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Abstract

Informatic methodologies are being applied successfully to analyze the complexity of the genome. But beyond the genome, the
immune system reflects the state of the body in health and disease. Traditionally, immunologists have reduced the immune system,
where possible, to one-to-one relationships between particular antigens and particular antibodies or T-cell clones. Autoimmune
diseases, caused by an immune attack against a body component, are usually investigated by following the response to single
self-antigens. In this study, we apply informatics to analyze patterns of autoantibodies rather than single species of autoantibodies.
This study was designed not to replace traditional approaches to immune diagnosis, but to test whether meaningful patterns of
autoantibodies might exist. Using an unbiased solid-phase ELISA antibody test, we detected serum IgG and IgM antibodies in the
sera of 20 healthy persons and 20 persons with type 1 diabetes mellitus binding to an array of 87 different antigens, mostly
self-antigens. The healthy subjects manifested autoantibodies to a variety of self-antigens, many known to be associated with
autoimmune diseases. We investigated the patterns of these autoantibodies using a coupled two-way clustering algorithm developed
for analyzing data from gene arrays. We now report that the reactivity patterns of autoantibodies to particular subsets of
self-antigens exhibited non-trivial structure, which significantly discriminated between healthy persons and persons with type 1
diabetes. The results show that despite the wide prevalence of autoantibodies, the patterns of reactivity to defined subsets of
self-antigens can provide information about the state of the body.
� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The great advances in information about the mol-
ecules and cells comprising the immune system have
frustrated immunologists; the immune system is patently
more complex than originally thought. Autoimmunity is
a notable example of the problem. Traditionally, inves-
tigators and clinicians have focused on selected auto-
antibodies to study or diagnose specific autoimmune
diseases [1–4]. They sought to establish a one-to-one
relationship between a particular autoantibody and a
particular disease. In practice, however, the presence of

autoantibodies in healthy persons [5] complicates the
serological diagnosis of autoimmune disease and con-
founds our understanding as to how the immune system
actually discriminates the self from the non-self [6].
Immunology is in need of informatics.

For their part, complexity science people have not
given much thought to the immune system, and have
focused mostly on genomics or the nervous system. The
immune system, however, is a suitable subject for infor-
matics: like the central nervous system, the immune
system is self-organizing [6–8]; unlike the central nervous
system, the immune system is functionally accessible as a
system at the cellular level both in vivo and in vitro [9].

The present study applies informatics to autoimmu-
nity: we characterize a set of molecules recognized by
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autoantibodies in healthy persons and test whether the
global patterns of autoantibodies might discriminate
between a state of health and an autoimmune disease,
such as type 1 diabetes mellitus. This concept has been
already tested in the past for other human autoimmune
conditions using complex mixtures of undefined self-
antigens [10–13]. However, our aim was to use an
ELISA system able to detect even small amounts of
low-affinity autoantibodies binding to an array of 87
different antigens of known identity without precon-
ceived bias. We did not use reactivity thresholds, as is
usually done to define a ‘negligible background’, and we
did not restrict the detection to the specific high-affinity
antibodies usually associated with autoimmune disease.
For the purpose of this analysis, we define autoanti-
bodies as antibodies that bind to self-molecules in the
ELISA conditions used in this study. We imply nothing
about function. To analyze the patterns of the auto-
antibodies, we applied a clustering algorithm and tested
the statistical significance of the results. Particular sets
of self-antigens, most of which are not known to be
associated with type 1 diabetes, were found to discrimi-
nate between the patterns of autoantibodies of the
healthy subjects and those of the type 1 diabetes
patients. These results demonstrate that even the low-
affinity autoantibody repertoire is structured and can
yield information about the state of the body [14] when
analyzed with suitable informatic tools.

2. Materials and methods

2.1. Antigens

The 87 antigens used in these studies are enumerated
in Table 1. These antigens include proteins, peptides,
nucleotides and phospholipids reported to interact with
antibodies. The antigens are classified according to their
cellular localization, tissue distribution or function.

2.2. Antibodies

The second antibodies used in the ELISA assay were
F(ab#)2 goat anti-human IgG+IgM linked to alkaline
phosphatase and goat anti-human IgM linked to horse-
radish peroxidase. These antibodies were purchased
from Jackson ImmunoResearch Laboratories Inc. (West
Grove, PA, USA), and were used at a final dilution of
1:1500 in bovine serum albumin 0.3%.

2.3. Test samples

Serum samples were collected at the Hadassah
Medical Center (Jerusalem, Israel), under the super-
vision of Dr Rivka Abulafia-Lapid and Professor Itamar
Raz, from 20 healthy young-adult blood donors, with no

family history of diabetes, and from 20 unselected type 1
diabetes patients. Most of the type 1 diabetes patients,
too, were young adults, 21–34 years old (95% confidence
interval; median, 23 years). The diagnosis was made on
the basis of accepted clinical criteria: hyperglycemia,
ketonuria, low body weight, the absence of a family
history of type 2 diabetes and a standard (anti-glutamic
acid decarboxylase (GAD)) antibody assay [3]. The
HLA genotypes were not tested. The sera were collected
within 4–7 weeks of diagnosis (95% confidence interval;
median, 6 weeks). Informed consent was obtained. The
samples were stored at �20 (C without any additive.
The T-cell proliferative responses of these type 1 dia-
betes patients and healthy blood donors had been
studied previously. No significant difference was found
between the groups in their T-cell responses to the
foreign antigen tetanus toxoid, although the diabetic
subjects manifested heightened responses to the 60 kDa
heat shock protein (HSP) self-antigen [15].

2.4. Solid-phase antibody assay

A standard ELISA assay was used. Antigens
(10 µg/ml in phosphate-buffered saline (PBS)) were
coated in 96-well ELISA plates (Maxisorp; Nunc,
Roskilde, Denmark) by overnight incubation at 4 (C.
The plates were washed with PBS 0.05% Tween, and
blocked for 2 h with bovine serum albumin 3% (Sigma,
Rehovot, Israel). The serum samples were diluted 1:100
in bovine serum albumin 0.3%, and 50 µl was added to
each well. After 3 h of incubation at 37 (C, the sera were
removed and the plates were washed with PBS 0.05%
Tween. Bound antibodies were detected with an appro-
priate alkaline phosphatase or horseradish peroxidase-
conjugated second antibody (Jackson ImmunoResearch
Laboratories Inc.), 50 µl incubated for 1.5 h at 37 (C.
The plates were washed with PBS, and p-nitrophenol
phosphate or 2,2#-azino-bis (3-ethylbenzthiazoline-6
sulfonic acid; both from Sigma) were added, and the
optical density (OD) in each well was read at 405 nm
using a spectrophotometer.

We optimized the conditions of the assay: a direct
correlation between the OD readings and dilutions of
the sera were found between 1:50 and 1:200 dilutions.
Accordingly, we chose 1:100 as the standard dilution of
the test sera. The relationship between the OD and the
incubation time was linear during 45 min of incubation
(mean r2�standard deviation (SD)=0.98�0.02).
Therefore, we recorded the OD readings 30 min after the
addition of the substrate. The assay was reproducible:
the mean intra-assay coefficient of variation was 4.3%,
and the mean inter-assay coefficient of variation was
9.5%. Correlation analysis of intra- and inter-assay
variations yielded r2 coefficient values 0.98 and 0.96,
respectively, with P value <0.0001 for both.
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2.5. Cluster analysis

The OD readings corresponding to the antibody
reactivities of a group of N serum samples against a
panel of M�176 different reactivities (87 antigens and
one blank with two secondary antibodies) were placed in
a matrix A, whose element Ajs represents the extent to
which the serum of subject s reacted with test antigen j
(the secondary antibody was absorbed in the index j).
The ‘immune state’ of subject s is represented by a
vector A(s) (of M components). Similarly, antigen j is
represented by the (N component) vector A(j).

The following normalization was used and done only
once, for k�1,�,88 (IgM) and k�89,�,176 (IgM+IgG):

Bjs�log Ajs�
2

M �k log Aks (1)

For j�1,2,�,88, the sum over k is from 1 to 88, and
for j�89,90,�,176, the sum is from 89 to 176. For every
subject s, this operation produces a mean-centered set of
values; if all readings Ajs are multiplied by a constant, it
does not affect the B variables. We take the log, since
the noise on the readings is multiplicative, and we
mean center the variables to eliminate dependence on
concentration fluctuations from subject to subject.

Next, we renormalized the data by subtracting from
each element the average value of the elements in the
same matrix row (corresponding to a particular antigen)
and dividing by the SD of the row. The elements of the
resulting renormalized submatrix are denoted by
Gjs—for each antigen, the mean of Gjs vanishes and the
sum of squares is 1. We analyzed the data using the
method of Getz et al. [16] for analysis of gene expres-
sion. Thus, we identify subsets of K serum samples and
cluster them on the basis of their reactivities to a selected
subset of antigens. In this way, the analysis uses various
submatrices of the total data matrix G, described in
detail in Ref. [16]. Briefly, we first cluster all antigens
(using data from all sera) and identify stable antigen
clusters. Next, we cluster the sera using, one at a time,
the groups of antigens that emerged as stable clusters in
the first step.

To assign related antigens to the same cluster, we
singled out ‘close’ pairs of highly correlated antigens, as
well as pairs that were highly anti-correlated. This
‘closeness’ is measured by the ‘distance’ dj,l between
antigens j and l, given by

(dj,l)
2�1�cj,l

2 (2)

where cj,l is the correlation coefficient of antigens j and l,
as measured over the N samples, given by

cj,l��
s�1

N

GjsGls (3)

In contrast, the distance Dsp between subjects s and p is
the Euclidian distance

Dsp
2 ��j(Gjs�Gjp)

2 (4)

These distance measures reflect similarity between
pairs of subjects and pairs of antigens. Since the cluster-
ing method in this study relies heavily on proximity of
pairs of points rather than wide separations, the results
are only slightly sensitive to the precise measure used in
Eq. (4).

We used an unsupervised clustering technique, the
SPC clustering algorithm [17], which organizes the data
in the form of a dendrogram, such as that shown in Fig.
1A, B. As a control parameter T increases to a value
T1(C), a cluster C may be ‘born’ (when its ‘parent’
cluster breaks up into two or more subclusters, one of
which is C). As T increases further, to T2(C)>T1(C), C

Fig. 1. Dendrograms of antigens obtained by clustering. (A) Dendro-
gram obtained from the original data matrix, using sera from healthy
and type 1 diabetes subjects; the antigen clusters that are reported in
Table 3 are circled and numbered. (B) Dendrogram of the antigens
obtained by clustering a randomized matrix.
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itself breaks up and ‘dies’. A main advantage of SPC is
that it provides a quantitative stability index, R(C)�
T2(C)/T1(C) for any cluster C. The larger the value of
R(C), the more statistically significant and stable
(against noise in the data and fluctuations) is C. We used
SPC within a coupled two-way clustering approach [16]
to identify subsets of serum samples and of antigens,
allowing meaningful partitions of the samples to emerge.
The clinical labels were then used to evaluate the results
(not to produce them). If a cluster of serum samples
contained predominantly subjects with the same diagno-
sis, the cluster’s predictive capacity was estimated. The
effectiveness of the resulting classification was measured
in terms of the number of classification errors, Ne that
were made by assigning the subjects of the cluster to one
diagnosis and the rest of the subjects to the other
diagnosis, healthy or type 1 diabetes. We evaluated
specificity and sensitivity: specificity is the fraction of
correctly diagnosed subjects present in a cluster (=1 for
no false positives); sensitivity is the fraction of correctly
diagnosed subjects that were included in the cluster,
of the total number of subjects with the same diagnosis
(=1 for no false negatives).

2.6. Combining classifiers

The sensitivity and specificity of ‘final’ classifier in
this study were improved by combining several different
sets of antigens. We classified a test sample as type 1
diabetes, for example, if it was so discriminated by a
majority of the classifiers. Then we identified the
samples, and evaluated the specificity and sensitivity of
the combined classifiers.

2.7. Assessing statistical significance

Statistical analysis was carried out to test four ques-
tions: first, whether the pattern of antibody reactivity
exhibited a non-trivial structure; second, how sensitive
were the subject clusters to variations in the data—such
as leaving out one subject; third, whether the clinical
state of the subjects was reflected by their reactivity
patterns; and fourth, how robust was the method,
whether it is able to predict the clinical status of subjects
with unknown clinical labels.

For the first question, we used the original data
matrix and randomized all its entries, placing each in a
random location. The randomized matrix was normal-
ized and clustered; for every cluster C, the size (number
of elements) n(C) and its stability index R(C) were
recorded. For each n, we identified R*(n), the maximal
value of R. This was repeated for 1000 random matrices
and; for each size n, a histogram Pn(R*(n)) was pre-
pared, and the SD �n and maximal value R*max(n) were
determined. The maximal values of R, which were found
for the stable clusters of size n obtained from the real

data, were compared with the extremal values found for
the randomized matrices.

For the second question, we repeated the clustering of
the subjects 40 times, leaving out one subject in each
trial, and checked the effect on the resulting clusters.

For the third question, the P-values of the diagnostic
labels were estimated by calculating the probability, P,
that a previously selected ‘discriminating’ cluster of C
subjects would produce e errors for randomly assigned
clinical labels, with e#Ne, where Ne is the number of
‘errors’ for the real labels (of S diagnosed subjects). A
high value of P indicates that the discrimination
produced by this cluster is not related to the diagnosis
in a statistically significant way. This probability P(e#

N�C,S,N) was determined by the Fisher’s exact two-
sided test [18].

For the fourth question, we simulated a situation in
which the clinical labels of 30 subjects (15 diseased, 15
healthy) were known and the diagnosis of the remaining
10 subjects was hidden. All 40 subjects were clustered as
described previously, using, one at a time, the reactivities
of each one of the six antigen clusters shown in Table 3.
In the resulting dendrogram of subjects (obtained for
each one of the six antigen clusters), we identified the
stable clusters of subjects. These clusters were candidates
to serve as classifiers; among them, we selected the one
with the lowest number of errors based on the 30
‘known’ labels. This subject cluster was then chosen as a
classifier. Next, the 10 ‘unknown’ samples were diag-
nosed on the basis of their affiliation with the classifier
cluster. This process was repeated for each one of the six
antigen clusters enumerated in Table 3, using 100 ran-
dom choices of 10 subjects with hidden labels. In this
way, we could determine the ability of classifiers, that
were constructed using 30 labeled subjects, to correctly
identify 10 ‘unknowns’.

2.8. Principal component analysis

For comparison, the data were also analyzed by
standard principal component analysis (PCA) [19].

3. Results

3.1. Serum autoantibodies in healthy blood donors

We tested the repertoire of autoantibodies in the sera
of 20 healthy individuals using an array of 87 different
antigens (listed in Table 1) and detection antibodies
directed to IgM or IgG+IgM. Table 2 summarizes the
self-antigens most frequently recognized by the auto-
antibodies of the 20 healthy blood donors. For compari-
son, Table 2 also contains the bacterial antigens
lipopolysaccharide (LPS) and purified protein derivative
(PPD) of Mycobacterium tuberculosis. Thus, healthy
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persons may express a wide range of autoantibodies
detectable by ELISA. To learn whether the patterns of
such autoantibodies might be informative, we applied
our clustering analysis to the healthy subjects and to
a population of persons with the autoimmune disease
type 1 diabetes mellitus.

3.2. Structure in the repertoire: self-antigen clusters

First, we clustered the antigens and then used the
various antigen clusters as probes to cluster the subjects.
To cluster the 87 antigens, we used the serum OD
readings for all subjects (healthy or not). The serum
reactivity data (for 2 isotypes�87 antigens) exhibited a
non-trivial structure, as is evident from comparing the
dendrogram of Fig. 1A (obtained by clustering the
original antigen matrix) with that of Fig. 1B (obtained
by clustering a randomized matrix). The dendrograms
obtained from the randomized matrices exhibited a
sudden ‘melt down’ from a single cluster that contained
all the points to small clusters with very low stability.
The dendrogram of the actual data, in contrast, con-
tained a cluster of five antigens, with stability index
R�1.33. We tested 1000 different realizations of ran-
domized matrices, and determined for each cluster size n
the corresponding extremal value R*max(n) and SD �n.
The real data yielded stable clusters of size n, whose
stability indices R exceeded the corresponding random
extremal value R*max(n) by at least 3�n (data not
shown). Thus, the P-value for the presence of non-trivial
structure in the antigen clusters was less than 0.001.
Hence, groups of self-antigens do cluster together as
collectives [7]; sera that react with one member of an
antigen cluster will tend to react with other members of
the antigen cluster.

3.3. Clusters as classifiers of type 1 diabetes

The identified subsets of antigens were then used to
probe the sera of 20 healthy donors and 20 diabetes
patients. Fig. 2 shows the dendrogram obtained using
the IgM reactivities to insulin and to collagen I and the
IgG+IgM reactivities to collagen I. This set of antigens
generated a sensitivity of 85% and a specificity of 81%
for diabetes. Other sets of antigens generated different
dendrograms. Table 3 summarizes the findings and
includes the P-values calculated for each cluster size C
and error number Ne, using Fisher’s exact two-tailed
test. This result shows the advantages of our methodol-
ogy versus linear discrimination. If one distributes ran-
domly two labeled groups, of 20 points in each, in 176
dimensional space, a separating linear manifold will be
found with probability very close to 1 [20,21]. However,
as we have shown, our cluster analysis definitely does
not separate two randomly placed groups of points.
Finally, we repeated the clustering process 40 times

using the reactivities of antigen cluster 1 of Table 3, each
time leaving out another subject. The resulting clusters
were stable despite the omissions; 17 subjects appeared
in all 40 trials in the cluster of the diabetes patients; 16
were indeed diseased and one was healthy.

The combined results produced an overall sensitivity
of 95% and a specificity of 90%. Among the self-antigens
that discriminated between type 1 diabetes and healthy
sera were cardiolipin, collagen I, collagen X, cytochrome
c P450, cartilage extract (a commercial preparation rich
in collagen I), aldolase, acetylcholine receptor (AchR),
heparin and insulin. Among this list of molecules, only
insulin has been noted previously to be a self-antigen in
type 1 diabetes [22]. Neither GAD nor the 60 kDa HSP
appeared among the discriminatory antigen clusters,
although both self-antigens have been implicated in type
1 diabetes in other assays [3,15].

Using the antigen clusters shown in Table 3, we chose
classifier subject clusters (using 30 known labels) and
tested the 10 ‘unknown’ subjects, obtaining the follow-
ing results: for antigen cluster 1, all 100 trials selected the
same ‘original’ subject cluster as in Table 3. For antigen
cluster 2, the original subject cluster was selected in 78
trials, but two other clusters were also picked up, both
11 times. For antigen cluster 3, we found the original
cluster 73 times, but two other clusters were also picked
up, 22 and five times. For antigen cluster 4, the scores
were 95 and 5. For antigen clusters number 5 and 6, the
score was 100 selections of the respective original subject
clusters.

In each one of the 100 simulations, we diagnosed the
10 ‘unknown’ samples on the basis of their affiliation
with the selected classifier clusters, and for each simula-
tion, used the majority rule described previously to
combine the results obtained for the six antigen clusters.
We found the following error distribution: 29 occur-
rences with 0 errors (for 10 predictions), 45 with 1 error,
21 with 2 errors and 5 with 3 errors. The average number
of errors for the 10 ‘unknown’ subjects was 1.02; this is
only slightly worse than the 3 errors obtained for the 40
subjects, using all their labels.

The PCA [19] has been regularly used to study
patterns of autoantibodies to undefined antigens in
tissue blots [23,24]. Applying PCA to our data, we
identified the eigendirections associated with the leading
eigenvalues; each eigendirection had significant projec-
tions onto more than 10 antigens. Next, we projected the
data onto the plane spanned by the two leading direc-
tions. The best linear separator, found using non-
normalized data, generated a comparable number of
errors to that of antigen cluster 1 in Table 3 (data not
shown). The PCA finds about 20 antigens that have
sizeable contributions to the two leading principal direc-
tions. The present clustering method, in contrast, yields
separation in several two- or three-dimensional spaces
that are related to a few antigens.
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Table 1
Antigens used (the catalogue number is given for those molecules purchased from Sigma)

Group Function/structure Number Antigen Sequence (when applicable) Catalogue

Cellular structure Cytoskeleton 1 Actin A3653
2 Tubulin T4925
3 Myosin M6643
4 Tropomyosin T4770
5 Vimentin V4383

Extracellular matrix 6 Fibronectin F0895
7 Collagen I C7774
8 Collagen II C7806
9 Collagen III C4407

10 Collagen IV C7521
11 Collagen V C3657
12 Heparin H2149
13 Laminin L6274
14 Collagenase C9891

Cellular membranes Phospholipids 15 Cardiolipin C5646
16 Glucocerebroside G9884
17 Phosphatidylethanolamine P9137
18 Cholesterol C1145

Cellular metabolism Glucose 19 Enolase E0379
20 Aldolase A8811
21 Acid phosphatase P1774

Apoptosis 22 Annexin 33 kDa A9460
23 Annexin 67 kDa A2824
24 Cytochrome c P450 C3131

Monooxigenases 25 Catalase C9322
26 Peroxidase P6782
27 Tyrosinase T7755

Others 28 Ribonuclease R4875
Nucleus Protein 29 Histone II A H9250

DNA 30 Double-stranded DNA D1501
31 Single-stranded DNA D1501

Plasma proteins Carriers 32 Transferrin T4132
33 Fetuin F2379
34 Human serum albumin A8763
35 Bovine serum albumin A9647
36 Ovoalbumin A5378

Coagulation 37 Factor II F5132
38 Factor VII F6509
39 Fibrin F5386
40 Fibrinogen F4883

Complement 41 C 1 C2660
42 C 1 q C0660

Immune System Cytokines 43 Interleukin 2 I2644
44 Interleukin 10 I9276
45 Interleukin 4 I4269

Immunoglobulins 46 IgG I8640
47 IgM I8260
48 1E10 Faba

TCR peptides 49 N4 ASSLWTNQDTQY NA
50 C9 ASSLGGNQDTQY NA

Tissue antigens Heat shock protein 51 HSP60b

52 p277 VLGGGVALLRVIPALDSLTPANED NA
Islet antigens 53 GAD G2126

54 Insulin I0259
CNS 55 Human MOGc

56 Murine MOGc

57 Human MOG p94–116c GGFTCFFRDHSYQEEAAMELKVE
58 Rat MOG p35–55c MEVGWYRSPFSRVVHLYRNGK
59 MBPd

60 Brain extract B1877
Muscle and skeleton 61 AchRe

62 Myoglobulin M6036
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4. Discussion

The results reported in this article relate to general
issues in both biology and informatics. In general, this
study confirms that unselected patterns of reactivity can
be informative [11,12,23–32] not only in the nervous
system, but also in immunology, where the emphasis has
been traditionally on specific, high-affinity antibody
molecules and single clones of cells. Complex systems
use arrays of signals to generate information, and biolo-
gists too have to exploit arrays of information. The
highly non-trivial task of mining a fairly large array of
antigen reactivities for different subjects was accom-
plished by an unsupervised clustering methodology that
identifies (relatively small) correlated groups of antigens,
whose reactivities may be used to separate the subjects
according to known clinical labels (which are used only
a posteriori). This method starts from an unsupervised
‘holistic’ approach that looks at a large number of
antigens, and proceeds on a reductionist path, identify-
ing small subsets of antigens that may be relevant to
some particular differentiation.

Immunologically, we found that the autoantibodies
of the healthy subjects detectible by ELISA bound to
many self-antigens implicated in autoimmune diseases
(Table 2): histone II A, and single- and double-stranded
DNA—targeted in systemic lupus erythematosus [2];
HSP60, insulin and GAD—associated with type 1
diabetes mellitus [22]; myelin basic protein (MBP)
and myelin oligodendrocyte glycoprotein (MOG)—
associated with multiple sclerosis [33]; the AchR—
targeted in myasthenia gravis [1]; tyrosinase—associated
with vitiligo [34]; myosin—associated with polymyositis
[35]; and cytochrome c P450—associated with auto-
immune liver disease [36]. Other frequent self-antigens
included the serum proteins fibrinogen and clotting
factor VII, heparin, enzymes and globin molecules. The
present study did not deal with the precise specificity and
affinity of the individual antibodies, as is usually done to
investigate autoimmunity.

The documentation of autoantibodies binding to self-
antigens in healthy people is compatible with the con-
cept of the immunological homunculus [7,37]. The term
immunological homunculus refers to the observation

Table 1 (continued)

Group Function/structure Number Antigen Sequence (when applicable) Catalogue

Tissue antigens Joints 63 Cartilage extract C5210
Thyroid 64 Thyroglobulin T1001
Blood cells and platelets 65 Hemoglobin A H0267

66 Spectrin S3644
Foreign antigens Proteins and peptides 67 TB PPDf

68 HSP65g

69 ecp27 KKARVEDALHATRAAVEEGV NA
70 mtp278 EGDEATGANIVKVALEA NA
71 GSTb

72 KLHh

73 Pepstatin P5318
74 R13 EEEDDDMGFGLFD NA

Others 75 LPS L3755
Synthetic polymers Poly amino acids 76 Poly arginine P3892

77 Poly lysine P4408
78 Poly aspartic P6762
79 Poly glutamate P4636

Oligonucloetides 80 PolyA A20 NA

81 PolyT T20 NA
82 PolyC C20 NA
83 PolyG G20 NA
84 PolyATA AT18A NA
85 PolyTAT TA18T NA
86 CpG TCCATGACGTTCCTGACGTT NA
87 GpC TCCAGGACTTCTCTCAGGTT NA

a Fab fraction generated from a monoclonal antibody directed to peptide p277.
b Recombinant protein expressed in bacteria and purified using standard procedures.
c Kindly provided by Professor Avraham Ben Nun (The Weizmann Institute of Science).
d Kindly provided by Dr Felix Mor (The Weizmann Institute of Science).
e Kindly provided by Professor Sara Fuchs (The Weizmann Institute of Science).
f Produced at the Statens Seruminstitut, Copenhagen, Denmark.
g Kindly provided by Professor R. van deer Zee (Utrecht University, The Netherlands).
h Purchased from Pierce (Oud Beijerland, The Netherlands), catalogue number 77153.
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that T- and B-cell autoimmunity in healthy individuals is
usually organized around particular sets of self-antigens
[38,39]. Homunculus theory proposes that this natural
autoimmunity is regulated by various mechanisms that
prevent the transition of healthy autoimmunity to auto-
immune disease [7,37,40–43]. Indeed, the development

of autoimmune disease could be explained most simply
by the failure of these control mechanisms [6,7]. The
high prevalence of certain autoimmune reactivities
shown in Table 2 might explain why the major auto-
immune diseases are associated with the abnormal acti-
vation of just these autoimmune reactivities; they are
already built into the healthy system [7,37]. The auto-
immune disease process would seem to expand the
quantity and select for high affinity of the particular
autoantibodies involved in the disease. The natural
autoimmune repertoire, which is quiescent in the healthy
state, might serve as the ground for this pernicious
autoimmunity. Clearly, we would like to know how
natural autoimmunity to particular sets of self-antigens
develops, what functions healthy autoimmunity might
serve in body maintenance [44,45], how natural auto-
immunity is controlled and how it deteriorates into
autoimmune disease in certain persons [41,46]. The
present study did not explore these biological questions,
but rather focused on the informatic questions: (a)
whether there are non-trivial structures and correlations
in the reactivity patterns of autoantibodies and (b)
whether the pattern of autoantibodies present in healthy
persons might be distinguished from the pattern of
autoantibodies present in an autoimmune disease,
taking type 1 diabetes mellitus as our example.

Clinically, diagnostic tests for type 1 diabetes are
constructed and standardized in a way that takes advan-
tage of the greater amounts and higher affinities of the
autoantibodies that are produced when an autoimmune
disease process becomes activated; in clinical testing, the
natural autoantibodies we detected, presented in Table
2, are buried in the background [47,48]. The association
of type 1 diabetes with antibodies to GAD, an accepted
assay, is observed, for example, only when the GAD
antibody assay is done according to a standard protocol
[3]. Our aim in this study, in contrast to standard
procedure, was not to analyze different types of patients
and the quantities or affinities of their particular auto-
antibodies, but to test for the presence of informative
patterns in the global array of autoantibodies. This
approach has been used in the past for the study of
several autoimmune conditions in humans [10–13].
However, these previous studies did not use large panels
of defined self-antigens and were not applied to human
type 1 diabetes mellitus.

Coutinho and colleagues pioneered the study of pat-
terns of autoantibodies binding to undefined antigens in
blots of tissue extracts [23,24]; they used PCA, alone or
in combination with hierarchical clustering [23], to study
their results. The present work extends the study of
patterns to defined self-antigens and is based on a novel
cluster analysis [16] that identifies small groups of anti-
gens whose reactivity patterns reflect a subject’s clinical
state. In this study, we show that healthy subjects and
type 1 diabetes subjects can be distinguished, despite the

Table 2
Frequencies of autoantibodies in healthy humans (to limit the
number of self-antigens shown, the only those antigens are included
to which at least 35% of the healthy subjects responded with an OD
of greater than 0.3 nm)

Antigen Incidence of autoantibodies (%)

IgM+IgG IgM

Tubulin 50 –
Myosin 40 –
Heparin 75 –
Acid phosphatase 35 –
Annexin 33 kDa 55 –
Cytochrome c P450 50 80
Catalase 65 –
Tyrosinase – 45
Histone II A 65 45
Double stranded DNA 75 75
Single stranded DNA 100 95
Factor VII 70 100
Fibrinogen 90 –
HSP60 40 –
GAD 100 70
Insulin 35 35
MOG – 95
MBP 35 –
AchR 90 75
Myoglobulin 65 35
Hemoglobin A 50 45
LPS 85 45
TB PPD 90 50

Fig. 2. Dendrogram of healthy subjects and type 1 diabetes subjects.
Clustering was done using IgM reactivities to insulin, and IgM and
IgM+IgG for collagen I. Healthy subjects are represented by white
squares, and type 1 diabetes patients are represented by black squares.
We used the cluster marked by the arrow to classify the subjects.
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presence of various autoantibodies in both groups, by
the patterns of their autoantibodies. Furthermore, the
patterns of reactivity appear to be disease-specific; type 1
diabetes subjects could be efficiently separated from
persons with type II diabetes or Behçet’s disease (manu-
script in preparation). In other words, patterns of auto-
antibody reactivity may provide information beyond
that seen in a simple one-to-one relationship between an
antibody and an antigen [7,11,12,23–32,49]. The present
work extends previous findings made in humans (re-
viewed in Refs. [39,50]) and introduces a novel two-step
approach of first clustering the antigens and then using
antigen clusters to cluster the subjects.

It is to be noted that we estimated the statistical
significance of the clusters by empirically testing the
frequency with which similar results could arise by
chance using scrambled data. One thousand such com-
puter experiments proved the significance of the antigen
clusters derived from the real data. Furthermore, the
statistical significance of the separation of diseased and
healthy subjects, based on our clusters, was calculated
analytically [18]. Finally, the clustering proved robust:
the clinical labels of 10 ‘unknown’ subjects could be
clustered on the basis of the remaining 30, with a success
rate of 90%.

We do not yet know the biological relevance of
the particular autoantibodies or of their patterns to the
pathophysiology of disease. It is to be noted that the
discrimination between the healthy blood donors and
the type 1 diabetes patients by clustering does not mean
that the informative antibody reactivities are directly
involved in the disease process. The differences in auto-
antibody patterns could have resulted from the disease
itself, or from genetic or environmental factors associ-
ated directly or indirectly with susceptibility to the
disease. Even factors such as age, gender and immuniz-

ation history were not controlled. Nevertheless, the
present findings fit the renewed appreciation of the
importance of collective patterns in living systems. Col-
lective interactions that form distinct reactivity patterns
bear meaning in signal transduction, gene activation,
neoplastic transformation, cell movement, organo-
genesis, brain function and almost any other subject
presently of interest to biologists [51–57]. Biology has
succeeded in reducing complex systems to component
cells and molecules, but the emergent properties of living
systems cannot easily be reduced to the one-to-one
relationships of single components; informatic analysis
of arrays of data is required. Like other complex sys-
tems, the immune system can be mined for information
by studying arrays of data. Indeed, the repertoire of
autoantibodies present in the individual is much closer
to the individual’s life experience than are the individ-
ual’s genes. The immune system, like the brain, is an
adaptive bio-informatic system in its own right [58].
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