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ABSTRACT

Motivation: Existing computational methods that identify transcrip-

tion factor (TF) binding sites on a gene’s promoter are plagued by

significant inaccuracies. Binding of a TF to a particular sequence is

assessed by comparing its similarity score, obtained from the TF’s

known position weight matrix (PWM), to a threshold. If the similarity

score is above the threshold, the sequence is considered a putative

binding site. Determining this threshold is a central part of the

problem, for which no satisfactory biologically based solution exists.

Results: We present here a method that integrates gene expression

data with sequence-based scoring of TF binding sites, for

determining a global score threshold for each TF. We validate our

method, STOP (Searching TFs Of Promoters), in several ways: (1) we

calculate the average expression values of groups of human putative

target genes of each TF, and compare them to similar averages

derived for random gene groups. The groups of putative targets

show significantly higher relative average expression. (2) We find

high consistency between the induced lists of putative targets in

human and in mouse. (3) The expression patterns associated with

human and mouse genes (ordered by PWM scores for each TF)

exhibit high similarity between human and mouse, indicating that our

method has firm biological basis. (4) Comparison of results obtained

by STOP and PRIMA (Elkon et al., 2003) suggests that determining

the score threshold using gene expression, as is done in STOP, is

more biologically tuned.

Availability: Software package will be available for academic users

upon request.
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1 INTRODUCTION

Elucidation of the regulatory mechanisms that control

gene expression is a central issue in biology. One of the key

elements in regulation of transcription are the binding sites of

transcription factors (TFs) which are located along the DNA.

The availability of whole genome sequences gave rise to the

development of computational methods that search for these

TF binding sites. Development of such methods, that are

reliable and have low false positive and false negative rates, is of

paramount importance.

We present here a method that searches for binding sites

of TFs with known position weight matrices (PWMs).

Our method follows the standard strategy: given a DNA

sequence and a PWM denoted by M, the method uses a score

that measures the quality of the match between the sequence

and the matrix. The target (say, promoter) sequence is scanned

and the binding motif of maximal score found on it is

identified. Suppose that the value of this maximal score is s.

We then need to decide whether s is high enough to call the

corresponding sequence a ‘hit’, i.e. predict that the TF binds at

the corresponding position. This decision is taken on the basis

of comparison of s with a threshold T(M): if s4T(M) there is

a hit or match and a putative binding site of the TF is

identified. All methods that use PWMs have to deal with the

question of determining an optimal threshold for each TF.

In PRIMA (Elkon et al., 2003), the value of the threshold is

determined in a way that keeps the number of matches in

a big background promoter set (of 12 981 promoters of

length 1200 bp) approximately fixed at �10% of the whole

set. MatInspector (Quandt et al., 1995) calculates for

every PWM an ‘optimized threshold’, ‘minimizing the

number of false positive hits in non-regulatory sequences’

(http://www.genomatix.de/products/MatInspector/). However,

the manner in which this threshold was computed was

not published. In UCSC TFBS Conserved Track Settings,

http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=80108084&

g=tfbsConsSites, only those binding sequences that are

conserved in the human/mouse/rat alignment are considered

putative binding sites; a binding site is required to score above

threshold in all three species. The value of the threshold is

calculated for each PWM as follows. For each of the 24 635

RefSeq genes (taken from genome assembly hg 17) calculate

the score (of the PWM) at every location on the promoter,

from the transcription start site (TSS) to 5000 bps upstream.

This generates (approximately) 24 635 times 5000 scores s. The

threshold T is set so that a fixed fraction of these satisfy s4T.
In Match (Kel et al., 2003), a different threshold value is used

for each TF, tuned so that the number of matches in a set of*To whom correspondence should be addressed.
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exon sites is minimized, because these sequences are presumed
to contain no biologically relevant TF binding sites. Indeed, so

far no functional, experimentally proven binding site was
reported in the exon 2 sequences used by (Kel et al., 2003).

However, the choice of thresholds based on such negative
results is obviously limited by the scope of the search for

counter examples that has been performed. F-match (Kel et al.,
2006) chooses an optimal threshold for each PWM in

the following way. Given an input group of genes and a
background group of genes it scans a set of thresholds and

chooses the one that maximizes the enrichment of the PWM in
the given group in respect to the background group. Similarly,

it chooses a threshold that minimizes this enrichment.

The threshold chosen for each PWM is not global and depends
on the input group of genes.
Several methods choose TFs’ thresholds in a way that tunes

the number of putative targets to be about the same for each
TF, as was described earlier. However, determining the

threshold according to the assumption that all TFs have a
similar number of targets is problematic, since TFs differ in

their affinity and selectivity in binding DNA motifs and in their

number of targets. For example, according to (Odom et al.,
2006), HNF4A has 5-fold more target genes than FOXA2.
In order to determine the thresholds in a more biologically

sensible way, we developed a method that uses gene expression
data in the threshold determination process. The idea to use

gene expression for this purpose is based on the biological fact

that co-regulated genes are co-expressed, i.e. have similar
expression profiles over a set of samples. For each TF the

threshold is determined separately, based on human gene
expression datasets. This way the number of putative targets of

each TF is independent of the other TFs.

2 METHODS

2.1 Gene expression datasets

The following three human gene expression datasets were measured on

the GeneChip Human Genome HG-U133A Array (Affymetrix, Santa

Clara, CA) and are used in this article.

(1) St Jude dataset containing 132 ALL samples (Ross, 2003).

(2) Colon dataset containing 202 samples (Tsafrir et al., 2006).

(3) Scripps dataset containing 158 samples obtained from 79 normal

tissues (Su, 2004).

We also use a mouse gene expression dataset of 36 cardiomyocyte

samples (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76)

that was measured on the GeneChip Mouse Genome MG-U74A Array.

Low-level processing and normalization of the datasets were carried

out using the Affymetrix Microarray Suite 5.0 (MAS 5.0) software.

2.2 Gene promoter sequences

DNA sequences upstream of human TSSs were downloaded from the

GoldenPath server at UCSC http://hgdownload.cse.ucsc.edu/golden

Path/hg16/bigZips/. Putative regulatory regions of 300 bps upstream of

the TSSs for the different genes were obtained. See Supplementary

Material for explanation for taking 300 bps.

We used as our working set of genes the GeneChip Human Genome

HG-U133A Array that represents more than 20 000 transcripts

derived from approximately 17 000 well-substantiated human genes.

We chose this array because of its coverage of the human genome and

because of the availability of variable gene expression datasets

measured on it.

DNA sequences upstream of mouse TSSs were downloaded from

the GoldenPath server at UCSC http://hgdownload.cse.ucsc.edu/

goldenPath/mm5/bigZips/. Putative regulatory regions (of 300 bps

upstream of the TSS) for the different genes were obtained.

For the consistency P-value analysis (see Sections 2.6 and 3.3), we

used as our working set of genes the GeneChip Mouse Genome 430

2.0 Array that represents over 39 000 transcripts. We chose this array

because of its extensive coverage of the mouse genome.

For the comparative Z-score analysis (see Section 3.4), we used as

our working set of genes the GeneChip Mouse Genome MG-U74A

Array that represents over 12 000 transcripts. We chose this array

because of the availability of variable gene expression datasets

measured on it.

2.3 Calculating a score and a P-value (P) for a motif

and a PWM

A common representation of TF binding sites is a PWM. A PWM is

built out of all the known motifs to which the TF binds, and it counts

the number of appearances of every nucleotide in every position of the

motif. We use 392 human TF PWMs downloaded from the

TRANSFAC database (Matys, 2003).

For a given PWM M and a given motif, we calculate the standard

log-likelihood ratio to be the score of the motif. See Supplementary

Material for the exact calculation.

We search a given promoter sequence of length N for the location

with the maximal score for a given PWM. Then we calculate a P-value:

the probability to get such a maximal score or higher in a random

promoter of length N. We denote this P-value by P. P is calculated

using the algorithm developed in (Hertzberg et al., 2005).

2.4 Z-score calculation using gene expression data

Suppose we have n genes on a gene expression array a. Let ga1, . . . , g
a
n

be their log expression values; �a is their average and �a is their SD.

Now suppose we suspect that a subgroup Gi of k genes, with indices

i1, . . ., ik, are targets of a particular TF. Their Z-score,

ZðTF,Gi, aÞ ¼
1

k

Xk
j¼1

gaij � �a

 !
=ð�a=

ffiffiffi
k

p
Þ

expresses the extent to which the average expression of Gi differs from

the general average expression. Assuming that ga1, . . . , g
a
n are indepen-

dent and identically distributed with mean �a and SD �a, the central

limit theorem (CLT) predicts that the average expression of a large

group of k randomly selected genes is normally distributed with mean

�a and SD �a=
ffiffiffi
k

p
, and thus the calculated Z-scores will have a normal

distribution with mean 0 and SD 1. However, the earlier assumptions

may not be valid since: (1) the expression values of different genes may

be correlated; (2) the genes’ expression distributions are not identical.

In this case, the mean value of the Z-score is still expected to equal 0,

but the SD will have a different value.

In (Chiang, 2001) it was shown that although the assumptions are not

strictly valid for gene expression data, the SD of the Z-score

distribution varies by 55% from the values given by the CLT.

We use the Z-score calculation of a group of genes as a measure for

the ‘randomness’ of the group; i.e. if it differs a lot from zero we

conclude the gene group is not random. In our context this means that

the genes are probably co-regulated by a common TF.
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2.5 Determining the score threshold for a TF of interest,

using Z-score calculation

Given a gene expression dataset and a TF’s PWM M, we determine a

score threshold for M using the Z-score calculation. Genes that contain

a position in their promoter with a score higher than the threshold

T(M) will be considered as putative targets for this TF.

Suppose n genes are represented on the expression array. We search

the genes’ promoters for the location with the maximal score forM, and

calculate P, the probability for getting such a value (or higher) for the

maximal score. The n genes are ordered (largest score first) according to

their maximal score values.

Next, we calculate the Z-score for gene groups of increasing sizes.

The simplest way to do this would be to take say the top

100, 200, 300, . . . , etc., scoring genes. However, since the PWM assigns

to different motifs one of a set of discrete score values, in general there

may be several genes with equal maximal scores. We define our gene

groups Gk so that when a certain gene is included in it, then the whole

set of equal-score genes is also included. Denote by s14s24, . . . ,4sx the

x different maximal score values measured on the n genes (x� n), and

let pi be the P associated with si ( p15p25, . . . ,5px). Let ki be the

number of genes with maximal score� si; clearly k15k25, . . . ,5kx.

The general idea is to scan the different values of k, k15k25, . . . ,5kx,

and search for the kmax at which the Z-score is maximal (and choose the

corresponding score as the score threshold). In order to provide a rough

limit on the number of putative targets, we scan only a subgroup of the

values of k, kj5kjþ15, . . . ,5kb, where j is the minimal index such that

kj420, and b is the maximal index such that pb50.5. For each

m¼ j, jþ 1, . . . , b the Z-score is calculated for the correspondding group

of km genes. The Z-score ZðTF, Gkm , aÞ is calculated for each of the

N samples a in the gene expression dataset. Then the average Z-score

over the different samples is calculated:

�ZðTF, Gkm Þ ¼
XN
a¼1

ZðTF, Gkm , aÞ=N

We now plot �ZðTF,Gkm Þ versus km and locate m0, the value of m

(m¼ j, jþ1, . . . , b) at which j �ZðTF, Gkm Þj is maximal. The corresponding

value of the score, sm0 (of the gene ranked km0 ) is chosen as the threshold

T(TF), as determined from this gene expression dataset.

This procedure was performed for each TF PWM and each of our

three human gene expression datasets. Thus, for each gene expression

dataset and for each TF PWM we get a score threshold.

The final score threshold is now determined by combining the results

of n different expression datasets (in our case n¼ 3). The idea is to find

a subgroup of gene expression datasets that yield, for a given TF,

similar score thresholds and choose this value as our T(TF). This

procedure generates more robust score thresholds. In addition, we want

to choose a score threshold where the absolute value of the average

Z-score is ‘high enough’, generating score thresholds that are

biologically meaningful. Note that a P threshold is associated with

each score threshold. The value of the final score threshold is

determined in the following way, for each PWM:

(1) Choose a subgroup of datasets with ‘close’ P thresholds as

follows: for each value x between 0 and 0.1 (scanned using steps of 0.01

in increasing order), search for the subgroup of datasets of maximal size

k, such that for each pair from the subgroup these conditions are

satisfied: (a) their P threshold difference is lower than x, (b) their �z

values (at their respective thresholds) have the same sign and (c) the

value of j �zj, averaged over the k datasets is larger than 2.5. If there is

such a subgroup of size k41, stop increasing x. If there is more than

one subgroup, choose the one with higher average j �zj. If we reached

x¼ 0.1, choose k¼ n, i.e. all datasets are included in the ‘subgroup’.

(2) Out of the k datasets in the subgroup choose the score threshold

of that dataset which has the maximal value of j �zj.

We compared values of the Z-score thresholds that were obtained

using different gene expression datasets, and found that the dependence

on the dataset used is weak. See Supplementary Material for a

discussion of this approximate independence.

2.6 Consistency P-value (Pc)

We study the promoters of 20 248 human probe sets represented on the

HG-U133A array and of 29 771 mouse probe sets of the Mouse 430 2.0

array. 8350 probe sets that appear on both chips are associated with

identical gene symbols in human and mouse; they constitute 8350

orthologous (OR) gene pairs, common for human and mouse. Denote

by ORHu (and ORMous) the 8350 human (and mouse) genes.

For each TF PWM, we identified its group of putative target genes in

human using the threshold T(M). We used the same values of

thresholds to get for each TF its putative target genes in mouse as

well. Let ORHu-T represent the human putative targets out of ORHu

and let ORMous-T represent the mouse putative targets out of ORMous.

The hyper-geometric P-value for the size of the intersection between

ORHu-T and ORMous-T is denoted as the consistency P-value (Pc)

of the TF.

3 RESULTS

3.1 Determining the score threshold using Z-score

For each TF we determined the score threshold using three

different human gene expression datasets. We plot in Figure 1
�z, the average Z-score calculated for the TF NFAT, using the
three human gene expression datasets, and demonstrate how

the score threshold is determined. It can be seen that for this

Fig. 1. Score threshold determination of the TF NFAT. The horizontal

axis represents the genes on the Affymetrix HG-U133A array, ordered

in a descending order of their maximal score of NFAT PWM. For each

x, the x genes with the highest maximal score of NFAT are included in

the group whose Z-score is calculated. The vertical axis represents �z, the

average Z-score for each such group of genes, for each of the three gene

expression datasets (bold line for the St Jude, dashed for Scripps and

nonbold for the Colon dataset). For example, when x¼ 4000, �z is

calculated for the 4000 genes with the highest maximal score.

The vertical lines represent the threshold point of each of the gene

expression datasets. The point of maximal j �zj is identical for two of the

three datasets for this TF.

STOP: searching for transcription factor motifs
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TF the absolute value of �z attains its maximal value at the same

point for two of the three datasets. The PWM score value at

this point, s¼ 5.8, was chosen as the threshold T(NFAT). �z at

the threshold point is between �4 and �6 in the three datasets.

This suggests that NFAT functions as a repressor since the

average expression level of its putative target genes is lower

than the general expression level. Indeed, NFAT is known to be

a repressor TF (Rao, 1997).
The list of all TFs with their calculated score thresholds and

their �z at that point is given in Supplementary Table 1.

3.2 Comparison to random permutations of genes

In order to validate the determination of the score threshold

according to the Z-score calculation, we check the behavior of �z

on a random permutation of the genes. Instead of ordering the

genes in a descending order of their maximal score for a TF

PWM, we take a random permutation of them. Again, �z is

calculated for increasing sizes of gene groups. The results for

the Scripps dataset, for a random permutation, as well as for

ranking according to the maximal score of the TF ELK1, are

plotted in Figure 2. It can be seen that j �zj is significantly lower

for the random ordering. This suggests that the high value of �z

seen for ELK1 is not the result of a random fluctuation; i.e. the

measure of the Z-score reflects some biological meaning. In this

case a plausible explanation is that the group of genes with high

maximal score for ELK1 is transcriptionally co-activated by it,

causing this group’s relatively high average expression level and

correspondingly, high �z.

We use this observation to further estimate which values of

the maximal absolute value of �z can be designated as ‘high’ and

not due to random fluctuations. For this purpose, we generated

1000 random permutations and repeated the analysis described

earlier for each of the resulting orderings of the genes.

The results are plotted in Figure 3, together with the histogram

of the maximal j �zj values that were obtained when the

genes were ordered according to the scores of 392 TFs. Both

histograms were obtained from the Scripps expression data.
The maximal j �zj is significantly higher when the genes are

ordered according to their maximal score motif for TFs than

when the ordering is by random permutations. This suggests

that the high values of j �zj seen for the TFs are not random-high

absolute Z-score values of the high-scoring genes probably

reflect their co-regulation, which causes their average

expression level to be different from the average expression

level of all genes.

3.3 Comparison to the mouse genome

In order to test and validate further our method for threshold

selection, we measured for each TF the consistency of

its putative targets between human and mouse. Pc (see

Methods Section) expresses the extent to which the human

putative target genes tend to overlap with the mouse putative

target genes. Conservation of regulatory motifs along different

species is known to strengthen the likelihood that the motifs are

biologically significant.

The Pc values of all 392 TFs studied were calculated; the

results are plotted in Figure 4. 390 TFs passed FDR of Q¼ 0.05

(these TFs have Pc values lower than 0.049). Since 99% of the

TFs have statistically significant Pc values, we conclude that

the proposed determination of the score threshold according to

the Z-score analysis produces biologically meaningful results.

There is a clear correlation between the value of j �zj at the

score threshold and the value of Pc. The higher the value of j �zj

at the threshold, the higher is the consistency between human

and mouse. This observation provides further biological

support to the determination of the score threshold according

to the Z-score analysis.

3.4 Comparison to the mouse gene expression data

To complete the comparison between human and mouse,

we used a mouse gene expression dataset. The Z-score

procedure described earlier for human was performed on a

mouse gene expression dataset. For each TF a score threshold

was chosen according to the maximal j �zj on the mouse data.

We present in Figure 5 the �z values at the score threshold

points, as obtained from mouse versus human (Scripps)

expression data.
For �90% of the TFs the sign of �z at the threshold is

identical for human and mouse and the correlation between

the two �z values is high (more than 0.7, for j �zj higher than 2.5).

The biological meaning of this correlation in our context is that

TFs which function as activators in human function as

activators also in mouse; the same holds for repressors.

It should be noted that the Z-scores were measured here

for completely different sets of genes: human versus mouse.

The genes of each genome were ordered according to the

maximal score motif in their promoter for the TF, using the

same PWMs. Note that this ordering is not identical between

human and mouse since in human the search for the maximal

score motif was done on the human genes’ promoters, and in

mouse it was done on the mouse genes’ promoters. The fraction

of TFs that have �z with different signs for human and mouse is

Table 1. Comparison between STOP and PRIMA results on E2F4 targets

PWMs (TFs) STOP % matches (rank) STOP P-value PRIMA % matches (rank) PRIMA P-value

V$E2F4DP2_01 (E2F4:DP2) 58 (1) 3.11E�32 15 (2) 3.77E�17

V$E2F1_Q3 (E2F1) 62 (2) 6.55E�32 22 (13) 6.24E�11

V$E2F1DP1_01 (E2F1:DP1) 77 (3) 1.84E�26 15 (2) 3.77E�17

V$E2F1_Q6_01 83 (5) 4.16E�25 16 (1) 1.73E�20

V$NFY_01 30 (17) 1.28E�17 29 (2) 3.77E�17
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30% for those TFs with j �zj � 2.5 at the threshold (in the Scripps

dataset), while for TFs with j �zj � 2.5 this fraction is only 4%.

This suggests that when �z is higher, the sign of �z, which reflects

the activity type of the TF (activator/repressor) is more likely to

be similar in human and mouse.

In continuation to the earlier analysis, we compared the

average Z-score graphs (see Supplementary Fig. S2) of the TFs

between human and mouse. For 50% of the TFs the average

Z-score graphs between human and mouse are highly
correlated (correlation 40.82). See Supplementary Material

for a full description of this analysis.

3.5 Comparison to prima

We compared our method with PRIMA, a program for

searching for common TFs in a set of genes using PWMs

from the TRANSFAC database (Elkon et al., 2003). Given a
group of genes, PRIMA calculates a P-value for the enrichment

Fig. 2. Average Z-score of a random gene permutation. The horizontal

axis represents the genes on the Affymetrix HG-U133A array.

The vertical axis represents �z for each size of group of genes for the

Scripps expression dataset. The non-bold line represents �z when

the genes are ordered in a descending order of their maximal score

for TF ELK1. The bold line represents �z when the genes are ordered

at random.

Fig. 3. Histogram of maximal average Z-score for genes ordered by

either the TF scores or randomly. The horizontal axis represents

maximal value of j �zj. The bold line represents the number of random

gene permutations with such a maximal j �zj. The non-bold line

represents the number of TFs with such a maximal j �zj. In 95% of

1000 random permutations, the maximal j �zj was lower than 2.5.

Fig. 4. Human-mouse consistency P-values (Pc). Each point corre-

sponds to a TF. The horizontal axis represents �z at the point of the

score threshold (from the Scripps data). The vertical axis represents

the minus log (basis 2) of Pc.

Fig. 5. Comparison of human-mouse Z-score analyses. Each point

corresponds to a TF. The horizontal (vertical) axis represents �z at the

score threshold according to the human Scripps (or Mouse) gene

expression dataset. Open circles correspond to TFs with Scripps

j �zj42.5; solid points to those with j �zj52.5. The Pearson correlation is

0.73 for the points with �z42.5, and 0.72 for �z5�2.5. In the

intermediate region �2.55 �z52.5 the Pearson correlation is small.
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of each PWM in the given group, with respect to a large
background set. STOP calculates a hyper-geometric P-value for
the enrichment of each PWM M in the given group in a similar

way. The hyper-geometric P-value is calculated for the size of
the intersection between the given group and the full set of
putative target genes as induced by T(M). The main difference

between the two methods stems from the different way the
score thresholds are determined for each PWM. Clearly, the
score threshold one uses affects the number of putative target

genes in both the selected group of genes and the background,
and thus affects the measured enrichment.
In order to compare PRIMA and STOP, we chose as the

given group of genes the targets of TF E2F4 that were
identified by chromatin immunoprecipitation (ChIP) combined
with DNA microarrays (Boyer et al., 2005). The genes for

which E2F4 is bound in the first 300 bps upstream the TSS were
extracted (361 genes). Except the PWM score thresholds,

we would like all other parameters used by PRIMA and STOP
to be equal. Thus, we used the same background set of genes
(the genes represented on the HG-U133A chip) and the same

392 human PWMs, when running on the E2F4 target genes.
Both methods searched for binding motifs on 300 bps upstream
of the TSS. The comparison between the results of STOP and

PRIMA is presented in Table 1.
Two PWMs associated with TF E2F4 exist in

the TRANSFAC database: V$E2F4DP1_01 for E2F4:DP1

heterodimer and V$E2F4DP2_01 for E2F4:DP2 heterodimer.
As listed in Table 1, STOP found the E2F4:DP2 heterodimer as
the most statistically enriched PWM (lowest P-value). PRIMA

found it as the second most enriched PWM. The score
threshold STOP determined for E2F4 was 4.82; less than 5.9,
the value used by PRIMA. This difference increased the per-

centage of identified targets in the group from 15% (PRIMA)
to 58% (STOP). Thus, STOP’s score threshold for E2F4 is high

enough to make the percentage of targets in the gene group very
high (58%), but in a way that keeps the background percentage
low, so that the enrichment P-value calculated is very small

(3.11E–32), 1015 fold smaller than that given by PRIMA.
We conclude that for the TF E2F4, the determination of the
score threshold according to the gene expression Z-score as is

done in STOP is more biologically tuned than determining it by
a constant cutoff as is done in PRIMA. This trend,
of significantly more identified targets in the group by STOP

and better enrichment P-values is shared by 4 of the 5 PWMs
of Table 1.
The overall TF identification of STOP and PRIMA are quite

similar: STOP identified 28 TFs with enrichment P-value lower
than 0.01, while PRIMA identified 27 such TFs. About 70% of
the TFs (20) are identified by both methods; these include

E2F4:DP2, E2F, E2F1, NFY, STAT1 and ELK1.

4 DISCUSSION

Reliable determination of the binding motifs of a TF on the
promoters of putative target genes is a problem of central

importance. Most existing methods use a predetermined PWM
of the TF to score candidate sequences. The promoters of genes
of interest are scanned, searching for segments that score higher

than some threshold. The reliability of the method, measured

by the number of false positives and negatives, depends on the

value of the threshold (and of course on the PWM) that is used.

The threshold values are, as a rule, determined in a heuristic

way, without using available experimental data. We introduce

here STOP, a new method for determining threshold values for

a large number of TFs, using gene expression data. We tested

our method and demonstrated that our data-based thresholds

determination procedure produces results, listed below, that

make biological sense:

(1) The absolute values of the average Z-scores, j �zj, are

significantly higher when the genes are ordered according

to their maximal scores for a TF than when the averaging

is over groups of genes assembled on the basis of some

random ordering. Therefore, the genes with high j �zj for

a TF are more likely to be co-regulated and co-expressed,

leading to average expression values that differ

significantly from averages taken over a random group

of the same size.

(2) The consistency between human and mouse is correlated

with �z; e.g. the hyper-geometric P-value for the size of the

common target gene group between human and mouse is

lower for TFs with higher maximal j �zj. Therefore high j �zj,

which is indicative of stronger co-expression and

co-regulation, implies consistency between the two

organisms. Furthermore, the frequency of occurrences

of threshold �z values with different signs in human and

mouse is very low for TFs with high (42.5) j �zj values.

(3) For 50% of the TFs the average Z-score graphs

between human and mouse are highly correlated

(correlation40.82).

(4) Comparison of STOP and PRIMA (Elkon et al., 2003)

results suggests that determining the score threshold

according to the gene expression, as is done in STOP, is

more biologically tuned.

These observations and findings support the validity

of determining the TF score threshold according to the

Z-score analysis.

In addition, STOP provides an insight to the functionality of

the TFs, i.e. which TFs function mostly as activators (those

with high positive Z-score value) and as repressors (those with

low negative Z-score value). Note that for these TFs the

correlation between the human and mouse Z-score values was

high (about 0.7) even though the determination of the threshold

was performed separately for completely different sets of genes:

human and mouse, and using different expression data.

The only common element in the data of the two analyses

was ordering the genes according to the maximal score motif of

the TF that was found in their promoters.
This work can be extended in several directions. First, the

determination of the score threshold according to the Z-score

could be done in a more delicate way, that takes into account

the trends in the Z-score graphs (and not just the maximal

absolute value). Second, for a substantial fraction of the TFs

the average Z-score absolute value at the threshold point is

not high (e.g. in the Scripps dataset 86 TFs have value52.5).

This could happen, e.g. for TFs which function both as

L.Hertzberg et al.
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activator and repressor. For such TFs it would be useful
to separate the genes to two groups: up-regulated and
down-regulated, and then determine the threshold separately
for the two groups. Third, after searching for all putative

binding sites of all TFs, cooperation between groups of
TFs could be examined by comparing the locations of their
binding sites.

ACKNOWLEDGEMENTS

This study was supported by grants from the Israel Ministry of

Science, by the Wolfson Family Charitable Trust, London, on
Tumor Cell Diversity, by the NCI/NIH grant P01 CA 65930-
06, and by the Ridgefield Foundation. This study was done as a

partial fulfillment of the requirement for the PhD Degree of
Libi Hertzberg, Sackler Faculty of Medicine, Tel-Aviv
University.

Conflict of Interest: none declared.

REFERENCES

Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate:

a practical and powerful approach to multiple testing. J. R. Statist. Soc., 57,

289–300.

Boyer,L.A. et al. (2005) Core transcriptional regulatory circuitry in human

embryonic stem cells. Cell, 122, 947–956.

Chiang,D.Y. et al. (2001) Visualizing associations between genome sequences and

gene expression data using genome-mean expression profiles. Bioinformatics,

17, S49–S55.

Elkon,R. et al. (2003) Genome-wide in silico identification of transcri-

ptional regulators controlling the cell cycle in human cells. Genome Res., 13,

773–780.

Hertzberg,L. et al. (2005) Finding motifs in promoter regions. J. Comput. Biol.,

12, 314–330.

Kel,A.E. et al. (2003) MATCH: a tool for searching transcription

factor binding sites in DNA sequences. Nucleic Acids Res., 31,

3576–3579.

Kel,A. et al. (2006) Beyond microarrays: Finding key transcription

factors controlling signal transduction pathways. BMC Bioinformatics, 7

(Suppl. 2), S13.

Matys,V. et al. (2003) TRANSFAC: transcriptional regulation, from patterns to

profiles. Nucleic Acids Res., 31, 374–378.

Odom,D.T. et al. (2006) Core transcriptional regulatory circuitry in human

hepatocytes.Mol. Sys. Biol., 2, 2006.0017 2006.0017 doi:10.1038/msb4100059

(see http://www.nature.com/msb/journal/v2/n1/full/msb4100059.html).

Quandt,K. et al. (1995) MatInd and MatInspector: new fast and versatile tools

for detection of consensus matches in nucleotide sequence data. Nucleic Acids

Res., 23, 4878–4884.

Rao,A. et al. (1997) Transcription factors of the NFAT family: regulation and

Function. Ann. Rev. Immunol., 15, 707–747.

Ross,M.E. et al. (2003) Classification of pediatric acute lymphoblastic leukemia

by gene expression profiling. Blood, 102, 2951–2959.

Su,A.I. et al. (2004) A gene atlas of the mouse and human protein-encoding

transcriptomes. PNAS, 101, 6062–6067.

Tsafrir,D. et al. (2006) Relationship of gene expression and chromosomal

abnormalities in colorectal cancer. Cancer Res., 66, 2129–2137.

STOP: searching for transcription factor motifs

1743

http://www.nature.com/msb/journal/v2/n1/full/msb4100059.html

