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We generate equilibrium configurations for the three- and four-dimensional Ising spin glass with Gaussian
distributed couplings at temperatures well below the transition tempergturéhese states are analyzed by a
recently proposed method using clustering. The analysis reveals a hierarchical state space structure. At each
level of the hierarchy states are labeled by the orientations of a set of correlated macroscopic spin domains. Our
picture of the low temperature phase of short-range spin glasses is that of a state hierarchy induced by
correlated spin domain$SHICS. The complexity of the low temperature phase is manifest in the fact that the
composition of such a spin domaiine., its constituent spinsas well as its identifying label, are defined and
determined by the “location” in the state hierarchy at which it appears. Mapping out the phase space structure
by means of the orientations assumed by these domains enhances our ability to investigate the overlap distri-
bution, which we find to be nontrivial. Evidence is also presented that these states may have a nonultrametric
structure.
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[. INTRODUCTION This definition of “valley” may not be identical to the
notion of a “pure state” which has been used extensively in

Whereas equilibrium properties of infinite rafgspin  the literaturé™** and which is defined in terms of the set of
glasses are completely understood within the framework o€orrelation functions in a fixefinite region inside the system
replica symmetry breakingRSB),>~° spin glasses with short asL—2 with some specified boundary conditions. In par-
range interactions are the subject of considerable current déieular, it was recently emphasiz€d*®that a spin glass can
bate and controversy. Open questions address the nature iafprinciple have many thermodynamically important valleys
the low temperature phae8 and their theoretical descrip- but just two pure states. This is realized when there are many
tion. Resolution of these issues by experiments or simulavalleys with free energies which differ by an amount of order
tions is hindered by the extremely long relaxation time re-unity, and configurations taken from different valleys have a
quired for equilibration. vanishing density ofrelative domain walls as. —« (a do-

The most widely studied model of a short-range spin glassnain wall is a surface separating a region where the two
is the Edwards-Anderson model of an Ising spin glass configurations are identical from a region where they are

opposite. In contrast, if the density of domain walls is finite

(i.e., the domain walls are space-fillingthere is a non-

HZE JijSS;. (1)  vanishing probability to have a domain wall in any finite
(D) region of the system, and thus to have more than two pure

states. In this paper we will be mainly concerned with the
where(ij) denotes nearest neighbor sites of a sintpigpey ~ number and organization of valleys, and we will not investi-
cubic lattice inD dimensions(we will considerD=3 and gate whether multiple valleys correspond to multiple pure
D =4) with periodic boundary condition§=+1, and the states as defined above. In the following, state we will
couplings,J;; , are independent random variables taken fromalways mean a microstate or spin configuration.
a given distribution. The most commonly studied distribu-
tion, and the one we study here, is a Gaussian distribution
with zero average and standard deviatioal.

The high temperature phase of the model is a disordered There are two traditional pictures of the spin glass phase;
paramagnet. As the temperature decreases below a criticle droplet picture and RSB. According to the droplet picture
temperatureT,,, the system(in three or more dimensiops of Fisher and Hus&;® the low energy excitations are in the
undergoes a transition into a frozen spin-glass phase. In thferm of droplets—compact regions with low surface tension
spin glass phase, phase space is divided into “valleys” whiclthat flip collectively. For a droplet of size the typical(e.g.,
we define as an ergodic subset of the phase space, i.e.,ngedian free energyF, scales as.’, whered is a dimension
maximal subspace that the system can sarvisit) as the  dependent exponent. Furthermore, the surface of these exci-
time tends to infinity. For a finite system the definition is lesstations has a vanishing density for large Therefore, ther-
clear, but a valley is usually referred to as a part of the phasmodynamically important configurations have a vanishing
space surrounded by free energy barriers, whose height dilensity of relative domain walls, and hence a trivial overlap
verges as the system size-c. (defined belowover any finite region. It follows that in this

A. RSB, droplet, and TNT scenarios
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approach within any finite region there are only two pureany two states is determined only by the lowest level in the
states, related by spin-flip symmetry. hierarchy, at which they still belong to the same set. This
A parameter commonly used to measure domain wall denmeans that for any triplet of pure statgs v and p the
sity is the link overlap and its distribution. Denote a configu-following relation always holds:
ration (or stat¢ of an N-spin system by S*
=(S}.S5, ... .SK). The link overlapq)/s between two con- 0,,=min(q,,.d,,)- 4
figurationsS* andS” is defined by
1 Recently, a mixed picture has been proposed b%nézhe basis
link _ v of numerical results of ground state computations; in
=— 2 S'S'S’S/, 2 . . - ke o e
Qv =N <.ZJ> T @ which P(q) is nontrivial but P(q"™) is trivial (hence re-

) ) ) ) ) ferred to as TNT; for trivial and nontrivial Houdayer, Krza-
where the sum is over pairs of neighbor sites aidis the 1313 and Martid®!® demonstrated the existence of macro-

number of bonds in the system. "IIkthe domain wall densityscopic excitations with low energy cost in 3D Ising spin
vanishes, then th?nglstnbuﬁ:]oklﬁ(q ) of the link overlap  glasses of sizes up th=11. This suggests that the spin
will be trivial: P(q™)=4&(q™ —qo). At T=0 one hasty  gyerlap distributionP(q) is nontrivial at finite temperature.

=1, while go decreases fof >0 and becomes zero &.  Thejr results also indicate that the surface of these excita-
Another parameter commonly con3|9ered is the spin overgons is not space-filling, which suggests that the link overlap
lap g, between configuration§* and S": distribution, P(q™), is trivial.

Palassini and Yourld studied changes to the ground state
3) of a spin glass when a weak perturbation is applied to the
bulk of the system. They considered short range models in
three and four dimensions as well as the infinite range SK
If there are only two pure states, as in the droplet model, thenodel and the Viana-Bray model. The results for the SK and
local overlap distribution, obtaineth a finite part of an in-  vjana-Bray models agreed with the replica symmetry break-
finite systemwould be trivial for all T<T, i.e, P(d)  ing picture as expected, but the data for the short range mod-
=0.9(q—qen) +6(q+0ea)], whereqep is the average els agreed with the TNT picture. Effects of the type of per-
overlap inside a pure state. In addition, most conventionajyrpation considered in Ref. 14 on RSB have been
interpretations of the droplet pictdfe” argue that thelobal investigated by Franz and Parfsi.
P(q), obtained from overlaps over thehole system, would Katzgraber et al?* measured directly the distributions
also be trivial. This is realized if the drople(lWIth pOSitive P(q) and P(q”nk) at finite temperature using para||e|
0) are the only relevant excitations over all length scalestempermglﬂ Monte Carlo, for 3D systems of linear size
However the work of Huse and FiSHeand also Newman <8 at temperaturé’; 0.2, and 4D Systems with<5 and
and Steirf,*® is formulated in a sufficiently general fashion the same temperature range. Extrapolating their results to
to accommodate a n0nt|’iVia| g|0b§|(q) if thls arises from |arge Sizes they found that the VarianceR(t]”nk) Vanishes
multiple valleys with non-space-filling domain walls. In this 35| ., and the distribution converges to a delta function.
situation, one would have a trivial link overlap distribution They also found the distributioR(q) to be nontrivial, as in
P(q"™) in the infinite system size limit. Even though the Refs. 19 and 20, so their results also agree with the TNT
global P(q) would be nontrivial, thdocal P(q), would be picture. In the TNT scenario there are many valleys sepa-
trivial because a Vanishing density of domain walls mean$ated by free energy barrierS, but On|y two pure Sté*rtég
that the probability that a domain wall goes through a fixed  Although several pieces of work**2?4%° supported a
finite part of the infinite sample also vanishes. vanishing density of domain wall@nd hence a fractal di-
Numerical work has, so far, indicated a nontrivial global mension of the domain wallsl, less than the space dimen-
P(q).**?° For example, Marinaret al*® have used parallel sjor), a large extrapolation is involved in deducing this re-
tempering"?* to sample 3D Ising spin glasses of sizes Upgylt, and Marinari and Parfi2°have argued, based on their

to L=16 and for temperatures down ©=0.7=0.74Tc.  own data and a somewhat different analysis, that actually
They have found thal(q) is nontrivial, andP(0) does not ¢ =D, which corresponds to RSB.

vanish.

In the RSB picture, the Parisi*theory, which is exact for
the infinite range modélis assumed to also apply to short
range systems. Within the RSB solution, bd®iq) and
P(q") are nontrivial for 6<T<T,, which implies that the Very recently another method of analysis of the structure
system has many valleys and also many pure states. RS the low temperature phase of short range spin glasses has
suggests a treelike hierarchical structure for the pure statebeen introduced®! Evidence for a picture of this phase,

At every level of the hierarchy the states are divided intowhich is consistent with the TNT scenario, but inconsistent
sets, so that the states in a given set are closer to each othgith RSB (since there is no ultrametricity has been
than to states in other sets. At the next level down the hierpresentetf on the basis of a “clustering analysis” of the
archy these sets are divided into subsets, and so on. Furthelegenerate ground states of the mddgwith J;;= =1 cou-
more, according to the RSB solution the distances betweeplings. We denote this by “state hierarchy induced by corre-
the pure states exhibiiltrametricity.® the overlap between lated spin domains{SHICS.

1N
= e
A=y 2 SIS’

B. SHICS: State hierarchy induced by correlated spin
domains
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[ ALL STATES ] nature of the spin domains would appear to be different; see,

e.g., Ref. 32. We will discuss these differences further in
. Secs. IV and VII.
The purpose of the present paper is to use the methodol-
n ogy of Ref. 30 to investigate whether the same picture of the
Z spin glass phase found there also occurs for a spin glass with
& Gaussian couplingévhich has a unique ground state apart
= from spin reversal at finite temperaturesBoth three and
= --1G
< | ﬁ ﬁ @ @ four dimensions are studied. We find that our data do fit this
| icture quite well. We also present here full details of the
— " ﬁ @ ﬁ @ ﬁwethod.q P

FIG. 1. Schematic representation of the SHICS picture; the two Readers who like tc,’ skip ahead will find the plicture of
largest spin domains and the first two levels in the hierarchicaPt@t€ clusters and spin domains that were obtained at

organization of the states are shown. The structure of the states f5 0-2 for a particular bond realization, conveniently summa-
explained by the spin domains’ orientations; e.g., in the states of th_@zed in Fig. 1_2- The corresponding overlap distributi(u)
two setsC; ,Cy, the spins of the larger domaig;, have the same IS presented in Fig. 14).

orientation, whereas the spins of the smaller domgi, have ~ The numerical procedure and parameters that were used
flipped. Spins not irG; or G, are in smaller domains which are not in our simulations are described in Sec. Il. In Sec. Il we
resolved at this level of the hierarchy. present the clustering methodology which we use to identify

the states hierarchy, as described in Sec. IV. In Sec. V we use
In this picture there is a hierarchical treelike structure ofthe hierarchical partition of the state space to obtain the spin
the states as in the RSB solution. The highest levels of thdomains, show that their sizes scale with the system size and
state hierarchy, are schematically illustrated in Fig. 1. At thetheir correlation does not approach unitylas:o. We also
first level of hierarchy the states divide into sétsandC,  show that these spin domains, that were identified on physi-
such that a state i has a counterpart with the same energycal grounds, can also be obtained by a cluster analysis of the
in C, obtained by flipping all the spins. This equality of the N spins. Th.ose domains vyield a.nontrlwal o_verlap d|str|bg-
energies follows, of course, from the symmetry of the Hamil-tion P(a) with peaks corresponding to the different domain
tonian in zero field. However, this symmetry information is SiZ€S, @ we show in Sec. VI. Since we find that the average
not imposed on the analysis; the method finds it by itself. [ncOrrelation between spins in different domains does not ap-
fact, it is not trivial, for a spin glass, to divide the states intoProach unity with increasing system siz#(q) will remain
two clusters such that every statedias its reversed state in nontrivial asL—cc. The nature of our picture appears to
C Suppose, for example, that one has two stateand v yield a nonultrametric structure, as m_dmatgd at the end of
: = 22T ] ’ _ Sec. IV and demonstrated in Sec. VII, in which we present a
and statesu and v with reversed spins, such that the spin parameter for ultrametricity and measure its distribution. Fi-
overlapq,, is close to zero. Should one putor » in the  nally, our method and findings are summarized in Sec. VIII.
same cluster ag.? The analysis, used in Ref. 30 and here After this work was completed we received a report from
determines which one it is. Marinari et al2* who have adopted and adapted the method-
Many of the spins stay, with high probability, in the sameology of Refs. 30 and 31 to study thg=*+1 model ind
relative orientation in most of the stat€s Most of these =3 at a single temperaturd & 0.5—whereas here we con-
form a contiguous domai@;, see Fig. 1. Among the remain- sideredT=0.2 andT=0.5 for the Gaussian modelThey
ing spins, an apparently macroscopic fraction form a conalso confirmed that the previously observed SHICS
tiguous domaing,, such that the spins in it maintain, with scenarid® of a treelike structure of the states, governed by
high probability, their relative orientation in nearly all the correlated spin domains, remains valid at a nonzero tempera-
states of’. HenceC divides into two subclusters of stat€y, ture.
and C,, depending on the orientation ¢%, see Fig. 1. In
general, the domaingj; and G, are distinct. In many
samples, further levels of the hierarchy, with successively
smaller domainsGs, ... can be clearly resolved, as dis-  We simulate the Hamiltonian in E@l) using the parallel
cussed later. The excitations obtained by flipping the dOtempering Monte Carlo methdd?? In this technique, one
mains G,,Gs, ... appear to correspond to the large scalesimulates several identical replicas of the system at different
low energy excitations investigated by Krzakala and Maftin temperatures, and, in addition to the usual local moves, one
and Palassini and YouriyNote that the localor link) over-  performs global moves in which the temperatures of two
lap was not investigated in Ref. 30. replicas (with adjacent temperaturesire exchanged. This
By contrast, in the conventional interpretations of thegreatly speeds up equilibration at low temperatures. The de-
droplet piCthel.6’l7the_ only substantial division of the states tailed balance condition for temperature exchanges is satis-
would be intoC andC, and any further divisions emerging fied by accepting these moves with probability
from the analysis would only correspond to microscopic spinmin[exp@AEAp), 1], whereAE=E#—E", E# andE" are the
domains. In the RSB scenario there would be a hierarchicglotal) energies of replicag andv, andA 8= B#— B” is the
structure to the states, similar to what we find here, but thelifference in inverse temperatures.

II. NUMERICAL METHOD
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TABLE |. Parameters of the simulations ih=3 and 4 dimen- lerTT g T
sions.Ngampis the number of samplese., sets of bonds neqy; is E S
the number of sweeps for equilibration, amg..sis the number of r L = ]
sweeps for measurements for each of tiNg 2eplicas for a single 01 L % 0.1 3|
sample.Nt is the number of temperatures used in the parallel tem- — . E
pering method. = C ]
=z L F 2™ e a0 40]
— £/t ons
D L Nequil Nmeas Nsamp NT 0.01 E E i f f f 3
3 4 10 10° 500 11 C } .
5 5x10° 5x10° 500 15 " | {
6 3% 10° 3 10P 500 15 A T
8 1¢° 10 335 18 t/t
12 2x10° 2x10° 254 20 e
4 3 1¢ 10° 500 13 FIG. 2. The main part of the figure shows the correlation be-
4 4x 10 4X10° 500 13 tween spin configurationgg(t)];, defined in Eq(5) of the text, in
5 8x 10° 8x 10° 200 25 D=3 for L=8,T=0.2. The horizontal axis represents the number

of Monte Carlo sweeps between the two configurations in units of
the number of sweeps between individual measuremgpis, For

We choose a set of temperatur€si=1,2,... N, in comparison, for each set of spifseplica”), a total of 250 con-
order that the acceptance ratio for the global moves is satiSigurations are generated. The inset shows resultsfer3,L
factory, typically greater than about 0.3. We use the test for=12T=0.5, which indicate that correlations between spin configu-
equilibration discussed in Ref. 24, which involves measurerfations are significantly larger than far=8.
ments ofq;, . For that, we need, at each temperature, two
copies of the system, so we actually run 2 setblpfeplicas  der parametefq(t)];=[(Si(to)S(to+1t))];, where(---)
and perform the global moves independently in each of thesidicates a thermal average. This is estimated from our spin

two sets. configurations according to
For the three-dimensional model we stored configurations
for sizesL=4,5,6, and 8 aT =0.20,0.50, and 2.0, which are 1 Mg N
to be compared witl T.=0.95. We also stored side=12 [q(t)];= N 2 N 2 Si(tg)Si(te+t) | , (5)
configurations aT =0.50. The parameters of the simulations tp to V151 J

are shown in Table I. The highest temperature was 2.0 and o
lowest 0.2 except fot. =12 where the lowest temperature where we have averaged oug values for the initial time
was 0.5. to as well as over spins and bond configurations. Clearly
We generated randomly chosen interactiahs, with a  [d(0)];=1 and[q(t)],—0 for times sufficiently long that
Gaussian distribution with zero mean and standard deviatiothere are no correlations.
unity. For each size, temperature and bond configuration In Fig. 2 we show data fofq(t)]; in D=3 for L=8,T
(samplé we saved 500 spin configurations. These, together0.2. We see that the correlation is very small even for
with the 500 obtained from them by spin reversal, constituté/tmeas=1 (i.€., between the configurations of neighboring
our ensemble oM = 1000 spin configurations, generated for measurementsThe same is true for smaller sizes and higher
each sample. temperatures. Fdr=12T=0.5, shown in the inset to Fig. 2,
For the four-dimensional model we stored configurationghe correlations are larger, about 0.24 tifif,,s= 1, and then
for sizesL=3,4, and 5 atT=0.2,0.8, and 2.6, compared decrease, though less fast than exponentially. Thus] for
with® T,=1.80. The highest temperature was 2.6 and the= 12, correlations will decrease, somewhat, the effective
lowest 0.2. 500 spin configurations were saved for eactumber of independent spin configurations. However, we
sample. The other parameters of the simulations are algieel that this is not crucial since we do not use e 3L
shown in Table I. =12 data for the clustering analysis, and only present it in
We are confident, based on the equilibration test @$ed, one place, Fig. 9.
that the spin configurations we generate are in thermal equi- In D=4, for L=3 and 5, the strength of the correlations
librium. However, it is interesting to ask whether there areat T=0.2 is small, comparable to, or less than, that Bor
significant correlations between them. Our results do not re=3,L=8T=0.2. ForL=4, the correlation is intermediate
quire that correlations be absent, but the clustering methodetween the results shown ih=3 for L=8 and 12.
does require that a substantial number of independent con-
figurations are generated for each sample. _ IIl. CLUSTERING METHODOLOGY
For each set of bondsind temperatujeve store 500 spin
configurations, 250 for each replica, so the number of sweeps Clustering is an important technique to perform explor-
between measurements,q,s IS given byt ..=Nmead 250  atory data analysis. The aim is to partition data according to
wheren«45iS given in Table 1. We will denote by “time,t,  natural classes present in it. By “natural classes” we mean
the number of Monte Carlo sweeps. A quantity which testggroups of points that are close to one another and relatively
for correlations is the time-dependent Edwards-Anderson orfar from other points, so that it is natural to assign them
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together, without using any preconceived information on theThe process stops when there is only one cluster that con-
features according to which the set should be classified. tains all points.

The standard definition of the clustering probf8ris as Initially each data poini=1,2, .. .N constitutes a cluster
follows. PartitionN given data pointor object$ into K and hence the distangg; between two such “clusters” is
groups(i.e., clusters so that two points that belong to the the original distancé®;; between points andj. For subse-
same group are, in some sense, more similar than two th&uent steps, however, one must define an effective distance
belong to different groups. Thie=1,2, . . .N data points are Pag. between any two clusters and 5. This distance is
specified either in terms of their coordinatefs in a defined by the following update rule: if at a particular step

. . . we fuse two clustersy and 3, to form a new cluster’, we
D-dimensional spac@epresenting the measured value®of . . ;
attributes or featurgsor, alternatively, by means of aN calculate the effective dlstancepsm,, E)etween .every un-
XN “distance matrix,” whose element; measure the dis- changed clustery# «, 8, and the newr’, according to
similarity of data points andj. The traditional tasks of clus-
tering algorithms are to determikeand to assign each data , o Netn, ngtn,
point to a cluster. Pary™n Ng+ nyp‘” N,+Ng+ nypﬁV

In the context of the present work we can think of our
sample ofM spin configurations as the objects to be clus- R S
tered. Each object is represented byNwaomponent vector Ngtngt+n,
S=(5,S5, ... ,S§), whereSf=*+1 is the value taken by
spini in statex. An alternative view, which we also use, is to \

between unfused clusters remain the same. Note that

consider theN spins as the objects to be clustered. ; ,

Our first aim in this work was to look for a hierarchical Pa’y™ Pas @1dP5s>pap fOr €very two clustersy, 5. Hence
structure of the states of a spin glass. Hence we wanted @fter every fusion step the minimal distance between clusters
find a hierarchy of partitions, where each partition is a re/NCr€ases. ,
finement of the previous partition. This purpose calls for us- Whenever two clusters are fused, the quantity
ing a hierarchical clustering algorithm. The output of such an
algorithm is a tree of clusters, calleddendrogram Each S_E
node in the tree corresponds to a cluster. The splitting of a & Tar
cluster represents its partition into subclusters. The trunk is
the single “cluster” that containall the objects, representing where o, is the sum of squared distances over all pairs of
the crudest partition; at the other extreme each leaf is a clugsoints in cluster,
ter of a single object, representing the finest partition.

There are many clustering algorithms that produce such a
hierarchical partitioning of any data set. We tried two algo- 0= > D, 2, (8
rithms; a recently introduced one, SBCwhich uses the ifea !
physics of granular ferromagnets to identify clusters, and a
graph-based algorithm proposed by Ward. In the preserincreases. It can be sho#rthat Ward's fusion and distance
problem the state clusters are nearly always comfiset  update rules ensure that at each fusion step this increase is
consist of a high density of points concentrated in a relaminimal.
tively small volume, and the same holds for spin clusters. We associate a value with each clustera’, where
Therefore an algorithm that identifies compact clusters easily(a') = p,z is the effective distance between the two clus-
is most suitable for our needs and Ward’s algorithm is deters that were fused to form’. For the initial single-point
signed to find such clusters. Furthermore, SPC is a “shortelusters we setr=0. 7(«) is related too,, the sum of
range” algorithm®’ in the sense that it couples directly only squared distances within cluster Clusters formed earlier
points within a characteristic length scale. If this scale ishave lowerr values, and theier, is smaller.
tuned by the distances inside valleys, which are much The result of the algorithm is a dendrogram, or tree, as in
smaller than the distance between them, SPC identifies tHeig. 3(@). The leaves at the bottom represent the individual
valleys as different clusters, but may miss their relative hierdata points; they are ordered on the horizontal axis in a way
archical structure. that reflects their proximity and hierarchical assignmént.

Ward's algorithni® is agglomerative works its way up  The small boxes at the nodes represent clusters. The vertical
from the leaves to the trunk, by fusing two clusters at eacHocation of clustera is its = value, and is thus related to its
step. It begins with an initial partition to=1,2, ... N clus-  o. When two relatively tight and well-separated clusters are
ters, with a single data point in each. One calculates théused, ther value of the resulting cluster is much higher than
distanceD;; between every pair of pointsj; one may use, those of the two constituents. Hence the length of the branch

n
L pap (6)

wheren, is the number of data points in clusterDistances

)

for example, the Euclidean definition of distancefor bi-  aboveclustera provides a measure of its relative, ; long
nary valued coordinatgshe Hamming distance. branches identify clear, tight clusters.
At each step that pair of clusters, 8, which are sepa- Every clustering algorithm is designed to work well for

rated by the shortest effective distangg,; from each other, data that satisfy somgusually impliciy assumptions. When
are identified and fused to form a new cluster=aUB.  the actual distribution of the data points deviates from these
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FIG. 3. (a) The dendrogram obtained by clustering Me=500X 2 states of a specific realization ih=3 of sizeN=8% at T=0.2. The
vertical axis describes the value gfdefined in Sec. lli(b) The distance matrix of the states used as an input to Ward’s algorithm. Darker
shades correspond to smaller distances. The states are ordered according to their position on the déadr@yréh The same as ifa),
(b), for the same realizatiof}, but for an ensemble of states obtained afat0.5. (e), (f) The same as ifa), (b), for the same realization,
at T=2.0, which is greater tham,=0.95. Note that this dendrogram is not symmetric; almost all the distances are close to 0.5, so at each
stage of the algorithm there were several possible partitions that gave minimal vauéntthe implementation we used, the algorithm
chose a nonsymmetric partition.

assumptions, the algorithm may produce some “unnatural’states obtained from the original set by spin reversal. Clearly
partitions. For Ward’s algorithm one has to look out for twothe new ensemble oM =1000 states also corresponds to
potential problems. thermal equilibrium®® at T. We now address the following
The first problenarises from the implicit assumption that question:
minimizing S, the variance within clusters, leads to “natural” o
partitions. This is not the case when, for example, the data DO theM states of the equilibrium ensemble cover the 2
consists of a set of point€ whose natural partition is into points O_f stat'e space or a part' of I_t uniformly, or is there some
two clustersC, andC, with very different sizes. We encoun- Underlying hierarchical organization?
tered this problem only for the classification of very small As it turns out, the answer depends Brwhereas abové,
groups of states, and therefore it has very little statisticathe M states do not exhibit any apparent structure, belgw
effect on our results. a very pronounced hierarchical organization is seen. To un-
The secondand seemingly more serious concern is thecover this organization we use the clustering methodology of
fact that like every agglomerative algorithm, Ward’s algo-the previous section, treating thestates of our ensemble as
rithm will generate a treelike structure when appliecatty  the data points to be clustered.
set of data. In fact, it is fairly easy to identify when the  We describe here analysis of a single realization of the
dendrogram and the corresponding partitions do corresponéndomness, in order to help the reader perceive the qualita-
to real hierarchical structure, and when it is an artifact of thetive nature of the resultsee Figs. 4 and)5and to define the
clustering algorithm used. We used three indicators for thebservables that we measure. These observables were mea-
“naturalness” of our state clusters: direct observationslpf  sured for each of the different realizations, and the distribu-
the dendrograms an@) the distance matrices, as well@ tions of their values were determined; the average and width
a quantitative measurement of the distances within our clusef these distributions are also presented. These data demon-
ters, which are significantly smaller than the distance bestrate that the results described in this section for a single
tween clusters. These points are demonstrated in Sec. IV, fglample are typical and seen in many samples.
a detailed discussion, see Ref. 37. In order to cluster the states, each statis represented as
an N-component vecto&*=(Sy, ... ,S§), whereS‘==*1
is the value taken by spinin statex.. The complete data set
can be represented as BrX M data matrix whose columns
For a particularandomly chosenset of bondgJ} of the  are the vector§*. For the set oM = 1000 states, obtained at
system we generate, as discussed in Sec. II, a sample of 506=0.2 for a particular bond realization of a4=8% spin
states, which constitute an equilibrium ensemble at a temsystem, the data matrix is presented in Fi@) 4Pixel (i,u)
peratureT. Next, we add to this ensemble the set of 5000f this figure represents the sign of spim statew; a black

IV. STATE SPACE STRUCTURE
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(a)

(a)

20 »?
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FIG. 5. Principal component analysis of a sampleM# 500
X 2 states of a specific realization i in 3D with N=83 spins at

g 200 T=0.2. Each point represents a st&e The coordinates are pro-
— jections onto eigenvectoss, corresponding to the largest eigenval-
% ues of the correlation matrix in E¢L1). We show in(a) projections

400 onto two eigenvectors, corresponding to the largest and next-largest

eigenvalues of the correlation matrix, shown, respectively, on the
horizontal and vertical axes. lib) the three largest eigenvectors are
used. The first and second level partitions of the hierarchy are
clearly visible and, to some extent, the third level also.

where
oS =(sf'—my)/ o, (10

400 with m; the average of theVl variablesS* and o? their
variance. For our cas®;=0 ando;=1 for all i, and hence

the covariance matrix is the spin correlation matrix, i.e.,

250 500 750 1000

states

FIG. 4. (8) The original data matrix of 5002 statesS*, S'=

+1, with black/white representing /— . This 3D sample was gen- The eigenvectors, of this matrix are the principal directions
erated for a realization of siz€’ &t T=0.2 (the same one as in Fig. or components of the variation in the data. They are ordered

3). The spins are in lexicographic ordéb) The same matrix, with  5cording to the size of the corresponding eigenvalues, with
the states ordered according to the dendrogram in Fi¢c)3The the largest coming first

matrix in (b) with, in addition, the spins ordered according to the In Fig. 5 we present the projections of oli=0.2 en-

spin dendrogran® in Fig. 11. semble ofM = 1000 states on the first two and three principal
entry corresponds te- 1 and white to— 1. The spins appear components. Even though projection = 8% dimensional

in lexicographic order and the states in the random ordedata onto three and two dimensions involves a major loss of
generated by the simulation. As can be seen, the matrix apaformation, the cluster structure of the states is still clearly
pears fairly random, with no easily discernible structure;evident. In Fig. %a) projection onto the largest eigenvector,
nevertheless, there is a clear organization of thdsstates e, is represented by the horizontal axis, and on the second
into tight clusters. For the particular realization and ensembléargest,e,, by the vertical. It is interesting to note that the

of states presented here, these clusters of states can be SGRD | = :
; . ! \ argest state cluster§; andC,, project mostly ontcee
by direct observation of th&1=1000 data point&*, once 9 1 1. Pro) y 1

one overcomes the hurdle of directly viewing a cloud of@nd the second largest pail; and C; onto e,. Figure §b)
1000 points in aN=512 dimensional space. !ndlcates that the next sized variation, due to splittingof
A trivial way of visualizing points that lie in a high di- nto two subgroups, is captured ley. The scale of the pro-
mensional space is to project them onto a Iéw., two or  jections can be understood by the following argument: if the
three dimensional subspace. In order to reveal the underlytnormalized eigenvectore, is parallel to a typical vector
ing structure, it is important to choose with care the subspactfom Cy, then, since normalization @ involves a factor of
onto which one projects. A widely used method to choosel/\/N, the maximum possible projection {§\~22.6. Hence
this subspace is that oprincipal component analysis the projections shown in Fig. 5 are quite large, i.e., close to
(PCA).* One constructs thdl X N covariance matrix of the the maximum possible value.
M points, Next we obtain a systematic quantitative measure of the
M hierarchical structure of state space by performing a cluster
o :i 2 SSHSSH 9) analysis of theM points. The choice of the particular clus-
oM s T T tering algorithm used was dictated by our idea of the state

1 M
r”-:Cij:M MZ]_ S;qu'L (11)
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space structure, obtained from PCA and from the picture (2) The genuinely hierarchical structure B&0.2,0.5 is
described in the Introduction and summarized in Fig. 1. Ouilso evident from the states’ distance matrix, as shown in
aim is to find a hierarchy of partitions into compact clusters.Figs. 3b) and 3d). This distance matrix was obtained by
That is, we would like states that belong to the same clustereordering the states according to the results of the cluster
to be closer to each other than to states in different clusteranalysis, i.e., according to the order of the leaves of the cor-
Ward's algorithm, described in Sec. Ill, is tailored to performresponding dendrogram. When the states are randomly or-
this task for the kind of data distribution that we have in statedered[like in Fig. 4(a)], the resulting distance matrix has no

space. apparent structure and looks homogenous. The difference be-
To start, we defined thiel X M distance matribD between tween such a matrix and Figs(b3 3(d) is striking: the dis-
the statesu,v by tance matriceswithin clustersC; and C, appear as dark

squaregrepresenting shorter distangedong the diagonal.
The distances between clusters are represented by fairly uni-
form, lighter colored rectangles. In comparison, o= 2.0

] ] there is no real hierarchical organization of the states, and
whereq,,, is the state overlap defined by E@). Next, we  rgordering them according to the dendrogram does not gen-
clustered the states using the distance mddrjx as inputto  grate any ordered appearance of the distance matrix.
Ward's algorithm[see Eq.(6)]. The algorithm results in a  (3) e measured the average distance between pairs of
dendrogram, as shown in Figs(ag 3(c), and 3e), for &  gates that belong to each of the clus@rg;, andC,. The

sample atT=0.2,0.5, and 2.0, in three dimensions. Thea_verageD(C) and the widthw(C) of the distribution of dis-
leaves, which represent the states, are ordered on the hofkces withinC are

zontal axis according to the order imposed by the
dendrogrant® The nodes represent the clusters. The vertical

1- q,uv
D'MV:T’ (12)

location of each cluster corresponds tositgalue, and is thus D(C)= i > D, (13
related to the variance within it. |CJ? wivec
For T=0.2 and 0.5, which are beloW.~0.95%° we
found clear partitions in the two highest levels of the den- 1 5 ) vz
drogram, as presented in FiggaBand 3c). At the highest w(C)= W M%C D.,—DO)“| (14

level the states are partitioned ind@ndC. At the next level,

C is broken into two subclusters, which we denot&Casnd  whereu and v refer to individual configurations. The aver-

C,. For this specific realization the clustés breaks further ageD(C,) and the widthw(C,) for «=1,2 are defined in a

into two subclusters, which are clearly seen in Fig. 5 as wellsimilar way. The distribution of distances within clusters is to
To gain insight into the manner in which similar states arebe compared with the distribution of distances between

grouped together, and to actually “look into the spin glass”points that belong to different clusters. The average

at the microscopic level, we present in Fighythe same D(C;,C,) and widthw(C;,C,) of the intercluster distance

data matrix as shown in Fig(d), but with the states again distribution are defined as

reordered according to the dendrogram of Fi@).3That is,

to get Fig. 4b), the columns of Fig. @&) have been permuted 1

according to their position in the dendrogram. The clear cen- D(C1,C) =151 2 2 D v

tral vertical dividing line separat&s from C. In addition to
the central dividing line, another vertical line is also clearly ) 12
visible—it separates the states that belong to the larger clus- W(C1,Co)=| 557 > > D?,—D(C1,C2)?
|Cl||CZ| pneCy vely
ter C; from the smaller oneC,. (16)
We now demonstrate that the state clusters we found are

indeed “correct” and “natural.” First, we checked that the The cluster<.C are special in that each stgte=C has an

situation of merging two clusters of very different sizes oc-. — _ —~
curs very rarely. inverted stateu eC, so thatS*=—S*. ThereforeD(C,C)

We showed that our partitions are “natural” and not an = 1—D(C) andw(C,C)=w(C).

artifact of the algorithniwhich produces a tree for any dgta A Subset of the results is presented in Table II; for all
in three ways. temperatures, system sizes, and both dimensions, see Ref.

(1) Note that direct observation of the dendrograms37- We present for each variableits mean[x], (averaged

clearly distinguishes between the different situations abov@ver the disorder{J}) and its standard deviatiom\x
. — 27 _ 2y1/2 — H

and belowT,. At T=0.2,0.5KT,) the relativer values of = ([X“]3—[x]3)™“ ForT=0.2 and 0.5, which are beloT,
the state clusterg, C; andC,—measured by the length of the the average dist@ces within the clustérandC are of the
branch above each cluster—are high. A long branch indicatesrder of 0.1.D(C,C) is around 0.9, which shows that there is
that the distances within the cluster is much smaller than tha clear separation between these two cluste(g’;,C,) is
distance between it and its “brother,” which indicates thatmuch lower, but is still about two or three times larger than
the partition into these two groups is natural. In comparisonegither D(C;) or D(C,). Note that the width of the distance
in the dendrogram obtained &t=2.0(>T,), the relativer  distribution within a cluster is of the same order of the mean
values are much smaller thanB+0.2,0.5. distance, so in general distances will not be much larger than

15
GG 2, 2, (
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TABLE Il. The average distances within and between state clusters, and the relations between them, for
a subset of th® =3 dimensional systems. For each variablee present the average over all realizations,
[x];, followed by its standard deviation, i.&\x= ([x?];—[x],%)Y2 The statistical error of each mef],
is AX/yNsamp the number of samples for eathD is given in Table I.

T L [D(O]; AD) [w(O)], Aw(0) [D(C)], AD(Cy) [(W(C1) 1y Aw(Cy)

02 4 0.045 0.049 0.055 0.052 0.015 0.017 0.019 0.018
5 0.050 0.054 0.056 0.054 0.018 0.018 0.019 0.019
6 0.053 0.056 0.054 0.053 0.021 0.020 0.019 0.019
8 0.055 0.054 0.052 0.051 0.025 0.020 0.020 0.020
05 8 0.139 0.065 0.084 0.046 0.093 0.038 0.045 0.026
12 0.151 0.065 0.078 0.046 0.106 0.036 0.041 0.024
20 8 0.487 0.006 0.053 0.002 0.477 0.009 0.055 0.002
[D(C2)]; AD(Cy) [w(C2)ls Aw(C) [D(C1.C2)1y AD(C1.Co) [w(C1,Co)]; Aw(Cy,Co)
02 4 0.025 0.036 0.027 0.034 0.160 0.135 0.026 0.024
5 0.025 0.032 0.025 0.031 0.169 0.147 0.023 0.020
6 0.028 0.033 0.026 0.033 0.161 0.141 0.022 0.021
8 0.030 0.027 0.024 0.026 0.161 0.139 0.021 0.018
05 8 0.112 0.057 0.057 0.037 0.253 0.126 0.053 0.027
12 0.121 0.048 0.054 0.033 0.263 0.125 0.044 0.023
20 8 0.472 0.009 0.057 0.002 0.499 0.005 0.048 0.003

twice the mean distance. AT=2.0 (>T.) the distances in the figure. This has g2 of 1.41 which is much larger than
within and between clusters are almost equal and the diffethe best fit withw,,#0, but still acceptable. Hence even
ences are only due to statistical fluctuations, again indicatinghough our data suggests that.#0, the possibility that
absence of natural structure, as we claimed on the basis @f,=0, which corresponds to RSB, cannot be ruled out.
direct observation.

Measurement of some of the quantities listed above al-
lows us to investigate the extent to which the state space V. CORRELATED DOMAINS IN SPIN SPACE
structure of short-range spin glasses, as reflected by the data
in Table Il, is compatible with RSB. In the RS®Refs. 2-5
framework, the overlap between any pair of valléwdhich According to our picture, splitting of a cluster at lexaein
correspond to pure states in the usual interpretation of)RSBhe states hierarchy is induced by a macroscopic
from two different clusters that appear at the same level otontiguou8' spin domaing,. The size and shape of this
the hierarchy is constant. It seems natural to associate thdomain determines the energy barrier separating two state
pure state clusters of RSB to our state clusters, €,gand  clusters that were “born” at this level. In this subsection we
C,. In this association, each state cluster contains states théescribe how we identify from our data the two correlated
belong to different “pure states.” If the overlap between puredomainsg; andg,, which determine the two highest levels
states of the two clusters is constant as in RSB, this shouldf the states hierarchy, and also discuss whether they remain
hold also for the overlap between each pair of statesC;
andv e C,, since the width of the overlap distribution inside
a pure state approaches zero. In this case, all entries of the

submatrix'ljlw for weCy andveC, would be equal, so the
width wy,=[w(C;,C5)]; should vanish at —o. To test

A. Identifying the spin domains

0.03

AR

/

whether this is the case, we present in Fig. 6 the values of - C
W1,=[W(Cy,C5)]; Vs the system sizé for T=0.2 andD g -
=3. The error bars represent the statistical efobtained by 0.02 N

dividing the standard deviations, given in Table II, by
VNgamg—1). We tried fits of the form

W12:Wm+ BL_y, (17)

with B andy as fit parameters. The overall best fit was for
W;:0-0205B :_O-.58 andy = 3.36, Wh!Ch_ gives a very small FIG. 6. A log-log plot ofw,, againstL for T=0.2 andD=3.

x“ 0f 0.036. This is shown by the solid line in Fig. 6. We also The solid line is the best least squares fit to EL), while the
tried the best fit assuming that, =0, which has fit param- dashed line is the best fit with the additional assumption that
etersB=0.039 andy=0.30, and is shown by the dashed line =0.
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macroscopic at largé. Domains that emerge at the next
level, G; andG3, are also discussed briefly.
Since the spins in such domains flip “collectively,” they

are highly correlated. The standard definition of the correla- =075
<

tion ¢;; of spinsi andj is

1
Cii=(SS)== > SSexi—BH(S)], (18
Z 3

where (- --) stands for the thermodynamic average for a

particular realization of the disorder, arflis the partition
function atT. Using our equilibrium ensemble of stafe‘},
we evaluate

1

The correlation in itself is unimportant for spin glasses sinceZ g1l

it is gauge dependent and its aver4gg |, over all the re-
alizations of the disordefd} vanishes. The relevant measure
of correlations in a spin glass is the squange, If two spins

PHYSICAL REVIEW B 64 224406

0.8
z

o 0.7H

0.65[

0.6

& 05f
)
o
w
[&]

0.45

0.4

Z .15k

0.0%

08 08 09 095 1
6

6 065 07 075

are independent of each other over the equilibrium ensemble £ 7 The normalized sizes of the two largest spin domains,

of states, we haveizj=0. On the other hand, for a pair of
fully correlated spins we haquj =1; the two spins are ei-
ther aligned or antialigned in all states.

To proceed, it is convenient to define, quite genergl)y,
as the set of spins whose sign is different in statesnd v,
ie.,

G, ={ilsf'#S}. (20)
We expect the largest domaid,, to be in one orienta_tion in
the states o€ and in the reversed one in the state<oflo

identify the spins that indeed behave this way, we took all

(M/2)? pairs of statesueC and veC and, for each pair,
determinedg,,, . Ideally all the spins ofj; always flip to-

G1(6)IN andG,(#)/N and their correlatioElz, defined in Eq(25),
as a function of the thresholél for D=3, T=0.2.

37). The next spin domaig,(6) is defined in the same man-
ner, on the basis of pairs of statess C; and v e Cs.

The above definition sets a lower bound on the correlation
of spins within the domain. Consider two sping e G,(6).
By definition,

1
M2

(22)

Cijz_ E SIS
v

Now the number of states iiandC are both equal td1/2.

gether and maintain their relative orientation; if so, the set ofn addition, for a giverv, we can replace. by its inverseu

spinsg,,, for all pairs of statesu and » would always in-
clude ;. However, at finiteT we must allow for excitations
of the order of). So, even if a spin is highly correlated with
the other spins ofj,, it might lose its relative orientation in
a few of theM states of the sample. In order not to “miss”

such spins, we use a soft criterion when we determine

whether a spin is a member ¢f. We define a threshold

and defineg,(6) as the set of spinswhich are members of
Guv, 1-€., for which§'S’=—1, for at least a fractior® of

the pairs of stateg e C and v e C. This can be written as
1

clic]

since the terms in the normalized sum wh&f&;=1 must,

by definition, sum up to less than-10 and the sum of the
terms withS*S’= —1 must be less tharn 6. We define our

spin domainG,(6) as the largest contiguous part 6f(6).
For large enougl we found that for most realizatioqs},

below T, the sites ofG,(6) are contiguous and hence it is
identical toG,(6) (for detailed values of the rati,|/|G,|,

> D Ss'<1-264,

nelCyec

(21)

'él(e)z[i

and the product of the four spins does not change. Hence we

get the same contribution fropae C asu € C. As a result we
have

1

= — SHSHS'SY .
: |<3||C|22 e

neC yec

(23

Now S*S” will be —1 for a fraction of the stateg and v
which is greater thar® and +1 for a fraction less than 1
— 0, and similarly forS)"'S;". HenceS}'S andS{*S;’ will have
the same sign with probability greater than-2(1-6)
=26—1. Consequently, for,j € G,(6), we have

Cij*>260—1-[1-(260-1)]=46-3. (24)

The same constraint holds also @5, with the sums taken
over the states in clusteg andC,.

Since we introduced an arbitrary parameteiinto the
definition of our spin clusters, it is important to consider the
extent to which the value of affects their identification. As

seen in Fig. 7, the sizes of the domains and their average
correlation, defined in Eq(25), do not change much for

its mean over realizations and its standard deviation, see Rd.6< §<0.95. For botha=1,2 we define(arbitrarily) G,
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FIG. 8. The spin domain§, andg,, as found in the realization
of Fig. 4. Note that we use periodic boundary conditions, so the

PHYSICAL REVIEW B4 224406

06

0.8

60

50

domains are connected through the boundaries. No spin is shared k
G, and G,.

w4}

g}

=3G,(0.95). We do not choos#=1 since, as discussed
above, we do not want our results to be affected by small -
thermal fluctuations. In Fig. 8 we plot the spatial structure of 9 s

G, andg, for the specific realization of Fig. 4. Far>T, the |c§2|/N

correlations between each pair of spins are much smaller, ) o ) _

and hence this analysis is meaningless, and the procedure F'C: 10- Size distributions of the spin domaigig and G, for

. . O o D=4 dimensions aT =0.2,0.8. ForT=0.2 the distributions seem
Ze>s(():rl5bed above results iw,(6) =G,(0) =& for any to converge, despite the small system sizes. Fei0.8, |G,|/N

. . . . converges to a narrow distribution around zero, N does not
According to our picture these correlated spin domain g l

. . S Show convergence Yyet.
govern the hierarchical structure of state space. It is impor-

tant to clarify whether these domains survive as the system

size L increases. There are two mechanisms by which in_re_ahz(;:\tflons,N_samp, frOT Wh'?l;hiss ?;]ng’;tfns were ob-
creasing the system size can invalidate our picture: either th.té?llne orvarious system sizes at bothb=.s,4, are given

domains do not remain macroscopic whiernincreases, or in Table I. F_or1_'=(_).2 in both dimensions, and &t=0.5 for
they do remain macroscopic but merge las:os, i.e., the D=3 the distributions seem to converge even for the small

fraction of states in whictg, flips tends to zero. We now system sizes we use. We conclude with high certainty that at
- 2t o T=0.2 forD=3,4 and aff=0.5 for D=3 the domain sizes
discuss each of these possibilities in turn. In addition,

: D —
simple figurative description of these two mechanisms i39a| are proportlc_)na_l td? for botha=1,2. T_he mean and
given in Sec. V B. width of these distributions are presented in Table Ill. The

(1) The domains do not remain macroscopic whem- width of the distributions does not vanish, so the sizes of the

creases. To study the finite size effects of our analysis Wgomams are n(_)n-self-averaglng quantltle_:s. On the_ other
normalized the domain sizes by the number of spins an and, forT=0.8 |n.D=.4 we cannot determlne concluslvely
plotted the size distributions of the two domains for different\"’he”[‘,er the domain sizes do or do not remain proportional to
system sizes, iD =3 (see Fig. 9and inD=4 (Fig. 10, at N=L" asl increases.

two temperatures in both dimensions. The number of bond (2 91 andg, may remain macroscopic but merge las
—oo, |If this occurs, we end up with a single domain and

10

10

T=0.2

0.4

086

iGN 0

25

10.5

P(IG)|/N)

there will be no hierarchical structure in state space. To
check that this does not happen we calculated the average

correlation?lz between spins i, andg,,

_ 1
Ci12=

> cii® (25

1G1l1Gal 2, 155,

If c,, approaches the value 1 &s—, the two domains
indeed merge in the thermodynamic limit. In Table Il we
present, for systems of different sizes and dimensions, the

average values of,, (averaged over the disordéd}) and
the corresponding standard deviations. Fer0.2,D=3,4
and for T=0.5,D=3 the average correlation decreases
slightly as the system size increases, althoughDin3 it
seems to converge already for8 to a fixed value of-0.5.
This means that the spins 6f andg, will not become fully
correlated and the two domains will stay separatd. as-

creases.
Interestingly, inD =4, the correlation foL. =4,5 is higher
atT=0.8 than afT=0.2. The reason for this is probably that

FIG. 9. Size distributions of the spin domaiéis andG, for D
=3 dimensions af =0.2,0.5. The distributions seem to converge,
despite the small system sizes.
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TABLE Ill. The normalized sizes of the domaigg andG,, and the average correlation between spins

that belong to the two domains. The last two parameters are taken for realiza@fiomkere G, does not

vanish. The probability fog, not to vanish is also presented. For each quamtttye table containpx];, its

average oveNg,yrealizations of the disordgd} and the width of the distributiodx= \/[XZ]J—[X]JZ. Next

to each[x]; we show its statistical errdin parenthesegs

D T L [G[1s/N A[GIN - [|Golls/IN AlGo|IN  [cp,]; Acy, P(G#9)
3 02 4 0.701) 0.21 0.0994) 0.087 0561 0.33  0.8566)
5 0.661) 0.21 0.10%5) 0.104  05%1) 0.33  0.8326)

6 0.661) 0.20 0.0904) 0.090 052 0.34  0.8366)

8 0.641) 0.20 0.0845) 0.094 05%) 0.34  0.838)

05 4 0.311) 0.21 0.0623) 0.056  0.491) 0.32 0.561)

5 0.261) 0.18 0.0522) 0.043  0.491) 0.33 0.571)

6 0.251) 0.16 0.0462) 0.046  0.471) 0.33 0.521)

8 0.241) 0.15 0.03%2) 0.034 0472 0.31 0.5%1)

12 0.241) 0.15 0.03%) 0.035 0542 0.31 0.562)

4 02 3 0.741) 0.19 0.1075) 0.105  0.622) 0.34  0.8406)
4 0.731) 0.19 0.08%4) 0.092 05%) 0.34  0.8306)

5 0.731) 0.19 0.08%7) 0.098 0512 0.34 0.771)

08 3  0.1547) 0.15 0.0361) 0.031  0.471) 031  0.2989)

4 0.1426) 0.12 0.0251) 0.029 0541 0.31 0.371)

5  0.1398) 0.11 0.0202) 0.025  0.572) 0.29 0.382)

asT increases, small pieces 0f “fall of.” Since G, atT  cannot be sure if the sets of spins we identifydasand G}

=0.2 is small, one of these pieces, which is larger thah indeed play the role we attribute to them, or are just a mi-
assume the role @f, at T=0.8. Since this piece was part of croscopic noise and, therefore, only a finite size effect. The
G, atT=0.2, we expect its correlation, with what remains of results are given in Table IV. We see that the normalized
G, at T=0.8, to be relatively high. Extrapolating froma  sizes of both domains decrease with the system size, perhaps
=3,4,5 is not useful, but we still believe that the correlationdue to finite size effects. We also measure the average cor-

does not approach 1 &s—. , _ relationc(Gs,G,UG,), of G5 with the largest domain corre-
We also attempted to identifg; and G;, the spin do- |ated overc;, which includesG,UG, (this domain has a
mains aSSOCIated W|th the th|rd IeVel of the state hlel’aI’Ch)ﬁxed Orientation over the states Gi) Th|s Correlation is

(see below. G3 is the cluster which is associated with split- gefined as
ting C; into its two descendents on the dendrogr&m, and

C1p . The domaing; plays the same role ié,. Since by our —
notation|C;|=|C,| we expected that in order to have a larger €(G3,61UG>) =
number of states, the spin correlations will be lower when -
measured ove€; than overC,. As a result we expedyg,| In Table IV we see that the values ©fG;,G,UG,) decrease
<|Gj|. Due to the small sizes of the systems we study, weasL increases; hence @; survives as a macroscopic cluster

2 Cijz'

1
- 26
|G1UG,l| G iegng i€Gs (20

TABLE IV. The size of the spin domaif; and g3, the correlation ofG; with G;UG, and the relative part of; and of G5, which is
common to both these spin domains. All results are taken for realizations where the domains concerned do not vanish, and we give also the
probability of this to happen. All data was taken for=0.2. We present the average over these realizati@ns: the statistical error,
obtained by dividing the standard deviation K., whereN, is the number of realizations that contributed to each average.

D L [1Gsl15/N [c(G5,.G1UG,)]; P(G:#9) [1Gs15/N P(G:#D)  [1GsNG3|/|Gal1;  P(Gs#D and Gy # D)
3 4 0.048:0.003 0.55-0.015 0.914) 0.087+0.008 0.8346) 0.23+0.019 0.778)

5 0.046+0.003 0.52:0.015 0.914) 0.085:0.009 0.88%5) 0.15+0.016 0.8187)

6 0.043:0.003 0.48-0.015 0.9243) 0.081+0.009 0.8964) 0.19+0.017 0.83%)

8 0.036+0.003 0.430.017 0.90%5) 0.076+0.010 0.90%) 0.16+-0.019 0.8278)
4 3 0.045:0.003 0.56-0.015 0.9283) 0.094+0.010 0.83%) 0.25+0.020 0.7818)

4 0.037#0.003 0.4&0.015 0.9084) 0.061+0.007 0.92) 0.16+0.016 0.8446)

5 0.034-0.005 0.430.024 0.841) 0.072-0.014 0.868) 0.19+0.027 0.781)
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FIG. 11. (a) The spin dendrograr® for the data of Fig. &) produced by Ward’s algorithimb) The spin distance matrig of this
realization realization. The spins are ordered according to their clustéps barker shades correspond to smaller distances and higher
correlations.(c), (d) The same as iffa), (b), for the same realization dt=0.5. (e), (f) The same as i(a), (b), for the same realization at
T=2.0. They axis is rescaled to show the dendrogram, which clearly differs from the dendrogrgajsaimd (c).

at largeL, we expect it to remain distinct from the union of the spins are reordered according to the dendrogram, their

the two larger domains. distance matrix, shown in Eq. ), clearly exhibits a non-
trivial structure. There are large, highly correlated spin clus-
B. Spin space structure ters on the lower levels of the dendrogram.

So far we have obtained the spin domains using the re- In order to "see” the manner in which the spins are or-
b 9 Fred, we return to the data matrix of Figa} We obtained

sults of the state space analysis. However, the existence . :
these domains can also be observed directly in spin spac Ig. 4(b) from (a) by reordering the columns according to the
state dendrogram in Fig. 3. If we now reorder the rows of

i.e., without utilizing information about the previously iden-

tified hierarchical structure of state space, as we now denf-19- 4b) according to the spin dendrograin Fig. 11, we
onstrate. get Fig. 4c¢), which is redrawn as Fig. 12 with labeling of the

As described in Sec. IV, the equilibrium ensemble oflargest state clusters and spin domains. The cluster structure

states, obtained for each realization, is represented Hy an Of the spins can be clearly seen in Fig. 12. Spingjiclearly

X M data matrix{S'} [e.g., Fig. 4)]. In Sec. IV we treated have the same orientation in the state’dfut are inverted
each of theM states represented by a column of this matrix, in the corresponding states 6f Spins inG, have opposite
as a “data point” whose coordinates are the components ofrientations inC; andC, and are inverted in the correspond-
this N-dimensional vector. Now we view each of tNespins g states of;; andC,. One can also see that spins in domain
of the system as a data point, repres_ente_d by a row (.)f the, separate, into two sub-clusters. As t¢5, we point in
same matrix. Each of these data points is a vector in ag?: ) : ' S
M-dimensional space ig. 12 to a femM3—4) spins, which have the same sign in all

The distance on the set of spins should be defined accor

&_tates ofC, but change sign iic;.
ing to the nature of the clusters we are interested in. At this These data were obtained®t0.2 (<T). AboveT the
case, we expect highly correlated spins to be in the sam

orrelation between any two spins is low, and there is no
cluster, and spins with low correlation to be in different clus-

Cluster structure, as evident from Figs.(@land 11f). The
ters. Thus, we define the distance between a pair of dat[??lat'veT values of this dendrogram are much smaller then
pointsi andj as

ose of the dendrograms in Figs.(dland 11c), and the
reordered distance matrix is structureless. If the domé&ins

27 (that were identified in Sec. V A on the basis of the state
hierarchy are not an artifact of our analysis, they should be

This Nx N distance matrix serves as the input for clusteringclearly identifiable in spin space, and appear as clusters in

the spins, using Ward’s algorithm. The dendrogr@nob- the spin dendrograr®. To check this, for each realization

tained when the data of Fig(& are clustered, is presented we compared every spin clustgg, that appears in the cor-

in Fig. 11(a). The correlated spin clusters are represented byesponding spin dendrograf» to every spin domaig, that

boxes in the dendrogram—Ilet us denote thenghy When  was previously found for that realization. The spin clugter

dljzl_cljz
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FIG. 12. Aredrawing of the ordered data matrix of Figc)4in order to highlight the state clusters and spin domains discussed in the text.
It is for a 3D realization of siz&l=8% at T=0.2. The columns represent the statesind the rows represent the spins¥=+1, with
black/white representing-/—. The states are ordered according to the dendrogram in Fig. 3, and the spins ordered according to the spin
dendrogran® in Fig. 11. The state clusters and the spin domains are magesdtext

that was found to be most similar @, was identified and cal partitioning of state space. Each state cluster at eoé|

denoted byg,. We used the similarity measure the hierarchy can now be identified with one of two possible
configurations of the particular spin domajy. We denote
292N G4l these two configurations &g, and|l,. Note that we have
S(ga:Ga) = |04l +1Gal’ (29 avoided the notatior/— for the states of the spin domains,

: . . . _since in each state some of the spins have-thsign and
wh|ch.represe.nts the fraction Qf shared spins by the “physiyihers— . For example, in the first level partitiof, has a
_calt_spln domr?m gatalnd tk_;_e spin clufstegg.tEor_mlo;t. rea(lj— certain characteristic configuratiofly, over all the states in
izations we haveat low T) g,=0, for both a=1,2; an , whereas over all the states @fit is in the spin inverted

when these groups are not precisely equal, they differ b : ) = .
only a few spgi]ns(s%e Ref. 37 f%r full di-tags ’ onfigurationll,. The value(fl,]; , taken by spiri G, in the
Figure 12 also provides a convenient, simple “geometri-conf'gurat'onﬂ1’ is defined by

cal” interpretation of the two tests for the survival of our
picture in the largeL limit that we discussed in Sec. V A. [ﬂ1]1=sgr( > S“). (29
Observe the rectangular region corresponding to spin domain pec

G, and state clustef,. Validity of our picture relies on “sur-  our definition ofg;, using Eq.(21) with 6=0.95, guarantees
vival” of this rectangle as we take the—o limit. The first  that the argument of the sign function in the above expres-

test we performed checked whether its vertical si@&|  sjon does not vanish. Hence, stating tdatakes configura-
stays finite. If this condition is not satisfied, the relative areajon 1, in a certain statg. implies that

of our rectangle goes to zero; a nonvanishing limitjgg|

does not, however, guarantee that the rectangle stays finite; it "

may disappear if its horizontal dimension shrinks to zero i, SM]i>0. (30)

when L—~. The second test, showing that the correlation

¢, does not approach 1, ensures that this does not happdie€ configuration assumed Ig} in any statew determines

either. that u is assigned t@ if G, is in configurationf,, or toC if

Overall, Fig. 12 summarizes in a convenient pictorial wayg is in configuration|,.
our picture of the spin glass state in short-range systems.  The spin domainG, determines, in a similar way, the
partition of C into C; andC, (and the partition of” into C;

C. Spin domains and states hierarchy and(,). G, is in configuration, in statesC; andC,, and in

Now that the spin domains have been well defined, we}, in statesC, andC; (see Fig. 1 for a schematic illustration
can examine the manner in which they govern the hierarchief this poin.
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Each spin domairgj, defines a partition of the states, at which is analogous to Eq11), and project the two largest
level a, into two groups—one in whicly, is in thef, con-  eigenvectors oR onto the spin configurationS; for each
figuration and the other witl},. Picking a pair of stateg  sitei.
and v, one from each group, the set of spidg,, that are The results for three realizations, labeled A, B, and C, are
flipped in the transition between them, will always include shown in Fig. 13. Each data point represents one spin. Real-
G..*? Thus, the distanc®,,=|G,,|/N between two such ization A is the one whose data matrix is shown in Figs. 4
states will almost always be larger thify|/N. and 12.

By our definition ofG, , the probability that a large part of In the upper left frame of Fig. 13 we see the results of the
its spins will lose their relative orientation is small. Consid- PCA analysis of the spins for realization A. We want highly
ering local dynamics, the time it will také, to flip is expo-  correlated spins to be close on the plot. Since a $piis
nential in its size. IfG, is macroscopidas we have shown fully correlated with its inverse-S each point X,y) with
for a=1,2) it may be associated with a macroscopic freey<<O is projected on the plot to{x,—y). The spins ofG;
energy barrier. In an infinite system it will take an infinite are highly correlated with each other and all have the same
time to flip, thus inducing a separation of the phase spacealues for the first two principal components of the spin
into two ergodic subspacder valleys. space. Therefore they fall on top of each other, and we see

The clear hierarchical organization of the state clusteronly one & marker which represents all of them. The same
suggests that the average distafi® between state clusters is true for the spins ofj,, marked byA. As seen from Fig.
formed at a high level of the hierarchy is significantly larger 12 the spins of/; are not correlated with the spins @ over
then the average distance between clusters formed at a lowtre M states, and indeed the two domains are far from each

level. Indeed, we show in Table Il that in genefa(c,c)  other on the plot. .
>D(C;,C,). We relate this characteristic of the state struc- [N column(b) of Fig. 13 we used only the states Gf in
ture to the large variability of the spin domain siz¢s|.  the analysis. We can see in Fig. 12 that oggthe spins of
Indeed, we have seen that typicallyy| >8|G,| for T=0.2, %1 andg, are correlated, together with some of the spins of
D=3,4. Gg, marked byx . In the plot(the middle frame on the upper
Now we have a complete picture, supported by our nufow of Fig. 13 we can see that indeed these spins are all
merical findings, of a hierarchy of state clusters. The valleyglotted at the same coordinates. The spingigfmarked as
are the leaves of this hierarcfyAt each levela of this O, are highly correlated, but are not correlated withand
hierarchy the partition of the states is refined according to th&,. Note that the spins of; are separated into two different
orientation of macroscopic spin domaidsg. At different  sets, and are not correlated ovgt
nodes of a certain level of the hierarchy there might be dif- When we perform the analysis using only the stateS,of
ferent correlated domains that determine their partition. Takeye get the results presented in coluen of Fig. 13. In the
for example, the states &y (whereg, is in configurationf;  matrix of Fig. 12 we see that the spins@f, G,, andg; are
andg, is in configurationf,). Over these states the largest correlated together ovéh, and indeed they all fall on top of
unlocked* correlated domain i%;=G,(11;,1,). The two  each other in the plot. We also sg§ as a separated corre-
possible configurations of5 inside C; may be denoted as lated domain.
M3(M1,M2) andl3(N41,7,). Over the states af, we expect to In the second row of Fig. 13 we give the results for real-
find a different unlocked correlated domaig=G;(f1,,,). ization B, in whichG; and G; share some of their spins.
We calculated the part of each domain which is included inThose spins are marked . In column(c) we see these
the other. The results are given in Table IV. We see that spins insidgj; . The rest of the spins @f; are not correlated

andG; share in general less than a fifth of their spins. with them. Some of them are correlated withandg,, and
Note that in the ideal cageorresponding t@=1), a spin  others seem to be in another domain.
domainG,(11,M>, . . .,M), that appears at a particular level In the third row of Fig. 13 we present the results for

of the hierarchy, cannot share spins with the higher levetealization C in whichGsCG;. Here spins ofG; seem to
domainsb=1,2, ... k, whose orientation is fixed whil§,  form a correlated set also ovéy, though the correlations are
flips. For #=0.95 such sharing was also practically ex-not high enough for it to be considered as a domain by our
cluded. On the other hand, two domains suctfasindG;  definition.
can have shared spins, namely those that are free to flip in
both the (I1,1,) and (I,,l,) situations.
Going all the way down the states hierarchy, we find that VI. STATE OVERLAP
each vaIIey can be characterized by a specific list of domain We have presented a description of the system in itsTow
configurations, €.g4f11.12.U3(11.42) . 14(11.42.03), . ..} phase, relating state space behavior to the microscopic struc-
An additional insight is obtained from a PCA of the splns,t Most of th literat h
which is to be distinguished from the PCA of the states in ure in spm space. Viost of the prewou_s erature, nowever,
Fig. 5. To perform the PCA of the spins we form the cova-d'd not d|rectly measure th_e microscopic features of the sys-
riar;ce. matrix tem but examined their indirect implications on other param-
eters, such as the widely addressed overlap distribution
N P(q). Beyond making contact with the literature, which con-
W:% 2 59483, (31) centrates on measuririg(q), the aim of this section is two-
= fold: (i) we show how our methods allow a useful decompo-
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FIG. 13. The two principal components of the
512 spins of three realizations A, B, and(€ee
text) in 3D. Each point represents a spiand its
coordinates are the projections ofS§
=(s',S%, ....9") onto the two largest eigen-
vectors of the matriR in Eg. (31). The analysis
is carried over(a) all states;(b) the states of;;
and (c) the states ofC,. The spins ofG, are
marked by< ; of G, by A; of G3 by O; and ofGj
by X. Spins that belong to botf; and G; are
marked by®. Spins that do not belong to any of
these domains are marked with dots. The lower
half of the plane is projected onto the upper half
using ,y)—(—x,—Yy). Spins in a correlated
domain usually have the same values for the two
principal components, and they fall on top of
each other on the plot. Therefore, in most plots, a
correlated domain seems to be represented by a
single marker.

sition of this function into its physically relevant constituent however, does allow us to estimaR$(q) or, to be more
1 " ; ; ~
parts® and (i) we demonstrate that our picture provides aprecise, to calculate a functid®}(q) defined below, which

microscopic interpretatiof the observedP(q). To this end

cific

realization {J} of the bonds,
W0rk319’20’24'45

order, P(q)=[P,(q)],.

Second, since for most realizatiof;|>N/2, we have

SO ). is alower boundto it. In our picture, the transition between
we focus here orP,(q), the overlap distribution for a spe- gych pairs of microstatehat belong to two different val-

whereas earlier oy js associated with flipping a specific set of spin do-
presented results for the average over the disiains. Consequently, having identified the relevant spin do-

mains, we can identify whem and v belong to different

Two technical comments should be first made. First, beyg|leys and also the level in the states’ hierarchy at which
cause of overall spin-flip symmetry, the functiéhy(q) is

symmetric and hence we can limit our attentiongo-0.

they differ.

A remaining apparent ambiguity concerns the level of the
state hierarchy at which we “stop” and decide whether a
particular pair of microstates belongs to different valleys or

Ps(a), g=0,
0, g<0,

not. Suppose we stop the decompositior€ @it some leveh

and denote byC" the clusters obtained at this level. The
overlaps obtained from pairs of microstates that belong to
different valleysat this levelare assigned to the distribution
P$"(q), and pairs from the same valleys By"(q):

PS(a)= (32
where byPSC(q) we denote the distribution of overlaps be-
tween pairs of stateg,veC, so that we have to deal only
with such pairs.

. . Cncn

A. Decomposition ofP;(q) and P(q) P'J'”(q):E P *"*(q),
The overlap distribution for a specific realizations of the :

randomnessP;(q), is expected to be the sum of two main

parts Pia= 3PS Ha), (34
P,(q)=P(q)+P3(q), 33
| s(@)=P;(a)+P3(q) (33 where, from Eq(33),
whereP}(q) is the overlap distributionvithin a valley (and ‘
between a valley and its spin reversed counteypamnd Py(q)=P5"(q)+P$"(q) for g=0. (35

P3(q) is the overlap distribution between states that belong
to two differentvalleys.P'(q) converges ta5(|q| —qga)/2 in
the thermodynamic limit, whereqgs is the Edwards-

Anderson order parameter, which will also be denoted as th&;

Clearly, by going down a level further, to+1, some
pairs that were assigned #;"(q) will be reassigned to

o,n+1

(q), but if a pair was inP$"(q) it will stay in

“self-overlap.” PS(q) is the sum of several contributions, P9"*1(q). This argument clearly shows th&j"(q) ob-
tained at any level is &ower boundto P$(q). This point is
In the thermodynamic limit this separation is unambigu-explained again below for the particular casenef2.

To demonstrate how natural is the separation of (B8,
scopic energy barrier, they belong to two different valleyswe consider pairs of statgse C; andv e C,, i.e., pairs taken
and their overlapy,, contributes toP§(q). For finite sys-
tems this separation is problematic; our picture and methodhe states’ hierarchy. According to our picture such pairs con-

corresponding to different pairs of valleys.

ous; if two microstatesx and v are separated by a macro-

from state clusters that appear at the secaond Z) level of
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tribute a nonvanishing part d®;(q), which we denote by
P{1°2(q). Note thatP$:“%(q)=P3%(q) for >0, since for
n=2 C has only these two sub clusters. This function, as well
as its complemenPJ(q)—chlcz(q) are presented, fol
=0.2 andL=8 in Fig. 14, for four realizations of the ran-

domness. The figure shows clearly that the separation is_

natural, and not just an artifact of our analysis.

For all these four realizations the spin domah is
clearly identifiable and is “macroscopictnote that this
holds for more than 80% of the realizations, see Table Il
all these cases the statesand v belong to different valleys,
and contribute taP{(q). There may be, however, pairs of
states which also contribute B§(q), but arenotincluded in

PflCZ(q). This happens wheat least one of the state clus-

tersC,,C, has internal structure and decomposes into sub-

clusters(i.e., higher level valleys SayC, contains two such
subclusters,Cy,,Cq,. The overlap of a pair of stateg
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FIG. 14. The distributionP;(q) for four realizations of{J} at

T=0.2 in 3D. The distribution irfa) is the same as in the top frame

(1, and ve Cy, contributes toP3(q), and is not included  of Fig. 16. The solid line describeBS:°2(q) and the dashed line

in Pflcz(q); hence the latter function is lawer boundon

plots the rest of the distributior®;(q) — Pfloz(q). The latter con-

the former. As discussed above in Sec. V, such internal strudains a large peak aj~1 which is contributed by the distribution

ture ofC; (or C,) is associated with a spin domaig (or G3).
This structure is clearly present for the realizations in Figs
14(a) and 144d), as evident from the multipeaked structure of

PJClCZ(q) which is discussed further below.

We now generate a distributioR1%2(q) which is a
lower bound on the contribution chlc2(q)E[P3:1C2(q)]J
to the averagedistribution P(q). In order to assure that
PC:1%2(q) constitutes a lower bound t&€:%2(q), we in-
cluded inP®%2(q) only contributionsP?lCz(q) from those
realizationsJ in which G, was relatively large, namelyg,|

P(q), of overlaps inside the valleys.

of the peak drawn with a solid line and also of the peak at
high q (dashed ling In the systems of Figs. 1) and 14c)
neitherC,; nor C, have noticeable internal structure; the do-
mains G;,G; are too small. The system of Fig. @ has
internal structure for botlf; andC,, induced by domaings
andg;, respectively. The sizes of these two domains govern
the observed splitting of both the solid and dashed curves.
One can associate each peakRyfq) with the overlaps
of pairs of states that are related by flipping one or more of

>0.05N. For the other realizations we set the contribution tothe previously identified spin domains. In this regard our

the average ovel to zero; hence ouP®:®2(q) is a lower
bound to the trué©1€2(q) [which, in turn, is a lower bound
to P°(q)]. In Fig. 15 we show the distributionB(qg) and

PC1C2(q). The data indicates that the weight in the tail for

small g stays finite with increasing (at least for this range
of sizeg, in agreement with earlier studi@$%2*4>which

just measuredP(q). For systems with Gaussian couplings

P'(q) has a very small contribution &4 <0.7 andP°(q) is
the dominant part oP(q) in this range. For an Ising spin

interpretation resembles the RSB pictuvehich also relates
the peaks oP(q) (Ref. 20 to overlaps between configura-
tions in different valleys.

To substantiate these claims and make them more precise
we consider in detail the realization whogardered state
and spin data matrix is given in Fig. 12, and whd3gq)
[shown in Fig. 14a)] is reproduced and magnified in Fig. 16.
For this realization we clearly identifiettiree spin domains;
G1, G, andg; . Disregarding the splitting induced Ig};, (and
G,, if present we identify two main peaks that dominate

glass with binary couplings, however, the difference betvveer,bcc(q)_ We performed a fit oPS’(q) to a sum of two Gaus-
the distributions is significant and proper care must be takegi”éns )

when delicate issues, such as triviality & (q), are
investigated!

B. Interpretation of P;(q) in terms of spin domains

Our aim is to interpret the distributioR;(q), obtained for
a particular realization, in terms of the state clus@rsind

P$“(q)=b, exd (q—a;)¥/aZ]+b, eXF[(q_QZ)Z/ag]&%)

with a;, b;, and q; as fit parameters, yielding the dotted
curves in the upper part of Fig. 16. The center of thglit)

spin domaing, that were discussed in the previous sectionspeak at lowq is g, and the highg data is centered af,.
Before going into a detailed discussion and analysis, we state To see how thesg; are related to our state clusters and
the interpretation that arises, for the four realizations whosepin domains, note that the overlap, between stateg and

P;(g) was shown in Fig. 14. The first of these, Fig.(d4
corresponds to a system in which has internal structure,
due to a sizeable domafy, ; its counterparti; is too small
to have a clear signature. The sizeddfgoverns the splitting

v is related to the size of the sgf,, [defined in Eq(20)], of
spins that flip when passing from staieto v:

qp.vzl_2|gp.v|/N' (37)
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as mentioned above, to spin domaifis and G;. We ana-

—
o

0.25 ——

s 1 s _ .k £ lyzed P*?(q) in the.same. way as we did f&5(q), gsing
3 I 2 the same form of fit as in Eq36). For example, in the
CARL 1o 1 <8 d 4 middle part of Fig. 160, ; andq; , denote the centers of the
z;.: 0.1 3 & o05F g 3 two Gaussians, witld/, andG; playing the previous roles of
2 3 [ G, andg,.
0.05 |- ERERR == i For much larger systems, for which the state hierarchy is
ob o1 N EET 1] expected to have more than two clear levels, we expect to
0 02 0-4q°-6 08 1 0 oz °-4q0-6 08 1 find a finer structure ifP(q). It will exhibit multiple peaks,
each related to different domain sizes. The heights and
0.25 ,(°). —T 10 . fd). — widths of the peaks are expected to be governed by the sizes
- L5 ] L5 of the state clusters that contribute to it which, in turn, are
Rl E [ = 4 determined by the correlations between the spin domains that
soisf *° Y 4 generate these clusters. Each of these peaks can be isolated
Ef F 3 f g ; and measured separately by observing the overlap of states
A 01p E i of the corresponding clusters.
0.05 | 4 o1g - The shape oP(q) we describe above resembles the one
ST\ ¢ ] assumed by RSB. It is important to reemphasize, however,
0 0

02 04 06 08 1 02 04 06 08 1 that our P(q) was obtained for finite systems; its resem-

a q blance to the form predicted by RSB does not necessarily
mean that the latter picture is the correct one. In fact, previ-
ous studie¥14?4250f the link overlap[defined in Eq.(2)]
indicate that it is trivial, which contradicts the RSB scenario,
though this conclusion has been disputed in Refs. 27-29. In
fact, our picture and results also dot appear to be consis-
tent with RSB since we find a nonultrametric state structure,
as we show in Sec. VII.

FIG. 15. (a8 The partial distributionP®:®2(q) for D=3, L
=4,5,6,8. It is normalized so thatf $P1%2(q) is its weight in the
total P(q). For clarity only a few representative error bars are
shown.(b) The distributionP(q) for the same systems as(&. (c)
PC1C2(q) as in(a) but for D=4, L=3,4,5.(d) P(q) for the same
systems as iric).

For all state pairgu,v e C the domaing, is in the statef,;
hence|G,,|<N—|G,|, so thatq,,>2|G;|/N—1. The state

pairs belong to one of two types. VIl. ULTRAMETRICITY

(2) Pairs in whichg, flips betweerﬂ2 to |, or vice versa.
These pairs contribute t®5(q)=P{*?(q) (this equality Ultrametricity is one of the main characteristics of the
holds forg>0). The definition 0, y|e|ds that in most such mean field RSB picture. Efforts to estab€lor dismisé’ the
casesj, € G,, and hence Rjy|/N—1=<q,,<1—2|G,|/N. existence of ultrametricity in short range spin glasses did not

(2) Pairs in which neitheiG, nor g2 flip contribute to  Yield conclusive results. We presented in Sec. 1V indications
PiAq)= pClCl(q)+pCZCZ(q) For these pairs in most cases that wi,, the width of the distance distribution between

|glw|\ |g1U Go| and hencey,,=2(|G,|+|G,|)/N—1. states fronC; andC,, does not vanish, implying a nonultra-
The peak centered a, is attributed to state pairs of the Metric structure of state space. Here we look for a more
first type, and hence direct test of ultrametricity. The main problem is that we can
equilibrate only small systems, where ultrametricity is hin-
2|G1|IN—1<q,<1-2|G,|IN. (39) dered by finite size effects. Ultrametricity is a statement
about the geometrical propertiestafnglesformed by three
The other peak, centered @, is attributed to state pairs of “pure states”(or by three micro states that belong to differ-
the second type, and thus we expect ent pure statdsAll three have to belorf§ to C, and for small
systems only a small fraction of the realizations contain such
=2(|Gy| +|Ga)IN—1. (39 triplets of states.

_ N _ _ ForD=3 atT=0.2 we measureg, the fraction of real-
These two inequalities yield,—0,=>2|G,|/N. Evidently, izations for whichGs (or G3) were large enough to induce
this structure oP;(q) is completely consistent with our pic- clearly separated peaks .fl 2(q) (see Sec. VI B We

ture of spin domains that govern partition of state space into
well defined clusters. By a detailed analyéise have shown found, for L=4,5,6,8 the valuesp=0.006,0.026,0.056,

that the(at least two-peaked structure d?,(q) survives for ~ 0-090, respectively. AD=4 the similar fractions, afl

largeL. =0.2 and forL=3,4,5 arep=0.02,0.030,0.080. Note that
In some realizations, such as the ones that yleld FigSor both D= 3,4, P increases with the size of the system.
14@ and 14d) P,(q) has more peaks, sincB{?(q) Our method of analysis allows us to identify the realiza-

(=P% 2(q)) exhibits two or more peaks; this spllttmg is due, tions that do contain such triangles of states and use exclu-
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from different state clusters. We chose three clustéss:
C1a, andCyy, . The last two clusters are the “children” @

in the state dendrogram, i.€;,=C,,UC;, . According to our
picture a triplet of states, one from each of these three clus-
ters, belong to three different valleys, since we have to flip a
correlated domain with a macroscopic number of spins in
order to move from one cluster to another. To move fiém

to C, we have to flipG, from configuration|}, to configura-
tion f,. Similarly, when moving front,, to C;,, we have to

flip Gz from f13=13(M1.M2) to J3=Us(M1.T2) (see Sec.

V C). Due to the small sizes studied, in this paper we do not
present any conclusive evidence that is indeed macro-

T scopic. However, if(in the L—co limit) it is not macro-

838» : scopic, our method predicts that there are only four valleys

o (determined by, andg,) and hence the RSB picture clearly

=4 J/f/\\ does not hold.

2o e / In qrder to' have a quantltatn{e measure of ultrametricity
0.7 0.8 0.9 1 we define an indeK in the following manner. Lei, v, and

be three states, so thBt,,=D, =D, . We define
FIG. 16. (Top: The distributionP{(q) for the same 3D real- p My T ppT P

ization whose data were presented in Fig. 12. The dotted line is a fit

to the sum of two Gaussiarisee text (Middle) The partial distri- D —-D

14
bution Pglcz(q) for the same realization. The dotted line represents K,W,JZMD—M)- (47
a fit to the sum of two Gaussian@®ottom) The difference between vp

the two previous distributions.

The triangle inequality requires,,=D ,,—D ,, so we have
sively them to investigate whether ultrametricity does or0<K,,,<1. Ultrametricity demand® ,,=D,,, so if there
does not hold. In this way we avoid many finite size effectsis ultrametricity we expecP(K)— &(K) asL—c.
that might obscure the results. We measured®(K,,,) for ueC,, andv,p from C;, and

A set of objects with a distance measés ultrametric ~ C1p- We used our samples fdr=0.2; since as the tempera-
if any three objectsy, 8 andy form an isosceles triangle, ture is lower and more distant frofi;, the state structure
with the base equal to or smaller than the two equal sidesshould be clearer and less blurred by finite size effects. We
This demand can be formulated as the requirement that theaeasured the distribution &f for each realization, and then
inequality obtainedP(K) by averaging over the disordgd}. In all
systems we found with high probability thit,,,.= 1 exactly
(see Table V.This happens wheg,,,, the set of spins one
Dyg<=maxD,,,Dg,} (400 has to flip when going fromu to v, coincides precisely with

G,.,UG,,, the union of the two sets that are flipped when we
be satisfied for all three choices of the distance placed on 0 oM p to x and tov. This is, however, clearly a finite
left side. size effect; ad increases the probability(K=1) decreases

When the system is in the highparamagnetic phase all dramatically. Therefore we do not include this part of the
triangles will be equilateral, since, s the probability ~ distribution in our estimation oP(K). If this part of P(K)
distribution of distances will beP(D,,)=&(D,,,—1/2). broadens ak increases, its exclusion cannot be achieved by

Similar behavior occursnside a specific valley affT<T,,

since for two statesu and v inside the valleyP(D,,) TABLE V. The third and fourth columns show the probability
—>5(DW—(1—qEA)/2), where qga is the Edwards- forK,,,=1 and 0.8<K,,,<1, for ueC,, veCi,, andpeCyp.
Anderson order parameter. The fifth and sixth columns give the mean and variance of the

The nontrivial result of RSB is that the vallegreemselves ~distribution of P(K|K<1). All systems are sampled @t=0.2.
are ultrametric. In order to investigate this claim, we have

to focus on triplets of states, each chosen from a differenP L P(K=1) P(0.9<K<1l) meanK) var(K)
valley. For large systems with many valleys this does not 4 0.78 0.0007 0.385 0.073
require special care, since almost all triplets of states will 5 0.57 0.0082 0.426 0.066
belong to three different valleys. For small systems, how- 6 0.35 0.0126 0.447 0.068
ever, a large fraction of the possible triplets will have at least 8 0.08 0.0269 0476 0.066
two states from the same valley. Such triplets should be i i ' i
disregarded. 4 3 0.74 0.0012 0.362 0.068
Our way of analysis provides us with tools to examine 4 0.38 0.0116 0.413 0.067
ultrametricity for small systems. We utilize the state hierar- 5 0.10 0.0095 0.406 0.061

chy obtained in Sec. IV to carefully choose triplets of states
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D=3 . ~ D=4

FIG. 17. The distributionP(K|K<1) of
Kuvps for ueC,, vely,, andpeCyy, . All sys-
tems are sampled dt=0.2.

P(K | K<1)

G0 0.2 0.4 K 0.6 0.8 1 0 0.2 0.4 K 0:6 O:8 1

simply ignoring the triangles witiK =1. This, however, is creasing sizg we generate valleys whose free energies differ

clearly not the case: we present in Table V the probabilityby finite amounts. The variability in domain sizes gives rise

P(0.9<K<1), and show that its increase withis much too  to a hierarchical structure in state space. At each level in the

small to compensate for the decreaséP(K=1). hierarchy some state clusters split; each such splitting is as-
In order to disregard this finite size effect we truncatedsociated with a spin domain. The fifstighesi level splitting

P(K=1) from P(K) and renormalized to get the distribution (to C,E) is associated with the largest domap at the next

level the two observed splitting€{C,,C, andC—(4,C5)
P(K)/P(K<1), K<1, 4p  @re related by symmetry and hence govemed by the same,
0, K=1. (42 second largest doma. At each level, the state clusters are

labeled according to the orientation of the corresponding do-
For largeL we expectP(K=1) to vanish, andP(K) will mains.
approachP(K|K<1). The results are plotted in Fig. 17. I Below the second level, different spin domains are in-
Table V we give the mean and variance B{K|K<1).  volved depending on which state cluster is being subdivided,
Though we deal with small systems, it seems RéK|K e g. G, is the domain whose orientation splits the states in
<1) converges to a distribution with nonvanishing mean an¢:, ' hile a different domairg} is involved in splittingC,.
variance, indicating breakdown of ultrametricity for the threeAIthough Gs#G,, in general they may share some of their

levels Qf the state hierarchy that were st.ud|.ed. é)ins. The state space structure in the lower levels of the
Again one should address the question: do these resul ) .
lerarchy has to be further investigated for larger systems.

remain valid in the largé limit? We have to show that the isicall h i th , .
state triplets we used, fror,, C;, andCy,, have a finite Epem ically, one has to verify thek andgs do not vanish as
— 00,

statistical weight ak — . In Sec. VI we showed that,|/N ) ) . .
Some details of our hierarchical picture do not appear to

remains finite if the average correlation, betweeng,; and . ! : :
G, does not approach oneg From the ngme argunr:gelnt we coR€ consistent with RSB. According to the RSB scenario, the
2 ' states have an ultrametric structure, which implies that for

clude that if the correlation of; with G;UG, does not ap- ) . .
proach one then boti€,|/N and|Cy,|/N do not vanish and any two state clusters deﬁngd gt a certain level of the hierar-
the weight of such state triplets remains finite, and the syschY: €-9.C1 andC,, the distribution of overlaps;; between

tem does not exhibit ultrametricity. We do have evidence that € C1 @ndj € C; should approach a delta function for laige

the average correlatioa(gg,glugz) of G with G,UG, in We presented in Sec. IV indications that the width of the

fact decreases dsincreases, but it is not conclusive. distribution P(D;), of values inD, may not vanish for
—oo, indicating absence of ultrametricity. We also presented

direct evidence for lack of ultrametricity in Sec. VII. How-
ever, studies on larger sizes are needed to verify that the test
We have presented a picture of the spin glass phase iwhich indicates lack of ultrametricity will still yield the same
finite dimensional systems. This picture—state hierarchy in€onclusion ag. — .
duced by correlated ppin domaifSHICS—is consistent In Secs. VI and VIl we demonstrated how, by separating
with  numerical findings of a nontrivial overlap the state space into its components, we can calculate various
distributiont®?%?*and macroscopic spin domains which costquantities using only a chosen part of this space, thus obtain-
only a finite energy to flip'>** Our results differ from the ing more reliable numerical results and reducing finite size
conventional interpretatioh'’ of the droplet picture; nev- effects.
ertheless, the scenario presented in the original work of Clustering analysis can be applied also to other systems
Fisher and Hus&;® and also the work of Newman and with a nontrivial phase space structure, i.e., which have sev-
Stein?*®is of sufficient generality to allow consistency with eral valleys which are not related by any apparent symmetry,
our findings. such as random field models, see, e.g., the discussion in Ref.
In the spin glass phase, the system consists of macrd, or other models with random anisotrdfSyit can help not
scopic spin domains of variable sizes. By ordering the doonly in the investigation of the macroscopic properties of a
mains according to their sizes and assigning them one of tweystem, but also in understanding the microstructure that
orientation(starting with the largest and continuing by de- gives rise to its properties.

P(K|K<1)=

VIll. SUMMARY AND DISCUSSION
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