T1. Two points are

assigned to the same cluster if they are connected by a \path" of neighboring pairs, whose

correlations exceeds the threshold. It can be shown that Gij(T ) is a monotonically de-

creasing function of T [13]. Therefore, if a pair's correlation decreases below the threshold

at T1, it will remain below the threshold for all T > T1. Consequently, if at T = T1 there

is no path connecting two points then there should not be one at T > T1. This makes sure

that the clusters created at di�erent values of T form a hierarchy; every cluster found at

T = T2 is fully contained within some cluster created at T = T1 < T2.

The SPC algorithm uses a Potts model [35] of an inhomogeneous ferromagnet, which
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can have three phases: at low values of T (low average costs), the two-point correlation

is high for all pairs and all the points belong to one cluster. For high values of T the

correlation between any pair is low, and each point is considered its own cluster.

If there are dense regions of points separated by low density ones, namely, there are

clusters in the data, an intermediate phase appears. In this phase points that are within

the same dense region are highly correlated, whereas points in the low density regions and

points from di�erent dense regions are not correlated. This phase reveals the structure

in the data by grouping the points in dense regions into ordered clusters. An important

issue is that the transitions that occur between the phases are due to collective behavior

and are not in
uenced by small changes. This property ensures the robustness of the

clustering solution.

Gij(T ) is estimated using a Monte-Carlo simulation at a series of temperatures. Fur-

ther details regarding the exact algorithm appear in papers by Blatt et al. [4][5]. Note

that the estimate of Gij(T ) (obtained by simulations) has noise added to the true value

and is not guaranteed to decrease monotonically as a function of temperature and, thus, it

can violate the hierarchy condition. The noise level can, however, be lowered by increasing

the number of Monte-Carlo iterations.

When the clusters in the data have a distribution with a density that gradually de-

creases as one moves away from their cores, the peripheral points decorrelate from the

core and are split o� the cluster one by one, as the temperature is increased. Thus the

cluster, rather than disintegrating in a single sharp transition, decreases gradually in size

until only a small dense core remains. In order to overcome this problem, Blatt et al. sug-

gested to add another step when creating the clusters; generating a directed graph. After

joining all pairs with high correlation, every point is connected to that of its neighbors

with which it has the highest correlation. Since points are more correlated with neighbors

in the direction of the core, peripheral points become reconnected to the cluster's core.

This step does not necessarily obey the hierarchy condition, even without the noise
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added by the Monte-Carlo sampling. Although the correlations between a point and its

neighbors decrease monotonically with temperature, they are not guaranteed to conserve

their relative order. The most correlated neighbor can switch its identity, which may cause

a violation of the hierarchy condition by connecting points which were not connected at

lower temperatures.

To overcome this problem we modi�ed the original algorithm and explicitly added the

hierarchy condition when creating the clusters. At each temperature we forbid connecting

neighbors that were disconnected at the previous temperature.

The SPC algorithm suggests to identify the temperature range of each of the super-

paramagnetic phases and take the clustering solutions as the ones generated at temper-

atures in the middle of these ranges. These phases are identi�ed using the susceptibility

graph �(T ). The susceptibility, in general, measures the 
uctuations in the size of the

clusters at any given temperature. In order to formally de�ne the susceptibility, one �rst

has to de�ne total magnetization m(C). The total magnetization is a linear function of

the number of data points with the most populated color;

m(C) = qnmax(C)� n

(q � 1)n
(4.8)

where nmax(C) = max fn1(C); n2(C); : : : ; nq(C)g and ni(C) is the number of points with

color i. This de�nition of the magnetization is convenient since it assumes the value 1

when all proteins are of the same color (at low temperatures); and a value of 0 when all

colors are evenly distributed (at high temperatures) having nmax � n=q. The susceptibility

is related to the variance of the magnetization at a given temperature;

�(T ) =
n

T

�D
m2
E
� hmi2

�
(4.9)

It is easy to identify the phase transition using the susceptibility since it has a peak

whenever clusters break. A typical susceptibility graph goes through the following stages

as the temperature is raised; at low temperatures, it starts close to zero, which represent

a single correlated cluster. Then, it goes through an intermediate phase which is governed
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Figure 4.16: The susceptibility as a function of temperature for the SPC-K15-CZ test.
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by series of peaks separated by plateaus, which represent the transitions and the steady

clusterings between them, and �nally drop back to zero, which represents the uncorrelated

con�gurations of high temperatures. In �gure 4.16 the susceptibility obtained in the

SPC-K15-CZ test is plotted. The general behavior is as expected but the peaks are not

well separated, which is an indication that the data do not form clusters that are sharply

de�ned over a wide range of temperatures. The sizes of the 7 largest clusters as a function

of temperature (for the SPC-K15-CZ test) are plotted in �gure 4.17. One can see that the

peak in the susceptibility corresponds to the breaking of the largest cluster. It is evident

from the graph that most of the clusters are not stable for a wide range of temperatures,

except a few small clusters. This rather low stability agrees with the lack distinct peaks

in the susceptibility.

In order to create the hierarchy we use the calculated correlations at all temperatures,

where each hierarchy level corresponds to a temperature value. Since many clusters

can split between two consecutive temperature steps the resulting tree can have many

o�springs at each node.

The number of colors used by the SPC, q, is not related to the number of class types.

The parameter q controls the sharpness of the transitions between the di�erent phases

and is set as a compromise between sharpness and number of Monte-Carlo steps needed

to reach equilibrium. We used q = 20.

We tested the algorithm using several similarity measures. We used the Z and CZ

direct similarities and similarities created by applying the KMNV algorithm with several

values of K (K = 5; 10; 15; 20; 25; 30). The best results of the SPC algorithmwere obtained

using KMNV with K = 10 applied on the CZ direct similarity measure. They are plotted

together with the best results so far (1NN (CZ)) in �gure 4.18. One can see that the SPC

success rate is signi�cantly lower than the 1NN (CZ). This is due to a large number of

rejections that are mostly from the second type, i.e. the algorithm can not decide to which

class the unknown protein should be assigned, because there are many cases in which the
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Figure 4.18: The success (lower lines) and non-rejections (upper lines) rates obtained using
the best SPC similarities (using CZ and KMNV K = 10) and the best direct similarity
1NN (CZ).
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closest classi�ed points belong to several di�erent classes. The purity of the classi�cation

obtained by using the SPC results is, however, higher than that of the 1NN (CZ), see

�gure 4.19.
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Figure 4.20: The dendrogram created by the SPC algorithm using K10-CZ similarity
measure.

The resulting dendrogram for PR479 is depicted in �gure 4.20. In order to produce

the �gure, we start from the top of the dendrogram and follow the splits. Each cluster

is represented by a vertical bar colored according to the classes of the proteins in it. We

do not draw clusters smaller than 5 proteins. We stop splitting the cluster when it �rst
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Figure 4.21: The Z-matrix ordered according to the SPC dendrogram of the previous
�gure.

passes a purity of 80%, meaning that more than 80% of the proteins in the cluster belong

to the same class. The class index of the majority of the proteins in the cluster is written

below the cluster's bar. The clusters (bars) that appear in the dendrogram represent

58.3% of the proteins, out of which 89.6% belong to the architecture of the majority in

their cluster; the remaining proteins belong to small or non-pure clusters.

At each node of the tree we order the sub-clusters according to size from left to right;

with leftmost o�spring the largest. This order is arbitrary and is not an outcome of the

clustering algorithm.

The dendrogram induces a new order on the PR479 proteins; the order can be extracted

by listing the proteins in the leaves of the dendrogram from left to right. One can reorder

the rows and columns of the Z-matrix according to the induced order, as was done using

the original CATH order in �gure 4.3. The reordered Z-matrix, which appears in �gure

4.21, shows how well the clustering algorithm succeeded in grouping together closely

related proteins.
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As discussed previously (Subsec. 4.5.3), we compare the 1NN (SPC-K10-CZ) results

to a classi�cation method that uses the dendrogram directly, D(SPC-K10-CZ). The direct

method has a much lower success rate but a higher purity compared to the 1NNmethod.

At dilution of 20% the success rate of D(SPC-K10-CZ) is 49:9 � 0:5% and the purity

is 90:5 � 0:5%, whereas the performance of 1NN (SPC-K10-CZ) is: success 68:0 � 0:5%

,purity 81:6� 0:5%.
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4.5.5 Average Linkage (AVL)

The second type of hierarchical clustering algorithmwe used is the average{linkage method

(AVL) [19]. This method is an agglomerative clustering algorithm, meaning that it starts

from n distinct clusters, one for each point, and forms the hierarchy by successively merg-

ing clusters. The agglomerative clustering methods are widely used due to their concep-

tual and implementational simplicity. The various agglomerative clustering methods can

be described using the following scheme, known as Johnson's algorithm for hierarchical

clustering [21];

Step 1. Assign each point to a di�erent cluster !i = fEig and use the similarity between

the points as the initial similarity matrix between the clusters S(!i; !j) = Sij.

Step 2. Find the most similar pair of distinct clusters, say !� and !�.

Step 3. Merge clusters !� and !�, and call it !
, where 
 = min(�; �).

Step 4. Update the similarity matrix by deleting the rows and columns corresponding

to cluster !� and calculate the similarities (see below) between the new cluster !�

and the other clusters.

Step 5. Stop if only one cluster, that contains all the points, is left; otherwise go to Step

2.

Various agglomerative clustering methods di�er by the way they calculate the new

similarities between the joined cluster and the other clusters in Step 4. The AVL algo-

rithm de�nes the similarity between two clusters as the average of the pairwise similarity

between all pairs of points in the two clusters,

S(!�; !�) =
1

n�n�

X
Ei2!�
Ej2!�

Sij : (4.10)

The AVL algorithm belongs to a sub-family of agglomerative clustering algorithms called

Sequential Agglomerative Hierarchical Non-overlapping clustering methods (SAHN). In
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these methods, the similarity between clusters can be computed using the similarities

of the previous iteration of the algorithm. For example, the AVL similarity measure

(Equation 4.10) can be calculated by

S(!� [ !�; !
) =
n�

n� + n�
S(!�; !
) +

n�
n� + n�

S(!�; !
) ; (4.11)

Calculating the new similarities using the previous ones make the SAHN algorithms rela-

tively e�cient. Since the agglomerative algorithms merge, at each iteration, two clusters,

the resulting dendrogram is a binary tree. The number of iterations is always n� 1.
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Figure 4.22: The success (lower lines) and non-rejection (upper lines) rates of the best
AVL similarities (without using KMNV) compared to 1NN (SPC-K10-CZ) and 1NN (CZ).

The AVL algorithm applied to the Z score was used by Holm and Sander to create

the dengrogram reported in the FSSP database [16]. We tested the AVL algorithm using

the direct similarities Z and CZ. In addition we tested it on the outcome of the KMNV

algorithm using K = 5; 10; 15; 20; 25; 30. The best classi�cation results are obtained using

the CZ direct similarity measure without using KMNV. (1NN (AVL-CZ)). The perfor-

mance of using KMNV with K > 20 does not make much di�erence. In �gure 4.22 we
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Figure 4.23: The purity obtained using the best AVL similarities (without using KMNV)
compared to 1NN (SPC-K10-CZ) and 1NN (CZ).

plotted the evaluation of the 1NN (AVL-CZ) compared to 1NN (SPC-K10-CZ) and the

best classi�cation method so far 1NN (CZ). Notice, that when using the AVL algorithm

and high dilutions (dilution � 90) the success rate exceeds the upper bound obtained for

direct similarity measures. This is possible since the indirect similarities introduce con-

nections between proteins that were not connected in the original direct similarities. In

terms of success rate the AVL method performes better than the SPC algorithm. Testing

the purity, however, shows that the SPC algorithm has a higher purity (see �gure 4.23.

Figure 4.24 shows the dendrogram created by the AVL algorithm. The dendrogram is

plotted using the same scheme used for the SPC dendrogram (�gure 4.20), i.e. starting

at the root and splitting until a pure enough cluster remains (80% purity), while omitting

small clusters (5 points). Figure 4.25 depicts the Z-matrix reordered according to the

dendrogram. In the dendrogram 64.9% of the proteins belong to large and pure enough

clusters, out of them 90.0% belong to the architechture of majority in their cluster. Com-

paring 1NN (AVL-CZ) to D(AVL-CZ) reveals that, as was the case for SPC, the direct
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Figure 4.24: The dendrogram created by the AVL algorithm using CZ similarity measure.
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Figure 4.25: The Z-matrix ordered according to the dendrogram in previous �gure.

method has lower success rate and higher purity.

One conclusion from the average{linkage analysis is that the CZ similarity measure

produces a better dendrogram (for architecture classi�cation) than the Z similarity mea-

sure. This means that using CZ instead of Z can improve the dendrogram reported in

FSSP.
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4.6 New heuristic approach to classi�cation

We suggest a new classi�cation scheme that is based on the cost function de�ned by the

SPC algorithm (Eq. 4.5). As opposed to clustering methods, a classi�cation algorithm

can use the information from the already classi�ed proteins and, in particular, the num-

ber of possible classes is known. Therefore, one can choose q (the number of colors in

the SPC cost function) to be equal to c (the number of di�erent classes), and set the

colors of already classi�ed proteins, which now represent the classes, according to their

classi�cation. The classi�cation problem can now be stated as �nding the minimal cost

con�guration of the uncolored proteins, while keeping the colors of the classi�ed proteins

�xed.

Generally, there is no e�cient algorithm to �nd the minimal energy con�guration of

the unclassi�ed proteins since it was shown that it is an NP-complete problem [6] We

suggest a heuristic approach to �nd a low energy con�guration which in some cases �nds

the global minimum. The heuristic is an iterative greedy algorithm. The algorithm can

identify in which iteration, if at any, it performed a heuristic decision.

In order to explain the algorithm we �rst de�ne �eld variables. For a given color

con�guration C, one can associate with each protein, say j, a set of variables
n
hcj
oq
c=1

,

called �elds. The �eld hcj measures the cost gained by assigning protein j to color c while

keeping all other colors �xed;

hcj =
X
i

Sij�(ci; c) : (4.12)

Note that only proteins, i, that are neighbors of j contribute to the sum. In case all

proteins but one have known classi�cation, the minimal cost is obviously reached by

assigning the unclassi�ed protein to the class of its maximal �eld. Notice that the �eld

variables attached to protein j are independent of its color cj.

In case several proteins have no known classi�cation, the �eld variables can be uncer-

tain, since the �eld contribution from unclassi�ed neighbors is unknown. Therefore we

de�ne an additional variable for each protein, which we call unknown �eld hunknown
j ; that
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is, the total �eld from unclassi�ed neighbors;

hunknown

j =
X
i

i is unclassi�ed

Sij : (4.13)

The max�eld (MF) algorithm, discussed in Section 4.3.2, assigns unclassi�ed proteins

to the class of their maximal �eld regardless of the unknown �eld (this clari�es the origin

of the algorithm). Only classi�ed neighbors of the unclassi�ed protein take part in the

classi�cation. This method obviously su�ers at high dilution, where the unknown �eld

can be very large compared to all other �elds.

The algorithm we suggest here takes the unknown �eld into account. For each protein

we identify the maximal �eld (induced by the neighbors of known color) hmax
i = maxc h

c
i

and maximal �eld color cmax
i = argmaxc h

c
i . In addition, we identify the second highest

�eld hnext
i = maxc6=cmax

i
hci . We de�ne a variable �i that measures the di�erence between

the maximal �eld and the next to maximal �eld,

�i = hmax

i � hnext

i : (4.14)

Finally, we measure the ratio between �i and the unknown �eld, ri = �i=h
unknown
i . It is

clear that if ri > 1 the minimal cost con�guration has protein i assigned to the class of

its current max �eld, independent of the classes of its unclassi�ed neighbors. Even if all

unclassi�ed neighbors will belong to the class of the next highest �eld, their contribution

will increase the next highest �eld by the unknown �eld and it will still not exceed the

current maximal �eld. Therefore, assigning a protein with ri > 1 to the class cmax
i is a

\safe" step. On the basis of this idea we suggest the following algorithm:

Step 1. Calculate the ratios for the unclassi�ed proteins.

Step 2. Find the protein with maximal ratio.

Step 3. Assign the protein to the class of its maximal �eld.

Step 4. Stop when all unclassi�ed proteins have an assignment, otherwise go to Step 1.
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Notice that in each iteration one should update the ratios of the remaining unclassi�ed

proteins since new classi�cations alter the �elds. One can view this algorithm as gradually

classifying points along the border between the classi�ed and unclassi�ed regions, this

corresponds to classifying proteins with ratio > 1. At a certain iteration, the highest

ratio drops below 1, and only the core (or cores) of the unclassi�ed proteins remain. The

classi�cation of these proteins depend on each other and at this stage a heuristic step is

performed by taking the \safest" decision. Later, after updating the �elds, it is possible

that some ratios will exceed 1. This process continues until there are no unclassi�ed points

left.

The classi�cation of each protein, performed using this algorithm, depends on all

the heuristic steps that were performed prior to its classi�cation. At low dilutions it is

common that the ratios of all unclassi�ed proteins are greater than 1, meaning that the

classi�cation performed by the algorithm is the global minimum of the cost function.
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Figure 4.26: The HR success (lower lines) and non-rejection (upper lines) rates using CZ
and K20-CZ similarity measures compared with 1NN (CZ).

We tested the heuristic classi�cation algorithm (HR) using the direct similarities Z and
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CZ and also using the outcome of the KMNV algorithm usingK = 5; 10; 15; 20; 25; 30. The

best performance was obtained using K = 20. Figure 4.26 plots the performance of the

heuristic algorithm using CZ and K15-CZ similarity measures, HR(CZ) and HR(K20-CZ),

compared with the best classi�cation so far 1NN (CZ). One can see that at high dilutions

the classi�cation using HR is better than 1NN (CZ) and that HR(K20-CZ) even exceeds

the upper bound for direct similarities. This is possible since the heuristic algorithm

uses indirect considerations in the classi�cation. Another important property of the HR

algorithm is that it yields a rejection only for proteins that have no neighbors (classi�ed or

not). This causes the purity of the algorithm to decrease as the dilution rate is increased.

The classi�cations of the HR algorithm coincide with those given by the MF algo-

rithm at low dilutions. This is clear since at low dilutions unclassi�ed proteins are rarely

neighbors of each other. At high dilutions, on the other hand, the HR algorithm can use

the relationships between unclassi�ed proteins to reach a better classi�cation.



Chapter 5

Prediction

In this Chapter we summarize the results of the classi�cation methods presented in the

previous Chapter and select the methods we use to classify the set PR165 (Sec. 5.1).

We report our predicted classi�cations in Sec. 5.2. Since we do not know the true

classi�cation of the PR165 proteins, we can not check the algorithm's performance. We

intend to publish the results and let researchers, from CATH or other groups, check our

prediction.

5.1 Selecting the Classi�cation Method

We summarize the performance of the classi�cation methods presented in the previous

Chapter. We tested several similarity measures; direct similarity measures that included

the original S,Z and our normalized ones CS,CZ. In addition, we tested indirect measures

that were created using KMNV, SPC and AVL algorithms. We used combinations of

these measures using 1NN , max�eld (MF) and the heuristic (HR) classi�cation methods.

The clustering methods were also tested using the direct (D) classi�cation method. Each

combination was evaluated using a cross-validation scheme at di�erent dilutions.

Since we want to select a classi�cation method for predicting the PR165 proteins out of

the PR644 proteins (PR479 together with PR165), we are generally interested in methods

that perform well at dilution of around 25% (165=644). Since, however, the dilution is a

global parameter, that is, the average of local dilutions surrounding the yet unclassi�ed

70
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proteins, we seek an algorithm that performs well in a range of dilutions. A further

complication in selecting the classi�cation method is that for each method we estimated

the success rate and purity, and we do not have a single parameter to maximize. We avoid

making the tradeo� between success rate and purity since it depends on the speci�c use

of the prediction. If one wants to use the prediction without any human intervention it is

preferable to have higher success rate, since the success rate estimates the probability of

correctly predicting the architecture. In case one has a semi-automatic process where only

the rejected proteins are examined by humans and the non-rejected ones are classi�ed

as predicted, a higher purity is preferable since it estimates the probability of correct

predictions within the non-rejected proteins. Therefore, we study the properties of the

tested methods and give the prediction at several selected working conditions.
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Figure 5.1: Di�erent classi�cation methods plotted on the success rate/purity plane at
dilution 20%.

On the basis of the results presented in Chapter 4 (see �gure 4.7 ), we chose the

CZ direct similarity measure, since it improves the performance of all indirect measures

and classi�cation methods. The last that is left is to compare the performance of the

di�erent algorithms and indirect similarities based on the CZ measure. After removing
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Figure 5.2: Di�erent classi�cation methods plotted on the success rate/purity plane at
dilution 50%.

all methods that were inferior in both success rate and purity, 6 algorithms remain;

1NN (CZ), HR(CZ), 1NN (AVL-CZ), 1NN (SPC-CZ), D(SPC-CZ) and D(AVL-CZ). Each

of the similarities can be preprocessed by the KMNV algorithm using di�erent K values.

Figures 5.1 and 5.2 plot the success rate and purity of the tested methods at 20%

and 50% dilution rates respectively. Each algorithm is represented by a line which is

parameterized using the K parameter of the KMNV algorithm. Each point is marked

by a symbol that corresponds to a speci�c K value (and one corresponds to not using

KMNV). In order to make the plot clearer we plotted the error bars, which are roughly

the same for all points, in the lower-left corner.

Using these graphs we select the K values and algorithms that we use for predicting

the PR165 architectures. It is clear that a point which has higher success rate and

purity is preferable. Graphically, it means that a mark in the graph, which represents

an algorithm and K value, performs better than those that are marked lower and to the

left of it. From �gure 5.1 we can see that at low dilutions the highest success rate is

obtained by the 1NN (CZ) and HR(K20-CZ) algorithms. Lower success rates with higher
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purity is obtained by the 1NN (AVL) using K � 25. Much higher purities are obtained

using the D(SPC) but at the cost of much lower success rates. Moving to higher dilutions

(�gure 5.2) shows that the HR(K20-CZ) reaches the highest success rate and does no

longer behave like the 1NN (CZ). At this dilution the 1NN (SPC-K10-CZ) has high purity

with reasonable success rate. D(SPC) maintains its high purity and achieves its highest

success rate at K = 10.

We selected to use for the prediction the following 5 algorithms; 1NN (CZ), HR(K20-

CZ), 1NN (AVL-CZ), 1NN (SPC-K10-CZ) and D(SPC-K10-CZ). All of these are the most

upper-right points of each algorithm which de�ne the best performance envelope. Table

5.1 lists the success rate and purity of each of the selected algorithms.

method dilution success rate non-rejection rate purity
1NN (CZ) 20% 74:5� 0:5% 93:9� 0:4% 79:3� 0:5%

50% 67:5� 0:4% 90:2� 0:2% 74:8� 0:4%
HR(K20-CZ) 20% 74:3� 0:5% 94:1� 0:3% 79:0� 0:6%

50% 69:1� 0:4% 93:6� 0:1% 73:8� 0:4%
1NN (AVL-CZ) 20% 72:4� 0:5% 87:1� 0:5% 83:2� 0:5%

50% 66:4� 0:4% 83:5� 0:4% 79:6� 0:4%
1NN (SPC-K10-CZ) 20% 69:4� 0:6% 82:1� 0:5% 84:6� 0:5%

50% 63:0� 0:4% 76:0� 0:4% 83:0� 0:3%
D(SPC-K10-CZ) 20% 49:9� 0:5% 55:2� 0:5% 90:4� 0:5%

50% 49:7� 0:4% 55:8� 0:5% 89:2� 0:4%

Table 5.1: Success rates, non-rejection rates and purities of the selected algorithms at
dilutions 20% and 50%.

Viewing the �gures, one can notice that the algorithms have di�erent K dependence;

the 1NN (CZ) behaves in a monotonic manner, as K is increased the success rate increases

and the purity decreases and large K values do not have much in
uence on the perfor-

mance. The 1NN (SPC-CZ), on the other hand, reaches the maximal success rate at an

intermediate K value (K = 10).

In general, it is expected that as K decreases the classi�cation has lower success rates

and higher purity since the KMNV algorithm removes \inconsistent" connections, thus
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keeping, with high probability, ones between proteins of the same class, but also leaving

many proteins without any neighbors, which increases the rejection rate (and decreases

the success rate). In the SPC case we have not studied the reasons for this dependency

but we suggest that the KMNV helps to even out the number of connections a protein

has. A large deviation in the number of connections between di�erent regions in the data

can change the SPC's behavior.

In order to appreciate the relations between the PR644 (PR479 together with PR165)

proteins we use the SPC and AVL clustering algorithms to produce a dendrogram of the

data. Figures 5.3 and 5.4 depict these dendrogram created using SPC-K10-CZ and AVL-

CZ, respectively. In each cluster plotted in the dendrogram there are two horizontal bars;

the top one, represents the number of classi�ed (black) and unclassi�ed proteins (white)

in that cluster. The bottom bar represents the class distribution within the classi�ed

proteins in the cluster.

Viewing the dendrograms one can see that both algorithms �nd two separate \branches"

surrounded by small clusters; one branch includes architectures 1,2,3,21,22, which are the

mainly-� proteins together with two �-� architectures that include many �-helices. The

other branch includes architectures 7,9,19 which are mainly-� Roll and Sandwich joined

with �-�Roll. The AVL algorithm separates the �rst branch into mainly-� and �-� . The

SPC algorithm, however, tends to seperate the data into smaller and purer clusters. One

can see that the yet unclassi�ed proteins are distributed among the clusters and many of

them (40% for the SPC and 60% for the AVL) are part of pure clusters. This strongly

suggests that they too belong to the architectures of these clusters. We conclude that

both algorithms �nd non-trivial structure in the data that corresponds to the architectures

de�ned by human observers.
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Figure 5.3: The dendrogram created by the SPC algorithm using K10-CZ similarity mea-
sure between the PR644 proteins.
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5.2 Prediction

In this section we report our architecture prediction for the PR165 proteins. Tables 5.2

to 5.6 list all 165 proteins with their prediction using the selected methods (rejections

appear as blanks). Each protein is speci�ed by its PDB entry and chain identi�er, and

the architectures are given by their index (see table 3.1). Further details about each

protein can be found in the PDB web site [27]. We ordered the proteins according to

the architectures predicted by the HR(CZ) algorithm, since it had no rejections. At the

top of each prediction column we stated the purity of that algorithm as was estimated on

PR479 at dilution 20%. This gives an estimate of what is the probability that a prediction

written in that column is a correct one. The total number of predictions appear at the

bottom of each column, and the overall total appears at the bottom of the table 5.6.

One can see that the correlation between the di�erent methods is very high; for 46 out

of 165 (28%) all the methods yield the same prediction (meaning also that these proteins

are not rejected). In 128 out of the 165 (77.6%) all the non-rejection predictions are the

same. The remaining 37 proteins usually have a majority voting for a certain architecture.
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number PDB entry 1NN (CZ) HR 1NN 1NN (SPC- D(SPC-
(K20-CZ) (AVL-CZ) K10-CZ) K10-CZ)

purity 79:3� 0:5% 79:0� 0:6% 83:2� 0:5% 84:6� 0:5% 90:4� 0:5%
1 1fct 1 1
2 1hph 1 1
3 1iba 1 1 1 1
4 1ktx 1
5 1thjA 1 1 1 1
6 2bpa3 1
7 2mrb 1
8 1tmf4 1
9 1vnc 2 1 2
10 1ron 1 1 1 1
11 1ctdA 1 1 1 2
12 1dmc 1 1
13 1eciA 1 1 22 1 1
14 1lbd 1 1
15 1ponA 1 1 1
16 1ponB 1 1 1
17 1ppbL 1 1 1
18 1tfe 2 1 1 1
19 1tfr 1 1 1 1 21
20 1c53 1 1 1 1 1
21 1pcl 22 1
22 1occE 1 1 26 1 1
23 1occH 3 1 1
24 1tafA 1 1 1 1
25 1tafB 1 1 1 1
26 1mhu 1
27 1cem 1
28 1xsm 1 1 1 1
29 1roo 1
30 1bgk 1
31 1pueE 1 1 1 1
32 1fre 1
33 1cpo 1 1 1

total 24/33 33/33 16/33 14/33 6/33

Table 5.2: Prediction of PR165 - Part 1.
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number PDB entry 1NN (CZ) HR 1NN 1NN (SPC- D(SPC-
(K20-CZ) (AVL-CZ) K10-CZ) K10-CZ)

purity 79:3� 0:5% 79:0� 0:6% 83:2� 0:5% 84:6� 0:5% 90:4� 0:5%
34 1pbwA 2 1 1
35 1cei 2 1 1 1
36 1nox 1 1 21 1
37 1lefA 1 1 1 1 1
38 1lrv 26 1 26 1 1
39 1zwa 2 1
40 1zwb 1 1
41 1zwc 1 1
42 1fow 1 1 1 1 1
43 1zwd 1 1
44 1zwe 1 1
45 1jvr 1 1
46 1ery 2 2 2
47 2brd 2 2 2 2 2
48 1rmi 2 2 2 2 2
49 1hmcB 2 2 2 2 2
50 1bmfG 3 2 3 3
51 1dkzA 3 2 2 2 2
52 1occA 2 2 2 2 2
53 1occC 2 2 2 2 2
54 1higB 1 2 1
55 1lre 3 2 2 2 2
56 1hdj 3 3 22 3
57 1i� 3 3 3 3
58 1ppt 3 3
59 1bba 3
60 1tiiC 3 3 3 3
61 1gcmA 3 3 3 3
62 1fosE 3 3 3 3
63 1fosF 3 3 3 3
64 1lyp 3 3 3 3
65 1mof 3 3 3 3
66 1psm 3 3 3 3

total 32/33 33/33 23/33 23/33 11/33

Table 5.3: Prediction of PR165 - Part 2.
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number PDB entry 1NN (CZ) HR 1NN 1NN (SPC- D(SPC-
(K20-CZ) (AVL-CZ) K10-CZ) K10-CZ)

purity 79:3� 0:5% 79:0� 0:6% 83:2� 0:5% 84:6� 0:5% 90:4� 0:5%
67 1spf 3 3 3 3
68 1wfbA 3 3 3 3
69 1occD 3 3
70 1occI 3 3 3 3
71 1occG 2 3
72 1occJ 3 3 3 3
73 1occK 3 3 3 3
74 1occL 3 3 3 3
75 1occM 3 3 3 3
76 1peh 3 3 3 3
77 2ifm 3 3 3 3
78 4ifm 3 3 3 3
79 1edmB 4 4 4 4 4
80 2cbh 4 4 4 4
81 1hleB 7 4 4 4
82 7apiB 4 4 4 4
83 1emn 4 4 4 4 4
84 1pfxL 4 4 4 4 4
85 1pft 5 5 5 5
86 1bnb 5 5 5 5
87 1whi 6 6 6 6
88 1mai 6 6 6 6
89 1lepA 6 6 6 6
90 1qbeA 21 7 21 21
91 1tiiD 7 7 7
92 1fmb 7 7 7 7
93 1ghj 7 7 7
94 1znbA 22 7
95 1pfsA 7 7 7
96 1iyu 7 7 7
97 1cwpA 9 9 9 9 9
98 1ahsA 9 9 9 9 9
99 1wkt 9 9 9 9 9

total 33/33 33/33 30/33 26/33 6/33

Table 5.4: Prediction of PR165 - Part 3.
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number PDB entry 1NN (CZ) HR 1NN 1NN (SPC- D(SPC-
(K20-CZ) (AVL-CZ) K10-CZ) K10-CZ)

purity 79:3� 0:5% 79:0� 0:6% 83:2� 0:5% 84:6� 0:5% 90:4� 0:5%
100 1mspA 9 9 10 9 9
101 1occB 9 9 9 9 9
102 1occF 9 9
103 1wit 9 9 9 9 9
104 1lcl 9 9 9 9 9
105 1stmA 9 9 9 9 9
106 1tul 10 9 10 9 9
107 1dec 10 10 10 10
108 1dutA 10 10 10 10
109 2ila 11 11 11 11 11
110 1wba 11 11 11 11 11
111 1pmc 14 14 14
112 1npoA 17 17
113 1ema 7 19 19 7 7
114 1cby 21 19
115 1alo 19 19 19 1 1
116 1lit 19 19 19 19
117 1cb2A 20 20 20 20 20
118 1eceA 20 20 20 20 20
119 1dhpA 20 20 20 20 20
120 1nsj 20 20 20 20 20
121 1onrA 20 20 20 20 20
122 1pnh 21 21 21
123 4cpaI 4 21
124 1tys 21 21 19 21 21
125 1sis 21 21 21
126 2fua 21 21 21 21 21
127 1mli 21 21 21 21 21
128 1hqi 21 21 21 21 21
129 1vhiA 21 21 21 21 21
130 1
eI 21
131 1pytA 21 21 21 21 21
132 1far 21 21 21 21

total 32/33 33/33 27/33 26/33 21/33

Table 5.5: Prediction of PR165 - Part 4.
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number PDB entry 1NN (CZ) HR 1NN 1NN (SPC- D(SPC-
(K20-CZ) (AVL-CZ) K10-CZ) K10-CZ)

purity 79:3� 0:5% 79:0� 0:6% 83:2� 0:5% 84:6� 0:5% 90:4� 0:5%
133 1sco 21 21 21
134 2crd 21 21 21
135 1din 22 22 22 22 22
136 1frvA 22 22 22 22 22
137 1frvB 4 22 4
138 1gdoA 22 22 22 22
139 1hgxA 22 22 22 22 22
140 1qrdA 22 22 22 22 22
141 1rnl 22 22 22 22 22
142 1kte 22 22 22 22 22
143 1cydA 22 22 22 22 22
144 1enp 22 22 22 22 22
145 1srsA 24 22 22
146 1efm 22 22 22 22 22
147 1pmaA 22 22 21
148 1pmaP 21 22 21
149 1broA 22 22 22 22 22
150 1jud 2 22 22 22 22
151 1rie 22 22
152 1rvv1 22 22 22 22 22
153 1apyA 22 22
154 1apyB 21 22 21
155 1mil 22 22 22 22
156 3monG 16 22 4
157 1cfr 22 22 22 22 22
158 1xvaA 22 22 22 22 22
159 1xel 22 22 22 22 22
160 1fds 22 22 22 22 22
161 1kuh 22 22 22 22
162 1kinA 22 22 22 22 22
163 1zfd 21 28 21 21
164 1gur 29 29 29 29
165 1eit 29 29 29 29

total 33/33 33/33 31/33 23/33 17/33
TOTAL 154/165 165/165 127/165 112/165 61/165

Table 5.6: Prediction of PR165 - Part 5.



Chapter 6

Summary

This chapter summarizes the work we performed regarding prediction of protein architec-

tures. As described in the Introduction (Sec. 2.2), we tried to automatically predict the

CATH architecture of a set of proteins that were not yet processed by CATH, using the

similarity measures taken from the FSSP database. The architecture classi�cation in the

CATH database is performed manually. As far as we know this is the �rst attempt to

correlate the FSSP similarity measures with the CATH classi�cation.

We performed the classi�cation using several standard and newly suggested techniques

and gave predictions for 165 yet unclassi�ed proteins (see Sec. 5.2). The classi�cation

algorithms were tested and evaluated on an already classi�ed set of proteins. Reliability

of 80% and above (depending on the preferred rejection rate) was reached. Using these

automatic classi�cation methods one can easily enlarge the CATH database with less

human e�ort, or none at all.

We tested several techniques for the classi�cations task. We �rst used standard

nearest{neighbor type algorithms using the original similarity measures taken from the

FSSP database. Next we introduced an improved similarity measure based on local nor-

malization of the original measures (CS and CZ). Using this measure improved the per-

formance of all the classi�cation methods that were tested.

A second type of similarity measures, which we called indirect, were calculated using

the outcome of hierarchical clustering techniques. We use the clustering techniques in

83
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order to introduce global relationships between the proteins into the local similarity mea-

sures. When classifying using the indirect similarities, we encountered many rejections

and, therefore, we could not increase the overall success rate. On the other hand the

classi�cation purity (the success rate within the non-rejected proteins) increased by 10%.

We tested two clustering techniques; one is the average{linkage algorithm (AVL),

which is a widely used hierarchical clustering method and the super paramagnetic clus-

tering method (SPC) which is a more robust clustering method introduced recently. We

had to modify the SPC algorithm in order to use it as a hierarchical clustering method.

Finally, we suggested a heuristic approach (HR) to the classi�cation problem which

searches for a global minimum of the SPC cost function. This method uses relationships

between all proteins, much like indirect similarity measures, in order to perform the

classi�cation. Using this method we succeeded to improve the correct prediction rate.

We made predictions using 5 classi�cation methods, all based on the CZ similarity

measure. Each of the methods has di�erent success and rejection rates. As a byproduct

of the classi�cation we identi�ed a list of proteins, which are already classi�ed by CATH,

that we suspect as misclassi�cations (see table 4.2). We intend to publish our predictions

and let researchers from the CATH, or other groups, examine them.

On the basis of the work presented here, further research can be conducted in sev-

eral directions; in the biological direction, one can use automatic algorithms to separate

multi-domain proteins into domains, calculate the CZ score between them and apply the

architecture prediction to each of the domains. Such a procedure would make the classi-

�cation methods presented here applicable for all proteins. Regarding the classi�cation

and clustering techniques, one can study the di�erent K behavior of the algorithms and

suggest ways to �nd the optimal one. Furthermore, one can search for improved algo-

rithms to �nd the global minimum of the SPC cost function and ways to alter the cost

function so that it will better re
ect the true correlations between the proteins.



Appendix A

The FSSP Database

In this section the FSSP database and similarity measure are described based on papers

published by Holm and Sander [15][18][16] and on the FSSP web site

http://www.ebi.ac.uk/dali/fssp. The FSSP database includes all protein chains from

the Protein Data Bank that are longer than 30 residues. The chains are identi�ed using

the PDB entry code plus a chain identi�er. A representative set is selected out of sequence

homologies, which have more than 25% sequence identity. Above 25% sequence identity

assures very similar structure and thus only one representative from each of the sequence

homologies is needed for fold classi�cation. Within the representatives there are still

many similar structures despite the low sequence similarity. The FSSP version from

December 25, 1997, which was used in this work, included 1188 representatives out of

9153 chain structures that were available in the PDB (the latest update from August 15,

1998 included 1371 representatives out of 11,912 structures).

For the representatives, an all-against-all structural comparison is done and all pairwise

similarity measures are calculated. The similarity measure is statistically calibrated and

is given in terms of Z-score (standard deviations above the mean). The results of the

exhaustive comparison are reported as a fold tree (dendrogram) created by an average

linkage hierarchical clustering algorithm. The fold tree divides the representatives into a

series of sets at di�erent structural similarity levels.

For each representative there is a �le containing structure-structure alignments and
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(a) 1bcfA (b) 1lki

Figure A.1: The alignment of 1bcfA and 1lki. Aligned residues of the proteins are red
and unaligned are blue. The calculated Z-score for them is 7.3.

similarity score with its neighbors in the representative set and its sequence homologs

in the PDB. Figure A.1 shows the alignment of two proteins; 1bcfA and 1lki. Aligned

residues are colored in red and unaligned are colored in blue. The Z-score for the pair

(1bcfA, 1lki) is 7.3, meaning 7.3 standard deviations above background average.

The rest of this appendix describes how the structures are compared and how the

similarity scores and Z-scores are calculated. The all-against-all Z-score between the

representatives is part of the data used in this work.

The structure comparison is done using the DALI algorithm [14], which �nds optimal

pairwise 3D alignment of protein structures using an elastic similarity score. In the DALI

algorithm, the 3D structure of a protein chain is represented using a distance matrix

between all its C� atoms which represent the distance between the residues. This repre-

sentation, which is called a distance matrix or map, has the advantage of being invariant

under rotation and translation and has more than enough information to reconstruct the

three dimensional position of the C� atoms, besides overall chirality (a mirror image of

the protein will have the same distance matrix). Therefore, two similar structures will

have similar distance maps regardless of the orientation and position of their reference
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frames.

The DALI algorithm is an optimization algorithm which tries to �nd an optimal align-

ment between two chains. An alignment is a list of L pairs of indices of C� atoms,

f(xA; xB)igLi=1. Each pair, (xA; xB), represents that the xA C� atom in chain A is aligned

with the xB C� atom in chain B. The optimization procedure tries to maximize a sim-

ilarity score, S-score, between the distance maps of the aligned regions. The similarity

score measures the pointwise resemblance of the distance maps. The exact calculation

is as follows: Take two chains A and B with nA and nB C� atoms respectively and an

alignment of L < nA; nB C� atoms between them. The similarity score for chain A and B

using this alignment is:

SAB =
LX
i

LX
j

0
@0:2�

���dAij � dBij
���

d�ij

1
A e�(d

�

ij=20�A)
2

(A.1)

The summation is done on all aligned pairs, i; j = 1; : : : ; L. Where d�ij is the mean of the

residue distances dAij and dBij in chains A and B, each of which is the distance between the

i-th and j-th aligned C� atom in the corresponding chain. The distances are measured in

Angstrom units.

This similarity score is an elastic score because it uses a relative,
���dAij � dBij

���=d�ij, rather

than absolute deviations. This means that large deviation for distant pairs contribute the

same as small deviations for close pairs. 0:2 is a relative deviation threshold. The term

threshold is used because if an aligned pair has an overall negative contribution to the

S-score, it will be pro�table to remove it from the optimal alignment. Therefore, some

of the terms within the optimal alignment can be negative, i.e. their relative deviation is

larger than 0:2, only if they are compensated by the other positive terms of the aligned

residue. The exponential factor down-weights the contribution of distant pairs. This

factor is needed to reduce the contribution of distant pairs which are abundant but less

discriminative between folds. The scale of 20�A is a typical domain size.

Notice that the similarity score is an overall sum of a pointwise symmetric calculation

done between two L-by-L distance maps created by extracting the rows and columns of the
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aligned residues form the distance maps of each of the chains. This operation resembles a

dot product between the two matrices. In section 4.4, this resemblance is used to de�ne

a new normalization of the S-score.

The S-score of the optimal alignment has several important properties. First, it is

always positive because, otherwise, the best alignment would be the empty alignment

for which the S-score is 0. The optimal alignment between a chain to itself is, most

probably, an alignment between all residues to themselves because all the terms in the

sum contribute a large positive number. The S-score of this self-alignment is

SAA = 0:2
nAX
i

nAX
j

e�(d
A
ij=20�A)

2

:

This score is bound by a linear function of the length of the chain because there is a

maximal physically possible value for the inner sum, K, which is obtained for an in�nite

maximally compact chain. Therefore,
PnA

j e�(d
A
ij=20�A)

2

< K for all i, and SAA < KnA.

From the above treatment, it is clear that the S-score value depends on the length of

the compared chains and thus can not be used directly to compare the pairwise similarity

of chain A and B to the pairwise similarity of chain C and D. In order to overcome this,

a normalization or calibration step is needed and is discussed later.

The S-score has another disadvantage. It is possible, though not very likely, that the

S-score between chain A and B will be higher than the S-score between A and itself. This

property contradicts the notion of S being a similarity score. For any similarity score, one

would expect that SAA > SAB. This situation can arise because of the multiplication of the

distortion factor by the down-weighting factor. For example, consider two structures, A

and B, where B is a similar but slightly shrinked version of A. In both alignments, AA and

AB, the best score is obtained by aligning each residue to itself or to its shrinked coun-

terpart. The S-score of the AA alignment is not penalized for distortion but uses larger

distances in the exponent. On the other hand, the AB alignment score is penalized for the

distortion but uses smaller distances in the exponents. In cases where the contribution of

the exponents is greater than the distortion penalty, one gets that SAB > SAA.
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As discussed above, the S-score value depends on the number of aligned residues which

depend on the length of the chains being compared. In order to put all scores on a common

scale and to assign them a statistical meaning they were calibrated against pairwise all-

on-all comparisons in the database, as a function of chain size. The calibrated score

is expressed in terms of normalized Z-scores, that is the number of standard deviations

above the mean.

ZAB =
SAB � SAB

�AB

Note that the exact population on which the average and standard deviation are

calculated is not clear from the articles and not from a discussion with Liisa Holm [33].

The Z-score, as the S-score, is a similarity measure, namely, a large Z-score between two

structures means that they are very similar.

The Z-scores between all the representatives are used to create a dendrogram by

applying an average linkage clustering algorithm (the algorithm is explained in details in

4.5.5). In the FSSP the dendrogram is called the \fold tree". Basically, the clustering

algorithm is a bottom-up iterative algorithm. It starts with all representatives in di�erent

clusters and in each iteration it joins the two clusters with highest average Z-score between

their components. The algorithm stops when all the chains are grouped into one cluster.

The dendrogram is a tree that represents the clusters uni�cations made during the al-

gorithm. Cutting the dendrogram at di�erent values of average Z-score creates a hierarchy

of sets that have structural resemblance with di�erent statistical signi�cance.

In the FSSP database the dendrogram is cut in at six di�erent levels Z = 2; 3; 4; 5; 10; 15.

Cutting the 1188 representatives fold tree at Z = 2, in the December 1997 version of FSSP,

yielded 364 fold classes. In the fold tree, each of the representatives is assigned six indices

representing the sub-family number for each cut. In addition, each representative has an

associated �le which includes the alignments to all other representatives for which Z � 2

and the exact value of Z. Therefore, taking the Z-scores from all the �les reproduces all

pairwise comparison scores with Z � 2.
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The DALI algorithm is a heuristic optimization algorithm that �nds the alignment

with maximal S-score [14]. The algorithm allows gaps with any length and also supports

reversal of chain direction, but the last option is not used in the creation of the FSSP

database. The algorithm consists of three stages: In the �rst stage, the distance matrices

of the two chains are divided into overlapping sub-matrices of hexapeptide-hexapeptide

contact patterns and pairs of similar contact patterns are found. Each contact pattern

pair represents a subalignment of two fragments on each chain. The next stage is a Monte

Carlo Metropolis algorithm that connects subalingments together. The search is done in

parallel for several trajectories. In the last stage, the best alignments that were found are

locally re�ned.



Appendix B

The CATH Database

B.1 General description

This section describes the CATH database. The database is maintained by Orengo et al.

and is publicly available at the CATH web site [8] (see Appendix C for list of web sites).

This section is based on articles [26][32]. The CATH database classi�es domain structures

into a hierarchy of families and sub-families. The four main levels of classi�cation of

a protein are: class (C), architecture (A), topology (T), and homologous superfamily

(H). The top level, class, describes the secondary structure composition of the domain,

e.g. mainly-�. The next level, the architecture level, describes the shape revealed by

the orientation of the secondary structure units, e.g. barrel. The topology level uses

sequential connectivity to distinguish members with similar shape but di�erent order of

secondary structure units. The homologous superfamily level groups domains which have

high structural similarity and similar biological function. These domains are considered

to be evolutionarily related. The homologous superfamily level is further divided into

levels determined by sequence similarity alone.

B.2 Creating the database

The database is created using a semi-automatic procedure. Low level sequence and struc-

ture similarities are calculated automatically. The top class level and the domain separa-

tion are performed automatically, leaving the architecture level for manual inspection.
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The database is, generally, created in a bottom-up manner, besides the top level which

is performed at an earlier stage in order to save computation. Following is a list of the

creation steps:

1. Selection of structures for CATH - CATH contains only well-resolved crystal struc-

tures (below 3.0�A resolution) and NMR structures from the PDB.

2. Sequence comparison - Pairwise sequence comparison between all selected sequences

is performed using a standard Needleman and Wunsch algorithm [23]. Each pair is

characterized by two ratios; sequence identity and sequence overlap. The sequence

identity is the number of identical residues as a percent of the smaller protein,

and sequence overlap is the percent of the larger protein which is equivalent to the

smaller.

Proteins are grouped, using a single linkage clustering algorithm (see 4.5.5), to form

hierarchical sequence based families;

I family Identical proteins (100% sequence similarity and 100% overlap).

N family Near-identical proteins (more than 95% sequence similarity, and at least 85%

overlap).

S family Groups proteins having 35% or more sequence identity and above 60% of the

larger protein is equivalent to the smaller one.

The 35% sequence identity ensures that all proteins within an S group have similar

structure. Higher level similarities are revealed by structure comparison.

3. Assignment of domain boundaries for multidomain proteins - Up to this stage, pro-

teins may be either single or multi-domained. At this point, multi-domain protein

are divided into domains. One representative from each N group is analyzed to

identify domains using three automatic methods. Domains are generally identi�ed
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as compact sub-strucurtures within a protein. Further details on domain identi�-

cation are beyond the scope of this work and can be found in references 22-24 of

[26]. If the identi�ed domains are highly overlapping, they are used to chop the

structure. Otherwise, the boundaries are manually assigned using visual inspection

and by comparing to other databases, such as SCOP [22] and 3DEE [30].

Next, the domain boundaries are inherited by the other members of the N-family

using the sequence alignment between them. A validation procedure alerts whenever

a multi-domained protein is not properly covered by the domains de�ned on it.

Finally, the classi�cation into sequence similarity families (I,N,S families) is repeated

(step 2) using the sequences of single domains.

4. Automatic assignment of class (C) - The class level is the highest level of the CATH

classi�cation and represents the secondary structures content of the domain (� he-

lices and � sheets). There are four di�erent classes: mainly-�, mainly-�, �-� , and

few secondary structures (FSS) which groups all domains with very low secondary

structure content. The class assignment is performed at this stage in order to save

structural comparisons in the next stage. Structural comparisons are computation-

ally intensive and are only calculated between structures within the same C-level

family. Therefore, all inter-class comparisons are saved.

The class is assigned using an automatic procedure that is applied to each S-level

representative. The procedure (reference 30 of [26]) examines the secondary struc-

ture composition and identi�es if the structure is mainly � or mainly � or �-� .

90% of the domain structures can be con�dently assigned to the correct class. The

remaining structures are treated manually.

5. Structure comparison (H and T) - Structural comparisons are performed between

N-level representatives within each class. The comparison is performed using a

structural alignment algorithm (SSAP) [32]. The SSAP algorithm uses dynamic
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programming techniques, as done for sequence alignment, but instead of using an

amino-acid substitution score it uses a score which measures resemblance of the

structural environment of the residue. The algorithm is not discussed in this work.

First, a fast version of the SSAP algorithm [24] �nds pairs scoring above 75 (on a

scale from 0 to 100). Next, a more sensitive version of the algorithm [32] re-aligns

pairs with low initial score.

The SSAP scores and an overlap threshold are used by a single linkage algorithm

(as in step 2) to cluster the domains into structural families. Two cuto�s on the

SSAP score are applied, above 80 SSAP score and more than 60% overlap de�ne the

H-level and above 70 SSAP score with more than 60% overlap de�ne the T-level. In

addition to these criteria, proteins are assigned to a speci�c homologous superfamily

(H-level) if their biological function is similar to the other members of the family.

The function is determined using other databases, e.g. SWISSPROT [2], or the

literature. When in doubt, the protein is assigned a separate H-level family.

6. Assigning architecture - The last stage in the classi�cation process is assigning the

architecture (A-level family). As described above, the architecture represents the

shape created by the arrangement of the secondary structures in the domain, e.g.

barrel, sandwich, roll. This classi�cation is done manually using the commonly used

classi�cation of Richardson [28] and other well-known shapes from the literature.

In case there is no speci�c shape, as in the mainly-� class, the architectures are

divided into bundle and non-bundle. Complex arrangements, which can not be

easily described, are placed in a general complex architecture.

7. Assigning CATH numbers - Each domain in the CATH database is assigned a set of

numbers representing its family association at each level. For example, the single-

domained protein Amylase (PDB entry - 1smd) is assigned the numbers 3.20.20.70

which represent that it is an �-� class (3), Barrel architecture (20), TIM Barrel
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topology (20), and a member of the Narbonin (70) homologous superfamily. The

numbers associated with the families (besides the class level) are multiplications of

10 to allow future insertions.



Appendix C

Used web sites

Following is a lists of all the web sites used during the work:

� FSSP database - http://www2.ebi.ac.uk/dali/fssp/

� CATH database - http://www.biochem.ucl.ac.uk/bsm/cath/

� 3Dee database - http://circinus.ebi.ac.uk:8080/3Dee/

� PDB - http://pdb.pdb.bnl.gov/
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