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1. INTRODUCTION

Whereas equilibrium properties of infinite range [1] spin glasses are completely understood
within the framework of replica symmetry breaking (RSB) [2], spin glasses with short range
interactions are the subject of considerable current debate and controversy [3-5]. Open
questions address the nature of the low temperature phases [2,6] and their theoretical
description [3,6-9]. Resolution of these issues by experiments or simulations is hindered by
the extremely long relaxation time required for equilibration.

The most widely studied model of a short-range spin glass is the Edwards-Anderson
model of an Ising spin glass

H=> J;S:S;, (1.1)
(i)

where (ij) denotes nearest neighbor sites of a simple cubic lattice and the couplings, J;;, are
random variables taken from a given distribution. The most commonly studied distribution,
and the one we study here, is a Gaussian distribution with zero average and variance J = 1.

The high temperature phase of the model is disordered, paramagnetic. As the tem-
perature decreases below a critical temperature 7, the system (in 3 or more dimensions)
undergoes a transition into a frozen spin-glass phase. The main issue of controversy is the
number of pure states in this phase. For an infinite system, a pure (or thermodynamic)
state is defined as an ergodic subset of the phase space, i.e. a maximal subspace that the
system can span (or visit) in a finite time. For a finite system the definition is less clear,
but a pure state is usually referred to as a part of the phase space surrounded by free
energy barriers, whose height diverges as the system size L — oo.

There are two main approaches to this problem; the droplet picture and RSB. According
to the droplet picture of Fisher and Huse [6] locally, in a finite region of an infinite system,
there are only two pure states. Excitations are in the form of droplets - compact regions
with low surface tension that flip collectively. For a droplet of size L the typical (e.g.
median) free energy Fy scales as LY, where 6 is a dimension dependent exponent.

Within the droplet approach pure states must have a trivial overlap over any finite
region, i.e. have a vanishing density of domain walls. Otherwise, there is a non-vanishing
probability to have a domain wall in a finite region of the system, and thus to have more
then two pure states in that region.

A parameter commonly used to measure domain wall density is the link overlap and its
distribution. Denote a state of an N-spin system by S* = (S}, S, ..., S%). The link overlap



qllj,’}k between two states S# and S” is defined by

: 1
link __ v QU
G =N > _StSysysy, (1.2)
(ig)

where the sum is over pairs of neighbor sites and -y is the coordination number of the system.
If the domain wall density vanishes, then the distribution P(g""*) of the link overlap will
be trivial: P(g"™*) = §(g!"k — 1).

Another parameter commonly considered is the overlap g,, between states S* and S”;

N
1
G = Z SESY. (1.3)
=1

The distribution P(q) of this parameter reflects the number of pure states for the N-spin
system. If there are only two global pure states, the overlap distribution in the thermody-
namic limit will be trivial: P(q) = 0.5[6(¢ — gga) + 9(¢ + gra)], where gg4 is the average
overlap inside a pure state. Hence a trivial P(q) is consistent with the droplet picture; this,
however, does not mean that finding a non-trivial P(q) invalidates it! Huse and Fisher [10]
clearly state that a non-trivial P(q) is possible if there are domain walls with microscopic
free energy cost, as long as the domain walls density is zero for an infinite system, so that
the probability to find a domain wall at any finite region vanishes. This is the case, for
example, for an Ising ferromagnet with anti-periodic boundary conditions. That is, an infi-
nite system can have a trivial link overlap distribution and a non-trivial P(g). On the other
hand, if the link-overlap distribution P(q'®¥) is trivial, then the overlap distribution P(q),
when observed in a finite part of an infinite system, must also be trivial. The reason is that
a trivial P(¢g""") means vanishing density of domain walls, and hence the probability that
a finite part will have a domain wall going through it also vanishes.

The statements made above concern infinite systems, for which measurements are made
for either the entire system or on a finite part of it. Numerical work, however, is done on
finite systems. In recent numerical work strong evidence for non-trivial P(q) was found [7].
In the light of the statements made above, this does not disprove the droplet picture.
On the contrary - the scenario referred to as TNT [11], of Trivial P(q) and Non-Trivial
P(¢"""%), which was found to be most consistent with numerical data [11,12], does support
the droplet picture. This scenario was also supported by recent analytic arguments [13].

Marinari et al. [7] have used parallel tempering [14,15] to sample 3D Ising spin glasses
of sizes up to L = 16 and for temperatures down to 7" = 0.7 ~ 0.747T,. They have found
that P(g) is non-trivial, and P(0) does not vanish.

Krzakala and Martin [11] demonstrated the existence of macroscopic excitations with
low energy cost in 3D Ising spin glasses of sizes up to L = 11. For a specific realization of {J}
they first identified the ground-state of the system S°. Then they added a constraint, forcing
a randomly chosen pair of spins to change their relative orientation, i.e. S?S;’SiSj =—1.A
new ground state S' was found under this constraint. In this new state a contiguous region



Go1, which includes one of the spins 7 or j, was flipped (relative to S?). Having done this for
three different pairs of spins per realization and more then 2000 different realizations, they
found that in a finite fraction of the instances the size of the flipped domain was between
N/4 to N/2,i.e. qo1 = [1 —2|Go1|/N] did not approach 1. On the other hand, the excitation
energy H(S%) — H(S!) - the surface energy of Gy, - remained of order J. They also found
that the dimension of the surface of Gy, is smaller than the dimension of the system.

Katzgraber et al. [12] measured directly the distributions of ¢'"™* and ¢. They used
parallel tempering [14, 15] to simulate and equilibrate different realizations {J} of the
bonds, for 3D systems of linear size L < 8 at temperature 7" > 0.2, and 4D systems with
L < 5. Extrapolating their results they found that the variance of P(g""¥) vanishes as L —
0o, and the distribution converges to §(¢"* —1). This confirmed that the surface dimension
of the spin clusters Gy, found in [12] is indeed smaller than the system’s dimension. They
also found the the distribution P(g) to be non-trivial, as in [7].

Newman and Stein [13] have recently proposed a spin-glass model with temperature
dependent couplings J;;. At Ty < T, this model is identical to the EA model (1.1) with a
coupling distribution with a finite width J(7}). As T decreases the couplings are changed so
that J(T') increases and yet the energy per spin remains constant and the system stays at
the spin-glass phase. J(T) — oo as T'— 0, so at 7' = 0 this model is is identical to the highly
disordered model [16], whose set of ground states (in the infinite volume limit) is rigorously
shown to have trivial P(¢"""%) below eight dimensions. For any 0 < 7' < Tj the correspond
to an EA model below T,. As T" — 0 the Boltzmann weight of any state which is not a
ground state of the disordered model will decrease arbitrarily. Under the assumptions that
the (a) the properties of the EA model is independent of the specific coupling distribution;
and (b) the number of pure states in the spin-glass phase is monotonically increasing with
1/T; they deduce that the number of ground states of the disordered model is an upper
bound on the number of pure states of the EA model at any finite 7, so below eight
dimensions there will be (at a finite region of an infinite system) only two pure states.

According to the alternative picture, the RSB framework can be applied also to short
range systems [7]. Within the RSB solution, both P(g) and P(¢"""¥) are non-trivial. RSB
suggests a tree-like hierarchical structure for the pure states. At every level of the hierarchy
the states are divided into sets, so that the states in a given set are closer to each other
than to states in other sets. At the next level down the hierarchy these sets are divided
into subsets, and so on. Furthermore, according to the RSB solution the distances between
the pure states exhibit ultrametricity [2]: the overlap between any two states is determined
only by the lowest level in the hierarchy, at which they still belong to the same set. This
means that for any triplet of pure states u, v and p the following relation always holds:

Quv > MIN(Gpp, Gup) - (1.4)

Franz and Ricci-Tersenghi [9] found indirect evidence for a dynamic ultrametricity of 3D
spin glasses, which implies static ultrametricity [17]. They forced (using a soft constraint)
two replicas S* and S” (of the same system {J}) of an Ising spin glass of size L = 20



ALL STATES

-
C C
V_ki Fk_\

¢ 11 ¢
o) TS ]

Figure 1.1: Schematic representation of our picture; the two largest spin domains and the
first two levels in the hierarchical organization of the states are shown. The structure of
the states is explained by the spin domains’ orientations; e.g. in the states of the two sets
Cy,Cy, the spins of G; have the same orientation, whereas the spins of the smaller cluster,
Go, have flipped.
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to remain at a constant overlap gy. Following the temporal evolution of the systems they
found that the as the waiting time ¢,, increases the system came more close to fulfill the
relation q(S*(t,)S"(t)) > min(q(S*(t)S"(t)), q0), for t,, < 107 and ¢t < 108 MCS.

As far as we are aware, no published work gives direct evidence for a non-trivial P(g""¥).

Very recently a new picture of the low temperature phase of short-range spin glasses
has been proposed [18], on the basis of a numerical study of the ground states of the
model (1.1) with J;; = £1 couplings. On the one hand, this picture is in agreement with
the TNT scenario; on the other, a hierarchical tree-like structure of the pure states is
proposed, just like in the RSB solution. This state hierarchy is, however, non-ultrametric;
at each level of the hierarchy, the states split into two subsets, generated by flipping a
macroscopic contiguous domain of strongly correlated spins [19]. As we go down in the
state hierarchy, the size of the corresponding spin domain decreases. The highest levels of
the state hierarchy, induced by the two largest spin domains, is schematically illustrated
in Fig. 1.1. The spin domains have been identified as the cores of the excitations found
by Krzakala and Martin. Once the state hierarchy has been identified and the assignment
of states at each level completed, one could identify these spin domains or “cores” in a
systematic precise manner. This, in turn, provides a statistically meaningful investigation
of the way in which the overlap distribution P(q) is governed and dictated by the underlying
hierarchy of correlated spin domains.

In Chapter 2 we present the clustering methodology which we use in Chapter 3 to study
the model (1.1) with Gaussian couplings at finite temperatures.

In Chapter 4 we use the hierarchical partition of the state space to obtain the spin



domains, show that their sizes scale with the system size and their correlation does not
approach 1 as L — oo. We also show that these spin domains, that were identified on
physical grounds, can also be obtained by a cluster analysis of the N spins.

Those domains yield a non-trivial overlap distribution P(q) with peaks corresponding to
the different domain sizes, as we show in Chapter 5. Since the average correlation between
domains does not increase with the system size, P(q) will remain non-trivial as L — co.

The nature of our picture yields non-ultrametric structure, as demonstrated in Chapter
6. We present a parameter for ultrametricity, and measure its distribution. The results
suggest the system does not become ultrametric as L increases.

In Chapter 7 we apply our method to the model (1.1) with binary couplings, J;; = +1,
at T' = 0. We find there the same structure found for Gaussian spin glasses at finite 7'
We conclude that P(q) is non-trivial, in contradiction with recent papers [20-22]. We show
how to perform a correct extrapolation of P(g), by isolating a non-trivial component of
the distribution.

Finally, our method and findings are summarized in Chapter 8.






2. CLUSTERING METHODOLOGY

Clustering is an important technique to perform exploratory data analysis. The aim is to
partition data according to natural classes present in it. By “natural classes” we mean
groups of points that are close to one another and relatively far from other points, so that
it is natural to assign them together, without using any preconceived information on the
features according to which the set should be classified.

The standard definition of the clustering problem [23] is as follows. Partition N given
data points (or objects) into K groups (i.e. clusters) so that two points that belong to
the same group are, in some sense, more similar than two that belong to different groups.
The ¢+ = 1,2,...N data points are specified either in terms of their coordinates X, in a
D-dimensional space (representing the measured values of D attributes or features) or,
alternatively, by means of an N x N "distance matrix”, whose elements d;; measure the
dissimilarity of data points ¢ and j. The traditional tasks of clustering algorithms are to
determine K and to assign each data point to a cluster.

In some cases, as in the present work, there may be available some knowledge about the
nature of the desired partition. For example, one may wish to have a preassigned number
of clusters, with data assigned to them in such a way that minimizes the variance within
each cluster’. If such information about the desired clusters is available, it makes sense to
choose a clustering method accordingly, i.e. one that is designed to generate (or identify)
clusters of the desired characteristics.

In the context of the present work we can think of our sample of M ground states
as the objects to be clustered. Each object is represented by an N—component vector
S = (SY, S5, ..., S%), where S¥' = +£1 is the value taken by spin ¢ in ground state p. An
alternative view, which we also use, is to consider the IV spins as the objects to be clustered.

Our first aim in this work was to look for a hierarchical structure of the states of a
spin glass. Hence we wanted to find a hierarchy of partitions, where each partition is a
refinement of the previous partition. This purpose calls for using a hierarchical clustering
algorithm. The output of such an algorithm is a tree of clusters, called a dendrogram.
Each node in the tree corresponds to a cluster. The splitting of a cluster represents its
partition into sub-clusters. The trunk is the single “cluster” that contains all the objects,
representing the crudest partition; at the other extreme each leaf is a cluster of a single
object, representing the finest partition.

There are many clustering algorithms that produce such a hierarchical partitioning of

1Such is the case, for example, in image compression algorithms.



any data set. We tried two algorithms; a recently introduced one, SPC [24], which uses the
physics of granular ferromagnets to identify clusters, and a graph-based algorithm proposed
by Ward. In the present problem the ground state clusters are compact (and the same holds
for spin clusters). Therefore an algorithm that identifies compact clusters easily is most
suitable for our needs and Ward’s algorithm is designed to find such clusters. Furthermore,
SPC is a “short-range” algorithm (see Appendix A), in the sense it regard only nearest
neighbour distances with a particular characteristic length scale. Since the distances inside
pure states are much smaller than the distance between them, SPC disregards the latter.
It identifies the pure states as different clusters, but misses the hierarchical structure.

Ward’s algorithm [23] is agglomerative, works its way up from the leaves to the trunk,
by fusing two clusters at each step. It begins with an initial partition to N clusters, with
a single data point in each. At each step that pair of clusters, a, 8, which are separated
by the shortest effective distance p,p from each other, are identified and fused to form a
new cluster o' = aU . The process stops when there is only one cluster, that contains all
points.

To implement the algorithm one must define an effective distance p,g, between any two
clusters o and (. Initially each data point ¢ = 1,2,...N constitutes a cluster and hence
the distance p;; between two such “clusters” is the original distance D;; between points ?
and j. If at a particular step we fuse two clusters, o and 3, to form a new cluster o', we
calculate the effective distances pf,/, between every unchanged cluster, v # «, 3, and the
new o, according to the rule

Ng + Ty ng + ny Ny

_ - 2.1
na+n,3+n7pa7+na+n,3+n7p’37 na+n5+n7pa’8’ (2.1)

plo/'y =
where n, is the number of data points in cluster xz. Distances between unfused clusters
remain the same.
Note that pf,. > pas and pl; > pag for every two clusters v, d. Hence after every fusion
step the minimal distance between clusters increases.
Ward’s algorithm tries, in effect, to minimize the quantity

S=) o, (2.2)
o
where o, is the sum of squared distances over all pairs of points in cluster «,
Oq = Z DZ]2 (23)
t,jEQ

We associate a value 7 with each cluster o', where 7(a/) = pap is the effective distance
between the two clusters that were fused to form /. For the initial single-point clusters we
set 7 = 0. 7(«) is related to o,, the sum of squared distances within cluster «. Clusters
formed earlier have lower 7 values, and their o, is smaller.

The result of the algorithm is a dendrogram, or tree, as in Fig. 3.3(a). The leaves at the
bottom represent the individual data points; they are ordered on the horizontal axis in a



way that reflects their proximity and hierarchical assignment [25]. The small boxes at the
nodes represent clusters. The vertical location of cluster « is its 7 value, and is thus related
to it’s . When two relatively tight and well-separated clusters are fused, the 7 value of
the resulting cluster is much higher than those of the two constituents. Hence the length
of the branch above cluster o provides a measure of its relative o,; long branches identify
clear, tight clusters.

Like every clustering algorithm, Ward’s also has various problems which have to be
kept in mind. One such problem we encountered has to do with the manner in which it
deals with a set of points C' whose natural partition is into two clusters C; and Cy with
very different sizes. Let the typical distance between points inside C is Dy and the typical
distance between points in C; and Cy is D,. If we have

|C1| > (D1/D2)?|Cy (2.4)

then S will gain the lowest value for a partition of C' into two sub clusters, namely C,
and C’g, such that C; contains about half the points of C; and C, contains the other half
and the points of Cy. Even though this is not the natural partition of C| it is preferred
by Ward’s algorithm. We encountered this problem only for the classification of very small
groups of states, and therefore it has very little statistical effect on our results.

A seemingly more serious concern is the fact that like every agglomerative algorithm,
Ward’s algorithm will generate a tree-like structure when applied to any set of data. There-
fore we have to verify that the results we obtain do correspond to a natural partition of
the data. In fact, it is fairly easy to identify when the dendrogram and the corresponding
partitions do correspond to real hierarchical structure, and when is it an artifact of the
clustering algorithm used. We used three indicators to test our clustering.

First, compare the dendrograms obtained in two cases with genuine structure, shown
in Fig. 3.3(a,c) with that of structureless data, Fig. 3.3 (e). In the first two dendrograms
the relative 7 values of the clusters are much higher then in the third dendrogram.

Second, compare the distance matrices obtained when the states (datapoints) are re-
ordered according to the results of the clustering process. For the first two datasets, that
have genuine structure, the reordered distance matrices (Fig. 3.3(b,d)) have clear dark sub-
matrices along the diagonal; these indicate that distances within a cluster are significantly
shorter than between clusters. On the other hand, when the states of the structureless
dataset are reordered according the results of its clustering, the resulting distance matrix,
Fig. 3.3(f), is homogenous and greyish, indicating that the distances within and between
the “clusters” of Fig. 3.3(e) are similar.

Third, as will be described below, we measured directly the distribution of distances
within clusters and between them. We did this for each realization seperately, and then we
measured the distribution of the results over the disorder (see Chapter 3). The quantitative
measures obtained this way are in full agreement with the first two, more qualitative
indices of “naturalness” of our partitions. In the cases with real structure the distribution
of distances within a cluster is narrow, concentrated about a low distance, whereas the



distibution of distances between points of two different clusters is also narrow, but about
a considerably higher value, also shown in detail in Chapter 3). These tests and indicators
clearly support our claim that we are able to use Ward’s algorithm in a discriminating way,

identifying beyond doubt the clear, natural partitions and those that are mere artifacts of
our method.



3. STATE SPACE STRUCTURE

For a particular (randomly chosen) set of bonds {J} of the system we generate, by Parallel
Tempering [14, 15], a sample of M /2 states, which constitute an equlibrium ensemble at
a temperature 7. Next, we add to this ensemble the set of M /2 states obtained from the
original set by spin reversal. Clearly the new ensemble of M states also corresponds to
thermal equilibrium® at 7". We now address the following question:

Do the M states of the equilibrium ensemble cover the 2V points of state-space
or a part of it uniformly, or is there some underlying hierarchical organization?

As it turns out, the answer depends on 7'; whereas above T, the M states do not exhibit
any apparent structure, below 7, a very pronounced hierarchical organization is seen. To
uncover this organization we use the clustering methodology of the previous Chapter,
treating the M states of our ensemble as the data points to be clustered.

To this end, each state y is represented as an N-component vector S* = (S7, ..., S%),
where S¥ = =£1 is the value taken by spin 7 in state pu. The complete data set can be
represented as an N x M matrix, whose columns are the vectors S¥#. For the set of M = 1000
states, obtained at 7" = 0.2 for a particular bond realization of an N = 82 spin system, this
matrix is presented in Fig 3.1(a). Pixel (7, ) of this figure represents the sign of spin 7 in
state u; a black entry corresponds to +1 and white to —1. The spins appear in lexicographic
order and the states in the random order generated by the simulation. As can be seen, the
matrix appears fairly random, with no easily discernible structure; nevertheless, there is a
clear organization of these M states into tight clusters. For the particular realization and
ensemble of states presented here, these clusters of states can be seen by direct observation
of the M = 1000 data-points S*, once one overcomes the hurdle of directly viewing a cloud
of 1000 points in a N = 512 dimensional space.

The trivial way to visualize points that lie in a high dimensional space is one of pro-
jecting them onto a low (i.e. two or three) dimensional subspace. In order to reveal the
underlying structure, it is important to choose with care the subspace onto which one
projects. A widely used method to choose this subspace is that of principal component
analysis (PCA) [26]. One constructs the N x N covariance matrix of the M points; the
eigenvectors of this matrix are the principal directions or components of the variation in
the data, which are ordered according to the size of the corresponding eigenvalues, with
the largest coming first.

Tt does not an equilibrium cannonical ensemble, since for each state in the ensemble we have also its
exact inverse, but that does not effect our results
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Figure 3.1: (a) The original data matrix of 500 x 2 states S¥, S¥ = +1, with black/white
representing +/—. This sample was generated for a realization of size 8 at T = 0.2 (same
as for Fig. 3.3). The spins are in lexicographic order. (b) The same matrix, with the states
ordered according to the dendrogram in Fig. 3.3. (¢) The matrix in (b), with the spins
ordered according to the dendrogram D in Fig. 4.7.

In Fig. 3.2 we present the projections of our 7" = 0.2 ensemble of M = 1000 states on
the first two and three principal components. Even though projection of N = 83 dimen-
sional data onto three and two dimensions involves a major loss of information, the cluster
structure of the states is still clearly evident.

To obtain a systematic quantitative measure of the hierarchical structure of state-
space we perform cluster analysis of the M points. The choice of the particular clustering
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Figure 3.2: Principal Component Analysis of a sample of M = 500 x 2 states of a specific
realization of {J} with N = 83 spins at T = 0.2. Each point represents a state S*. The
three coordinates are the (a) two and (b) three largest principal components of the vactors
in the sample. The first and second level partitions of the hierarchy are clearly visible.

algorithm used was dictated by our idea of the state space structure, obtained from PCA
and from our picture (as described in the Introduction and summarized in Fig. 1.1).

Our aim is to find a hierarchy of partitions into compact clusters. That is, we would like
states that belong to the same cluster to be closer to each other than to states in different
clusters. Ward’s algorithm, described in Chapter 2, is tailored to preform this task for the
kind of data distribution that we have in state-space.

To start, we defined the M x M distance matrix D between the states u, v by

1- Quv

D, = 5 (3.1)

where g, is the state overlap defined by Eq. 1.3.

Next, we clustered the spins using the distance matrix D, as input to Ward’s algorithm
(see Eq. (2.1)). The algorithm results in a dendrogram, as shown in Figs. 3.3(a,c,e), for
T = 0.2,0.5 and 2.0, respectively (in three and four dimensions T, ~ 1.0 [7,27]). The
leaves, which represent the states, are ordered on the horizontal axis according to the order
imposed by the dendrogram [25]. The nodes represents the clusters. The vertical location
of each cluster corresponds to its 7 value, and is thus related to the variance within it.

For 7" = 0.2,0.5 we found clear partitions in the two highest levels of the dendrogram,
as presented in Figs. 3.3(a,c). At the highest level the states are partitioned into C and C.
At the next level, C is broken into two sub-clusters, which we denote as C; and C,. For this
specific set of states the cluster Cy breaks further into two sub-clusters, which are clearly
seen in Fig. 3.2 as well.

We now address the issue mentioned in Chapter 2; namely, are the state clusters “nat-
ural”, or an artifact of our clustering technique? As mentioned above, the first pitfall one

4
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Figure 3.3: (a) The dendrogram obtained by clustering a sample of the M = 500 x 2 states
of a specific realization of size N = 8 at T = 0.2. The vertical axis describes the value
of 7, defined in Chapter 2. (b) The ground states distance matrix used as an input to
Ward’s algorithm. Darker shades correspond to smaller distances. The states are ordered
according to their position on the dendrogram (a). (c), (d) The same as in (a), (b), for
the same realization {J}, but for an ensemble of states obtained at at 7" = 0.5. (e), (f)
The same as in (a), (b), for the same realization, at 7= 2.0. Note that this dendrogram is
not symmetric; almost all the distances are close to 0.5, so at each stage of the algorithm
there were several possible partitions that gave minimal value to S. In the implementation
we used, the algorithm chose a non-symmetric partition.

should worry about is due to the fact that Ward’s algorithm might miss the partition into
two “natural” classes Cy,C; if their sizes satisfy the condition (2.4). As we show below,
this is usually not the case. The other possible source of error is the fact (also discussed
in Chapter 2) that Ward’s algorithm will always generate a tree-like structure, even when
there are no natural partitions in the data. This is precisely the situation above T, for
example at T" = 2.0, for which cluster analysis yields the dendrogram presented in Fig.
3.3(e).

We addressed this issue in three ways. First, note that direct observation of the den-
drograms clearly differentiates between the two situations. At 7" = 0.2,0.5 the relative 7
values of the state clusters C,C; and C, - measured by the length of the branch above each
cluster - is relatively high. A long branch indicates that the size of the cluster is much
smaller than the distance between it and its “brother”, which indicates that the partition
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into these two groups is natural. In comparison, in the dendrogram obtained at 7" = 2.0,
the relative 7 values are much smaller than at 7" = 0.2, 0.5.

The genuinely hierarchical structure at 7" = 0.2, 0.5 is also evident from the states' dis-
tance matrix, as shown in Figs. 3.3(b,d). This distance matrix was obtained by reordering
the states according to the results of the cluster analysis, i.e. according to the order of
the leaves of the corresponding dendrogram. When the states are randomly ordered (like
in Fig. 3.1(a)), the resulting distance matrix is a homogenous greyish square, like that of
Fig. 3.3(f). The difference between this and Figs. 3.3(b,d) is striking: the distance matrices
within clusters C; and Cy appear as dark (representing shorter distances) squares along the
diagonal. When a cluster has internal structure, its distance matrix also has darker squares
along the diagonal. The distances between clusters are represented by fairly uniform, lighter
colored rectangles. In comparison, for 7" = 2.0, when there is no real hierarchical organi-
zation of the states, reordering them according to the dendrogram does not generate any
ordered appearance of the distance matrix.

To gain insight into the manner in which similar states are grouped together, and to
actually “look into the spin-glass” at the microscopic level, we present in Fig. 3.1(b) the
same data matrix as shown in Fig. 3.1(a), but with the states again reordered according to
the dendrogram of Fig. 3.3 (a). That is, to get Fig. 3.1 (b), the colums of Fig. 3.1(a) have
been permuted according to their position in the dendrogram. The clear central vertical
dividing line separates C from C. In addition to the central dividing line, another vertical
line is also clearly visible - it separates the states that belong to the larger cluster C; from
the smaller one, Cs.

To obtain a quantitative assessment of the extent to which our state clusters are real,
we measured the average distance between pairs of states that belong to each of the clusters
C, Cy and C,. The average D(C) and the width w(C) of the distribution of distances within
C are

D(C) = & Ypwec Diw (3.2)

w(€) = (& Spuee D’ = D) (33)

The average D(C,) and the width w(C,) for @ = 1,2 are defined in a similar way. The
distribution of distances within clusters is to be compared with the distribution of distances
between points that belong to different clusters. The average D(Cy, Ce) and width w(Cy, Cs)
of the inter-cluster distance distribution are defined as

D(C1,Cs) = ol Youees Dovecs Duv s (3-4)

1/2
w(cla CQ) = (m Zuecl ZVGC2 Dlw2 B D(Cl’ C2)2> : (3-5)

The clusters C,C are special in that each state i € C has an inverted state i € C, so that
St = —S#. Therefore D(C,C) =1 — D(C) and w(C,C) = w(C).



The results, presented in Table 3.1, confirm our claims that our state clusters are
natural. We present for each variable z its mean [z]; (averaged over the disorder {J}) and
standard deviation ([z2]; — [z],°)"/2. For T < T, the average distances within the clusters
are of the order of 0.1. D(C,C) is around 0.9, which shows that there is a clear separation
between these two clusters. D(Cy,Cs) is much lower, but is still about two of three fold
larger than either D(C;) or D(Cs). Note that the width of the distance distribution within
a cluster is of the same order of the mean distance, so in general distances will not be much
larger than two-fold the mean distance.

At T = 2.0 > T, the distances within and between clusters are almost equal and
the differences are only due to statistical fluctuations, again indicating absence of natural
structure, as we claimed on the basis of direct observation.

In the RSB [2] framework the overlap between any pair of pure states from two different
clusters in the same level of the hierarchy is constant. It seems natural to associate the
pure state clusters of RSB to our state clusters, e.g. C; and Cy. Each of them contains states
that belong to different pure states. If the overlap between pure states of the two clusters
is constant, this should hold also for the overlap between each pair of states i € C; and
j € Ca, since the width of the overlap distribution inside a pure state approaches zero. In
this case the sub-matrix D;; for i € C; and j € Cy is uniform, and the width w(C;,Cs) of
the distribution P(D;;) should vanish as I — co. We used the data for T = 0.2, D = 3 to
perform a fit of the form

w(Cy,Co, L) = weo + BLY , (3.6)

with B and y as fit parameters. The minimum of x? = 1.9 x 1078 was found for w., =
0.021 (with B = 0.58(10), y = 3.37(12)). Setting we = 0 we get x> = 1.3 x 10~5 with
B =0.039(4), y = 0.31(7)). Since for w,, = 0 we get a much higher value for x2, our data
supports a non-vanishing value of wy.



D(C)

w(C)

D(Ch)

w(C1)

0.045+0.049
0.050+0.054
0.05340.056
0.055+0.054

0.055+0.052
0.056+0.054
0.054+0.053
0.052+0.051

0.015+0.017
0.018+0.018
0.021+0.020
0.025%0.020

0.01940.018
0.01940.019
0.019+0.019
0.020+0.020

0.5

0.1184+0.074
0.130+0.074
0.130+0.068
0.13940.065

0.095+0.052
0.094+0.051
0.088+0.048
0.084+0.046

0.067+0.044
0.078+0.044
0.084+0.041
0.093+0.038

0.052+0.030
0.050+0.028
0.049+0.028
0.045+0.026

2.0

0.435%0.030
0.458+0.020
0.473+0.011
0.487+0.006

0.11440.009
0.090£0.006
0.074+0.004
0.053+0.002

0.394+0.039
0.430+0.025
0.453+0.018
0.477%0.009

0.103+0.007
0.085£0.005
0.072+0.003
0.055+0.002

0.036+£0.046
0.042+0.047
0.042+0.045

0.047£0.048
0.046+0.050
0.044+0.051

0.012+0.018
0.016+0.016
0.017%0.013

0.01640.020
0.015+0.017
0.013+0.014

0.8

0.1621+0.074
0.161£0.065
0.167+0.065

0.105£0.046
0.089+0.042
0.081£0.042

0.105+0.049
0.116£0.042
0.124+£0.042

0.063+0.028
0.052+0.025
0.045+0.024

2.6
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0.456+0.019
0.4804-0.009
0.490+0.004

0.099+0.007
0.06640.003
0.048+0.002

0.426+0.029
0.465+0.014
0.483+0.006

0.093+0.005
0.06540.003
0.049+£0.002

D(Cy)

w(Cp)

D(Cy,Cy)

w(Cy,Ca)

0.025+0.036
0.02540.032
0.02840.033
0.030+0.027

0.027+0.034
0.025+0.031
0.026+0.033
0.02440.026

0.160£0.135
0.169+0.147
0.161+£0.141
0.161£0.139

0.026+0.024
0.023+0.020
0.022+0.021
0.021£0.018

0.5

0.089+0.059
0.096+0.056
0.10040.053
0.1124+0.057

0.066+0.042
0.064+0.038
0.0614+0.038
0.057+0.037

0.248+0.135
0.262+0.133
0.250+0.131
0.253£0.126

0.064%0.033
0.061+0.030
0.056+0.027
0.053+0.027

2.0

0.400+£0.032
0.429+0.022
0.449+0.016
0.47240.009

0.103+0.007
0.086+0.005
0.073+0.004
0.057+0.002

0.484+0.027
0.492+0.017
0.496+0.011
0.49940.005

0.104+0.008
0.083£0.006
0.068+0.004
0.048+0.003

0.016+0.023
0.020+0.026
0.024+0.030

0.018+0.025
0.020£0.029
0.02140.031

0.148+0.135
0.134+0.131
0.131+0.135

0.018+0.019
0.017%0.016
0.014+0.014

0.8

0.1284-0.061
0.138+0.057
0.143+0.053

0.07640.036
0.06840.035
0.061£0.035

0.2824+0.123
0.279+0.121
0.277+0.120

0.0744-0.030
0.0614-0.025
0.049+0.022

2.6

CU i WO i WO & W00 O O iIx|00 O O Ix|00 O Ot i

0.425+0.025
0.461+0.014
0.47740.008

0.093+0.006
0.067£0.003
0.05340.003

0.492+0.017
0.498+0.008
0.500+0.004

0.091+£0.006
0.0614-0.003
0.04340.002

Table 3.1: The average distances within and between state clusters, and the relations
between them. The numbers are the averages over all realizations 4 the standard deviation,

ie. [a]; £ ([2°]s — [];%)'/%.






4. CORRELATED DOMAINS IN SPIN SPACE

4.1. Identifying the spin domains

According to our picture, splitting of a cluster at level a in the states hierarchy is induced by
a macroscopic contiguous spin domain G,. The size and shape of this domain determines
the free energy barrier separating two state clusters that were “born” at this level. We
describe here how we identify from our data the two correlated domains G; and G,, which
determine the two highest levels of the states hierarchy. These domains are the cores of sets
of macroscopic contiguous spin clusters with microscopic surface tension, that are discussed
in Chapter 5.

Since the spins in such a domain flip “collectively”, they are highly correlated. The
standard definition of the correlation c;; of spins ¢ and j is

= (5i)) = 3 3 S8 exp[-H(S)] (4.1)
S

where (...) stands for the thermodynamic average for a particular realization of the disorder,
and Z is the partition function at 7. Using our equilibrium ensemble of states {S*}, we
evaluate

Cij = % > osesk. (4.2)
u

The correlation in itself is irrelevant for spin glasses. It is gauge dependent and its average
[ci;]7 over all the realizations of the disorder {J} vanishes. The quantity c¢;;? is the relevant
measure of correlations in a spin glass. If two spins are independent of each other over the
equilibrium ensemble of states, we have ¢;;> = 0. On the other hand, for a pair of fully
correlated spins we have ¢;;2 = 1; the two spins are either aligned in all states or always
have opposite signs.

We expect the largest domain, Gy, to be in one orientation in the states of C and in the
reversed one in the states of C. To identify the spins that indeed behave this way, we took
all (M/2)? pairs of states u € C and v € C, and identified G,,, the set of spins whose sign
is different in p and v,

Guw ={1]S'#5}. (4.3)
Ideally all the spins of G; always flip together and maintain their relative orientation. At

finite 7', however, we must allow for excitations of the order of J. So, even if a spin is
highly correlated with the other spins of G;, it might lose its relative orientation in a few



of the M states of the sample. In order not to “miss” such spins, we use a soft criterion
when we determine whether a spin is a member of G;. We define a threshold 6 and define
G1(0) as the set of spins i which are members of G,,,, i.e. for which SF'S¥ = —1, for at least
a fraction 6 of the pairs of states 4 € C and v € C:

G (0) = { |C|||ZZS“S” 1—20}. (4.4)

neC yel
We define our spin domain G; (6) as the largest contiguous part of G, (). For large enough
0 we found that for most realizations {J} the sites of G;(6) are contiguous and hence it is
identical to G;(0), as seen in Tab. 4.1. The next spin domain G5(0) is defined in the same
manner, on the basis of pairs of states u € C; and v € Cs.
The above definition sets a lower bound on the correlation of spins within the domain.
Two spins 7,7 € G;(#) must flip together at least for a fraction 20 — 1 of the state pairs
p € C and v € C. Thus for any two spins 7, € G

1
Cz'j2 = — Z SHSILSVSV

#SISYSY > 46 — 4.
= e ‘ZZSSSS > 40— 3. (4.5)

HeC vel

The same constraint holds also for G,, with the sums taken over the states in clusters C;
and CQ.

Since we introduced an arbitrary parameter # into the definition of our spin clusters,
it is important to consider the extent to which the value of # affects their identification.
As seen in Fig. 4.1, the sizes of the domains and their average correlation, defined below
n (4.6), do not change much for 0.6 < # < 0.95. For both a = 1,2 we define (arbitrarily)
Ga = G4(0.95). We do not choose 6 = 1 since, as discussed above, we do not want our results
to be affected by small thermal fluctuations. In Fig. 4.2 we plot the spatial structure of G;
and G, for a specific realization.

For T > T, the correlations between each pair of spins are much smaller, and hence
this analysis is meaningless. The procedure described above results in G;(0) = Go(6) = ()
for any 6 > 0.5.

According to our picture these correlated spin domains govern the hierarchical structure
of state-space. It is important to clarify whether these domains survive as the system size
L increases. There are two mechanisms by which increasing the system size can invalidate
our picture. First - if the domains do not remain macroscopic when L increases. To study
the finite size effects of our analysis we normalized the domain sizes by the number of
spins and plotted the size distributions of the two domains for different system sizes. These
distributions were obtained from 500 (and 335 for L = 8) bond realizations in D = 3 (see
Fig. 4.4(a)) and from 500 (and 200 for L = 5) realizations for D = 4 (Fig. 4.4(b)), at
two temperatures in both dimensions. For T' = 0.2, in both dimensions the distributions
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Figure 4.1: The sizes of G;
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Figure 4.2: The spin domains G; and Gs, as found in the realization of Fig. 3.1. Note that we
use periodic boundary conditions, so the domains are connected through the boundaries.

seem to converge even for the small system sizes we use. We conclude with high certainty
that at T = 0.2 the domain sizes |G,| o L? for both a = 1,2. The mean and width of
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Figure 4.3: Size distributions of the spin domains G; and G, for D = 3 dimensions at
T = 0.2,0.5. For T = 0.2 the distributions seem to converge, despite the small system
sizes.

these distribution are presented in Tab. 4.2. On the other hand, for 7= 0.5 in D = 3 and
T =0.8in D = 4 we cannot determine conclusively whether the domain sizes do or do not
remain proportional to N = L” as L increases.

There is, however, a second mechanism by which our picture can become invalid. Even
if G; and Gy do remain macroscopic for large L, we must show that they do not merge
as L — oo. If they do, we end up with a single domain and there will be no hierarchical
structure in state-space. To check that this does not happen we calculated the average
correlation ¢io between spins in G; and G,

_ 1 9
— E :E 2 4.6
‘12 1G1]|Ga| i (4.6)

1€G1 jEG2

If ¢1o approaches the value 1 as L — oo, the two domains indeed merge in the thermody-
namic limit.

In Table 4.2 we present, for systems of different sizes and dimensions, the average
values of ¢15 (averaged over the disorder {J}) and the corresponding standard deviations.
For T'= 0.2, D = 3,4 and for T = 0.5, D = 3 the average correlation decreases slightly
as the system size increases, although it seems to converge, already for L = 8, to a fixed
value of ~ 0.5. This means that the spins of G; and G, will not become fully correlated
and the two domains will stay separate as L increases.

Interestingly, the correlation for L = 4,5 is higher at 7" = 0.8 than at 7" = 0.2. The
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Figure 4.4: Size distributions of the spin domains G; and Gy for D = 4 dimensions at
T = 0.2,0.8. For T = 0.2 the distributions seem to converge, despite the small system
sizes. For T' = 0.8, |G|/N converges to a narrow distribution around zero, and |G;|/N does
not show convergence yet.

reason for this is probably that as 7T increases, small pieces of G; “fall of” at its edges.
Since Gy at T = 0.2 is small, one of these pieces, which is larger than G,, assume the role
of Gy at T' = 0.8. Since this piece was part of G; at T' = 0.2, we expect its correlation, with
what remains of G; at T' = 0.8, to be relatively high. Extrapolating from L = 3,4, 5 is not
useful, but we still believe that the correlation does not approach 1 as L — oo.

We attempted to identify also G3 and Gj, the spin domains associated with the third
level of the state hierarchy (see below). Gs is the cluster which is associated with splitting
C, into its two descendents on the dendrogram, C;, and Cy,. The domain Gj plays the same
role in Cy. We expect |G| < |G4| since by our notation |C;| > |Csl, so in general there are
more unlocked spins in C; then in Cy. Due to the small sizes of the systems we study, we
cannot be sure if the sets of spins we identify as G and G} indeed play the role we attribute
to them, or are just a microscopic noise and, therefore, only a finite size effect. The results
are given in Tab. 4.3. We see that the normalized sizes of both domains decrease with
the system size, perhaps due to finite size effects. We also measure the average correlation
¢(G3,G1UGy), of G with the largest domain correlated over C;, which includes G; UG, (this
domain has a fixed orientation over the states of Cy). This correlation is defined as

. _ v 2
c(g3,g1Ug2) = |g1 ug2||g3| Z ch . (4.7)

1€G1UG2 JEG3



In Table 4.3 we see that the values of ¢(G3, G U Gy) decrease as L increases; hence if G;
survives as a macroscopic cluster at large L, we expect it to be well separated from the
union of the two larger domains.

4.2. Spin domains and states hierarchy

Now that the spin domains have been well defined, we can examine the manner in which
they govern the hierarchical partitioning of state space. Each state cluster at level a of the
hierarchy can now be identified with one of two possible configurations of the particular
spin domain G,. We denote these two configurations as f}, and |},. Note that we have
avoided the notation +/— for the states of the spin domains, since in each state some of
the spins have the + sign and others —. For example, in the first level partition G; has a
certain characteristic configuration, {1, over all the states in C, whereas over all the states
of C it is in the spin inverted configuration |};. The value [f1];, taken by spin i € G, in the
configuration )y is defined by

[fh1]i = sign (Z Si ) : (4.8)

nec

Our definition of G; guarantees that the argument of the sign function in the above ex-
pression does not vanish. By stating that G; takes configuration {}; in a certain state yu we
mean that

1€G1
Hence the configuration assumed by G; in any state p determines the assignment of u to
either C or C.

The spin domain G, determines, in a similar way, the partition of C into C; and Cy (and
the partition of C into C; and C5). G, is in configuration f}» over C; and C, and in |}, over
Cy and C; (see Fig. 1.1 for a schematic illustration of this point).

Each spin domain G, defines a partition of the states, at level a, into two sets - one in
which G, is in the {}, configuration and the other with |},. The distance D,,, defined by
(3.1), between two states p and v, one of each set, is almost always larger than |G,|/N,
as we will show in Chapter 5. In order to move from one set to the other we have to flip
most of the spins of G,. Thus, if G, is macroscopic (as we have seen for a = 1, 2) it can be
associated with a macroscopic free energy barrier.

The clear hierarchical organization of the state clusters suggest that the average distance
(3.4) between state clusters formed at a high level of the hierarchy is larger then the
average distance between clusters formed at a lower level. Indeed, we show in Table 3.1
that in general D(C,C) > D(Ci,C,). We relate this characteristic of the state structure
to the large variability of the spin domain sizes |G,|. Indeed, we have seen that typically
|G1| > 8|Gs| for T = 0.2, D = 3,4.



Now we have a complete picture, supported by our numerical findings, of a hierarchy of
state clusters. At each level @ of this hierarchy the partition of the states is refined according
to the orientation of macroscopic spin domains G,. At different nodes of a certain level of
the hierarchy there might be different correlated domains that determine their partition.
Take, for example, the states in C; (where G is in configuration {}; and G, is in configuration
f}2). Over these states the largest unlocked' correlated domain is Gz = Gs(f}1, f2). The two
possible configurations of G; inside C; may be denoted as 13 (ft1, ft2) and {3 (11, f2). Over
the states of Cy we expect to find a different unlocked correlated domain G = G4(1t1, 2)-

We calculated the part of each domain which is included in the other. The results are
given in Table 4.5. We see that G3 and G} share in general less than fifth of their spins.

An additional insight is obtained from a PCA of the spins. Each spin ¢, i =1... N, is
represented by a vector S; = (S}, SZ, ..., SM) of its values over the M states in the sample.
By PCA we project these N vectors onto the two dimensional surface, which contains, in
a sense, maximum information on the data. In Fig. 4.5 we present the results of a PCA
analysis for three realizations, labeled A, B and C. The data matrix for realization A, with
the states and spins ordered according to the clustering results? is presented in Fig. 3.1(c)
and in Fig. 4.6, where we also marked the different state clusters and spin domains.

In the upper left frame of Fig. 4.5 we see the results of the PCA analysis of the spins,
whose vectors are the rows of the matrix in Fig. 4.6. We want highly correlated spins to
be close on the plot. Since a spin S; is fully correlated with its inverse —S; we project
each point (z,y) on the plot with y < 0 to (—z, —y). The spins of G; are highly correlated
with each other and all have the same values for the first two principal components of the
spin space. Therefor they fall on top of each other, and we see only one ¢ marker which
represents all of them. The same is true for the spins of G5, marked by AA. As seen from Fig.
4.6 the spins of G; are not correlated with the spins of G, over the M states, and indeed
the two domains are far from each other on the plot.

In column (b) of Fig. 4.5 we used only the states of C; in the analysis. We can see in
Fig. 4.6 that over C; the spins of G; and G, are correlated, together with some of the spins
of G}, marked by x. In the plot (the middle frame on the upper row of Fig. 4.5) we can see
that indeed these spins are all plotted at the same coordinates. The spins of G, marked as
O, are highly correlated, but are not correlated with G; and G,. Note that the spins of G}
are separated into two different sets, and are not correlated over C.

When we perform the analysis using only the states of Co we get the results presented
in column (c) of Fig. 4.5. In the matrix of Fig. 4.6 we see that the spins of G;, G and G;
are correlated together over Cy, and indeed they all fall on top of each other in the plot.
We also see G; as a separated correlated domain.

In the second row of Fig. 4.5 we give the results for realization B, in which G5 and
G4 share some of their spins. Those spins are marked by ). In column (c) we see these
spins inside G4. The rest of the spins of G3 are not correlated with them. Some of them are

! The largest locked correlated domain over the states of C; includes G; U Gs.
for clustering of the spins see Section 4.3.
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Figure 4.5: The two principal components of the 512 spins of three realizations A, B and C
(see text). The analysis is carried over (a) all states; (b) the states of C;; and (c) the states
of Cy. The spins of G; are marked by ¢; of Go by A; of G3 by (O; and of G by Xx. Spins
that belong to both G3 and G} are marked by ). Spins that do not belong to any of these
domains are marked with dots. The lower half of the plain is projected onto the upper half
using (z,y) — (—z, —y). Spins in a correlated domain usually has the same values for the
two principal components, and they fall on top of each other on the plot. Therefor in most
plots a correlated domain is seemed to be represented by a single marker.

correlated with G; and G, and others seem to be in another domain.

In the third row of Fig. 4.5 we present the results for realization C in which G3 C Gj.
Here spins of Gf seem to form a correlated set also over C;, though the correlations are not
high enough for it to be considered as a domain by our definition.

In the case of C and C the largest unlocked correlated domain over each of them is
identical, Go(t1) = G2({1) = Go, since these state clusters are related by spin-flip symmetry.
There is no symmetry that relates C; and C,.

The pure states are the leaves of the hierarchy?®, as in the ultrametric RSB picture [2].

3The leaves of the hierarchy discussed here are not the individual states S* of the state dendrogram of



Figure 4.6: The ordered data matrix of Fig. 3.1(c), for a realization of size N = 8 at
T = 0.2. The columns represent the states u and the rows represent the spins 4, S¥ = +1,
with black/white representing +/—. The states are ordered according to the dendrogram
in Fig. 3.3, and the spins ordered according to the dendrogram D in Fig. 4.7. The state
clusters and the spin domains are marked (see text).

In a pure state each domain G, is in a particular configuration {, or |},. These domains
are associated with free energy barriers separating the pure states. Thus a certain pure
state can be characterized by a specific list of domain configurations, e.g. {f}1, {2, {3 (1

U2), ta(fh, U2, 8s), - )

4.3. Spin space structure

So far we have obtained the spin domains using the results of the state space analysis,
and have demonstrated the way in which they induce the observed hierarchical structure
of state space. The existence of these domains can be observed directly in spin space, i.e.
without utilizing information about state space, as we now demonstrate.

As described in Chapter 3, the equilibrium ensemble of states, obtained for each real-
ization, is represented by an N x M matrix {S!} (e.g. Fig 3.1(a)). In Chapter 3 we treated
each of the M states, represented by a column of this matrix, as a “data point” whose
coordinates are the components of this N-dimensional vector. Now we view each of the N

Chapter 3.



spins of the system as a data point, represented by a row of the same matrix. Each of these
data points is a vector in an M-dimensional space.

The distance on the set of spins should be defined according to the nature of the
clusters we are interested in. At this case, we expect highly correlated spins to be in the
same cluster, and spins with low correlation to be in different clusters. Thus, we defined
the distance between a pair of data points ¢z and j as

dij =1- CijQ . (410)

This N x N distance matrix serves as the input for clustering the spins, using Ward’s
algorithm. The dendrogram D, obtained when the data of Fig. 3.1(a) are clustered, is
presented in Fig. 4.7(a). When the spins are reordered according to the dendrogram, their
distance matrix, shown in 4.7(b), clearly exhibits a non-trivial structure. There are large,
highly correlated spin clusters on the lower levels of the dendrogram.

In order to “see” the manner in which the spins are ordered, we return to the data matrix
of Fig. 3.1(a). We obtained Fig. 3.1(b) from (a) by reordering the columns according to
the state dendrogram. If we now reorder the rows of Fig. 3.1(b) according to the spin
dendrogram D, we get Fig. 3.1(c). The cluster structure of the spins can be seen also
here. One can see clearly that spins with indices from 250 up belong to G; and distinguish
between C and C; the spins with indices up to 200 belong to G, and differentiate C; from Co;
finally, the spins 210-240 belong to a third, less clear, domain G}, which separates Cy into
two sub-clusters. We note that the correlation between two spins that belong to different
spin clusters does not vanish, but is much lower than the correlation within a cluster.

These data were obtained at 7' = 0.2 < T,.. Above T, the correlation between any two
spins is low, and there is no cluster structure, as evident from Fig. 4.7(e,f). The relative 7
values of this dendrogram are much smaller then those of the dendrograms in Figs. 4.7(a,c),
and the reordered distance matrix is structure-less.

If the domains G,, identified above on the basis of the state hierarchy, are not an artifact
of our analysis, they should be clearly identifiable in spin space, and appear as clusters
in the spin dendrogram D. To check this, we located in the spin dendrogram D of each
realization those clusters g,, which are most similar to G,. We used the similarity measure

_ 2|94 N Gal

R PARA

(4.11)

which represents the fraction of shared spins by the “physical spin domain” G, and the
spin cluster g,. For most realizations we have (at low T') g, = G, for both a = 1,2; and
when these groups are not precisely equal, they differ by only a few spins, as seen in Tab.
4.5.
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Table 4.1: The part of the largest contiguous set of spins G, in the set G, defined in (4.4),
for a = 1,2. We present the average over {J} + the standard deviation, for § = 0.95
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Table 4.2: The normalized sizes of the domains G; and G,, and the correlation between
them. The last two parameters are taken for realizations {J} where Gy does not vanish.
The probability for G not to vanish is presented. In each entry of the table we give the

average over the disorder {.J} and the standard deviation [z]; + /[z];> — [£2],.



D L ||Gl|/N c(G3,G1UGa) P(Gs#0) | |Gs|/N P(G; # 0)
3 4 ]0.0484+0.060 0.55+0.32 0.914(4) 0.087+0.176 0.834(6)

5 | 0.046+0.060 0.52+0.32 0.914(4) 0.085+0.184 0.882(5)

6 | 0.043£0.060 0.48+0.30  0.924(3) | 0.081+0.183 0.896(4)

8 1 0.036+0.052 0.43+0.29 0.905(5) 0.076+0.175 0.905(5)
4 3 | 0.045+0.062 0.56+0.32 0.928(3) 0.094+0.216 0.838(6)

4 10.037+0.061 0.48+0.30 0.908(4) 0.061+0.149 0.920(3)

5 | 0.034+0.062 0.43+0.31 0.84(1) 0.0724+0.187 0.865(8)

Table 4.3: The size of the spin domain G3 and G}, and the correlation of G3 with G; U Gs.
All results are taken for realizations where the domain concerned does not vanish. We give
also the probability of this to happen. All data was taken for T = 0.2. We present the
average over {J} + the standard deviation.

D L |1GsNGsl/|Gs| 93NGs/1Gs| P(Gs # 0 and G5 # 0)
3 4| 0231038  0.19+0.38 0.772(8)

5| 0154032  0.1340.31 0.818(7)

6| 0.19+0.35  0.15+0.34 0.832(6)

8| 0.16+0.32  0.1340.30 0.827(8)
4 3| 025%039  0.21+0.38 0.782(8)

4] 0164033  0.1240.30 0.844(6)

5| 0.19+0.33  0.14-0.30 0.73(1)

Table 4.4: The part of G3 and Gj which is common to both of them. Results taken for
realizations where G3 # () and G} # (). All data was taken for 7 = 0.2. We present the
average over {J} + the standard deviation.



Figure 4.7: (a) The spin dendrogram D for the data of Fig. 3.1(a) produced by Ward’s
algorithm. (b) The spin distance matrix d of this realization realization. The spins are
ordered according to their clusters in D. Darker shades correspond to smaller distances
and higher correlations. (c), (d) The same as in (a), (b), for the same realization at
T =0.5. (e), (f) The same as in (a), (b), for the same realization at 7" = 2.0. The y-axis
is rescaled to show the dendrogram, which clearly differ from the dendrograms in (a) and

(c)-
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Table 4.5: Similarity of G, to its most similar cluster g, € D. The numbers are the averages
over all realizations + the standard deviation. For a = 2 realization with G, = () were not
considered.



5. STATE OVERLAP

So far we offered a full description of the system in its low 7" phase relating state space
behavior to the microscopic structure in spin space. This description suffices to understand
the thermodynamic characteristics of the system. Most works so far, however, did not
measure directly the microscopic features of the system (with the exception of [11]), but
examined their indirect implications on other parameters, such as the widely addressed
overlap distribution P(q). To make contact with the literature we turn now to demonstrate
how our picture provides a microscopic interpretation to the observed P(q), and show how
our methods allow a decomposition of this function into its physically relevant constituent
parts.

Most works [7,12,21] presented results for the average over the disorder, P(q) =
[Pj(q)]s. We focus here on Pj(g), the overlap distribution for a specific realization {.J}
of the bonds. We show that this is a compound quantity, i.e. the sum of two main parts.
One part, Pi(q), is the overlap distribution within a pure state (and between a pure state
and its spin reversed counterpart), which converges to 6(|¢| — qua)/2. The second part,
P9(q), is the overlap distribution between states that belong to two different pure states.
P%(q) is also the sum of several contributions, corresponding to different pairs of pure
states. The transition between every such pair of pure states can be associated with flip-
ping a specific set of spin domains and, accordingly, with different levels in the states’
hierarchy.

In Fig. 5.1(a) we present the total overlap distribution for a specific realizations. A clear
structure of several peaks appears in each case. We will relate each peak to flipping one or
more spin domains. In this regard our interpretation resembles the RSB picture [2] which
also relates the peaks of P(q) [7] to the free energy barriers between the pure states. We
will present a direct relation between these peaks and the spin domains G,, which are the
cores of contiguous spin clusters with low (microscopic) surface tension [11].

We use the hierarchical cluster structure of the state space to investigate the specific
contributions to P;(q) by each particular spin domain |G,|. We do this by calculating the
contribution to P;(q) from state pairs of different clusters at the level a of the hierarchy.
We will focus here mainly on two components of P;(q), related to the first and the second
levels in the state hierarchy.
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Figure 5.1: (a) The distribution P;(g) for the same realization whose data presented in Fig.
3.1. (b) The partial distribution P$¢(q) (see text) for the same realization. The estimates
¢ and g, for the peak locations are marked. (c) The partial distribution P9(g) (see text)
for the same realization. The estimates ¢; and ¢, for the peak locations are marked. In
both (b) and (c) the dotted line represents the best fit obtained using (5.10).

5.1. Pairs of states from C and C

Consider first the contribution to P;(q) from pairs of states u € C and v € C. Denote the
distribution of g, over this subgroup of pairs as Pfc_(q). These state pairs contribute half
of P;(q), including a part of the trivial P?(q) around —gga. Since C and C are related by
spin-flip symmetry, we can obtain Pj(q) from P$¢(q) by

Py(q) = Pf(q) + P§°(—q) (5.1)
For a realization with |G;| > N/2 we have

P§¢(q) ~ { OPJ(q) Z i 8 (5.2)



Consider the set G, defined in (4.3), of spins that flip when passing from a state y € C
to a state v € C. Let Gio™ be the largest contiguous part of G,,. We calculated peont - the

average over the state pairs and the disorder of [G9" (/|G |;

o = | i 30 DL 1G5E /16wl | 53
cliclie e J
We found that for most realizations and all system sizes G,, is contiguous. For D = 3 we
have 1 — [peons)s = 1.7 x 107° for L = 8, and even smaller values for L < 8; for D = 4 we
have 1 — [peons]s = 0.004 for L = 3, 1.5 x 107 for L = 4 and 3.4 x 107 for L = 5. Thus
the sets G, are, in almost all {J}, the macroscopic excitations discussed in [11]. Here we
will investigate their statistical significance and estimate their size distribution.

For the sake of demonstrating our point, we refer to the states obtained for the real-
ization whose P;(q) was presented in Fig. 5.1(a). For this realization we clearly identified
three spin domains.

The overlap ¢, between states u and v is related to the size of G,, by

Quv = 1_2|gu1/|/N (54)

Note that for most state pairs 4 € C and v € C our definition of G; yields Guw D G1 so
G < 1= 2/G1|/N.
Assuming G, does not vanish, we classify these state pairs into two types:

1. Pairs in which G; flips when moving from p to v (i.e. changes configuration from f;
to {1 or vice versa), but G, remains fixed. The definition of Gy yields that in most
such cases Go N G, = 0. Thus |G| < N — |Gy, and we must have 2|G,|/N — 1 <
qLu/ S 1 - 2‘g1‘/N

2. Pairs in which both G; and G, flip when moving from state to state. For those pairs
in most cases G, O G1 U Ga 50 gy <1 —2(|G1| + |Ga|)/N.

Disregarding the splitting induced by G3 and G5 we identify two main peaks that dominate
Pfé(q), as seen in Fig. 5.1(b). One, centered at ¢;, is attributed to state pairs of the first
type, and hence

2|1Go|/N—-1< ¢ <1-2|Gy|/N . (5.5)

The other peak, centered at g, is attributed to state pairs of the second type, and thus we
expect
g2 < 1—2(|g1|+‘g2|)/N, (5.6)

5.2. Are the two peaks due to finite size?

We present now arguments and results that show that these two peaks survive for large
system sizes. We do not expect the peak at ¢ to vanish since it includes the negative half



of P%(g), and in particular the trivial symmetry transition from a state to its inverse. This
part of P%(q) converges to a delta function at —gga.

There are three distinct mechanisms by means of which the picture could change qual-
itatively and approach a single peak as L increases: (a) if the fraction of state pairs in
which G; and G, flip separately tends to zero; (b) if the normalized size |Go|/N goes to
zero and (c) if the width of each peak is much larger than |Gs|/N and the two peaks are
indistinguishable. In the first case the size of the peak at ¢; decreases until it disappears as
L — o005 in case (b) and (c) the two peaks merge. We discuss now each of these eventualities
separately.

(a) Buildup of correlations:

The weight of the excitations contributing to the peak at ¢; will vanish if G; and G, always
flip together, i.e. if they are fully correlated. As we have seen in Chapter 4 the average
correlation ¢jo between the spins of G; and Gy decreases (as L increases) and seems to
approach 0.5. This means that G; can flip independently for about 1/4 of the state pairs
and, hence, about 1/4 of the excitations G, will be of the first first kind.

(b) The size of Ga:
|G2|/N does decrease for the system sizes measured, as seen in Tab. 4.2. Nevertheless,
Figs. 4.4 and 4.4 strongly indicate that the size distributions for both |G;|/N and |Gs|/N
converge to distributions with non-zero mean and variance. Since G, is macroscopic, any
pair of states u and v of the first kind belong to different pure states (i.e. not related by
spin-flip symmetry). Hence these state pairs will contribute to P9(q).

(c) Indistinguishable peaks:

Since in general 2|Gs|/N —1 < 1 —2(|G1| + |G2|)/N this does seem possible. In order to be
certain that this is not the case, we measured for each realization the following quantities:

r1 = (1 —q)N/2|Gi| (5.7)
re = (1 — q2)N/2|G; U Go (5.8)
r3 = (1 —q)N/2(N — |Gs]) . (5.9)

The values ¢; and ¢, were found, for each {J}, by fitting P°(¢) to a sum of two
Gaussians,

P§¢(q) = brexp(q — 1)* /@] + bz expl(q — @2)*/as?] , (5.10)
with a;, b; and ¢; as fit parameters, as plotted in 5.1(b). We discarded the realizations for

which we could not identify clearly two separate Gaussians, and kept only those cases for
which the following criteria were satisfied:

(@1 — ¢2) > max{ay, a2}/4 ;
—1<q,90 <15

ai,ag 2 2/N,

by, by > 1/M .

(5.11)

These conditions are satisfied by a fraction p of the realizations. We present in Tab.
5.1 the values of r1, r9, 73 and ro /71, averaged over the realizations that satisfy (5.11). Note



that for all but the smallest size r1/ry ~ 1. Since we have already shown that G, # (J, this
means that ¢; # ¢o. We also see that, as expected on the basis of the inequalities (5.5) and
(5.6), in general 71 > 1, 75 > 1 and r3 < 1.

5.3. Pairs of states from C; and Cs

A more rigorous argument to support the claim that the peaks do not merge if Gy does
not vanish and ¢ < 1 goes as follows. According to our definition of the spin domains,
all states where G; and G, are in configurations 1}, {2 belong to C;, and all states where
they are in configurations {1, {2 belong to Cs. For each pair of spins « € G; and j € Gy we
estimate

o lc 1C2| a1 1G] =G
Cij = |C| [ﬂl] [ﬂZ]J |C| [ﬂl] [UQ] [ﬂl]z[ﬂQ]J |Cl| + |CZ| :

Using this relation we can estimate from the measured c;o the size of Cy:

(5.12)

Col = 2 (1= V) (5.13)

Thus, the probability to sample a pair of states y € C; and v € C,

1—2¢cpo
8 )

2|Cy[C1|/0.5M (M — 1) ~ (5.14)
does not vanish when ¢, < 1. For each such pair we expect G, C G,,, and thus ¢, <
1 — 2|Gy|/N. Our results indicate that as L increases G, remains macroscopic and o
approaches 0.5. Therefore distribution of overlaps between pairs of states p € C; and
v € Cy will be non-trivial and will have a finite weight in the total P;(q).

The states u € C; and v € C,, i.e. pairs taken from state clusters that appear at the
second level of the states’ hierarchy, contribute a non-vanishing part of P;(g). Denote their
contribution to Py (q) by P%(q) (see fig 5.1(c)). Since the states y and v belong to (in most
cases, when G, is macroscopic) different pure states, the sub-distribution f’}’(q) constitutes
a major part of P9(g)! and serves as a lower bound to it. In Fig. 5.2 we present P%(q) and
Pj(q) for four realizations {J}. The figure shows clearly that the separation is natural, and
not just an artifact of our analysis.

In some realizations, such as the ones that yield Figs. 5.2(a) and 5.2(d), P¢(q) exhibits
two peaks; this splitting is due, as mentioned above, to spin domains Gz and G%. We
analyzed P9(q) in the same way as we did for PS¢(q), using the same fit (5.10), with
G1,1 and ¢ 2 denoting the centers of the two Gaussians. We look for the fraction p of the
realizations, for which P9(g) fulfills the criteria (5.11). We define 7, 7 and 73 in the same
manner as ry, ry and r3 were defined, but now with respect to Go and G3. We chose to use
Gs which is associated with C; and therefor has better statistics than G which is associated

IThe peak of P$C(q) at qi (see Fig. 5.1(b) ) is due to related pairs, taken from C; and Cs.
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Figure 5.2: The distribution P;(g) for four realizations of {J} at T' = 0.2. The distribution
in (a) is the same as in Fig. 5.1(a). The solid line describes P?(q). The dashed line plots the
rest of the of the distribution P;(q) — P%(q), and is dominated by the distribution P%(q)
of overlaps inside the pure states.

with Cy. The results, reported in Tab. 5.1, show a similar behavior to that of P,z. However,
since the values of p are low, the results are not conclusive.

For much larger systems, for which the state hierarchy is expected to have more than
two clear levels, we expect to find a finer structure in P(g). It will exhibit multiple peaks,
each related to different domain sizes. The heights and widths of the peaks are expected
to be governed by the sizes of the state clusters that contribute to it which, in turn, are
determined by the correlations between the spin domains that generating these clusters.
Each of these peaks can be isolated and measured separately by observing the overlap of
states of the corresponding clusters.

The shape of P(q) we describe above resembles the one assumed by RSB. Our picture,
however, is not consistent with RSB: it yields a non-ultrametric state structure, as we show
in Chapter 6.



5.4. Measuring P°(q)

We now measure the contribution of P°(q) = [P%(g)]; to the average distribution P(q) =
[Ps(q)]s. In order to assure that P%(q) indeed represents the overlap between different
pure states, we measured it only for those realizations in which G, was relatively large,
|Ga| > 0.05N. For the rest of the realizations we set P%(q) to zero; hence our P°(q) is a
lower bound of the true one. In Figs. 5.3 we show the distributions P(q) and P°(q). For
systems with Gaussian couplings P?(g) has a very small contribution at |¢| < 0.7 and P°(q)
is the dominant part of P(g) in this range. For an Ising spin-glass with binary couplings,
however, the difference between the distributions is significant and proper care must be
taken when delicate issues, such as triviality of Pq), are investigated [28].
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Table 5.1: The relations between peak centers and the correlated domains G,, at T" = 0.2.
We present the average over {J} and the standard deviation. The results confirm our
prediction: 71,79 > 1; r3 < 1; r9/r; & 1. In the last column we present the part p of the
realizations considered, i.e. the realizations for which the criteria (5.11) have been met.
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Figure 5.3: (a) The partial distribution P°(q) for D = 3 L = 4, 5,6, 8. It is normalized so
that 2 fol P°(q)dq is its weight in the total P(g). For each L the largest error bar is shown.
(b) The distribution P(gq) for the same systems as in (a). The size of the error bars is of
the order or less than the size of the symbols. (c¢) P°(q) for D =4 L = 3,4, 5. Same as in
(a). (d) P(q) for the same systems as in (c).






6. ULTRAMETRICITY

Ultrametricity is one of the main characteristics of the mean field RSB picture. Efforts
to establish [9] or dismiss [29] the existence of ultrametricity in short range spin glasses
did not yield any conclusive results. The main problem is that we can equilibrate only
small systems, where ultrametricity is hindered by finite size effects. The problem with
small systems is that the triplets of states which may present ultrametricity, have a low
statistical weight, which increases with the size of the system. The special tool provided by
our method of analysis allows us to overcome this problem. We allocate the triplets that
should exhibit ultrametricity and base our analysis only the bases of those triplets. This
way we avoid many finite size effects that might obscure the results.

A set of objects with a distance measure D is ultrametric if any three objects «, # and
~ form an isosceles triangle, with the base equal to or smaller than the two equal sides.
This demand can be formulated as

Da[j S max{DM, D/g,y} . (61)

When the system is in the high 7" paramagnetic phase it will exhibit ultrametricity,
since, as L — oo the probability distribution of distances will be P(D,,) = §(D,, — 1/2)
and all triangles will be equilateral. Similar behavior occurs inside a specific pure state at
T < T, since for two states p and v inside the pure state P(D,,) = (D — gra)-

The non-trivial result of RSB is that the pure states themselves are ultrametric. In
order to investigate this claim, we have to focus on triplets of states, each chosen from a
different pure state. For large systems with many pure states this does not require special
care, since almost all triplets of states will belong to three different pure states. For small
systems, however, a large fraction of the possible triplets will have at least two states from
the same pure state. Such triplets should be disregarded.

Our way of analysis provides us with tools to examine ultrametricity for small systems.
We utilize the state hierarchy obtained in Chapter 3 to carefully choose triplets of states
from different state clusters. We chose three clusters: Cy, C1, and Cyp. The last two clusters
are the “children” of C; in the state dendrogram, i.e. C; = Ci, U Cyp.

According to our picture a triplet of states from these three clusters belong to three
different pure states, since we have to pass a macroscopic barrier in order to move from
one cluster to another. To move from Cy to C; we have to flip G, from configuration
|2 to configuration f}. Similarly, when moving from C;, to C;;, we have to flip G3 from
f3=1s (11, fr2) to Ys=3 (11, r2) (see Section 4.2). Due to the small sizes studied, in this
paper we do not present any conclusive evidence that Gs is indeed macroscopic. However,



if (in the L — oo limit) it is not macroscopic, our method predicts that there are only
four pure states (determined by G; and G,) and hence the the RSB picture clearly does
not hold.

At first sight it may seem more reasonable to use the first two levels of the state
hierarchy, where the domains G; and G, are both macroscopic. This is not possible for the
present purpose, for the following reason. In order to check the state space for ultrametricity,
we first have to divide it into two parts, related by global spin reversal, and use only triplets
with all three states from the same part Otherwise ultrametricity breaks down in a trivial
fashion, as we now show. Let x4 and v be two states sampled according to their Boltzmann
weights. The state i, given by S# = —S#_ has the same weight as p and therefore there
is reasonable probability that it or a state close to it (with a similar spin configuration)
will be sampled. For the triplet of states pp,v we have Dy, =1~ Dy, and D,; = 1, so
if D, > 0 we have D,; > max{D,,,1 — Dy, }, which violates ultrametricity. Our analysis
helps us to avoid such triplets of states, since it provides us with a way to identify the
natural symmetric partition of state space into C and C, as discussed in Chapter 3. We
examine only triplets with all three states in C, with G; in configuration 1};.

In order to have a quantitative measure of ultrametricity we define an index K in the
following manner. Let u, v and p be three states, so that D,, > D,, > D,,. We define

D,,—D
K, =+t 2
= 5 (62
The triangle inequality requires D,, > D, — D, so we have 0 < K, < 1. Ultrametricity
demands D,, = D,, so if there is ultrametricity we expect P(K) — §(K) as L — oo.

We measured P(K,,,) for u € Cy, v € Cy, and p € Cyp,. We used our samples for 7' = 0.2,
since as the temperature is lower and more distant from 7, the state structure should be
clearer and less blurred by finite size effects. We measured the distribution of K for each
realization, and then obtained P(K) by averaging over the disorder {J}. We found that
in all systems we find with high probability that K,,, = 1 exactly (see Table 6.1). This
is, however, clearly a finite size effect; as L increases the probability P(K = 1) decreases
dramatically. We would like to disregard this part of the distribution. This cannot be done
if it represents a peak that flattens as L increases. This, however, is clearly not the case: we
present in Table 6.1 the probability P(0.9 < K < 1), and show that its increase is much
too small to compensate for the decrease in P(K = 1).

In order to disregard this finite size effect we truncated P(K = 1) from P(K) and
renormalized to get the distribution

P(K)/P(K <1) K <1

0 K =1 (6.3)

P(KIK <1)= {
For large L we expect P(K = 1) to vanish, and P(K) will approach P(K|K < 1). The
results are plotted in Fig. 6.1. In Table 6.1 we give the mean and variance of P(K|K < 1).
Though we deal with small systems, it seems that P(K|K < 1) converges to a distribution
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Figure 6.1: The distribution P(K|K < 1) of K,,, for p € Cy, v € Ci, and p € Cyp. All
systems are sampled at T' = 0.2.

with non-vanishing mean and variance, indicating breakdown of ultrametricity for the three
pure states studied.

We still have to show that the state triplets we used, from Cy, C1, and Cyp, have a finite
statistical weight as L — oco. We deduced in Chapter 5 that since the average correlation
¢12 between G; and G, does not approach one, |Cy|/N does not vanish. From the same
argument we conclude that if the correlation of Gz with G; UG, does not approach one than
both |C14|/N and |C14|/N do not vanish. Therefore the probability to sample such a state
triplet remains finite, and the system does not exhibit ultrametricity.

We must remark that for the small system sizes measured we could not extract con-
clusive numerical evidence to the effect that G; remains macroscopic. We do have evidence
that the average correlation ¢(Gs, G1 UGs) of G3 with G; UG, decreases as L increases, but it
is not conclusive. Nevertheless, we gave here the prediction made according to our picture,
and have demonstrated the power of our analysis in probing specific parts of state space
to obtain a clearer picture of a specific attribute and eliminate finite size effects.



D L|P(K=1) P09<K<1)| mean(K) var(K)
3 4 0.78 0.0007 0.385 0.073
5 0.57 0.0082 0.426 0.066
6 0.35 0.0126 0.447 0.068
8 0.08 0.0269 0.476 0.066
4 3 0.74 0.0012 0.362 0.068
4 0.38 0.0116 0.413 0.067
) 0.10 0.0095 0.406 0.061

Table 6.1: The third and fourth columns show the probability for K,,, = 1 and 0.9 <
K, <1, for p € Cy, v € Ciy and p € Cyp. The fifth and sixth columns give the mean and
variance of the distribution of P(K|K < 1). All systems are sampled at 7' = 0.2.



7. GROUND STATES OF BINARY ISING SPIN
GLASSES

There has been an upsurge of interest in the Edwards-Anderson model (1.1) with binary
couplings, J;; = £1, at 3 dimensions. Several papers investigated the overlap distribution
P(q) at finite and zero temperature. Most works so far concluded that P(g) is non-trivial
at finite 7" but is trivial at 7" = 0, as in the case of a Gaussian spin glass. However, for a
binary spin glass gga # 1 [21], that is, there is a single pair of pure states with finite entropy
per spin [30]. We apply our analysis to the ground states of this model. Our conclusion is
that P(q) is non-trivial at T = 0.
Berg et al. [22] addressed the issue directly by generating ground states S* = (SY, S, ...S%),

for 512 realizations {J} of systems with sizes L = 4, 6,8 (and for 7 realizations of L = 12).
For each {J} they computed the overlap distribution function P;(q), where the overlap ¢
is calculated between all pairs of ground states u,v. They studied the function obtained
by averaging over all realizations, P(q) = [Ps(q)];. In particular, they evaluated P(0); the
second moment of the distribution 02(g), and the quantity z; /2, where z, is defined by

ES Q/OGP(q)dq (7.1)

If P(q) — 6(]g|—qra)/2 for large L, all these quantities should extrapolate to zero (provided
one uses a < gga). Berg et al. found that all three quantities decrease as L grows; they
could, however, fit the data to LY, with y = 0.72+£ .12, as well as to A+ BL 3, indicating
consistency with extrapolation to both vanishing and non-vanishing limiting values.

Hartmann [21] also studied the size-dependence of z;, and found that it behaves as L™Y
with y = 1.25 + .05, indicating a trivial P(q); the same conclusion was reached by Hatano
and Gubernatis [31] who studied P(0) at finite temperatures. Krzakala and Martin [32]
presented arguments that also support a trivial P(q). Finally, very recently Palassini and
Young [20] evaluated P(q) for a sequence of temperatures and sizes L = 4,6,8,10. They
evaluated x5 as function of L and T" and demonstrated that the data are consistent with
a scaling form. According to their scaling, for fixed 7" > 0 and sizes L > L.(T'), 1,2 goes
to a constant, °°(T") o« T'; hence they find that P(g) is non-trivial at 7" > 0 and trivial at
T =0.

We argue here that all the studies mentioned measured a compound quantity, /s,
which is the sum of two parts; one which is relevant to the question asked, and another
which is irrelevant. Furthermore, for some of the sizes studied, the irrelevant part is as
large as the relevant one.



In order to demonstrate this point we generate an unbiased sample of ground states of
the model (1.1) with binary couplings in 2, 3 and 4 dimensions. The methods we use to
generate those samples are described in Section 7.1.

In Section 7.2 we relate to the observable measured in previous works for 3 dimensional
systems. We analyze the unbiased samples in the same way we analyzed the data for
Gaussian spin glasses in Chapters 3 and 4. We have found that the structure of both
spin and state space seems qualitatively identical to that of a Gaussian spin glass in finite
temperature. As in the latter, this structure persists as L — .

In Section 7.3 we use our method of analysis to isolate the relevant part of P(q) for
3 dimensions, and present the results obtained when this is done. The results verify the
conclusion of Section 7.2.

7.1. Creating an unbiased sample of ground states

We applied the genetic cluster exact approximation (GCEA) algorithm [33] (see Appendix
B) to generate biased [34] samples of ground states of the model (1.1) with the values
Jij = £1 assigned to each bond with equal probabilities'. Out of those samples, which are
biased [34], we generate unbiased ones, of M = 2 x 500 states each? - 500 states and their
spin inverted images.

The ground states of a +.J spin glass can be divided into valleys [30]. A valley V' consists
of all the ground states that can be traversed by flipping one spin at a time without
changing the energy. At 7" = 0, under Metropolis dynamics, each valley constitutes an
ergodic component of the phase space. For a different choice of the dynamics few valleys
my be joined to one ergodic component.

We cannot identify a valley with a pure state, but we are sure that all the states within
a valley are in the same pure state for the following reason. In sub-section 7.1.3 we find
that the density profile inside a valley is smooth and homogeneous, that is, the number of
states inside a ball of radius r in state space depends only on r, the valley size |V| and the
system size N. Since this density profile is smooth as a function of r we conclude there is
no cluster structure inside a valley, and thus no sub-partition into different pure states.

We observe correlated spin domains in the system, as the ones in a system with Gaussian
couplings. If a domain wall could be advanced through these domains, connecting two pure
states by a series of zero energy spin flips, the density profile inside the valley would be
non-homogeneous, in contradiction to our findings.

The samples obtained by the GCEA are biased. Fortunately, the bias over-represents
the smaller valleys, though larger valleys still have a higher probability to be sampled [33].
The probability to miss small valleys by this method is lower then by an unbiased method,
such as Monte Carlo. Thus, we are assured to sample all the statistically significant valleys.

'Tn fact we ensured to have equal numbers of positive and negative bonds.
Zexcept for realizations with less than 1000 ground states.



It is simple to overcome this bias for small systems, of less than 2 x 105 ground states
per valley. For such systems the probability that the GCEA will miss a valley is entirely
negligible [33]. For these systems we can find all the ground states. The GCEA generated
sample contains one or more ground state from each valley (of non-negligible statistical
weight). Given a ground state go, we can obtain all the states that reside in its valley V
using the following algorithm:

1. Initialize two ordered lists of states £ and £L'. (we used alphabetic order for the states
in each list).

2. Place gg in L.
3. While £' is not empty, for each state g € L' do

1. for each spin ¢, if flipping ¢ does not increase the energy of g then

e generate a new state ¢’ from ¢ by flipping 7.
e Look for ¢’ in £ and L. If it is not found, add ¢’ to £'.

2. Move g from L' to L.
4. Return L.

This algorithm requires |V| iterations, one for each ground state in V. In each iterations
it tries N spin flips, and if a new ground state is found it performs a search in £, whose
complexity is Oflog|L|], and a search in £'. The total complexity of this algorithm is
O[NVlog V]

For systems with less than 2 x 10° ground states in each valley we obtained all the
ground states, using the algorithm described above. After obtaining all the states with
this method of exact enumeration, we randomly selected M of them to obtain an unbiased
sample, with each valley represented according to its weight.

For systems with valleys larger then than 2 x 10° ground states our computer resources
did not suffice to obtain all ground states. For those systems we have generated an unbiased
sample by simulated tempering [35] (see Appendix C). For L = 8, D = 3 the computer time
required to generate a large sample exceeds the limit of our resources, and we managed to
obtain a sample only for 60 realizations. Thus, we used another method for this system size,
based on a relation found by Hartmann [36] between the valley size |V| and an estimate of
its “diameter” l,.¢. The numbers of realizations sampled by each method are give in table
7.1

We implemented a variant of the method suggested by Hartmann [36]. We start from
the states produced by the GCEA and generate an unbiased sample of the states within
a valley. The first step is to sort the samples into valleys, using ballistic search [36]. The
second is to estimate the size |V| of each valley, using an empirical scaling relation. In the
last step we generate a sample of M ground states, in which each valley has the proper
weight (proportional to [V]).



D L | exact enumeration ST [p.x
2 7 988

8 995

10 872 13

14 832
3 4 975

5 797

6 899 42

8 60 878
4 3 988

4 452 27

Table 7.1: The number of realizations we have tested for each system size L and dimension
D. For each L and D the table shows for how many realizations the ground states were
sampled by each method: by exact enumeration; by using simulated tempering; and by
using the empirical relation between the valley size and l;,,x.

7.1.1. Sorting ground states into valleys

We used the a method developed by Hartmann, called ballistic search [36]. In order to
determine if two ground states 4 and v are in the same valley we try to find a path from
one to the other by flipping spins without increasing the energy. Let A be the group of
spins which have different values in y and v. We start from p. Iteratively a free spin is
selected randomly from A, flipped, and removed from A. If we have reached v then a path
exist and p and v are in the same valley. If we fail, i.e. we reach a point where no spin
in A is free, it is still possible that a path exists. Hartmann found the the probability p
to find a path if one exists depends on the size of A and the system size. For N = L3 he
found that for |A| < 40 p; > 0.8 and for |A| < 80 p; > 0.2.

We have sorted the states using the following procedure:

1. Choose a state ug from the sample. Initialize a valley Vi, = {po}.
2. Initialize a list of valleys £ = {11 }.
3. For each state u

1. For each valley Vj, € L repeat 3 times

e Choose a state v € V.

e Try to find a path from p to v as described above.

e [f successful
— If a path was found to a previous valley V;s, merge V. with V.
— Else, add p to Vj.



2. If no path was found to any valley, initialize a new valley V = {u}, and add it
to L.

4. For each two valleys Vi, Vi € L repeat 10 times

1. Choose randomly two states p € Vi and v € Vj.
2. Try to find a path from u to v.

3. If successful, merge V}, and V.
5. return L.

This procedure ensures that the probability of an error, i.e. the probability to associate
two states from one valley to different valleys, is less than (1 — p;)'3. For most pairs of
states and most valleys py > 0.5. Thus, the probability to ’split’ a valley is negligible.

7.1.2. Generating an unbiased sample within a valley

All the states of a valley have the same energy, and hence the same thermodynamic weight.
In the sense of Boltzmann weights, any group of M states from the valley will have the
same probability to be sampled. Our definition of an unbiased sample is one over which
the average value of spin i, (S;), is equal (or close) to the thermodynamic average (S;)v
over all the states in the valley V. We obtain such a sample by starting several random
walks inside the valley from distant (see below) starting points and stop when the values
of (S;) for the different walks are close.

We start with the group of ground states from a valley V. It may happen that the set
represents only a 'corner’ of the valley, i.e. some spins that are fixed over the sample are
not fixed over the whole valley. In order to avoid this problem we expand the set. For each
state in the set we generate a ’distant’ state in the following way. We start from the state,
list all the free spins, and flip one of them randomly. We continue to do so, updating the
list of free spins as we go, without flipping a spin twice. When all the currently free spins
were already flipped once we stop and add the generated final state to the set. This way
we produce an expanded set of states Cexp.

To generate an ensemble of points in V' we perform random walks in state-space (zero-
temperature Monte Carlo). Rather than using all the states of Cey, as starting points for
these random walks, we use only a subset A from Ciyp,. On the one hand, to save computing
time this subset should be as small as possible. On the other hand, we want to generate as
many independent distant states as possible. To satisfy these conflicting demands, we try
to identify A, the smallest subset of Ceyx, which has the same number of unlocked spins as
the whole expanded set. Say there are ((Cyayx) spins whose sign is fixed in all the states of
Cexp; then N — ((Cexp) spins are unlocked. The set A is constructed iteratively, initialized
by a randomly chosen first state. If at any point in our iterative process ((A) is the number
of spins that are fixed over A, we identify from C¢y, that particular state p which, when
added to A, gives maximal reduction of (: u = argmin,[((A U {v})]. We add this u to



A. The procedure stops when ( cannot be decreased any further, i.e. when the number of
fixed spins in A equals ((Cexp)-

We generate now our unbiased sample I', of states within the valley. First place each
state px of A = {p1,..., um} in its ensemble T'y. Next, use each of these m states as the
starting configuration for a random walk in the valley. This is done as a zero temperature
Monte Carlo simulation with Metropolis single-spin-flip dynamics. Each walk k is sampled
after every t steps, with ¢ = 2 + 0.1N(N — ((A))?, and the state of the system at step
t is added to an ensemble I'y. We now perform measurements for each spin ¢ which is
non-fized in the set of states A. For each such spin i we calculate (S;), the average value
of the spin in the ensemble Iy, and the variance v; = varg((S;)x) over the m ensembles.
We stop the random walks (and addition of new states to the ensembles I'y) when v, the
average variance (averaged over all the non-fixed spins), is less than 0.01. We assume that
when this condition is met, our zero-temperature simulation has ran long enough to give
us an unbiased sample of the valley. We join all the ensembles 'y into one list of states
I'y = U,c ['x. The states in I'y constitute our unbiased sample of the valley V.

As opposed to most Monte Carlo procedures, we do not discard the states sampled at
the beginning of each walk, since each starting configuration has the same weight as any
other configuration sampled.

7.1.3. Estimation of valley size

We tried two methods for estimating the valley size. The first method uses a new scaling
relation which relates the density profile inside a valley to its size. This method gives a
new insight on the structure of the sub-space in state space which constitutes a valley or a
pure state, but is not useful because of the large computer resources it requires. The second
method is a variant of the method used by Hartmann [36]. It uses an empirical relation
between the valley size and its “diameter”.

The first method for estimation of the valley size |V| is based on a scaling relation
which relates |V| to the result of a local measurement, n,. by local measurement we mean
a procedure that starts at some point p in state-space and wanders away, stopping at some
finite distance from it.

Define n, (1) as the number of states in V' that differ from a given state u by less than r
spin flips. We measure n,(u) for K = max{100, |I'y|} states in V and calculate the average
n, = Zle n.(p)/ K. We found the following empirical relation:

rinr

=1—aexp <—(b +cln N)W) (7.2)

Inn,

In|V|

with a = 0.825, b = 0.492 and ¢ = 0.124. Fig. 7.1 shows the extent to which (7.2) holds.
When we encounter a valley V' whose size we wish to measure, we first measure n, and

then fit it to the form of (7.2), using |V/| as a fit parameter. Estimating a specific valley

size using this relation does not yield an exact result. We give here the standard error SE,
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Figure 7.1: Scaling plot of n, as a function of 7. The plot is scaled by the valley size |V|
and the system size N. Each point is the average in a bin of size 0.1 on the z axis. For each
system size and dimension data triplets of {r,n(r), |V, } (with r = 3...20 for dimensions
D =2,3 and r = 3...12 for D = 4) were taken from all the valleys that were calculated
using exact enumeration, which provided the exact value of |V|. The error bars are smaller
then the size of the symbols. The solid line corresponds to y = 1 —aexp(z) with a = 0.825.
The values for the other parameters are b = 0.492 and ¢ = 0.124.

estimated by

2 V]=sy ’
SE(L, D)* = avg,, (T) (7.3)
where sy is the estimated size of valley V. The average in (7.3) is over all the valleys
V, with |V| > 20 in system of dimension D and linear size L for which we have exact
enumeration of the states (see Table 7.1). We estimate the standard error using different
values of 7 to obtain sy. We have SE(6,3) = 0.29 for » = 8, 0.40 for » = 6 and 0.69 for
r = 4 (estimated over 3934 valleys). For lower values of r we have a larger error. For other
dimensions the error was larger: for 7 = 4 we have SE(10,2) = 0.75 (estimated over 6164
valleys) and SE(4,4) = 0.98 (estimated over 1700 valleys).

For large valleys in the regime r < |V, n, is exponential in r, and calculating n,
for r > 4 is computationally expensive, and inefficient (it is faster to sample by simulated
tempering). For such valleys this method is not useful. It does, however, give us the density
profile within a valley. If there had been a sub structure of clusters inside a valley (e.g. if a
valley contained more than one pure state) we would have observed jumps in the density
profile each time r had reached an inter-cluster distance. We do not observe such behavior.
Thus we conclude that that there is no substructure inside a valley, and therefor all the



states inside a valley belong to one pure state.

The second method is a variant of the one used by Hartmann in [36]. It is based on
an estimate [,y of the “diameter” of the valley. We start from a randomly chosen ground
state p in valley V', and flip iteratively randomly chosen free spins, without flipping a spin
twice. We stop when all the spins that are currently free were already turned. The number
spins we flipped is denoted by lmax (). We repeat this procedure K = 1000 times for each
valley, and average over the results to obtain l.x = (1/K) Zle Imax (1) We estimate the
valley size by

V] = exp(blmax”) , (7.4)

where b = 0.72 and o = 0.96 for D = 3,4. For D = 2 we use b = 0.75 and a = 0.92.

The standard errors, as defined by (7.3), when sy is estimated using this method, are
SE(6,3) = 0.51, SE(10,2) = 0.45 and SE(4, 4) = 0.40.

The approximation used is uncontrolled, and thus might lead into wrong results. We
will demonstrate how that might happen in the next sub-section.

7.1.4. Uncontrolled approximations may yield false trivial overlap

Our method of approximation for the valley size, as well as other methods [30,36] usually
aimed to estimate the valley entropy log |V'|. In general such a method will yield an estima-
tion of log |V| within a certain standard deviation o(L, D), which depends on the system
dimension D and increases with the system size L. The estimated size sy of a valley V is
a random variable given by

sy = Av|V], (7.5)

where \y is a random variable with variance A? which increases exponentially with o (L, D).

The overlap distribution is the sum of the overlap distribution within pure states P?(q)
which converges to (|g| — gra/2), and the overlap distribution between pure states P°(q)
which is non-trivial, i.e. has a finite support for |¢| < gga. In case there are only two pure
states P°(q) vanishes, and P(q) is trivial. This happens if all spin domains G, are fully
correlated. We will show that if o(L, D) increases too fast with L the estimated correlation
between each two domains will approach one, even if the true correlation is saturated at a
smaller value.

We will demonstrate our point on the correlation €5 (defined in (4.6)), between domains
G: and G, but the same considerations can be applied to any two spin domains. For clarity
and simplicity, we will consider a simple scenario, in which ¢;5 = 0. In this case the number
of states in Cy, in which G; and G, are in configurations f}112 is equal to the number of
states in Cp, in which the two domains are in f}4{}s.

We assume each of the clusters C, consists of K valleys, of equal size v. The estimate
of |C,| based on the approximation is

Y sy=v) A =X|Cal, (7.6)

VeCa Vet



where )\, = K~} > _vec, Av is a random variable with expectation value one (if our approx-
imation is tuned correctly) and variance A?/K.

The relation between ¢, and the cluster sizes |C,/|, is given in (5.12). Using this relation
we find that, under our approximation, the estimated value of ¢ is

N A=A\’
_ , 77
2 (A1 n AQ) (7.7)

In order to calculate the expectation value of ¢;o we define two new random variables

)\+ == Al + /\2 (78)
)\, == Al - )\2 . (79)

They both have a variance of 2A2/ K. The expectation values are A, = 2 and ofE = 0. All
moments of distribution of A_ and A, are the same, except the first one. Thus A2 —KQ =
22— )\_,2, and the expectation values of A, and A_? maintain the relation

A2=4422. (7.10)

In order to calculate the expectation value A_? we need to have all the moments of distri-
bution of A\_. If all other moments but the second vanish, i.e. A_ is normally distributed,
then A_” will be 2A2 /K. This value serves as a lower bound for A_2. The expectations value
of 1/A,? is bounded from below by 1/X,? (since A\,? > 0 equality is achieved only if all
moments of distribution, except the first, vanish). The expectation value of ¢;5 is bounded
from below by

A2 A2 2
C ’: —  a > p— > 1 T L~ - . .11
C12 ()\+2) - )\+2 el 2 + A2/K (7 )

If A2/2K — oo as L — oo, then ¢, will extrapolate to one, while ¢, remains zero.

Let us examine the implication of this fact for the commonly studied z,/, = fi{% P(q)dq.
As we will show in Section 7.3, the main contribution to P(q) in the interval 0 < ¢ < 1/2
comes from the overlap of states if G; is in the same configuration and G, is flipped, or
vice versa. The weight of the contribution of these state pairs to P(q) is (1 — ¢12)/2. Thus,
when A?/K > 1 is large enough, our estimate of 2/, will be &1/, ~ K/A?.

Let us assume that the standard deviation o(L, D) grows linearly with L, o(L,D) ~
aL, so that A? ~ exp(2aL). We assume also that the number of valleys in the system
is exponential in L, so K ~ exp(bL). If b < 2a the approximation will yield Z;/, ~
exp((b — 2a)L) even if z,/, remains finite.

In [37] Hartmann studied the number of valleys as a function of the system size for
dimensions D = 2,3,4. It not clear that this number does increase exponentially with
L, and for D = 4 it seems more like a power law dependence. For this case we need
o(L, D) to increase not faster than log(L). For D = 2,3 exponential dependence does
not look improbable, with b < 2. Thus, in order to have a reliable approximation we



must have a < b/2. Since our approximation is uncontrolled we have no means to assure
o(L, D) satisfies this requirement. Thus, results that point to a trivial overlap using such
an approximation method are unreliable.

Our results, presented in Section 7.2, show that ¢15 for D = 2, 3 extrapolates to a value
smaller than one. This value should not be regarded as the correct value of ¢, at the
thermodynamic limit, but only as an upper bound to it. Our main conclusion, that ¢ < 1
at L = oo and therefor the domains G; and G, do not merge, still holds.

7.2. State hierarchy and spin domains

7.2.1. State hierarchy

The first step of our analysis is to cluster the states. The resulting dendrogram for a
specific realization of 6% spins is presented Fig. 7.2(a). The state distance matrix, ordered
according to the dendrogram, is presented in Fig. 7.2(b). The relative height of each node
in the dendrogram and the distinct patterns in the distance matrix show that there is a
clear hierarchical cluster structure of the ground states.

We present in Table 7.2 the average distance (3.2) inside each of the clusters C, C; and
Cy, and the width (3.3) of the distance distribution inside these clusters. The results look
similar to those obtained for Gaussian spin glasses at 7" = 0.2. The average distance D(C)
within C is about 9 times larger then the average distance 1 — D(C) between C and C. We
also see that the average distance D(C;,Cy) between C; and Cy is more than twice (or three
times for D = 3,4) the average distance inside each of them.

We also see that the average distances inside clusters decrease as the dimension of the
system increases. For D = 3,4 these distances decrease as L increases, but D = 2 shows
the opposite behavior.

The line in Table 7.2 marked ’8 ST’ presents the results for the 60 realizations of size 83
we sampled by simulated tempering. These results are unbiased, but since the number of
realizations is small the results are highly noisy. We compare them with the results for the
878 realizations sampled by valley size approximation. Taking into account the large error
expected because of the small number of realizations measured by simulated tempering,
the results are in reasonable agreement.

7.2.2. Spin domains

We extracted the correlated domains using the procedure described in Chapter 4. The size
distributions for the largest two domains G; and G, are plotted in Fig. 7.3. We see that for
dimensions D = 2,3, 4 the distribution seem to converge (over most of the domain) already
for the small system sizes analyzed. The averages and the widths of these distributions,
presented in Table 7.3, also point to a convergence of the distribution.

For dimension D = 2 the domain G; consist of about 50% of the spins, and is noticeably
smaller than for dimensions D = 3,4, where it consist of about 75% of the spins. The second
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Figure 7.2: (a) The dendrogram obtained by clustering all the ground states, of a particular
realization {J}, of size N = 6. (b) When the states are ordered according to the den-
drogram, a clear block structure is seen in D,,, the distance matrix of the ground states.
Darker shades correspond to shorter distances.

domain is also smaller for D = 2 (|Go| ~ 0.07N) than for D = 3,4 (|G2| ~ 0.1N). Thus, in
two dimensional systems we expect higher entropy, since the number of free spins or small
spin domains, which are left out of G; and §,, is larger than in higher dimensions. Note
that still we do not see any qualitative difference between D = 2 and D = 3, 4.

We have seen that the domains do not vanish. Now we have to assure they do not
merge, i.e. that their correlation does not approach one. In table 7.3 we also present the
results for the average correlation ¢; (defined by (4.6)) between the domains G; and Gs.

For D = 2, ¢;5 decreases as the system size L increases. For D = 3 it increases, and in
order to determine if it approaches one we carried out fits of the form

C12(L) = E1a(00) — AL™ (7.12)

with A and ¢ as fit parameters. The minimum of x? is 1.7 x 10~* for ¢j2(c0) = 0.54(17)
(with A = 1.82(1.86) and ¢ = 1.20(87)). For ¢j3(00) = 1 we have x* = 3.4 x 107* ((with
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Figure 7.3: Normalized size distributions of the spin domains G; and G, for systems with
different dimensions D and sizes L.

A = 1.40(9) and ¢ = 0.40(4)). Our result ¢15(00) < 1 is not conclusive and in itself does
not give a convincing evidence for a non-trivial overlap. A much more convincing evidence
will be given in Section 7.3.

For D = 4 we have only two data points, and it is useless to extrapolate.

When G, vanishes we cannot determine if it is because its size is zero, or because ¢ &~ 1
and it merges with G;. Therefor we have calculated the results for |G,|/N and ¢;2 only for
those realizations where G, does not vanish. We report in the last column of Table 7.3 the
probability P (G, # () for Gy not to vanish.

The results obtained by simulating tempering are in agreement with the ones obtained
by valley size approximation. In particular, the results for |Gy|/N and ¢, by which we
distinguish a trivial overlap distribution from a non-trivial one, are in reasonable agreement
(particularly when taking into account the large statistical error of the simulated tempering
results due to the small number of realizations sampled).

We have also measured the size of Gs, the largest correlated spin domain which is
unlocked over C;. The results are given in Table 7.4. We again give the results only for



realizations on which G3 does not vanish, and give in the right column of the table the
probability P(G3 # 0)). The correlation ¢(Gs, G U Gs) (of G3 with the largest domain corre-
lated over C;, which includes G; U G,) increases but has small values. We cannot determine
whether for large L it approaches one or a smaller value.

The size of G3 decrease with the system size. We carried out fits of the form

Gs(L)|/N = Gs(c0) + AL™? (7.13)

with A and ¢ as fit parameters. The results are given in Table 7.5. For D = 2 the minimum
of x? is 1.0 x 102 for G3(oc0) = 0.43(8), and for D = 3 the minimum of x? is 2.8 x 103
for G3(00) = 0.40(4). For both dimensions imposing G3(c0) = 1 yields in a much higher
x2. For D = 4 we have only two data points and it is useless to extrapolate.

7.2.3. Spin space structure

After identifying the spin domains from the structure of the state space, we would like
to see if this structure is apparent in spin space. As in Chapter 4 we cluster the spins,
using the distance matrix (4.10) as an input to Ward’s clustering algorithm. The resulting
dendrogram for a specific realization is presented in Fig. 7.4(a). In Fig. 7.4(b) we present
the spin distance matrix reordered according to the dendrogram.

Both Figs. 7.4(a) and 7.4(b) suggest there is a non-trivial structure in spin space, with
large highly correlated spin clusters, seen as wide nodes with low 7 values in 7.4(a) and
indicated by the large dark squares in 7.4(b).

We turn now to identify those clusters gi, g> in our spin dendrogram, which can be
associated most naturally with the domains G; and G,. For @ = 1,2 we find the cluster g,
in the spin dendrogram which is most similar to G, using the similarity measure S defined
in (4.11). The results in Table 7.6 show that for all dimensions when L is not too small
the similarity is large. This suggest that the spins domains we identified have a meaningful
physical role in spin space for binary spin glasses just as for spin glasses with Gaussian
couplings.

7.3. Correct extrapolation of the overlap distribution

The overlap distribution Py(q) for a particular realization has, at 7' = 0, the typical form
presented in Fig. 7.5. It has a large peak centered at some gy =~ gga, and one or more
smaller peaks. The largest peak is due to the overlap of pairs of states that belong to the
same pure state. Denote the overlap distribution of such pairs by P%(q). The other peaks,
at lower ¢, are due to the overlap between states that belong to two different pure states.
The corresponding overlap distribution is P$(g) and we have

Py(q) = Pi(q) + P7(q)  and  P(q) = P'(q) + P°(q) (7.14)
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Figure 7.4: (a) The dendrogram obtained by clustering the spins of the system of Fig. 7.2.
For this realization g, = G, for both @ = 1,2. (b) When the spins are ordered according to
the dendrogram, a structure of correlated spin domains emerges; darker shades correspond
to shorter distances and higher correlations.

where the second equation is the average of the first over all realizations. The observable
Zq, defined in (7.1), can be written as the sum

ro=aitaz=2 [ Pz [ P (7.15)
0 0

Irrespectively of whether P(q) is trivial or non-trivial, one expects that the width of P%(q)
decreases with increasing size, since P(q) — 6(|q| — gra)/2 as L — oo. Therefore as L
increases, the integral 2 decreases towards 0;

T~ LY (7.16)

On the other hand, the behavior of P°(q) (and z9) does distinguish a trivial P(g) from
a non-trivial one; in the first case P°(q¢) — 0, while in the non-trivial case P°(¢q) and x?



D L | D@ w(C) D(C) w(C)

2 7 0.158+0.095 0.094£0.057 | 0.102+0.068 0.053+0.035
8 0.162+0.094 0.093£0.055 | 0.1084+0.067 0.053+0.034
10 0.158+0.086 0.086+0.051 | 0.10840.062 0.04840.031
14 0.168+0.080 0.086£0.051 | 0.11840.055 0.047+0.029

3 4 0.118+0.081 0.078+0.057 | 0.070£0.051 0.039+0.031
3 0.101£0.072  0.064=£0.054 | 0.062+0.040 0.031+£0.026
6 0.094+0.067 0.060£0.054 | 0.05940.037 0.028+0.026
8 0.078+0.050 0.049£0.050 | 0.050£0.021 0.018+0.017
8 ST | 0.087£0.058 0.053£0.046 | 0.057£0.025 0.024+0.021

4 3 0.098+0.074 0.068=+0.056 | 0.05740.043 0.033+0.029
4 0.081+0.063 0.056£0.054 | 0.0484+0.033 0.023+0.025

D(Cg) ’U)(CQ) D(Cl,CQ) UJ(Cl,CQ)

2 7 0.084+0.065 0.047£0.036 | 0.2474+0.150 0.063+0.040
8 0.093+0.067 0.049£0.037 | 0.2504+0.146 0.064+0.039
10 0.098+0.061 0.047£0.033 | 0.24440.137 0.058%0.035
14 0.113+0.058 0.048£0.032 | 0.2594+0.133 0.057£0.033

3 4 0.057+0.053 0.036+£0.035 | 0.2044+0.147 0.04340.031
) 0.054+0.045 0.030£0.031 | 0.1814+0.142 0.034+£0.026
6 0.056+0.044 0.030£0.033 | 0.1784+0.143 0.029+0.023
8 0.048+0.028 0.021£0.026 | 0.1624+0.135 0.01940.015
8 ST | 0.05940.039 0.028+0.033 | 0.1734+0.130 0.02740.023

4 3 0.046+0.045 0.029£0.033 | 0.1774+0.142 0.035+0.028
4 0.044+0.037 0.025£0.032 | 0.1644+0.142 0.023+0.019

Table 7.2: The average distances within and between the state clusters. The numbers are
the averages over all realizations 4 the standard deviation, i.e. [z], + ([#2], — [z],%)"/2.

do not vanish as L — oco. We believe that previous analysis was hindered by the lack of
ability to decompose P(g) and 1/, into its two constituent parts; our method enables us
to perform this task.

We calculate the distribution f’j’(q), defined in Chapter 5, to which only pairs of states
pu € C; and v € Cy contribute. This function is a lower bound to P¢(g), since we might
have for some realizations a third macroscopic cluster, in which case C; contains states
from more than one pure state. When this happens, some pairs of states, both taken from
C,, contribute to P%(q), and we do not include them in P9(¢). As in Chapter 4, in order
to assure that C; and Cy indeed do not belong to one pure state, we consider only those
realizations for which |Gy| > 0.05N. Otherwise, we set P9(g) = 0.

It is important to stress the fact that the main result of the present study, that there
are states whose overlap contribution should be separated from the self-overlap peak and
does not vanish in the thermodynamic limit, does not depend qualitatively on the way



L |G1|/N |Ga| /N C12 P(Gy # 0)
7 0.55+0.28 0.0954+0.078 0.82+0.19 0.871(3
8 0.54+0.27 0.0934+0.072 0.80+0.21 0.846(4

)

)

10 |0.55+0.24 0.097+0.069 0.77+0.23 0.796(6)
14 | 0.51£0.23 0.088+£0.070 0.74+0.24 0.876(4)

3 4 ]0.64£025 0.093£0.096 0.20+0.23 0.873(4)
)

)

)

3 0.69+0.23 0.090£0.096 0.27+0.27 0.828(5
6 0.70+0.22 0.093+£0.095 0.34+0.29 0.894(5
8 0.75+0.16 0.0984+0.107 0.394+0.31 0.800(5
8 ST | 0.73+£0.18 0.090+0.087 0.40+0.32 0.78(2)
4 3 0.67+£0.23 0.0884+0.094 0.22+0.24 0.914(3
4 0.7440.20 0.104+0.103 0.36+£0.29 0.750(9)

Table 7.3: Normalized domain sizes of G; and G5, and the correlation between them. All
measurements were taken only when the domain concerned is not empty. The numbers are
the averages over all realizations 4 the standard deviation, i.e. [z]; + ([z%]; — [2],%)"/2.

L Gs|/N c(Gs,G1UGy) P(Gs #0)
7 0.082+0.183 0.2040.22 0.733(6
8 0.061+0.112 0.21+0.21 0.746(6

D
2
10 0.057+0.043 0.23£0.21 0.568(8

)

(6)

(8)

14 |0.047+0.038 0.24+0.21  0.673(8)

3 4 |0.079+0.195 0.22+0.23  0.783(5)
(8)

(8)

(8)

5 0.04220.089 0.24+0.23  0.637(8
6 0.045+0.069 0.29+0.25  0.563(8
8 0.0380.067 0.34+0.27  0.520(8
8 ST | 0.043+0.060 0.344+0.26  0.67(3)
4 3 0.070£0.182 0.22+0.24  0.828(5)
4 0.045+0.062 0.34+0.25  0.46(1)

Table 7.4: Normalized domain size for G3, and its correlation with G UG,. All measurements
were taken only when the domain measured is not empty. The numbers are the averages
over all realizations + the standard deviation, i.e. [z]; + ([z%]; — [2],%)/2.

the state clusters are determined. In fact, any method, which projects out a particular
contribution to P;(gq) and has a non vanishing weight in the L — oo limit, will lead to the
same conclusion. The only requirements are that the method is applied for all system sizes
in the same way and the contribution is measured in absolute weights with respect to the
total P;(q).

In the present case Pf(q) also has a clear physical meaning. It is the distribution of



D | G3(c) A ¢ X2

2 10.43(8)  24.(44.) 3.0(1.4) [ 1.0x 1073
impose 0 2.5(6) 0.82(15) | 3.7 x 1073

3 0.40(4) 4.(43.) x 10° 10.(8.) [28x 1073
impose 0 3.9(3.1) 1.2(5) | 26.x 1073

Table 7.5: Fit of the size of the domain Gz for dimensions D = 2,3 to the form z(L) =
G3(00) + AL~?, with G3(00) as a fit parameter and when we impose G3(oc0) = 0.

D L S(91,G:1)  S(92,92)
2 7 0.98+0.09 0.8540.22
8 0.98+0.10 0.89+0.19
10 0.98+0.09 0.97+0.09
14 0.98+0.07 0.98+0.06
3 4 0.9940.03 0.8340.23
5 0.9940.02 0.884+0.19
6 0.99+0.03 0.9440.14
8 0.99+0.02 0.97+0.06
8 ST | 0.9940.02 0.96+0.07
4 3 0.99+0.02 0.84+0.23
4 0.99+0.03 0.94+0.12

Table 7.6: The similarity S(g,,Ga) of the spin domain G, and the cluster g, most similar
to it in the spins dendrogram, for a = 1,2. All measurements were taken only when the
domain concerned is not empty. The numbers are the averages over all realizations 4 the
standard deviation, i.e. [z]; + ([z%]; — [z],°)"/2.

overlaps between pairs of states on the two sides of the second largest free energy barrier
in the system.

We have shown in Sec. 7.2 that, since G, remains macroscopic and ¢» does not ex-
trapolate to one, the overlap distribution at the L — oo limit is not trivial. In order to
demonstrate explicitly that this indeed is the case, we studied P°(q) and P(q). The func-
tion P(q) = [P}’(q)]J, presented in Fig. 7.6, is a conservative estimate, and a lower bound,
for P°(q). For comparison, we also present the full P(q) in Fig. 7.7.

Having obtained P°(q) we denife 2, which serves as a lower bound on z2, by

7= 2/: P°(q)dq . (7.17)

We found that the rate of convergence of P°(q) to its limiting large-L form is non-
uniform. For the sizes studied, convergence (with increasing L) is much slower in the
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Figure 7.5: The state overlap distribution P(q) for four different realizations {.J} for system
size L = 8. Each distribution is divided to its components. The partial distribution P}’(q)
(see text), is represented by a solid line. The rest of the distribution, P;(q) — P%(q), which
includes P(q), is represented by a dashed line.

interval 0 < ¢ < 0.4, where P°(¢) has low values and large relative errors. On the other
hand, in the interval 0.4 < ¢ < 0.7 it seems to have converged. Therefore we chose this
range for our analysis, and calculated the integrals

0.7
=2 / Plq)dg, (7.18)
0.4
0.7
70 =9 / Po(q)dq (7.19)
0.4

The values obtained for L = 4,5, 6,8 are presented in Table 7.7. Perhaps the most direct
evidence for our claim is the manner in which the values of 2*° level off as the size increases,
at 0.047. On the other hand, those of x* decrease with size. We performed a fit of the latter
to the form

z*=A+BL™Y (7.20)

The results of several attempts to fit the data to this form are summarized in Table 7.8.
The best fit (with x* = 1.0x 10~°) was obtained for y = 2.06(49) and A = 0.042(15), which
is close to 0.047. Imposing this value, i.e. setting A = 0.047 and fitting B and y, we had a
somewhat larger x? = 1.1 x 107%; imposing A = 0 yields a worse fit, with x? = 4.2 x 1075,
We believe that these results clearly show that P(q) is non-trivial.

To make contact with previous analysis we also calculated 1/, and performed similar
fits, the results of which are also presented in Table II. As discussed above, in this range
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Figure 7.6: The partial distribution Po(q) for L = 4,5,6,8. It is normalized so that
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Figure 7.7: The distribution P(q) for L = 4,5, 6, 8. The size of the error bars is of the order
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L z* T*° £E1/2 53?/2

410.161(5) | 0.064(10) | 0.157(7) | 0.109(14)
5| 0.115(5) | 0.048(11) | 0.105(6) | 0.082(15)
6 | 0.096(5) | 0.048(10) | 0.095(5) | 0.074(14)
8 | 0.070(4) | 0.047(12) | 0.062(4) | 0.057(14)

Table 7.7: Values of the observable (defined in (7.1), (7.17), (7.18) and (7.19)) for different
system sizes.

of ¢ the function ﬁo(q) has larger statistical fluctuations, and is decreasing with size (to
a limiting value that is expected to be small, albeit non-zero). Indeed the best fit for z;,
is attained for y = 2.07(1.51) and A = 0.036(47), with x? = 1.0 x 107*. Note that this x?
is 10 times the value obtained when fitting z*. Since our estimated value of A, as well as
the estimates of others [21,22] is much smaller then the values of z;/, used to perform the
fit, it is hard to distinguish, by means of this extrapolation, between A = 0 and a small
positive A. Indeed, when we impose A = 0 or both A =0, B =1 we get fits of comparable
quality, with an exponent which is consistent with Hartmann’s estimate.

Finally, we attempted to fit the data for Z¢ /- The values of ¢ /2 for the system sizes
used are smaller and noisier the the results for z*. Nevertheless, using the same fit for 27 ,
yields minimum of x? = 1.5 x 10~° for y = 1.94(1.02) and A = 0.040(20), quite consistent
with the results obtained for x*.

fit A B Y X2

2%, best 0.042(15) 2.06(1.16) 2.06(49) 1.0 x 10 °
x*, imposed A 0.047 2.45(36)  2.21(10) 1.1x107°
z*, imposed A 0 0.88(13)  1.24(9) 4.2 x107°
21/, best 0.036(47) 2.10(3.68) 2.07(1.51) 1.0 x 10
T1/9, imposed A 0 0.97(26)  1.33(17) 1.3 x10™*
T1/2, imposed A, B | 0 1 1.35(2) 1.3x10*
%9, best 0.040(20) 1.00(1.16) 1.04(1.02) 1.5x 1075

Table 7.8: Best fit parameters for (L) = A+ BL Y.



8. SUMMARY

We presented a new picture of the spin glass-phase in finite dimensional systems. This
picture is consistent with recent numerical findings of a non-trivial overlap distribution
[7,9,12] and macroscopic spin domains with microscopic surface tension [11]. It is consistent
with the droplet picture [6], and inconsistent with the mean-field RSB picture [2].

In the spin glass phase the system consists of macroscopic spin domains of variable sizes.
Each union of these domains is a core of contiguous spin clusters with microscopic surface
tension. These domains correspond to free energy barriers of variable sizes. This variability
give rise to hierarchical structure in state space. Each level in the hierarchy is associated
with a domain: the first (highest) level is associated with the largest domain, the next level
is associated with the second largest domain and so on. In each level the state clusters are
partitioned with respect to free energy barriers associated with the corresponding domain.

For each level of the hierarchy, except the first one, there are different domains correlated
over each state cluster, e.g. the domain Gs is correlated over C; while a different domain
G; is correlated over Cy. G3 # G4, although in general they share some of their spins. The
state space structure in the lower levels of the hierarchy has to be further investigated for
larger systems. Specifically, one has to verify that G3 and G} do not vanish as L — oo.

This hierarchical picture is not consistent with RSB. In the RSB scenario if we take
clusters from a certain level of the hierarchy, e.g. C; and Cy, than the partial distance matrix
f)ij for i € C; and j € Cy is uniform. We have concluded in Chapter 3 that width of the
distribution P(D;;)of values in D;; does not vanish.

Furthermore, we presented evidence that the existence of a macroscopic Gs, separating
C, into two pure states (or sets of pure states) leads to lack of ultrametricity.

In Chapters 5,6 and 7 we demonstrated how, by using our methods we can separate
the state space into its components. This way we can examine only a chosen part of this
space, thus obtaining more reliable numerical results and reducing finite size effects.

In particular, the power of our analysis is demonstrated in resolving the overlap distri-
bution P(q) of binary spin glasses at 7" = 0. Other papers extrapolated the total P(q) and
concluded that it becomes trivial in the thermodynamic limit. We found that a relevant
part of P(q) converges to a non-trivial distribution.

Clustering analysis can be applied to other systems with a non-trivial phase space
structure, which have several pure states unrelated by any apparent symmetry, such as
random field models or other models with random anisotropy [38]. It can help not only in
the investigation of the macroscopic properties of the system, but also in understanding
the micro-structure that give rise to these properties.






A. WHY MUST SPC BE A SHORT-RANGE
ALGORITHM?

SPC is a hierarchical clustering algorithm which works by mapping the data into a ¢-state
Potts model (typically ¢ = 20) with the Hamiltonian

H=—> Jijbs.s, - (A.1)
i<j
Each data point ¢ is mapped onto a spin o; and the distances d;; are translated into the
interactions

Jij = exp(—dij2/2a2) y (AQ)

where a is a characteristic distance which we will discuss later. The model is then simulated
for different values of the temperature 7'. If for a certain T the correlation ci; = (d,,0,) is
larger than 0.5 then the points 7 and j are in the same cluster.

At T = 0 the spins are fully correlated and they all form one cluster. At high T the
correlation vanishes, and each spin is in its own cluster. There is an intermediate range in
which groups of spins which are closer to each other, i.e. have stronger interactions, will
be correlated among themselves, but they will not be correlated with each other. This is
the super-paramagnetic phase, in which each correlated spin cluster is like a super-spin
which is. in its turn, uncorrelated with the other super-spins. In this case we will have a
non-trivial cluster structure and thus obtain a non-trivial partition of the data.

Since the simulation time of SPC increases linearly with the number of bonds, it is
seemed reasonable to consider only the distances for the K nearest neighbors of each spin
and omit the other bonds. The characteristic distance a is taken as the average of these
distances. Since the interactions decrease exponentially with a, it indeed seems reasonable
to discard bonds J;; for which d;; > a.

This method of nearest neighbors works well on a noisy data (such as biological [39]
or image processing [40] data) where the clusters are connected via a noisy background of
points scattered around them [41]. In the special case where there is no such background,
and where the distances between points inside a cluster are much smaller than the distance
between points of different clusters, as in the data for the states or spins of a spin-glass, all
the nearest neighbors of a spin will be in the same cluster. The determination of the bonds
will divide the data into the lowest level clusters, but the upper hierarchical structure will
not be recovered by the SPC, since there will be no bonds between the clusters to give
information on their organization.



For this reason we have to use SPC without discarding any bond. The distance a will
have to be determined so that all stages in the hierarchy can be found by the SPC. This
in itself constitutes a problem. The interactions J;; are sensitive to the distance d;; only if
dij ~ a. If dij > a then J;; = 0 and if d;; < a then J;; ~ 1. By setting the value of a we
will determine which stages in the hierarchy will be found by the SPC.

Even if the dependence of the interactions on the distances were not exponential, we
would have encountered another problem. In order for the algorithm to detect the cluster
hierarchy we need the distances between clusters to be distinguishable by the SPC. On the
other hand, if the bonds between the clusters are not very week, the super-paramagnetic
phase will not appear. We will prove this claim for a simple mean-field model and than
study its implications on realistic finite dimensional data.

A.1. Condition for the existence of a super-paramagnetic phase

We consider a g-state Potts model of M N spins, divided into M clusters of N spins
each [41]. The state of the system is described by {o?} - the values of spins t = 1... N
in clusters @ = 1... M. The interaction between two spins of the same cluster is J;/N,
and the interaction between two spins of different clusters is Jo/MN. Both interactions
were normalized so that their contribution to the energy per spin will remain finite in the
N, M — oo limit. The Hamiltonian of this system is

1 M 1 N N
H:_NJIZZ(SU?U?_MNJQZzzdagU? . (A3)

a=1 i<j a<b =1 j=1

a

¢, as the fraction of

We now define for each cluster a and spin state a the variable x
spins in cluster a that are in the state «,

T8 = % D bosa - (A.4)

H can be written as

M=, (szgf - %) ~ TR Y Y atal (A.5)
a o a<b «
At the paramagnetic phase all the variables 2% are equal. In the low 7" phase the spins are
correlated, and most spins in cluster a will have the same value, which we refer to as the
super-spin of cluster a, and denote by &,. In this phase we expect z§ to be much higher
than the other z%.
Following the solution presented in [42], the free energy is minimized when z2 is of the
form

8, = 2L+ (g = 1)s];
(1 - S)a . 7é 6'a 3 (A6)

a __
xy =

Q=



where 0 < s < 1 is the order parameter. High s yields strong correlation between the spins
within a cluster. Substituting (A.6) into (A.5) we obtain the energy per spin

1 g—1 1 1 M -1
1 g9 _ _ = 2, - _ ) _ _ 2 _
H 2J1< p 57+ . > % Jo[(1 —2q)s” + (2¢ — 2)s + 1]

1
——J282 265715'1: . (A?)

The first and second terms of (A.7) correspond to the interaction between the spins within
and between clusters. The third term describes the interaction between the super-spins. It
has the same form of the simple Potts Hamiltonian (A.1) with equal bonds. Thus, the state
which minimizes the free-energy of the super-spins is identical to that of (A.6). In analogy
to the variables ¢ we now define Z, as the fraction of super-spins in state o. The solution
which minimizes the free energy is of the form

where § is the order parameter for the super-spins, in analogy to s. Thus
1 1

1 1 q—1
N i = > o Mia(Mio —1) = M (=824 - — — ) . A.
port a0p - 2 x( z ) 2 ( q 8 +q M) ( 9)

We have now

—1
—J2q2q 22+ C, (A.10)

where C is a constant independent of s and 5. Removing the constant and taking the limit
M, N — oo we obtain

1 qg—1, 9 qg—1 g—1 5.5
—H=—7 —J — J — J A1l
vt 1oy TR — kT s — b =58 (A.11)

Note that when s > 0 the contribution of the 5§?-term to the energy per spin (A.11) is finite
in the thermodynamic limit.
The entropy per spin of the system is

1 1.
TS =S() + 556, (A-12)



where

S(s) = _1+(q—1)sln <1+(q—1)3>

q q
(g-1)A-s), (la=1(A~-5)
p 1 ( p ) . (A.13)

Note that the contribution of the super-spins to the entropy per spin vanish as N — oo.
The free energy per spin f is given as a function of s and § by

MNBf(s,8) =BH—S . (A.14)

For s = 0 there is no contribution of the super-spins to the energy, and the entropy will
determine § = 0. For s > 0 the contribution of the super-spin energy to f will be much
larger then that of the entropy, and the minimizing the energy term will require § > 0.
Thus, as soon as the spins within the clusters are ordered the super-spins will be ordered.
We will have no super-paramagnetic phase in which s > 0 and § = 0.

We want to find the temperature T} of the phase transition (s = 0) — (s = s.) and
the temperature 75 of the transition (§ = 0) — (8§ = &.). It is clear that T; > T since the
energy term of § vanishes above T, and the entropy term of § is maximized when § = 0.

The critical parameters 77 and s. are solved jointly from J0f/0s = 0 and f(0,0) =
f(s¢,0). We will assume

BJy < min{fJy,1/q} . (A.15)

Then, up to a constant, we have

81(s,0) = ~B5 " L —S(s)+ 0[] . (A.16)

Keeping the only the first two terms we have the mean field free energy of the Potts
model [42], for which the transition parameters are

pri =Ky, (A.17)
se=(¢—-2)/(¢=1), (A.18)

where §; = 1/T; and K, = 2(¢—1)In(q — 1)/(¢ — 2). Note that 5, = K,/.J;. Thus, for the
above approximation (A.15) to hold it is enough that

Jo < Ji/q . (A.19)

We can find 75 and S, in the same manner. Since 77 > T, we assume s > s.. The free
energy per spin is given by

1 1 _
q2q $25% — —8(5)+C, (A.20)

Bf(s,8) = —BJs



where the term C is independent of 3. This free energy is again similar to the free energy
of the simple Potts model. The transition parameters are

ﬁg NJ2 82 = Kq 5 (A21)
Se=1(1-2)/(a—1). (A.22)

The above parameters were deduced assuming s # 0. If we find Sy < [3; the transition
of 5 will occur as soon as s = s, i.e. at 3 = ;. In this case we have 85 = j3;. This
means that there is a single phase transition in the system, from a ferromagnetic to a
paramagnetic phase. There will be no super-paramagnetic phase.

The condition for the existence of a super-paramagnetic phase is 5, > [3;, which yields

Jl/J2 > 82N > SC2N . (A23)

We have already limited this calculation to the case where (A.19) holds. We see that
even under this assumption Js is not weak enough to ensure 8 > ;. Higher values of .J,
will only cause (32 to decrease as 1/.Jo, while 8; will not change significantly.

A.2. Implication on a finite dimensional data

Now we can consider the limitations on the data we want to analyze with the SPC. We
assume to have one level hierarchy. The characteristic distance between points inside the
clusters is d;, and between points outside the cluster is dy. The corresponding interactions
are defined by

Ji(d) = exp(—d;*/2d%), i=1,2. (A.24)

If we want to have a super-paramagnetic phase, condition (A.23) must be fulfilled. In terms
of the distances d; the condition is

d22 - d12 2
_— N . .
exp ( 57 > 5. (A.25)

Assuming s, ~ 1 and dy”> > d;* we have the condition dy/a > /In(N).
A typical data is taken out of a d-dimensional space. Let d; = 1 be a characteristic
small distance. If d, is a characteristic macroscopic distance we can estimate dy ~ N4

The condition we have on « is
Nl/d

\/lnN.

If we want the SPC to consider all the distances in the data, a cannot be smaller then
the small distance d;, and it probably have to be larger if we want the SPC to consider
also distances on the scale of dy. So we must set a > d; = 1. This imposes that

a< (A.26)

N?¢>InN . (A.27)



d

minimal N

9
10
11
12
13
14

41,831
332,106
2,764,920
24,128,002
220,290,009
2,099,467,159

Table A.1: The minimal number of points N that fulfills condition (A.27) for a given

dimension d.

In Table A.1 we give the minimal N values that fulfill the condition (A.27) for some values
of the dimension d. We can see that N increases exponentially with d. For the data sets of
states and spins of spin glasses we have d > 100, and the number of points N is far from

satisfying (A.27).




B. GENETIC CLUSTER EXACT APPROXIMATION

The cluster exact algorithm (CEA) [43] is an efficient way to generate ground states of a
binary spin glass. The genetic CEA [33] is an enhancement of the CEA by a hybrid genetic
optimization algorithm [44].

B.1. Cluster exact approximation

The CEA consists of the following stages. It finds in the system contiguous ferromagnetic
domains, i.e. domains which have no frustration. It 'freezes’ all the spins outside these
domains. Since there is no frustration inside the domains the constrained system can be
mapped to a ferromagnet with local fields. A ground state of this ferromagnetic system is
found [45]. The resulting configuration is mapped back to the original spin glass system.

The ’ferromagnetic’ domains are obtained in a greedy manner. The first spin in the
domain is chosen at random. At each iteration a spin is chosen among the neighbors of the
domain. If the inclusion of the spin in the domain leads to frustration inside the domain
it is discarded and marked. If not, it is added to the domain. The algorithm will not try
to join a marked spin again. When all the neighbors of all the spins in the domain are
marked, a new, unmarked, spin is chosen as the seed of a new domain and the process
starts again. The process stops when all the spins are either included in ferromagnetic
domains or marked.

A gauge transformation is performed so that all the bonds connecting two spins in the
same ferromagnetic domain will be positive, i.e. each domain is mapped to a ferromagnet.
The marked spins are frozen. Each marked spin is now inducing a constant magnetic field
on its neighbors. The current system is then a ferromagnet with local magnetic fields.

A ground state of a ferromagnet with local random fields can be found with a small
computational effort [45]. The system is mapped into a graph. The vertices are the spins.
Between each two neighboring spins ¢ and j there is an edge whose capacity is equal to the
interaction strength J;;. Two edges are added to the graph, denoted b, and b_. Let B; be
the local field on spin ¢. If B; > 0 an edge with capacity B; is added between b, and 7, and
if B; < 0 an edge with capacity —B; is added between b_ and .

In order to find the ground state of the ferromagnet we have to partition the graph
into two components: one which includes b, and in which all the spins will be set to +1,
and the other which includes 6_ and in which all the spins will be set to —1. In general,
in each such partition there have to be a group of unsatisfied bonds J;;. In other words:
we have to find the set of bonds with the minimal sum of capacities that when removed



from the graph there will be no path between b_ and b,. This assignment is performed by
the min-cut [46] algorithm. Then the spins in the two components are set accordingly. The
new state of the ferromagnet is a ground state.

Note that the new configuration of the spins depends only on the choice of the ferro-
magnetic domains and on the values of the frozen spins. It does not depend on the previous
values of the spins inside the domains. Thus, it is impossible to use this process in a way
that maintains equilibrium. Indeed, this algorithm presents a bias [34], which we discuss
below.

We inverse the gauge transformation to map the ferromagnet back to the spin glass
system. Note that since the ferromagnet and spin glass are related by gauge transformation,
and we have not increased the energy of the ferromagnet, the energy of the system have
not increased.

B.2. The genetic algorithm

A genetic algorithm is an optimization algorithm based on the concept of Darwinian evo-
lution. We start with a population of replicas of the same realization, each with a random
configuration of the spins. In a hybrid algorithm [44] we generate two children from two
members of the populations by combining their configuration, applying mutations, and
than performing a local optimization procedure, such as CEA or steepest decent. We then
compare each child with a parent and keep in the population only the fittest one, i.e. the
replica with the smallest energy.

We start with a population of M; replicas of the same realization. These replicas are
ordered on a ring, so that each replica has two neighbors. In each iteration we choose at
random two neighboring replicas. Then we create two children by a triadic crossover: first
we create the children as copies of the parents; a mask is created from a distant (on the
other side of the ring) state by reversing a fraction 0.1 of its spins; we select the spins which
have the same values in the mask and in the first parent, and swap the values of those
spins between the children. We apply a mutation to each child by choosing at random a
fraction p,, of its spins and flipping them.

Next we perform a local optimization of each child by applying CEA on it ngp times.
We match a child-parent pairs, so that the sum of distances (3.1) in the pairs will be
minimal. If the energy of the child is not higher than the energy of the matching parent,
the child replace the parent in the population.

The above procedure is repeated n, x M; times. Then the population is cut by half:
from each pair of neighbors we discard the one with the higher energy. We continue the
process, setting M; < M;/2 until M; = 4. Then the replica with the lowest energy is taken
as the result of the calculation.



B.3. Bias of the results

As we wrote above the probability to sample a certain ground state by the GCEA algorithm
is biased [34]. Still, this bias does not affect our results. As we describe in Section 7.1, we
use the results of the GCEA only to obtain representatives of each valley and then generate
an unbiased sample by generating a sample in each valley and estimating the valley size.

The only way the bias of the GCEA could have undermined our results is if it had
increased the probability to miss a certain valley. This does not happen. On the contrary,
smaller valleys have higher probability to be sampled by GCEA then by an unbiased
method such as Monte-Carlo [33]. The probability to sample a certain valley increases
with its size, so we are in on danger of missing large valleys either.






C. SIMULATED TEMPERING

For systems with a complex low energy landscape, such as spin glasses, we cannot use
canonical Monte-Carlo methods to generate an unbiased sample at T' < T.. In order to
sample all of the low energy valleys, i.e. all the regions in phase space with energy F <
kgT', we have to go through the macroscopic free energy barriers separating those regions.
The time it takes a single spin flip Monte-Carlo process to pass such a barrier grows
exponentially with § = 1/T. Several methods [14, 15,47, 48] were developed in order to
avoid this problem. Simulated tempering [35] is one of these.

Simulated tempering is a Monte-Carlo method in which the temperature is a dynamic
variable. The configuration space for this method is a Cartesian product of the state space
and a discrete temperature space, with the inverse temperatures Sy, ..., 8, i.e. each point
in this space is of the form {S*, m}, where S* is a spin configuration and m the temperature
index. If #; < (. then when m = 1 the system is not confined by any (macroscopic) barriers
in state space, and is free to move between valleys. The simulation does not go through
the barrier, but over it. In order to obtain a sample at 3 we choose the set {3,,} so that
By = B and take out of the generated sample {S*,m} the sub-sample for m = M. The
time it will take the simulation at m = M to pass over a free energy barrier is just the
time it takes it to go to m = 1 and back.

The weight of each configuration {S*,m} is proportional to its Boltzmann weight at
the corresponding temperature S,,:

P(S¥,m) = Z7' exp(—BnH[S"] + gm) , (C.1)

where g¢,, is an adjustable constant. The partition function for the phase space is Z =
> Znexp(gm), where Z,, is the canonical partition function at §,,. The probability to be
at a certain m is given by

P < Zexp(gm) = exp(—Bmfm + 9m) (C.2)

where f,, is the free energy corresponding to 5,,. If we choose g,, = B,, fm, the probabilities
of all 3, are equal.

This method is implemented by combining a canonical (isothermal) Monte Carlo with
a Metropolis dynamics in the {m} space. After every canonical Monte-Carlo sweep over
the system (at the current 3,,) one Metropolis step which allows m to increase or decrease
by one. We set m’ = m + dm, with dm = £1 with equal probabilities. Let S be the current



configuration of the system. The probability for m to change to m' is given by:

P(S,m')/P(S,m) P(S,m') < P(S,m)
P[(S,m) = (S,m)]=< 1 P(S,m') > P(S,m) (C.3)
0 m' <1 or m"'>M

C.1. Sampling ground states of a binary spin glass

We use simulated tempering to generate unbiased samples of the ground states of binary
spin glasses. For a given realizations we generate samples of states for all 3,,. For each m
the weights of all ground states are equal, since their Boltzmann weights are equal. Thus,
each ground state is sampled with equal probability, and the sub-sample of ground states
is unbiased.

We identify the ground state using our previous knowledge of the ground state en-
ergy, obtained using GCEA [33] (see Appendix B). In order to assure that the samples
are statistically independent, we label the ground states according to the time they were
obtained: S!, S2, S3, ... Between the time S’ was sampled and the time S**! was sampled
there might have been other states sampled, but they were not ground states. We then
find a time 7; which is longer than the decorrelation time of spin 4, (S{SIT™), < e!. We
then choose the sampling period as 7 = max{r;}, and the final sample for the analysis is
S7, S§?7, 837, .... For some systems with N = 8% we have chosen the sampling period as
7/2 instead of 7, in order to obtain a larger ground state sample. By doubling the sample
size we did not double the information obtained by it, but it did supply us with more
information, especially on the distribution within valleys.

The inverse temperatures used by the simulated tempering were 3,, = 0.24 4+ 0.10m,
with 1 < m < M = 14. Those values were used for all system sizes and dimensions. For
dimensions D = 3 (T, ~ 1.14J/kg [49]) and D = 4 (T. ~ 2.0J/kg [50]) we indeed have
B < T ' and By = 0.2T7'. For two dimensions T, = 0 [27,50]), but still at 8, a large
portion of the states sampled were ground states.

Each Monte-Carlo iteration included 20 Metropolis sweeps and one m-change Metropo-
lis step. A state was sampled every k iterations, with 30 < k£ < 300. If it was a ground
state it was recorded.

Since we have no previous knowledge on the free energy of each realization we have to
obtain the variables g,, in an iterative way, trying to equalize the probabilities P,,. We start
with a test set of the variables {g,,} (usually taken from a previously analyzed realization).
We run simulated tempering using this set, and evaluate the probabilities P, { g, }. We then
create the next test set by

Iy = gm —log(Pr/4+1) + C, (C.4)

where C is a constant tuned to have ) g/, = 0. We repeat this process until var{g,,} <
0.05m~t.
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