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State hierarchy induced by correlated spin domains in short-range spin glasses
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We generate equilibrium configurations for the three- and four-dimensional Ising spin glass with Gaussian
distributed couplings at temperatures well below the transition temperatureTc . These states are analyzed by a
recently proposed method using clustering. The analysis reveals a hierarchical state space structure. At each
level of the hierarchy states are labeled by the orientations of a set of correlated macroscopic spin domains. Our
picture of the low temperature phase of short-range spin glasses is that of a state hierarchy induced by
correlated spin domains~SHICS!. The complexity of the low temperature phase is manifest in the fact that the
composition of such a spin domain~i.e., its constituent spins!, as well as its identifying label, are defined and
determined by the ‘‘location’’ in the state hierarchy at which it appears. Mapping out the phase space structure
by means of the orientations assumed by these domains enhances our ability to investigate the overlap distri-
bution, which we find to be nontrivial. Evidence is also presented that these states may have a nonultrametric
structure.
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I. INTRODUCTION

Whereas equilibrium properties of infinite range1 spin
glasses are completely understood within the framework
replica symmetry breaking~RSB!,2–5 spin glasses with shor
range interactions are the subject of considerable curren
bate and controversy. Open questions address the natu
the low temperature phases2–8 and their theoretical descrip
tion. Resolution of these issues by experiments or sim
tions is hindered by the extremely long relaxation time
quired for equilibration.

The most widely studied model of a short-range spin gl
is the Edwards-Anderson model of an Ising spin glass

H5(̂
i j &

Ji j SiSj , ~1!

where^ i j & denotes nearest neighbor sites of a simple~hyper!
cubic lattice inD dimensions~we will considerD53 and
D54) with periodic boundary conditions,Si561, and the
couplings,Ji j , are independent random variables taken fr
a given distribution. The most commonly studied distrib
tion, and the one we study here, is a Gaussian distribu
with zero average and standard deviationJ51.

The high temperature phase of the model is a disorde
paramagnet. As the temperature decreases below a cr
temperatureTc , the system~in three or more dimensions!
undergoes a transition into a frozen spin-glass phase. In
spin glass phase, phase space is divided into ‘‘valleys’’ wh
we define as an ergodic subset of the phase space, i.
maximal subspace that the system can span~or visit! as the
time tends to infinity. For a finite system the definition is le
clear, but a valley is usually referred to as a part of the ph
space surrounded by free energy barriers, whose heigh
verges as the system sizeL→`.
0163-1829/2001/64~22!/224406~21!/$20.00 64 2244
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This definition of ‘‘valley’’ may not be identical to the
notion of a ‘‘pure state’’ which has been used extensively
the literature7–11 and which is defined in terms of the set
correlation functions in a fixedfinite region inside the system
as L→` with some specified boundary conditions. In pa
ticular, it was recently emphasized12–15 that a spin glass can
in principle have many thermodynamically important valle
but just two pure states. This is realized when there are m
valleys with free energies which differ by an amount of ord
unity, and configurations taken from different valleys have
vanishing density of~relative! domain walls asL→` ~a do-
main wall is a surface separating a region where the t
configurations are identical from a region where they
opposite!. In contrast, if the density of domain walls is finit
~i.e., the domain walls are space-filling!, there is a non-
vanishing probability to have a domain wall in any fini
region of the system, and thus to have more than two p
states. In this paper we will be mainly concerned with t
number and organization of valleys, and we will not inves
gate whether multiple valleys correspond to multiple pu
states as defined above. In the following, bystatewe will
always mean a microstate or spin configuration.

A. RSB, droplet, and TNT scenarios

There are two traditional pictures of the spin glass pha
the droplet picture and RSB. According to the droplet pictu
of Fisher and Huse,6–8 the low energy excitations are in th
form of droplets—compact regions with low surface tensio
that flip collectively. For a droplet of sizeL the typical~e.g.,
median! free energyFL scales asLu, whereu is a dimension
dependent exponent. Furthermore, the surface of these
tations has a vanishing density for largeL. Therefore, ther-
modynamically important configurations have a vanish
density of relative domain walls, and hence a trivial overl
~defined below! over any finite region. It follows that in this
©2001 The American Physical Society06-1
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approach within any finite region there are only two pu
states, related by spin-flip symmetry.

A parameter commonly used to measure domain wall d
sity is the link overlap and its distribution. Denote a config
ration ~or state! of an N-spin system by Sm

5(S1
m ,S2

m , . . . ,SN
m). The link overlapqmn

link between two con-
figurationsSm andSn is defined by

qmn
link5

1

gN (̂
i j &

Si
mSj

mSi
nSj

n , ~2!

where the sum is over pairs of neighbor sites andgN is the
number of bonds in the system. If the domain wall dens
vanishes, then the distributionP(qlink) of the link overlap
will be trivial: P(qlink)5d(qlink2q0). At T50 one hasq0
51, while q0 decreases forT.0 and becomes zero atTc .

Another parameter commonly considered is the spin ov
lap qmn between configurationsSm andSn:

qmn5
1

N (
i 51

N

Si
mSi

n . ~3!

If there are only two pure states, as in the droplet model,
local overlap distribution, obtainedin a finite part of an in-
finite system, would be trivial for all T,Tc , i.e., P(q)
50.5@d(q2qEA)1d(q1qEA)#, where qEA is the average
overlap inside a pure state. In addition, most conventio
interpretations of the droplet picture16,17argue that theglobal
P(q), obtained from overlaps over thewholesystem, would
also be trivial. This is realized if the droplets~with positive
u) are the only relevant excitations over all length scal
However the work of Huse and Fisher,7 and also Newman
and Stein,9,18 is formulated in a sufficiently general fashio
to accommodate a nontrivial globalP(q) if this arises from
multiple valleys with non-space-filling domain walls. In th
situation, one would have a trivial link overlap distributio
P(qlink) in the infinite system size limit. Even though th
global P(q) would be nontrivial, thelocal P(q), would be
trivial because a vanishing density of domain walls me
that the probability that a domain wall goes through a fix
finite part of the infinite sample also vanishes.

Numerical work has, so far, indicated a nontrivial glob
P(q).19,20 For example, Marinariet al.20 have used paralle
tempering21,22 to sample 3D Ising spin glasses of sizes
to L516 and for temperatures down toT50.7.0.74Tc .
They have found thatP(q) is nontrivial, andP(0) does not
vanish.

In the RSB picture, the Parisi2–4 theory, which is exact for
the infinite range model,1 is assumed to also apply to sho
range systems. Within the RSB solution, bothP(q) and
P(qlink) are nontrivial for 0,T,Tc , which implies that the
system has many valleys and also many pure states.
suggests a treelike hierarchical structure for the pure sta
At every level of the hierarchy the states are divided in
sets, so that the states in a given set are closer to each
than to states in other sets. At the next level down the h
archy these sets are divided into subsets, and so on. Fur
more, according to the RSB solution the distances betw
the pure states exhibitultrametricity:5 the overlap between
22440
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any two states is determined only by the lowest level in
hierarchy, at which they still belong to the same set. T
means that for any triplet of pure statesm, n and r the
following relation always holds:

qmn>min~qmr ,qnr!. ~4!

Recently, a mixed picture has been proposed on the b
of numerical results of ground state computations,12–14 in
which P(q) is nontrivial but P(qlink) is trivial ~hence re-
ferred to as TNT; for trivial and nontrivial!. Houdayer, Krza-
kala and Martin12,13 demonstrated the existence of macr
scopic excitations with low energy cost in 3D Ising sp
glasses of sizes up toL511. This suggests that the sp
overlap distribution,P(q) is nontrivial at finite temperature
Their results also indicate that the surface of these exc
tions is not space-filling, which suggests that the link over
distribution,P(qlink), is trivial.

Palassini and Young14 studied changes to the ground sta
of a spin glass when a weak perturbation is applied to
bulk of the system. They considered short range model
three and four dimensions as well as the infinite range
model and the Viana-Bray model. The results for the SK a
Viana-Bray models agreed with the replica symmetry bre
ing picture as expected, but the data for the short range m
els agreed with the TNT picture. Effects of the type of p
turbation considered in Ref. 14 on RSB have be
investigated by Franz and Parisi.23

Katzgraber et al.24 measured directly the distribution
P(q) and P(qlink) at finite temperature using paralle
tempering21,22 Monte Carlo, for 3D systems of linear sizeL
<8 at temperatureT>0.2, and 4D systems withL<5 and
the same temperature range. Extrapolating their result
large sizes they found that the variance ofP(qlink) vanishes
asL→`, and the distribution converges to a delta functio
They also found the distributionP(q) to be nontrivial, as in
Refs. 19 and 20, so their results also agree with the T
picture. In the TNT scenario there are many valleys se
rated by free energy barriers, but only two pure states.25,15

Although several pieces of work12–14,24,26 supported a
vanishing density of domain walls~and hence a fractal di
mension of the domain walls,ds , less than the space dimen
sion!, a large extrapolation is involved in deducing this r
sult, and Marinari and Parisi27–29have argued, based on the
own data and a somewhat different analysis, that actu
ds5D, which corresponds to RSB.

B. SHICS: State hierarchy induced by correlated spin
domains

Very recently another method of analysis of the struct
of the low temperature phase of short range spin glasses
been introduced.30,31 Evidence for a picture of this phase
which is consistent with the TNT scenario, but inconsiste
with RSB ~since there is no ultrametricity!, has been
presented30 on the basis of a ‘‘clustering analysis’’ of th
degenerate ground states of the model~1! with Ji j 561 cou-
plings. We denote this by ‘‘state hierarchy induced by cor
lated spin domains’’~SHICS!.
6-2
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STATE HIERARCHY INDUCED BY CORRELATED SPIN . . . PHYSICAL REVIEW B64 224406
In this picture there is a hierarchical treelike structure
the states as in the RSB solution. The highest levels of
state hierarchy, are schematically illustrated in Fig. 1. At
first level of hierarchy the states divide into setsC and C̄,
such that a state inC has a counterpart with the same ener
in C̄, obtained by flipping all the spins. This equality of th
energies follows, of course, from the symmetry of the Ham
tonian in zero field. However, this symmetry information
not imposed on the analysis; the method finds it by itself
fact, it is not trivial, for a spin glass, to divide the states in
two clusters such that every state inC has its reversed state i
C̄. Suppose, for example, that one has two statesm and n,
and statesm̄ and n̄ with reversed spins, such that the sp
overlapqmn is close to zero. Should one putn or n̄ in the
same cluster asm? The analysis, used in Ref. 30 and he
determines which one it is.

Many of the spins stay, with high probability, in the sam
relative orientation in most of the statesC. Most of these
form a contiguous domainG1, see Fig. 1. Among the remain
ing spins, an apparently macroscopic fraction form a c
tiguous domain,G2, such that the spins in it maintain, wit
high probability, their relative orientation in nearly all th
states ofC. HenceC divides into two subclusters of states,C1
and C2, depending on the orientation ofG2, see Fig. 1. In
general, the domainsG1 and G2 are distinct. In many
samples, further levels of the hierarchy, with successiv
smaller domainsG3 , . . . can be clearly resolved, as di
cussed later. The excitations obtained by flipping the
mains G2 ,G3 , . . . appear to correspond to the large sca
low energy excitations investigated by Krzakala and Marti12

and Palassini and Young.14 Note that the local~or link! over-
lap was not investigated in Ref. 30.

By contrast, in the conventional interpretations of t
droplet picture,16,17 the only substantial division of the state
would be intoC and C̄, and any further divisions emergin
from the analysis would only correspond to microscopic s
domains. In the RSB scenario there would be a hierarch
structure to the states, similar to what we find here, but

FIG. 1. Schematic representation of the SHICS picture; the
largest spin domains and the first two levels in the hierarch
organization of the states are shown. The structure of the stat
explained by the spin domains’ orientations; e.g., in the states o
two setsC1 ,C2, the spins of the larger domain,G1, have the same
orientation, whereas the spins of the smaller domain,G2, have
flipped. Spins not inG1 or G2 are in smaller domains which are no
resolved at this level of the hierarchy.
22440
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nature of the spin domains would appear to be different; s
e.g., Ref. 32. We will discuss these differences further
Secs. IV and VII.

The purpose of the present paper is to use the metho
ogy of Ref. 30 to investigate whether the same picture of
spin glass phase found there also occurs for a spin glass
Gaussian couplings~which has a unique ground state apa
from spin reversal! at finite temperatures. Both three and
four dimensions are studied. We find that our data do fit t
picture quite well. We also present here full details of t
method.

Readers who like to skip ahead will find the picture
state clusters and spin domains that were obtained aT
50.2 for a particular bond realization, conveniently summ
rized in Fig. 12. The corresponding overlap distributionP(q)
is presented in Fig. 14~a!.

The numerical procedure and parameters that were u
in our simulations are described in Sec. II. In Sec. III w
present the clustering methodology which we use to iden
the states hierarchy, as described in Sec. IV. In Sec. V we
the hierarchical partition of the state space to obtain the s
domains, show that their sizes scale with the system size
their correlation does not approach unity asL→`. We also
show that these spin domains, that were identified on ph
cal grounds, can also be obtained by a cluster analysis o
N spins. Those domains yield a nontrivial overlap distrib
tion P(q) with peaks corresponding to the different doma
sizes, as we show in Sec. VI. Since we find that the aver
correlation between spins in different domains does not
proach unity with increasing system size,P(q) will remain
nontrivial as L→`. The nature of our picture appears
yield a nonultrametric structure, as indicated at the end
Sec. IV and demonstrated in Sec. VII, in which we presen
parameter for ultrametricity and measure its distribution.
nally, our method and findings are summarized in Sec. V

After this work was completed we received a report fro
Marinari et al.33 who have adopted and adapted the meth
ology of Refs. 30 and 31 to study theJi j 561 model ind
53 at a single temperature (T50.5—whereas here we con
sideredT50.2 andT50.5 for the Gaussian model!. They
also confirmed that the previously observed SHIC
scenario30 of a treelike structure of the states, governed
correlated spin domains, remains valid at a nonzero temp
ture.

II. NUMERICAL METHOD

We simulate the Hamiltonian in Eq.~1! using the parallel
tempering Monte Carlo method.21,22 In this technique, one
simulates several identical replicas of the system at differ
temperatures, and, in addition to the usual local moves,
performs global moves in which the temperatures of t
replicas ~with adjacent temperatures! are exchanged. This
greatly speeds up equilibration at low temperatures. The
tailed balance condition for temperature exchanges is s
fied by accepting these moves with probabili
min@exp(DEDb), 1#, whereDE5Em2En, Em andEn are the
~total! energies of replicasm andn, andDb5bm2bn is the
difference in inverse temperatures.
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DOMANY, HED, PALASSINI, AND YOUNG PHYSICAL REVIEW B64 224406
We choose a set of temperaturesTi ,i 51,2, . . . ,NT , in
order that the acceptance ratio for the global moves is s
factory, typically greater than about 0.3. We use the test
equilibration discussed in Ref. 24, which involves measu
ments ofqlink . For that, we need, at each temperature, t
copies of the system, so we actually run 2 sets ofNT replicas
and perform the global moves independently in each of th
two sets.

For the three-dimensional model we stored configurati
for sizesL54,5,6, and 8 atT50.20,0.50, and 2.0, which ar
to be compared with20 Tc.0.95. We also stored sizeL512
configurations atT50.50. The parameters of the simulatio
are shown in Table I. The highest temperature was 2.0
lowest 0.2 except forL512 where the lowest temperatu
was 0.5.

We generated randomly chosen interactions,Ji j , with a
Gaussian distribution with zero mean and standard devia
unity. For each size, temperature and bond configura
~sample! we saved 500 spin configurations. These, toget
with the 500 obtained from them by spin reversal, constit
our ensemble ofM51000 spin configurations, generated f
each sample.

For the four-dimensional model we stored configuratio
for sizesL53,4, and 5 atT50.2,0.8, and 2.6, compare
with34 Tc.1.80. The highest temperature was 2.6 and
lowest 0.2. 500 spin configurations were saved for e
sample. The other parameters of the simulations are
shown in Table I.

We are confident, based on the equilibration test use24

that the spin configurations we generate are in thermal e
librium. However, it is interesting to ask whether there a
significant correlations between them. Our results do not
quire that correlations be absent, but the clustering met
does require that a substantial number of independent
figurations are generated for each sample.

For each set of bonds~and temperature! we store 500 spin
configurations, 250 for each replica, so the number of swe
between measurements,tmeas, is given by tmeas5nmeas/250
wherenmeasis given in Table I. We will denote by ‘‘time,’’t,
the number of Monte Carlo sweeps. A quantity which te
for correlations is the time-dependent Edwards-Anderson

TABLE I. Parameters of the simulations inD53 and 4 dimen-
sions.Nsamp is the number of samples~i.e., sets of bonds!, nequil is
the number of sweeps for equilibration, andnmeasis the number of
sweeps for measurements for each of the 2NT replicas for a single
sample.NT is the number of temperatures used in the parallel te
pering method.

D L nequil nmeas Nsamp NT

3 4 104 105 500 11
5 53104 53105 500 15
6 33105 33106 500 15
8 106 107 335 18
12 23105 23106 254 20

4 3 104 105 500 13
4 43104 43105 500 13
5 83105 83106 200 25
22440
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der parameter@q(t)#J[@^Si(t0)Si(t01t)&#J , where ^•••&
indicates a thermal average. This is estimated from our s
configurations according to

@q~ t !#J5F 1

Nt0
(
to

Nt0 1

N (
i 51

N

Si~ t0!Si~ t01t !G
J

, ~5!

where we have averaged overNt0
values for the initial time

t0 as well as over spins and bond configurations. Clea
@q(0)#J51 and @q(t)#J→0 for times sufficiently long that
there are no correlations.

In Fig. 2 we show data for@q(t)#J in D53 for L58,T
50.2. We see that the correlation is very small even
t/tmeas51 ~i.e., between the configurations of neighborin
measurements!. The same is true for smaller sizes and high
temperatures. ForL512,T50.5, shown in the inset to Fig. 2
the correlations are larger, about 0.24 fort/tmeas51, and then
decrease, though less fast than exponentially. Thus, foL
512, correlations will decrease, somewhat, the effect
number of independent spin configurations. However,
feel that this is not crucial since we do not use theD53,L
512 data for the clustering analysis, and only present i
one place, Fig. 9.

In D54, for L53 and 5, the strength of the correlation
at T50.2 is small, comparable to, or less than, that forD
53,L58,T50.2. For L54, the correlation is intermediat
between the results shown inD53 for L58 and 12.

III. CLUSTERING METHODOLOGY

Clustering is an important technique to perform explo
atory data analysis. The aim is to partition data according
natural classes present in it. By ‘‘natural classes’’ we me
groups of points that are close to one another and relativ
far from other points, so that it is natural to assign the

-

FIG. 2. The main part of the figure shows the correlation b
tween spin configurations,@q(t)#J , defined in Eq.~5! of the text, in
D53 for L58,T50.2. The horizontal axis represents the numb
of Monte Carlo sweeps between the two configurations in units
the number of sweeps between individual measurements,tmeas. For
comparison, for each set of spins~‘‘replica’’ !, a total of 250 con-
figurations are generated. The inset shows results forD53,L
512,T50.5, which indicate that correlations between spin config
rations are significantly larger than forL58.
6-4



th

e
th

-
-
a

ur
s

to

al
d
re
us
a

f
k
g
lu

h
o

d
e

la
rs
si
de
or
ly
i
c
t

ie

c

th

on-

r

nce

ep

that

ters

of

e
se is

s-

in
ual

ay
t.
tical
s
are
an
nch

r

ese

STATE HIERARCHY INDUCED BY CORRELATED SPIN . . . PHYSICAL REVIEW B64 224406
together, without using any preconceived information on
features according to which the set should be classified.

The standard definition of the clustering problem35 is as
follows. Partition N given data points~or objects! into K
groups~i.e., clusters! so that two points that belong to th
same group are, in some sense, more similar than two
belong to different groups. Thei 51,2, . . .N data points are

specified either in terms of their coordinatesXW i in a
D-dimensional space~representing the measured values ofD
attributes or features! or, alternatively, by means of anN
3N ‘‘distance matrix,’’ whose elementsdi j measure the dis
similarity of data pointsi andj. The traditional tasks of clus
tering algorithms are to determineK and to assign each dat
point to a cluster.

In the context of the present work we can think of o
sample ofM spin configurations as the objects to be clu
tered. Each object is represented by anN-component vector
Sm5(S1

m ,S2
m , . . . ,SN

m), whereSi
m561 is the value taken by

spin i in statem. An alternative view, which we also use, is
consider theN spins as the objects to be clustered.

Our first aim in this work was to look for a hierarchic
structure of the states of a spin glass. Hence we wante
find a hierarchy of partitions, where each partition is a
finement of the previous partition. This purpose calls for
ing a hierarchical clustering algorithm. The output of such
algorithm is a tree of clusters, called adendrogram. Each
node in the tree corresponds to a cluster. The splitting o
cluster represents its partition into subclusters. The trun
the single ‘‘cluster’’ that containsall the objects, representin
the crudest partition; at the other extreme each leaf is a c
ter of a single object, representing the finest partition.

There are many clustering algorithms that produce suc
hierarchical partitioning of any data set. We tried two alg
rithms; a recently introduced one, SPC,36 which uses the
physics of granular ferromagnets to identify clusters, an
graph-based algorithm proposed by Ward. In the pres
problem the state clusters are nearly always compact~i.e.,
consist of a high density of points concentrated in a re
tively small volume!, and the same holds for spin cluste
Therefore an algorithm that identifies compact clusters ea
is most suitable for our needs and Ward’s algorithm is
signed to find such clusters. Furthermore, SPC is a ‘‘sh
range’’ algorithm,37 in the sense that it couples directly on
points within a characteristic length scale. If this scale
tuned by the distances inside valleys, which are mu
smaller than the distance between them, SPC identifies
valleys as different clusters, but may miss their relative h
archical structure.

Ward’s algorithm35 is agglomerative, works its way up
from the leaves to the trunk, by fusing two clusters at ea
step. It begins with an initial partition toi 51,2, . . . ,N clus-
ters, with a single data point in each. One calculates
distanceDi j between every pair of pointsi , j ; one may use,
for example, the Euclidean definition of distance, or~for bi-
nary valued coordinates! the Hamming distance.

At each step that pair of clusters,a,b, which are sepa-
rated by the shortest effective distancerab from each other,
are identified and fused to form a new clustera85aøb.
22440
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The process stops when there is only one cluster that c
tains all points.

Initially each data pointi 51,2, . . .N constitutes a cluste
and hence the distancer i j between two such ‘‘clusters’’ is
the original distanceDi j between pointsi and j. For subse-
quent steps, however, one must define an effective dista
rab , between any two clustersa and b. This distance is
defined by the following update rule: if at a particular st
we fuse two clusters,a andb, to form a new clustera8, we
calculate the effective distancesrga8

8 , between every un-
changed cluster,gÞa,b, and the newa8, according to

ra8g
8 5

na1ng

na1nb1ng
rag1

nb1ng

na1nb1ng
rbg

2
ng

na1nb1ng
rab , ~6!

wherenx is the number of data points in clusterx. Distances
between unfused clusters remain the same. Note
ra8g
8 .rab andrgd8 .rab for every two clustersg,d. Hence

after every fusion step the minimal distance between clus
increases.

Whenever two clusters are fused, the quantity

S5(
a

sa , ~7!

wheresa is the sum of squared distances over all pairs
points in clustera,

sa5 (
i , j Pa

Di j
2 , ~8!

increases. It can be shown35 that Ward’s fusion and distanc
update rules ensure that at each fusion step this increa
minimal.

We associate a valuet with each clustera8, where
t(a8)5rab is the effective distance between the two clu
ters that were fused to forma8. For the initial single-point
clusters we sett50. t(a) is related tosa , the sum of
squared distances within clustera. Clusters formed earlier
have lowert values, and theirsa is smaller.

The result of the algorithm is a dendrogram, or tree, as
Fig. 3~a!. The leaves at the bottom represent the individ
data points; they are ordered on the horizontal axis in a w
that reflects their proximity and hierarchical assignmen38

The small boxes at the nodes represent clusters. The ver
location of clustera is its t value, and is thus related to it
s. When two relatively tight and well-separated clusters
fused, thet value of the resulting cluster is much higher th
those of the two constituents. Hence the length of the bra
aboveclustera provides a measure of its relativesa ; long
branches identify clear, tight clusters.

Every clustering algorithm is designed to work well fo
data that satisfy some~usually implicit! assumptions. When
the actual distribution of the data points deviates from th
6-5
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FIG. 3. ~a! The dendrogram obtained by clustering theM550032 states of a specific realization inD53 of sizeN583 at T50.2. The
vertical axis describes the value oft, defined in Sec. III.~b! The distance matrix of the states used as an input to Ward’s algorithm. Da
shades correspond to smaller distances. The states are ordered according to their position on the dendrogram~a!. ~c!, ~d! The same as in~a!,
~b!, for the same realization$J%, but for an ensemble of states obtained at atT50.5. ~e!, ~f! The same as in~a!, ~b!, for the same realization
at T52.0, which is greater thanTc.0.95. Note that this dendrogram is not symmetric; almost all the distances are close to 0.5, so
stage of the algorithm there were several possible partitions that gave minimal value toS. In the implementation we used, the algorith
chose a nonsymmetric partition.
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assumptions, the algorithm may produce some ‘‘unnatu
partitions. For Ward’s algorithm one has to look out for tw
potential problems.

The first problemarises from the implicit assumption tha
minimizing S, the variance within clusters, leads to ‘‘natura
partitions. This is not the case when, for example, the d
consists of a set of pointsC whose natural partition is into
two clustersC1 andC2 with very different sizes. We encoun
tered this problem only for the classification of very sm
groups of states, and therefore it has very little statist
effect on our results.

The second,and seemingly more serious concern is t
fact that like every agglomerative algorithm, Ward’s alg
rithm will generate a treelike structure when applied toany
set of data. In fact, it is fairly easy to identify when th
dendrogram and the corresponding partitions do corresp
to real hierarchical structure, and when it is an artifact of
clustering algorithm used. We used three indicators for
‘‘naturalness’’ of our state clusters: direct observations of~1!
the dendrograms and~2! the distance matrices, as well as~3!
a quantitative measurement of the distances within our c
ters, which are significantly smaller than the distance
tween clusters. These points are demonstrated in Sec. IV
a detailed discussion, see Ref. 37.

IV. STATE SPACE STRUCTURE

For a particular~randomly chosen! set of bonds$J% of the
system we generate, as discussed in Sec. II, a sample o
states, which constitute an equilibrium ensemble at a t
peratureT. Next, we add to this ensemble the set of 5
22440
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states obtained from the original set by spin reversal. Cle
the new ensemble ofM51000 states also corresponds
thermal equilibrium39 at T. We now address the following
question:

Do theM states of the equilibrium ensemble cover theN

points of state space or a part of it uniformly, or is there so
underlying hierarchical organization?

As it turns out, the answer depends onT; whereas aboveTc
the M states do not exhibit any apparent structure, belowTc
a very pronounced hierarchical organization is seen. To
cover this organization we use the clustering methodology
the previous section, treating theM states of our ensemble a
the data points to be clustered.

We describe here analysis of a single realization of
randomness, in order to help the reader perceive the qua
tive nature of the results~see Figs. 4 and 5!, and to define the
observables that we measure. These observables were
sured for each of the different realizations, and the distri
tions of their values were determined; the average and w
of these distributions are also presented. These data dem
strate that the results described in this section for a sin
sample are typical and seen in many samples.

In order to cluster the states, each statem is represented as
an N-component vectorSm5(S1

m , . . . ,SN
m), whereSi

m561
is the value taken by spini in statem. The complete data se
can be represented as anN3M data matrix, whose columns
are the vectorsSm. For the set ofM51000 states, obtained a
T50.2 for a particular bond realization of anN583 spin
system, the data matrix is presented in Fig. 4~a!. Pixel (i ,m)
of this figure represents the sign of spini in statem; a black
6-6
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entry corresponds to11 and white to21. The spins appea
in lexicographic order and the states in the random or
generated by the simulation. As can be seen, the matrix
pears fairly random, with no easily discernible structu
nevertheless, there is a clear organization of theseM states
into tight clusters. For the particular realization and ensem
of states presented here, these clusters of states can be
by direct observation of theM51000 data pointsSm, once
one overcomes the hurdle of directly viewing a cloud
1000 points in aN5512 dimensional space.

A trivial way of visualizing points that lie in a high di
mensional space is to project them onto a low~i.e., two or
three! dimensional subspace. In order to reveal the unde
ing structure, it is important to choose with care the subsp
onto which one projects. A widely used method to choo
this subspace is that ofprincipal component analysis
~PCA!.40 One constructs theN3N covariance matrix of the
M points,

r i j 5
1

M (
m51

M

dSi
mdSj

m , ~9!

FIG. 4. ~a! The original data matrix of 50032 statesSm, Si
m5

61, with black/white representing1/2. This 3D sample was gen
erated for a realization of size 83 at T50.2 ~the same one as in Fig
3!. The spins are in lexicographic order.~b! The same matrix, with
the states ordered according to the dendrogram in Fig. 3.~c! The
matrix in ~b! with, in addition, the spins ordered according to t
spin dendrogramD in Fig. 11.
22440
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where

dSi
m5~Si

m2mi !/s i , ~10!

with mi the average of theM variablesSi
m and s i

2 their
variance. For our casemi50 ands i51 for all i, and hence
the covariance matrix is the spin correlation matrix, i.e.,

r i j 5ci j 5
1

M (
m51

M

Si
mSj

m . ~11!

The eigenvectorsei of this matrix are the principal direction
or components of the variation in the data. They are orde
according to the size of the corresponding eigenvalues, w
the largest coming first.

In Fig. 5 we present the projections of ourT50.2 en-
semble ofM51000 states on the first two and three princip
components. Even though projection ofN583 dimensional
data onto three and two dimensions involves a major los
information, the cluster structure of the states is still clea
evident. In Fig. 5~a! projection onto the largest eigenvecto
e1, is represented by the horizontal axis, and on the sec
largest,e2, by the vertical. It is interesting to note that th
two largest state clusters,C1 and C̄1, project mostly ontoe1

and the second largest pair,C2 and C̄2 onto e2. Figure 5~b!
indicates that the next sized variation, due to splitting ofC2
into two subgroups, is captured bye3. The scale of the pro-
jections can be understood by the following argument: if
~normalized! eigenvectore1 is parallel to a typical vector
from C1, then, since normalization ofe1 involves a factor of
1/AN, the maximum possible projection isAN'22.6. Hence
the projections shown in Fig. 5 are quite large, i.e., close
the maximum possible value.

Next we obtain a systematic quantitative measure of
hierarchical structure of state space by performing a clu
analysis of theM points. The choice of the particular clus
tering algorithm used was dictated by our idea of the st

FIG. 5. Principal component analysis of a sample ofM5500
32 states of a specific realization of$J% in 3D with N583 spins at
T50.2. Each point represents a stateSm. The coordinates are pro
jections onto eigenvectorsei , corresponding to the largest eigenva
ues of the correlation matrix in Eq.~11!. We show in~a! projections
onto two eigenvectors, corresponding to the largest and next-lar
eigenvalues of the correlation matrix, shown, respectively, on
horizontal and vertical axes. In~b! the three largest eigenvectors a
used. The first and second level partitions of the hierarchy
clearly visible and, to some extent, the third level also.
6-7
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space structure, obtained from PCA and from the pict
described in the Introduction and summarized in Fig. 1. O
aim is to find a hierarchy of partitions into compact cluste
That is, we would like states that belong to the same clu
to be closer to each other than to states in different clust
Ward’s algorithm, described in Sec. III, is tailored to perfor
this task for the kind of data distribution that we have in st
space.

To start, we defined theM3M distance matrixD between
the statesm,n by

Dmn5
12qmn

2
, ~12!

whereqmn is the state overlap defined by Eq.~3!. Next, we
clustered the states using the distance matrixDmn as input to
Ward’s algorithm@see Eq.~6!#. The algorithm results in a
dendrogram, as shown in Figs. 3~a!, 3~c!, and 3~e!, for a
sample atT50.2,0.5, and 2.0, in three dimensions. T
leaves, which represent the states, are ordered on the
zontal axis according to the order imposed by t
dendrogram.38 The nodes represent the clusters. The vert
location of each cluster corresponds to itst value, and is thus
related to the variance within it.

For T50.2 and 0.5, which are belowTc'0.95,20 we
found clear partitions in the two highest levels of the de
drogram, as presented in Figs. 3~a! and 3~c!. At the highest
level the states are partitioned intoC andC̄. At the next level,
C is broken into two subclusters, which we denote asC1 and
C2. For this specific realization the clusterC2 breaks further
into two subclusters, which are clearly seen in Fig. 5 as w

To gain insight into the manner in which similar states a
grouped together, and to actually ‘‘look into the spin glas
at the microscopic level, we present in Fig. 4~b! the same
data matrix as shown in Fig. 4~a!, but with the states again
reordered according to the dendrogram of Fig. 3~a!. That is,
to get Fig. 4~b!, the columns of Fig. 4~a! have been permute
according to their position in the dendrogram. The clear c
tral vertical dividing line separatesC from C̄. In addition to
the central dividing line, another vertical line is also clea
visible—it separates the states that belong to the larger c
ter C1 from the smaller one,C2.

We now demonstrate that the state clusters we found
indeed ‘‘correct’’ and ‘‘natural.’’ First, we checked that th
situation of merging two clusters of very different sizes o
curs very rarely.

We showed that our partitions are ‘‘natural’’ and not
artifact of the algorithm~which produces a tree for any data!,
in three ways.

~1! Note that direct observation of the dendrogra
clearly distinguishes between the different situations ab
and belowTc . At T50.2,0.5(,Tc) the relativet values of
the state clustersC,C1 andC2—measured by the length of th
branch above each cluster—are high. A long branch indic
that the distances within the cluster is much smaller than
distance between it and its ‘‘brother,’’ which indicates th
the partition into these two groups is natural. In comparis
in the dendrogram obtained atT52.0(.Tc), the relativet
values are much smaller than atT50.2,0.5.
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~2! The genuinely hierarchical structure atT50.2,0.5 is
also evident from the states’ distance matrix, as shown
Figs. 3~b! and 3~d!. This distance matrix was obtained b
reordering the states according to the results of the clu
analysis, i.e., according to the order of the leaves of the c
responding dendrogram. When the states are randomly
dered@like in Fig. 4~a!#, the resulting distance matrix has n
apparent structure and looks homogenous. The difference
tween such a matrix and Figs. 3~b! 3~d! is striking: the dis-
tance matriceswithin clusters C1 and C2 appear as dark
squares~representing shorter distances! along the diagonal.
The distances between clusters are represented by fairly
form, lighter colored rectangles. In comparison, forT52.0
there is no real hierarchical organization of the states,
reordering them according to the dendrogram does not g
erate any ordered appearance of the distance matrix.

~3! We measured the average distance between pair
states that belong to each of the clustersC, C1, andC2. The
averageD(C) and the widthw(C) of the distribution of dis-
tances withinC are

D~C!5
1

uCu2
(

m,nPC
Dmn , ~13!

w~C!5S 1

uCu2
(

m,nPC
Dmn

2 2D~C!2D 1/2

, ~14!

wherem andn refer to individual configurations. The ave
ageD(Ca) and the widthw(Ca) for a51,2 are defined in a
similar way. The distribution of distances within clusters is
be compared with the distribution of distances betwe
points that belong to different clusters. The avera
D(C1 ,C2) and width w(C1 ,C2) of the intercluster distance
distribution are defined as

D~C1 ,C2!5
1

uC1uuC2u (
mPC1

(
nPC2

Dmn , ~15!

w~C1 ,C2!5S 1

uC1uuC2u (
mPC1

(
nPC2

Dmn
2 2D~C1 ,C2!2D 1/2

.

~16!

The clustersC,C̄ are special in that each statemPC has an
inverted statem̄P C̄, so thatSm52Sm̄. ThereforeD(C,C̄)
512D(C) andw(C,C̄)5w(C).

A subset of the results is presented in Table II; for
temperatures, system sizes, and both dimensions, see
37. We present for each variablex its mean@x#J ~averaged
over the disorder$J%) and its standard deviationDx
5(@x2#J2@x#J

2)1/2. ForT50.2 and 0.5, which are belowTc ,
the average distances within the clustersC and C̄ are of the
order of 0.1.D(C,C̄) is around 0.9, which shows that there
a clear separation between these two clusters.D(C1 ,C2) is
much lower, but is still about two or three times larger th
either D(C1) or D(C2). Note that the width of the distanc
distribution within a cluster is of the same order of the me
distance, so in general distances will not be much larger t
6-8
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TABLE II. The average distances within and between state clusters, and the relations between th
a subset of theD53 dimensional systems. For each variablex we present the average over all realization
@x#J , followed by its standard deviation, i.e.,Dx5(@x2#J2@x#J

2)1/2. The statistical error of each mean@x#J

is Dx/ANsamp; the number of samples for eachL,D is given in Table I.

T L @D(C)#J DD(C) @w(C)#J Dw(C) @D(C1)#J DD(C1) @w(C1)#J Dw(C1)

0.2 4 0.045 0.049 0.055 0.052 0.015 0.017 0.019 0.018
5 0.050 0.054 0.056 0.054 0.018 0.018 0.019 0.019
6 0.053 0.056 0.054 0.053 0.021 0.020 0.019 0.019
8 0.055 0.054 0.052 0.051 0.025 0.020 0.020 0.020

0.5 8 0.139 0.065 0.084 0.046 0.093 0.038 0.045 0.026
12 0.151 0.065 0.078 0.046 0.106 0.036 0.041 0.024

2.0 8 0.487 0.006 0.053 0.002 0.477 0.009 0.055 0.002

@D(C2)#J DD(C2) @w(C2)#J Dw(C2) @D(C1 ,C2)#J DD(C1 ,C2) @w(C1 ,C2)#J Dw(C1 ,C2)

0.2 4 0.025 0.036 0.027 0.034 0.160 0.135 0.026 0.024
5 0.025 0.032 0.025 0.031 0.169 0.147 0.023 0.020
6 0.028 0.033 0.026 0.033 0.161 0.141 0.022 0.021
8 0.030 0.027 0.024 0.026 0.161 0.139 0.021 0.018

0.5 8 0.112 0.057 0.057 0.037 0.253 0.126 0.053 0.027
12 0.121 0.048 0.054 0.033 0.263 0.125 0.044 0.023

2.0 8 0.472 0.009 0.057 0.002 0.499 0.005 0.048 0.003
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twice the mean distance. AtT52.0 (.Tc) the distances
within and between clusters are almost equal and the di
ences are only due to statistical fluctuations, again indica
absence of natural structure, as we claimed on the bas
direct observation.

Measurement of some of the quantities listed above
lows us to investigate the extent to which the state sp
structure of short-range spin glasses, as reflected by the
in Table II, is compatible with RSB. In the RSB~Refs. 2–5!
framework, the overlap between any pair of valleys~which
correspond to pure states in the usual interpretation of R!
from two different clusters that appear at the same leve
the hierarchy is constant. It seems natural to associate
pure state clusters of RSB to our state clusters, e.g.,C1 and
C2. In this association, each state cluster contains states
belong to different ‘‘pure states.’’ If the overlap between pu
states of the two clusters is constant as in RSB, this sho
hold also for the overlap between each pair of statesmPC1
andnPC2, since the width of the overlap distribution insid
a pure state approaches zero. In this case, all entries o
submatrixD̃mn for mPC1 andnPC2 would be equal, so the
width w125@w(C1 ,C2)#J should vanish asL→`. To test
whether this is the case, we present in Fig. 6 the value
w125@w(C1 ,C2)#J vs the system sizeL for T50.2 andD
53. The error bars represent the statistical error~obtained by
dividing the standard deviations, given in Table II, b
ANsamp21). We tried fits of the form

w125w`1BL2y, ~17!

with B and y as fit parameters. The overall best fit was f
w`50.0205,B50.58 andy53.36, which gives a very sma
x2 of 0.036. This is shown by the solid line in Fig. 6. We al
tried the best fit assuming thatw`50, which has fit param-
etersB50.039 andy50.30, and is shown by the dashed lin
22440
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in the figure. This has ax2 of 1.41 which is much larger than
the best fit withw`Þ0, but still acceptable. Hence eve
though our data suggests thatw`Þ0, the possibility that
w`50, which corresponds to RSB, cannot be ruled out.

V. CORRELATED DOMAINS IN SPIN SPACE

A. Identifying the spin domains

According to our picture, splitting of a cluster at levela in
the states hierarchy is induced by a macrosco
contiguous41 spin domainGa . The size and shape of thi
domain determines the energy barrier separating two s
clusters that were ‘‘born’’ at this level. In this subsection w
describe how we identify from our data the two correlat
domainsG1 andG2, which determine the two highest leve
of the states hierarchy, and also discuss whether they rem

FIG. 6. A log-log plot ofw12 againstL for T50.2 andD53.
The solid line is the best least squares fit to Eq.~17!, while the
dashed line is the best fit with the additional assumption thatw`

50.
6-9
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macroscopic at largeL. Domains that emerge at the ne
level, G3 andG38 , are also discussed briefly.

Since the spins in such domains flip ‘‘collectively,’’ the
are highly correlated. The standard definition of the corre
tion ci j of spinsi and j is

ci j 5^SiSj&5
1

Z (
S

SiSj exp@2bH~S!#, ~18!

where ^•••& stands for the thermodynamic average for
particular realization of the disorder, andZ is the partition
function atT. Using our equilibrium ensemble of states$Sm%,
we evaluate

ci j 5
1

M (
m

Si
mSj

m . ~19!

The correlation in itself is unimportant for spin glasses sin
it is gauge dependent and its average@ci j #J over all the re-
alizations of the disorder$J% vanishes. The relevant measu
of correlations in a spin glass is the square,ci j

2 . If two spins
are independent of each other over the equilibrium ensem
of states, we haveci j

2 50. On the other hand, for a pair o
fully correlated spins we haveci j

2 51; the two spins are ei
ther aligned or antialigned in all states.

To proceed, it is convenient to define, quite generally,Gmn

as the set of spins whose sign is different in statesm andn,
i.e.,

Gmn5$ i uSi
mÞSi

n%. ~20!

We expect the largest domain,G1, to be in one orientation in
the states ofC and in the reversed one in the states ofC̄. To
identify the spins that indeed behave this way, we took
(M /2)2 pairs of statesmPC and nP C̄ and, for each pair,
determinedGmn . Ideally all the spins ofG1 always flip to-
gether and maintain their relative orientation; if so, the se
spinsGmn for all pairs of statesm and n would always in-
cludeG1. However, at finiteT we must allow for excitations
of the order ofJ. So, even if a spin is highly correlated wit
the other spins ofG1, it might lose its relative orientation in
a few of theM states of the sample. In order not to ‘‘miss
such spins, we use a soft criterion when we determ
whether a spin is a member ofG1. We define a thresholdu
and defineG̃1(u) as the set of spinsi which are members o
Gmn , i.e., for whichSi

mSi
n521, for at least a fractionu of

the pairs of statesmPC andnP C̄. This can be written as

G̃1~u!5H iU 1

uCuuC̄u
(
mPC (

nP C̄
Si

mSi
n,122uJ , ~21!

since the terms in the normalized sum whereSi
mSi

n51 must,
by definition, sum up to less than 12u and the sum of the
terms withSi

mSi
n521 must be less than2u. We define our

spin domainG1(u) as the largest contiguous part ofG̃1(u).
For large enoughu we found that for most realizations$J%,
below Tc the sites ofG̃1(u) are contiguous and hence it
identical toG1(u) ~for detailed values of the ratiouGau/uG̃1u,
its mean over realizations and its standard deviation, see
22440
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37!. The next spin domainG2(u) is defined in the same man
ner, on the basis of pairs of statesmPC1 andnPC2.

The above definition sets a lower bound on the correlat
of spins within the domain. Consider two spinsi , j PG1(u).
By definition,

ci j
25

1

M2 (
m,n

Si
mSj

mSi
nSj

n . ~22!

Now the number of states inC and C̄ are both equal toM /2.
In addition, for a givenn, we can replacem by its inversem̄
and the product of the four spins does not change. Hence
get the same contribution frommPC asm̄P C̄. As a result we
have

ci j
25

1

uCuuC̄u
(
mPC (

nP C̄
Si

mSj
mSi

nSj
n . ~23!

Now Si
mSi

n will be 21 for a fraction of the statesm and n
which is greater thanu and 11 for a fraction less than 1
2u, and similarly forSj

mSj
n . HenceSi

mSi
n andSj

mSj
n will have

the same sign with probability greater than 122(12u)
52u21. Consequently, fori , j PG1(u), we have

ci j
2.2u212@12~2u21!#54u23. ~24!

The same constraint holds also forG2, with the sums taken
over the states in clustersC1 andC2.

Since we introduced an arbitrary parameteru into the
definition of our spin clusters, it is important to consider t
extent to which the value ofu affects their identification. As
seen in Fig. 7, the sizes of the domains and their aver
correlation, defined in Eq.~25!, do not change much fo
0.6<u<0.95. For botha51,2 we define~arbitrarily! Ga

FIG. 7. The normalized sizes of the two largest spin doma

G1(u)/N andG2(u)/N and their correlationc̄12, defined in Eq.~25!,
as a function of the thresholdu for D53, T50.2.
6-10
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5Ga(0.95). We do not chooseu51 since, as discusse
above, we do not want our results to be affected by sm
thermal fluctuations. In Fig. 8 we plot the spatial structure
G1 andG2 for the specific realization of Fig. 4. ForT.Tc the
correlations between each pair of spins are much sma
and hence this analysis is meaningless, and the proce
described above results inG1(u)5G2(u)5B for any
u.0.5.

According to our picture these correlated spin doma
govern the hierarchical structure of state space. It is imp
tant to clarify whether these domains survive as the sys
size L increases. There are two mechanisms by which
creasing the system size can invalidate our picture: either
domains do not remain macroscopic whenL increases, or
they do remain macroscopic but merge asL→`, i.e., the
fraction of states in whichG2 flips tends to zero. We now
discuss each of these possibilities in turn. In addition
simple figurative description of these two mechanisms
given in Sec. V B.

~1! The domains do not remain macroscopic whenL in-
creases. To study the finite size effects of our analysis
normalized the domain sizes by the number of spins
plotted the size distributions of the two domains for differe
system sizes, inD53 ~see Fig. 9! and inD54 ~Fig. 10!, at
two temperatures in both dimensions. The number of b

FIG. 8. The spin domainsG1 andG2, as found in the realization
of Fig. 4. Note that we use periodic boundary conditions, so
domains are connected through the boundaries. No spin is shar
G1 andG2.

FIG. 9. Size distributions of the spin domainsG1 andG2 for D
53 dimensions atT50.2,0.5. The distributions seem to converg
despite the small system sizes.
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realizations,Nsamp, from which these distributions were ob
tained for various system sizesL, at bothD53,4, are given
in Table I. ForT50.2 in both dimensions, and atT50.5 for
D53 the distributions seem to converge even for the sm
system sizes we use. We conclude with high certainty tha
T50.2 for D53,4 and atT50.5 for D53 the domain sizes
uGau are proportional toLD for both a51,2. The mean and
width of these distributions are presented in Table III. T
width of the distributions does not vanish, so the sizes of
domains are non-self-averaging quantities. On the ot
hand, forT50.8 in D54 we cannot determine conclusive
whether the domain sizes do or do not remain proportiona
N5LD asL increases.

~2! G1 and G2 may remain macroscopic but merge asL
→`. If this occurs, we end up with a single domain a
there will be no hierarchical structure in state space.
check that this does not happen we calculated the ave
correlationc̄12 between spins inG1 andG2,

c̄125
1

uG1uuG2u (
i PG1

(
j PG2

ci j
2 . ~25!

If c̄12 approaches the value 1 asL→`, the two domains
indeed merge in the thermodynamic limit. In Table III w
present, for systems of different sizes and dimensions,
average values ofc̄12 ~averaged over the disorder$J%) and
the corresponding standard deviations. ForT50.2, D53,4
and for T50.5, D53 the average correlation decreas
slightly as the system size increases, although, inD53 it
seems to converge already forL58 to a fixed value of;0.5.
This means that the spins ofG1 andG2 will not become fully
correlated and the two domains will stay separate asL in-
creases.

Interestingly, inD54, the correlation forL54,5 is higher
at T50.8 than atT50.2. The reason for this is probably th

e
by

,

FIG. 10. Size distributions of the spin domainsG1 and G2 for
D54 dimensions atT50.2,0.8. ForT50.2 the distributions seem
to converge, despite the small system sizes. ForT50.8, uG2u/N
converges to a narrow distribution around zero, anduG1u/N does not
show convergence yet.
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TABLE III. The normalized sizes of the domainsG1 andG2, and the average correlation between sp
that belong to the two domains. The last two parameters are taken for realizations$J% whereG2 does not
vanish. The probability forG2 not to vanish is also presented. For each quantityx the table contains@x#J , its
average overNsamprealizations of the disorder$J% and the width of the distributionDx5A@x2#J2@x#J

2. Next
to each@x#J we show its statistical error~in parentheses!.

D T L @ uG1u#J /N DuG1u/N @ uG2u#J /N DuG2u/N @ c̄12#J D c̄12
P(G2ÞB)

3 0.2 4 0.70~1! 0.21 0.099~4! 0.087 0.56~1! 0.33 0.856~6!

5 0.66~1! 0.21 0.105~5! 0.104 0.55~1! 0.33 0.832~6!

6 0.66~1! 0.20 0.090~4! 0.090 0.52~2! 0.34 0.836~6!

8 0.64~1! 0.20 0.084~5! 0.094 0.53~2! 0.34 0.833~8!

0.5 4 0.31~1! 0.21 0.062~3! 0.056 0.49~1! 0.32 0.56~1!

5 0.26~1! 0.18 0.052~2! 0.043 0.49~1! 0.33 0.57~1!

6 0.25~1! 0.16 0.046~2! 0.046 0.47~1! 0.33 0.52~1!

8 0.22~1! 0.15 0.035~2! 0.034 0.47~2! 0.31 0.55~1!

12 0.24~1! 0.15 0.033~2! 0.035 0.54~2! 0.31 0.56~2!

4 0.2 3 0.74~1! 0.19 0.107~5! 0.105 0.62~2! 0.34 0.840~6!

4 0.73~1! 0.19 0.083~4! 0.092 0.53~2! 0.34 0.830~6!

5 0.73~1! 0.19 0.082~7! 0.098 0.51~2! 0.34 0.77~1!

0.8 3 0.154~7! 0.15 0.036~1! 0.031 0.47~1! 0.31 0.298~9!

4 0.142~6! 0.12 0.025~1! 0.029 0.54~1! 0.31 0.37~1!

5 0.139~8! 0.11 0.020~2! 0.025 0.57~2! 0.29 0.38~2!
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as T increases, small pieces ofG1 ‘‘fall of.’’ Since G2 at T
50.2 is small, one of these pieces, which is larger thanG2,
assume the role ofG2 at T50.8. Since this piece was part o
G1 at T50.2, we expect its correlation, with what remains
G1 at T50.8, to be relatively high. Extrapolating fromL
53,4,5 is not useful, but we still believe that the correlati
does not approach 1 asL→`.

We also attempted to identifyG3 and G38 , the spin do-
mains associated with the third level of the state hierar
~see below!. G3 is the cluster which is associated with spl
ting C1 into its two descendents on the dendrogram,C1a and
C1b . The domainG38 plays the same role inC2. Since by our
notationuC1u>uC2u we expected that in order to have a larg
number of states, the spin correlations will be lower wh
measured overC1 than overC2. As a result we expectuG3u
<uG38u. Due to the small sizes of the systems we study,
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cannot be sure if the sets of spins we identify asG3 andG38
indeed play the role we attribute to them, or are just a m
croscopic noise and, therefore, only a finite size effect. T
results are given in Table IV. We see that the normaliz
sizes of both domains decrease with the system size, per
due to finite size effects. We also measure the average
relation c̄(G3 ,G1øG2), of G3 with the largest domain corre
lated overC1, which includesG1øG2 ~this domain has a
fixed orientation over the states ofC1). This correlation is
defined as

c̄~G3 ,G1øG2!5
1

uG1øG2uuG3u (
i PG1øG2

(
j PG3

ci j
2 . ~26!

In Table IV we see that the values ofc̄(G3 ,G1øG2) decrease
asL increases; hence ifG3 survives as a macroscopic clust
e also the

TABLE IV. The size of the spin domainG3 andG38 , the correlation ofG3 with G1øG2 and the relative part ofG3 and ofG38 , which is

common to both these spin domains. All results are taken for realizations where the domains concerned do not vanish, and we giv
probability of this to happen. All data was taken forT50.2. We present the average over these realizations$J% 6 the statistical error,
obtained by dividing the standard deviation byANs, whereNs is the number of realizations that contributed to each average.

D L @ uG3u#J /N @ c̄(G3 ,G1øG2)#J
P(G3ÞB) @ uG38u#J /N P(G38ÞB) @ uG3ùG38u/uG3u#J P(G3ÞB andG38ÞB)

3 4 0.04860.003 0.5560.015 0.914~4! 0.08760.008 0.834~6! 0.2360.019 0.772~8!

5 0.04660.003 0.5260.015 0.914~4! 0.08560.009 0.882~5! 0.1560.016 0.818~7!

6 0.04360.003 0.4860.015 0.924~3! 0.08160.009 0.896~4! 0.1960.017 0.832~6!

8 0.03660.003 0.4360.017 0.905~5! 0.07660.010 0.905~5! 0.1660.019 0.827~8!

4 3 0.04560.003 0.5660.015 0.928~3! 0.09460.010 0.838~6! 0.2560.020 0.782~8!

4 0.03760.003 0.4860.015 0.908~4! 0.06160.007 0.920~3! 0.1660.016 0.844~6!

5 0.03460.005 0.4360.024 0.84~1! 0.07260.014 0.865~8! 0.1960.027 0.73~1!
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FIG. 11. ~a! The spin dendrogramD for the data of Fig. 4~a! produced by Ward’s algorithm.~b! The spin distance matrixd of this
realization realization. The spins are ordered according to their clusters inD. Darker shades correspond to smaller distances and hi
correlations.~c!, ~d! The same as in~a!, ~b!, for the same realization atT50.5. ~e!, ~f! The same as in~a!, ~b!, for the same realization a
T52.0. They axis is rescaled to show the dendrogram, which clearly differs from the dendrograms in~a! and ~c!.
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at largeL, we expect it to remain distinct from the union o
the two larger domains.

B. Spin space structure

So far we have obtained the spin domains using the
sults of the state space analysis. However, the existenc
these domains can also be observed directly in spin sp
i.e., without utilizing information about the previously iden
tified hierarchical structure of state space, as we now d
onstrate.

As described in Sec. IV, the equilibrium ensemble
states, obtained for each realization, is represented by aN
3M data matrix$Si

m% @e.g., Fig. 4~a!#. In Sec. IV we treated
each of theM states, represented by a column of this matri
as a ‘‘data point’’ whose coordinates are the components
this N-dimensional vector. Now we view each of theN spins
of the system as a data point, represented by a row of
same matrix. Each of these data points is a vector in
M-dimensional space.

The distance on the set of spins should be defined acc
ing to the nature of the clusters we are interested in. At
case, we expect highly correlated spins to be in the sa
cluster, and spins with low correlation to be in different clu
ters. Thus, we define the distance between a pair of
points i and j as

di j 512ci j
2 . ~27!

This N3N distance matrix serves as the input for cluster
the spins, using Ward’s algorithm. The dendrogramD, ob-
tained when the data of Fig. 4~a! are clustered, is presente
in Fig. 11~a!. The correlated spin clusters are represented
boxes in the dendrogram—let us denote them byg̃a . When
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the spins are reordered according to the dendrogram, t
distance matrix, shown in Eq. 11~b!, clearly exhibits a non-
trivial structure. There are large, highly correlated spin cl
ters on the lower levels of the dendrogram.

In order to ‘‘see’’ the manner in which the spins are o
dered, we return to the data matrix of Fig. 4~a!. We obtained
Fig. 4~b! from ~a! by reordering the columns according to th
state dendrogram in Fig. 3. If we now reorder the rows
Fig. 4~b! according to the spin dendrogramD in Fig. 11, we
get Fig. 4~c!, which is redrawn as Fig. 12 with labeling of th
largest state clusters and spin domains. The cluster struc
of the spins can be clearly seen in Fig. 12. Spins inG1 clearly
have the same orientation in the states ofC but are inverted

in the corresponding states ofC̄. Spins inG2 have opposite
orientations inC1 andC2 and are inverted in the correspon

ing states ofC̄1 andC̄2. One can also see that spins in doma
G38 separateC2 into two sub-clusters. As toG3, we point in
Fig. 12 to a few~3–4! spins, which have the same sign in a
states ofC2 but change sign inC1.

These data were obtained atT50.2 (,Tc). AboveTc the
correlation between any two spins is low, and there is
cluster structure, as evident from Figs. 11~e! and 11~f!. The
relative t values of this dendrogram are much smaller th
those of the dendrograms in Figs. 11~a! and 11~c!, and the
reordered distance matrix is structureless. If the domainsGa
~that were identified in Sec. V A on the basis of the sta
hierarchy! are not an artifact of our analysis, they should
clearly identifiable in spin space, and appear as cluster
the spin dendrogramD. To check this, for each realizatio
we compared every spin clusterg̃a , that appears in the cor
responding spin dendrogramD, to every spin domainGa that
was previously found for that realization. The spin clusterg̃a
6-13



text.

the spin

DOMANY, HED, PALASSINI, AND YOUNG PHYSICAL REVIEW B64 224406
FIG. 12. A redrawing of the ordered data matrix of Fig. 4~c!, in order to highlight the state clusters and spin domains discussed in the
It is for a 3D realization of sizeN583 at T50.2. The columns represent the statesm and the rows represent the spinsi, Si

m561, with
black/white representing1/2. The states are ordered according to the dendrogram in Fig. 3, and the spins ordered according to
dendrogramD in Fig. 11. The state clusters and the spin domains are marked~see text!.
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that was found to be most similar toGa was identified and
denoted byga . We used the similarity measure

S~ga ,Ga!5
2ugaùGau
ugau1uGau

, ~28!

which represents the fraction of shared spins by the ‘‘phy
cal spin domain’’Ga and the spin clusterga . For most real-
izations we have~at low T! ga5Ga for both a51,2; and
when these groups are not precisely equal, they differ
only a few spins~see Ref. 37 for full details!.

Figure 12 also provides a convenient, simple ‘‘geome
cal’’ interpretation of the two tests for the survival of ou
picture in the largeL limit that we discussed in Sec. V A
Observe the rectangular region corresponding to spin dom
G2 and state clusterC2. Validity of our picture relies on ‘‘sur-
vival’’ of this rectangle as we take theL→` limit. The first
test we performed checked whether its vertical side,uG2u
stays finite. If this condition is not satisfied, the relative a
of our rectangle goes to zero; a nonvanishing limitinguG2u
does not, however, guarantee that the rectangle stays fini
may disappear if its horizontal dimension shrinks to ze
when L→`. The second test, showing that the correlat
c̄12 does not approach 1, ensures that this does not ha
either.

Overall, Fig. 12 summarizes in a convenient pictorial w
our picture of the spin glass state in short-range systems

C. Spin domains and states hierarchy

Now that the spin domains have been well defined,
can examine the manner in which they govern the hierar
22440
i-

y

-

in

a

; it
o

en

e
i-

cal partitioning of state space. Each state cluster at levela of
the hierarchy can now be identified with one of two possi
configurations of the particular spin domainGa . We denote
these two configurations as⇑a and ⇓a . Note that we have
avoided the notation1/2 for the states of the spin domain
since in each state some of the spins have the1 sign and
others2. For example, in the first level partitionG1 has a
certain characteristic configuration,⇑1, over all the states in
C, whereas over all the states ofC̄ it is in the spin inverted
configuration⇓1. The value@⇑1# i , taken by spini PG1 in the
configuration⇑1, is defined by

@⇑1# i5sgnS (
mPC

Si
mD . ~29!

Our definition ofG1, using Eq.~21! with u50.95, guarantees
that the argument of the sign function in the above expr
sion does not vanish. Hence, stating thatG1 takes configura-
tion ⇑1 in a certain statem implies that

(
i PG 1

Si
m@⇑1# i.0. ~30!

The configuration assumed byG1 in any statem determines
thatm is assigned toC if G1 is in configuration⇑1, or to C̄ if
G1 is in configuration⇓1.

The spin domainG2 determines, in a similar way, th
partition of C into C1 andC2 ~and the partition ofC̄ into C̄1

and C̄2). G2 is in configuration⇑2 in statesC1 and C̄2, and in
⇓2 in statesC2 and C̄1 ~see Fig. 1 for a schematic illustratio
of this point!.
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STATE HIERARCHY INDUCED BY CORRELATED SPIN . . . PHYSICAL REVIEW B64 224406
Each spin domainGa defines a partition of the states,
level a, into two groups—one in whichGa is in the⇑a con-
figuration and the other with⇓a . Picking a pair of statesm
and n, one from each group, the set of spinsGmn , that are
flipped in the transition between them, will always inclu
Ga .42 Thus, the distanceDmn5uGmnu/N between two such
states will almost always be larger thenuGau/N.

By our definition ofGa , the probability that a large part o
its spins will lose their relative orientation is small. Consi
ering local dynamics, the time it will takeGa to flip is expo-
nential in its size. IfGa is macroscopic~as we have shown
for a51,2) it may be associated with a macroscopic fr
energy barrier. In an infinite system it will take an infini
time to flip, thus inducing a separation of the phase sp
into two ergodic subspaces~or valleys!.

The clear hierarchical organization of the state clust
suggests that the average distance~15! between state cluster
formed at a high level of the hierarchy is significantly larg
then the average distance between clusters formed at a l
level. Indeed, we show in Table II that in generalD(C,C̄)
@D(C1 ,C2). We relate this characteristic of the state stru
ture to the large variability of the spin domain sizesuGau.
Indeed, we have seen that typicallyuG1u.8uG2u for T50.2,
D53,4.

Now we have a complete picture, supported by our
merical findings, of a hierarchy of state clusters. The vall
are the leaves of this hierarchy.43 At each levela of this
hierarchy the partition of the states is refined according to
orientation of macroscopic spin domainsGa . At different
nodes of a certain level of the hierarchy there might be
ferent correlated domains that determine their partition. Ta
for example, the states inC1 ~whereG1 is in configuration⇑1
andG2 is in configuration⇑2). Over these states the large
unlocked44 correlated domain isG35G3(⇑1 ,⇑2). The two
possible configurations ofG3 inside C1 may be denoted a
⇑3(⇑1 ,⇑2) and⇓3(⇑1 ,⇑2). Over the states ofC2 we expect to
find a different unlocked correlated domainG385G38(⇑1 ,⇓2).
We calculated the part of each domain which is included
the other. The results are given in Table IV. We see thatG3

andG38 share in general less than a fifth of their spins.
Note that in the ideal case~corresponding tou51), a spin

domainGa(⇑1 ,⇑2 , . . . ,⇑k), that appears at a particular lev
of the hierarchy, cannot share spins with the higher le
domainsb51,2, . . . ,k, whose orientation is fixed whileGa
flips. For u50.95 such sharing was also practically e
cluded. On the other hand, two domains such asG3 andG38
can have shared spins, namely those that are free to fli
both the (⇑1 ,⇑2) and (⇑1 ,⇓2) situations.

Going all the way down the states hierarchy, we find t
each valley can be characterized by a specific list of dom
configurations, e.g.,$⇑1 ,⇓2 ,⇓3(⇑1 ,⇓2),⇑4(⇑1 ,⇓2 ,⇓3), . . . %.

An additional insight is obtained from a PCA of the spin
which is to be distinguished from the PCA of the states
Fig. 5. To perform the PCA of the spins we form the cov
riance matrix

Rmn5
1

N (
i 51

N

dSi
mdSi

n , ~31!
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which is analogous to Eq.~11!, and project the two larges
eigenvectors ofR onto the spin configurationsSi for each
site i.

The results for three realizations, labeled A, B, and C,
shown in Fig. 13. Each data point represents one spin. R
ization A is the one whose data matrix is shown in Figs
and 12.

In the upper left frame of Fig. 13 we see the results of
PCA analysis of the spins for realization A. We want high
correlated spins to be close on the plot. Since a spinSi is
fully correlated with its inverse2Si each point (x,y) with
y,0 is projected on the plot to (2x,2y). The spins ofG1
are highly correlated with each other and all have the sa
values for the first two principal components of the sp
space. Therefore they fall on top of each other, and we
only oneL marker which represents all of them. The sam
is true for the spins ofG2, marked byn. As seen from Fig.
12 the spins ofG1 are not correlated with the spins ofG2 over
the M states, and indeed the two domains are far from e
other on the plot.

In column~b! of Fig. 13 we used only the states ofC1 in
the analysis. We can see in Fig. 12 that overC1 the spins of
G1 andG2 are correlated, together with some of the spins
G38 , marked by3. In the plot~the middle frame on the uppe
row of Fig. 13! we can see that indeed these spins are
plotted at the same coordinates. The spins ofG3, marked as
s, are highly correlated, but are not correlated withG1 and
G2. Note that the spins ofG38 are separated into two differen
sets, and are not correlated overC1.

When we perform the analysis using only the states ofC2
we get the results presented in column~c! of Fig. 13. In the
matrix of Fig. 12 we see that the spins ofG1 , G2, andG3 are
correlated together overC2, and indeed they all fall on top o
each other in the plot. We also seeG38 as a separated corre
lated domain.

In the second row of Fig. 13 we give the results for re
ization B, in which G3 and G38 share some of their spins
Those spins are marked bŷ. In column ~c! we see these
spins insideG38 . The rest of the spins ofG3 are not correlated
with them. Some of them are correlated withG1 andG2, and
others seem to be in another domain.

In the third row of Fig. 13 we present the results f
realization C in whichG3,G38 . Here spins ofG38 seem to
form a correlated set also overC1, though the correlations ar
not high enough for it to be considered as a domain by
definition.

VI. STATE OVERLAP

We have presented a description of the system in its loT
phase, relating state space behavior to the microscopic s
ture in spin space. Most of the previous literature, howev
did not directly measure the microscopic features of the s
tem but examined their indirect implications on other para
eters, such as the widely addressed overlap distribu
P(q). Beyond making contact with the literature, which co
centrates on measuringP(q), the aim of this section is two-
fold: ~i! we show how our methods allow a useful decomp
6-15
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FIG. 13. The two principal components of th
512 spins of three realizations A, B, and C~see
text! in 3D. Each point represents a spini and its
coordinates are the projections ofSi

5(Si
1 ,Si

2 , . . . ,Si
M) onto the two largest eigen

vectors of the matrixR in Eq. ~31!. The analysis
is carried over~a! all states;~b! the states ofC1;
and ~c! the states ofC2. The spins ofG1 are
marked byL; of G2 by n; of G3 by s; and ofG38
by 3. Spins that belong to bothG3 and G38 are
marked by^ . Spins that do not belong to any o
these domains are marked with dots. The low
half of the plane is projected onto the upper ha
using (x,y)→(2x,2y). Spins in a correlated
domain usually have the same values for the t
principal components, and they fall on top o
each other on the plot. Therefore, in most plots
correlated domain seems to be represented b
single marker.
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sition of this function into its physically relevant constitue
parts,31 and ~ii ! we demonstrate that our picture provides
microscopic interpretationof the observedP(q). To this end
we focus here onPJ(q), the overlap distribution for a spe
cific realization $J% of the bonds, whereas earlie
works19,20,24,45presented results for the average over the d
order,P(q)5@PJ(q)#J .

Two technical comments should be first made. First,
cause of overall spin-flip symmetry, the functionPJ(q) is
symmetric and hence we can limit our attention toq.0.
Second, since for most realizationsuG1u.N/2, we have

PJ
CC~q!.H PJ~q!, q>0,

0, q,0,
~32!

where byPJ
CC(q) we denote the distribution of overlaps b

tween pairs of statesm,nPC, so that we have to deal onl
with such pairs.

A. Decomposition ofPJ„q… and P„q…

The overlap distribution for a specific realizations of t
randomness,PJ(q), is expected to be the sum of two ma
parts

PJ~q!5PJ
i ~q!1PJ

o~q!, ~33!

wherePJ
i (q) is the overlap distributionwithin a valley ~and

between a valley and its spin reversed counterpart!, and
PJ

o(q) is the overlap distribution between states that belo
to two differentvalleys.PJ

i (q) converges tod(uqu2qEA)/2 in
the thermodynamic limit, whereqEA is the Edwards-
Anderson order parameter, which will also be denoted as
‘‘self-overlap.’’ PJ

o(q) is the sum of several contributions
corresponding to different pairs of valleys.

In the thermodynamic limit this separation is unambig
ous; if two microstatesm and n are separated by a macro
scopic energy barrier, they belong to two different valle
and their overlapqmn contributes toPJ

o(q). For finite sys-
tems this separation is problematic; our picture and meth
22440
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however, does allow us to estimatePJ
o(q) or, to be more

precise, to calculate a functionP̃J
o(q) defined below, which

is a lower boundto it. In our picture, the transition betwee
such pairs of microstates~that belong to two different val-
leys! is associated with flipping a specific set of spin d
mains. Consequently, having identified the relevant spin
mains, we can identify whenm and n belong to different
valleys and also the level in the states’ hierarchy at wh
they differ.

A remaining apparent ambiguity concerns the level of
state hierarchy at which we ‘‘stop’’ and decide whether
particular pair of microstates belongs to different valleys
not. Suppose we stop the decomposition ofC at some leveln
and denote byC a

n the clusters obtained at this level. Th
overlaps obtained from pairs of microstates that belong
different valleysat this levelare assigned to the distributio
PJ

o,n(q), and pairs from the same valleys toPJ
i ,n(q):

PJ
i ,n~q!5(

a
P

J

Ca
nCa

n

~q!,

PJ
o,n~q!5 (

aÞb
P

J

Ca
nCb

n

~q!, ~34!

where, from Eq.~33!,

PJ~q!5PJ
i ,n~q!1PJ

o,n~q! for q>0. ~35!

Clearly, by going down a level further, ton11, some
pairs that were assigned toPJ

i ,n(q) will be reassigned to
PJ

o,n11(q), but if a pair was inPJ
o,n(q) it will stay in

PJ
o,n11(q). This argument clearly shows thatPJ

o,n(q) ob-
tained at any level is alower boundto PJ

o(q). This point is
explained again below for the particular case ofn52.

To demonstrate how natural is the separation of Eq.~33!,
we consider pairs of statesmPC1 andnPC2, i.e., pairs taken
from state clusters that appear at the second (n52) level of
the states’ hierarchy. According to our picture such pairs c
6-16
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tribute a nonvanishing part ofPJ(q), which we denote by
PJ

C1C2(q). Note thatPJ
C1C2(q)[PJ

o,2(q) for q.0, since for
n52 C has only these two sub clusters. This function, as w
as its complementPJ(q)2PJ

C1C2(q) are presented, forT
50.2 andL58 in Fig. 14, for four realizations of the ran
domness. The figure shows clearly that the separatio
natural, and not just an artifact of our analysis.

For all these four realizations the spin domainG2 is
clearly identifiable and is ‘‘macroscopic’’~note that this
holds for more than 80% of the realizations, see Table III!. In
all these cases the statesm andn belong to different valleys,
and contribute toPJ

o(q). There may be, however, pairs o
states which also contribute toPJ

o(q), but arenot included in
PJ

C1C2(q). This happens when~at least! one of the state clus
ters C1 ,C2 has internal structure and decomposes into s
clusters~i.e., higher level valleys!. SayC1 contains two such
subclusters,C1a ,C1b . The overlap of a pair of statesm
PC1a andnPC1b contributes toPJ

o(q), and is not included
in PJ

C1C2(q); hence the latter function is alower boundon
the former. As discussed above in Sec. V, such internal st
ture ofC1 ~or C2) is associated with a spin domainG3 ~or G38).
This structure is clearly present for the realizations in Fi
14~a! and 14~d!, as evident from the multipeaked structure
PJ

C1C2(q) which is discussed further below.

We now generate a distributionP̃C1C2(q) which is a
lower bound on the contribution ofPC1C2(q)[@PJ

C1C2(q)#J

to the averagedistribution P(q). In order to assure tha
P̃C1C2(q) constitutes a lower bound toPC1C2(q), we in-
cluded inP̃C1C2(q) only contributionsPJ

C1C2(q) from those
realizationsJ in which G2 was relatively large, namelyuG2u
.0.05N. For the other realizations we set the contribution
the average overJ to zero; hence ourP̃C1C2(q) is a lower
bound to the truePC1C2(q) @which, in turn, is a lower bound
to Po(q)#. In Fig. 15 we show the distributionsP(q) and
P̃C1C2(q). The data indicates that the weight in the tail f
small q stays finite with increasingL ~at least for this range
of sizes!, in agreement with earlier studies19,20,24,45which
just measuredP(q). For systems with Gaussian coupling
Pi(q) has a very small contribution atuqu,0.7 andP̃o(q) is
the dominant part ofP(q) in this range. For an Ising spin
glass with binary couplings, however, the difference betw
the distributions is significant and proper care must be ta
when delicate issues, such as triviality ofP(q), are
investigated.31

B. Interpretation of PJ„q… in terms of spin domains

Our aim is to interpret the distributionPJ(q), obtained for
a particular realization, in terms of the state clustersCi and
spin domainsGa that were discussed in the previous sectio
Before going into a detailed discussion and analysis, we s
the interpretation that arises, for the four realizations wh
PJ(q) was shown in Fig. 14. The first of these, Fig. 14~a!,
corresponds to a system in whichC2 has internal structure
due to a sizeable domainG38 ; its counterpartG3 is too small
to have a clear signature. The size ofG38 governs the splitting
22440
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of the peak drawn with a solid line and also of the peak
high q ~dashed line!. In the systems of Figs. 14~b! and 14~c!
neitherC1 nor C2 have noticeable internal structure; the d
mains G3 ,G38 are too small. The system of Fig. 14~d! has
internal structure for bothC1 andC2, induced by domainsG3

andG38 , respectively. The sizes of these two domains gov
the observed splitting of both the solid and dashed curve

One can associate each peak ofPJ(q) with the overlaps
of pairs of states that are related by flipping one or more
the previously identified spin domains. In this regard o
interpretation resembles the RSB picture5 which also relates
the peaks ofP(q) ~Ref. 20! to overlaps between configura
tions in different valleys.

To substantiate these claims and make them more pre
we consider in detail the realization whose~ordered! state
and spin data matrix is given in Fig. 12, and whosePJ(q)
@shown in Fig. 14~a!# is reproduced and magnified in Fig. 1
For this realization we clearly identifiedthreespin domains;
G1 , G2 andG38 . Disregarding the splitting induced byG38 ~and
G3, if present! we identify two main peaks that dominat
PJ

CC(q). We performed a fit ofPJ
CC(q) to a sum of two Gaus-

sians,

PJ
CC~q!5b1 exp@~q2q1!2/a1

2#1b2 exp@~q2q2!2/a2
2#,

~36!

with ai , bi , and qi as fit parameters, yielding the dotte
curves in the upper part of Fig. 16. The center of the~split!
peak at lowq is q1 and the high-q data is centered atq2.

To see how theseqi are related to our state clusters a
spin domains, note that the overlapqmn between statesm and
n is related to the size of the setGmn @defined in Eq.~20!#, of
spins that flip when passing from statem to n:

qmn5122uGmnu/N. ~37!

FIG. 14. The distributionPJ(q) for four realizations of$J% at
T50.2 in 3D. The distribution in~a! is the same as in the top fram
of Fig. 16. The solid line describesPJ

C1C2(q) and the dashed line
plots the rest of the distribution,PJ(q)2PJ

C1C2(q). The latter con-
tains a large peak atq'1 which is contributed by the distribution
PJ

i (q), of overlaps inside the valleys.
6-17
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For all state pairsm,nPC the domainG1 is in the state⇑1;
henceuGmnu<N2uG1u, so thatqmn>2uG1u/N21. The state
pairs belong to one of two types.

~1! Pairs in whichG2 flips between⇑2 to ⇓2 or vice versa.
These pairs contribute toPJ

o,2(q)5PJ
C1C2(q) ~this equality

holds forq.0). The definition ofG2 yields that in most such
casesG2PGmn and hence 2uG1u/N21<qmn<122uG2u/N.

~2! Pairs in which neitherG1 nor G2 flip contribute to
PJ

i ,2(q)5PJ
C1C1(q)1PJ

C2C2(q). For these pairs in most case
uGmnu<N2uG1øG2u and henceqmn>2(uG1u1uG2u)/N21.

The peak centered atq1, is attributed to state pairs of th
first type, and hence

2uG1u/N21<q1<122uG2u/N. ~38!

The other peak, centered atq2, is attributed to state pairs o
the second type, and thus we expect

q2>2~ uG1u1uG2u!/N21. ~39!

These two inequalities yieldq22q1>2uG2u/N. Evidently,
this structure ofPJ(q) is completely consistent with our pic
ture of spin domains that govern partition of state space
well defined clusters. By a detailed analysis37 we have shown
that the~at least! two-peaked structure ofPJ(q) survives for
largeL.

In some realizations, such as the ones that yield F
14~a! and 14~d! PJ(q) has more peaks, sincePJ

C1C2(q)
([PJ

o,2(q)) exhibits two or more peaks; this splitting is du

FIG. 15. ~a! The partial distributionP̃C1C2(q) for D53, L

54,5,6,8. It is normalized so that 2*0
1P̃C1C2(q) is its weight in the

total P(q). For clarity only a few representative error bars a
shown.~b! The distributionP(q) for the same systems as in~a!. ~c!

P̃C1C2(q) as in ~a! but for D54, L53,4,5. ~d! P(q) for the same
systems as in~c!.
22440
to
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as mentioned above, to spin domainsG3 and G38 . We ana-

lyzed PJ
C1C2(q) in the same way as we did forPJ

C,C(q), using
the same form of fit as in Eq.~36!. For example, in the

middle part of Fig. 16,q̃1,1 andq̃1,2 denote the centers of th
two Gaussians, withG2 andG3 playing the previous roles o
G1 andG2.

For much larger systems, for which the state hierarchy
expected to have more than two clear levels, we expec
find a finer structure inP(q). It will exhibit multiple peaks,
each related to different domain sizes. The heights
widths of the peaks are expected to be governed by the s
of the state clusters that contribute to it which, in turn, a
determined by the correlations between the spin domains
generate these clusters. Each of these peaks can be iso
and measured separately by observing the overlap of s
of the corresponding clusters.

The shape ofP(q) we describe above resembles the o
assumed by RSB. It is important to reemphasize, howe
that our P(q) was obtained for finite systems; its resem
blance to the form predicted by RSB does not necessa
mean that the latter picture is the correct one. In fact, pre
ous studies12,14,24,26of the link overlap@defined in Eq.~2!#
indicate that it is trivial, which contradicts the RSB scenar
though this conclusion has been disputed in Refs. 27–29
fact, our picture and results also donot appear to be consis
tent with RSB since we find a nonultrametric state structu
as we show in Sec. VII.

VII. ULTRAMETRICITY

Ultrametricity is one of the main characteristics of th
mean field RSB picture. Efforts to establish46 or dismiss47 the
existence of ultrametricity in short range spin glasses did
yield conclusive results. We presented in Sec. IV indicatio
that w12, the width of the distance distribution betwee
states fromC1 andC2, does not vanish, implying a nonultra
metric structure of state space. Here we look for a m
direct test of ultrametricity. The main problem is that we c
equilibrate only small systems, where ultrametricity is h
dered by finite size effects. Ultrametricity is a stateme
about the geometrical properties oftrianglesformed by three
‘‘pure states’’~or by three micro states that belong to diffe
ent pure states!. All three have to belong48 to C, and for small
systems only a small fraction of the realizations contain s
triplets of states.

For D53 at T50.2 we measuredp̃, the fraction of real-
izations for whichG3 ~or G38) were large enough to induc

two clearly separated peaks ofPJ
C1 ,C2(q) ~see Sec. VI B!. We

found, for L54,5,6,8 the valuesp̃50.006,0.026,0.056
0.090, respectively. AtD54 the similar fractions, atT

50.2 and forL53,4,5 arep̃50.02,0.030,0.080. Note tha

for both D53,4, p̃ increases with the size of the system.
Our method of analysis allows us to identify the realiz

tions that do contain such triangles of states and use ex
6-18
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sively them to investigate whether ultrametricity does
does not hold. In this way we avoid many finite size effe
that might obscure the results.

A set of objects with a distance measureD is ultrametric
if any three objectsa, b and g form an isosceles triangle
with the base equal to or smaller than the two equal sid
This demand can be formulated as the requirement that
inequality

Dab<max$Dag ,Dbg% ~40!

be satisfied for all three choices of the distance placed on
left side.

When the system is in the highT paramagnetic phase a
triangles will be equilateral, since, asL→` the probability
distribution of distances will beP(Dmn)5d(Dmn21/2).
Similar behavior occursinside a specific valley atT,Tc ,
since for two statesm and n inside the valleyP(Dmn)
→d(Dmn2(12qEA)/2), where qEA is the Edwards-
Anderson order parameter.

The nontrivial result of RSB is that the valleysthemselves
are ultrametric. In order to investigate this claim, we ha
to focus on triplets of states, each chosen from a differ
valley. For large systems with many valleys this does
require special care, since almost all triplets of states
belong to three different valleys. For small systems, ho
ever, a large fraction of the possible triplets will have at le
two states from the same valley. Such triplets should
disregarded.

Our way of analysis provides us with tools to exami
ultrametricity for small systems. We utilize the state hier
chy obtained in Sec. IV to carefully choose triplets of sta

FIG. 16. ~Top:! The distributionPJ
CC(q) for the same 3D real-

ization whose data were presented in Fig. 12. The dotted line is
to the sum of two Gaussians~see text!. ~Middle! The partial distri-
bution PJ

C1C2(q) for the same realization. The dotted line represe
a fit to the sum of two Gaussians.~Bottom! The difference between
the two previous distributions.
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from different state clusters. We chose three clusters:C2 ,
C1a , andC1b . The last two clusters are the ‘‘children’’ ofC1
in the state dendrogram, i.e.,C15C1aøC1b . According to our
picture a triplet of states, one from each of these three c
ters, belong to three different valleys, since we have to fli
correlated domain with a macroscopic number of spins
order to move from one cluster to another. To move fromC2
to C1 we have to flipG2 from configuration⇓2 to configura-
tion ⇑2. Similarly, when moving fromC1a to C1b we have to
flip G3 from ⇑35⇑3(⇑1 ,⇑2) to ⇓35⇓3(⇑1 ,⇑2) ~see Sec.
V C!. Due to the small sizes studied, in this paper we do
present any conclusive evidence thatG3 is indeed macro-
scopic. However, if~in the L→` limit ! it is not macro-
scopic, our method predicts that there are only four valle
~determined byG1 andG2) and hence the RSB picture clear
does not hold.

In order to have a quantitative measure of ultrametric
we define an indexK in the following manner. Letm, n, and
r be three states, so thatDmn>Dmr>Dnr . We define

Kmnr5
Dmn2Dmr

Dnr
. ~41!

The triangle inequality requiresDnr>Dmn2Dmr so we have
0<Kmnr<1. Ultrametricity demandsDmn5Dmr so if there
is ultrametricity we expectP(K)→d(K) asL→`.

We measuredP(Kmnr) for mPC2 , andn,r from C1a and
C1b. We used our samples forT50.2; since as the tempera
ture is lower and more distant fromTc , the state structure
should be clearer and less blurred by finite size effects.
measured the distribution ofK for each realization, and the
obtainedP(K) by averaging over the disorder$J%. In all
systems we found with high probability thatKmnr51 exactly
~see Table V!.This happens whenGmn , the set of spins one
has to flip when going fromm to n, coincides precisely with
GmrøGnr , the union of the two sets that are flipped when w
go from r to m and ton. This is, however, clearly a finite
size effect; asL increases the probabilityP(K51) decreases
dramatically. Therefore we do not include this part of t
distribution in our estimation ofP(K). If this part of P(K)
broadens asL increases, its exclusion cannot be achieved

fit

s

TABLE V. The third and fourth columns show the probabilit
for Kmnr51 and 0.9<Kmnr,1, for mPC2 , nPC1a , andrPC1b .
The fifth and sixth columns give the mean and variance of
distribution ofP(KuK,1). All systems are sampled atT50.2.

D L P(K51) P(0.9<K,1) mean(K) var(K)

3 4 0.78 0.0007 0.385 0.073
5 0.57 0.0082 0.426 0.066
6 0.35 0.0126 0.447 0.068
8 0.08 0.0269 0.476 0.066

4 3 0.74 0.0012 0.362 0.068
4 0.38 0.0116 0.413 0.067
5 0.10 0.0095 0.406 0.061
6-19
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FIG. 17. The distributionP(KuK,1) of
Kmnr , for mPC2 , nPC1a , andrPC1b . All sys-
tems are sampled atT50.2.
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f a
that
simply ignoring the triangles withK51. This, however, is
clearly not the case: we present in Table V the probabi
P(0.9<K,1), and show that its increase withL is much too
small to compensate for the decrease inP(K51).

In order to disregard this finite size effect we truncat
P(K51) from P(K) and renormalized to get the distributio

P~KuK,1!5H P~K !/P~K,1!, K,1,

0, K51.
~42!

For largeL we expectP(K51) to vanish, andP(K) will
approachP(KuK,1). The results are plotted in Fig. 17. I
Table V we give the mean and variance ofP(KuK,1).
Though we deal with small systems, it seems thatP(KuK
,1) converges to a distribution with nonvanishing mean a
variance, indicating breakdown of ultrametricity for the thr
levels of the state hierarchy that were studied.

Again one should address the question: do these re
remain valid in the largeL limit? We have to show that the
state triplets we used, fromC2 , C1a and C1b , have a finite
statistical weight asL→`. In Sec. VI we showed thatuC2u/N
remains finite if the average correlationc̄12 betweenG1 and
G2 does not approach one. From the same argument we
clude that if the correlation ofG3 with G1øG2 does not ap-
proach one then bothuC1au/N anduC1bu/N do not vanish and
the weight of such state triplets remains finite, and the s
tem does not exhibit ultrametricity. We do have evidence t
the average correlationc̄(G3 ,G1øG2) of G3 with G1øG2 in
fact decreases asL increases, but it is not conclusive.

VIII. SUMMARY AND DISCUSSION

We have presented a picture of the spin glass phas
finite dimensional systems. This picture—state hierarchy
duced by correlated ppin domains~SHICS!—is consistent
with numerical findings of a nontrivial overla
distribution19,20,24and macroscopic spin domains which co
only a finite energy to flip.12,14 Our results differ from the
conventional interpretations16,17 of the droplet picture; nev-
ertheless, the scenario presented in the original work
Fisher and Huse,6–8 and also the work of Newman an
Stein,9,18 is of sufficient generality to allow consistency wit
our findings.

In the spin glass phase, the system consists of ma
scopic spin domains of variable sizes. By ordering the
mains according to their sizes and assigning them one of
orientation~starting with the largest and continuing by d
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creasing size!, we generate valleys whose free energies dif
by finite amounts. The variability in domain sizes gives ri
to a hierarchical structure in state space. At each level in
hierarchy some state clusters split; each such splitting is
sociated with a spin domain. The first~highest! level splitting

~to C,C̄) is associated with the largest domainG1; at the next

level the two observed splittings (C→C1 ,C2 and C̄→C̄1 ,C̄2)
are related by symmetry and hence governed by the sa
second largest domainG2. At each level, the state clusters a
labeled according to the orientation of the corresponding
mains.

Below the second level, different spin domains are
volved depending on which state cluster is being subdivid
e.g.,G3 is the domain whose orientation splits the states
C1, while a different domainG38 is involved in splittingC2.
Although G3ÞG38 , in general they may share some of the
spins. The state space structure in the lower levels of
hierarchy has to be further investigated for larger syste
Specifically, one has to verify thatG3 andG38 do not vanish as
L→`.

Some details of our hierarchical picture do not appea
be consistent with RSB. According to the RSB scenario,
states have an ultrametric structure, which implies that
any two state clusters defined at a certain level of the hie
chy, e.g.,C1 andC2, the distribution of overlapsqi j between
i PC1 and j PC2 should approach a delta function for largeL.
We presented in Sec. IV indications that the width of t

distribution P(D̃ i j ), of values inD̃, may not vanish forL
→`, indicating absence of ultrametricity. We also presen
direct evidence for lack of ultrametricity in Sec. VII. How
ever, studies on larger sizes are needed to verify that the
which indicates lack of ultrametricity will still yield the sam
conclusion asL→`.

In Secs. VI and VII we demonstrated how, by separat
the state space into its components, we can calculate var
quantities using only a chosen part of this space, thus obt
ing more reliable numerical results and reducing finite s
effects.

Clustering analysis can be applied also to other syste
with a nontrivial phase space structure, i.e., which have s
eral valleys which are not related by any apparent symme
such as random field models, see, e.g., the discussion in
7, or other models with random anisotropy.49 It can help not
only in the investigation of the macroscopic properties o
system, but also in understanding the microstructure
gives rise to its properties.
6-20
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