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Abstract

This paper is about learning using partial information
in the form of equivalence constraints. Equivalence con-
straints provide relational information about the labels of
data points, rather than the labels themselves. Our work is
motivated by the observation that in many real life appli-
cations partial information about the data can be obtained
with very little cost. For example, in video indexing we may
want to use the fact that a sequence of faces obtained from
successive frames in roughly the same location is likely to
contain the same unknown individual.

Learning using equivalence constraints is different from
learning using labels and poses new technical challenges.
In this paper we present three novel methods for clustering
and classification which use equivalence constraints. We
provide results of our methods on a distributed image query-
ing system that works on a large facial image database, and
on the clustering and retrieval of surveillance data. Our
results show that we can significantly improve the perfor-
mance of image retrieval by taking advantage of such as-
sumptions as temporal continuity in the data. Significant
improvement is also obtained by making the users of the
system take the role of distributed teachers, which reduces
the need for expensive labeling by paid human labor.

Keywords: Learning from partial knowledge, semi-
supervised learning, image retrieval, clustering

1 Introduction

Supervised learning techniques are designed to use train-
ing data where explicit labels are attached to a sample of
data points. Obtaining labels in real life applications, such
as image and video indexing, is a difficult task that requires
human intervention. We argue that in many real life situa-
tions training data of different sorts can be extracted auto-
matically or very cheaply from the data. Specifically, we
focus on two sources of information:

1. There is often inherent temporal continuity in the data
that can be exploited. For example, in video indexing
objects extracted from successive frames in roughly
the same location can be assumed to come from the
same 3D object. Similarly, in surveillance applica-
tions we automatically obtain small sequences of im-
ages that are known to contain the same intruder. Al-
ternatively, when two people simultaneously walk in
front of two distinct cameras, the corresponding im-
ages are known to contain different people.

2. Anonymous users of a retrieval system can be asked to
help annotate the data by providing information about
small portions of the data that they see. For exam-
ple, in what may be viewed as generalized relevance
feedback, we may ask the users of a retrieval engine
to annotate the set of images retrieved as an answer
to their query. Thus, cooperative users will provide a
collection of small sets of images which belong to the
same category. Moreover, different sets provided by
the same user are known to belong to different cate-
gories. We cannot use the explicit labels provided by
the different users because we cannot assume that the
subjective labels are consistent.

The discussion above presents two seemingly unrelated
applications that share the same essential property: the pres-
ence of intrinsic relations between data points that can be
naturally (or cheaply) discovered. This paper addresses the
problem of using such information to enhance clustering
and classification performance.

1.1 Our approach

As described above, our analysis assumes that apart
from having access to a large amount of unlabeled data,
we are also provided with additional information in rela-
tional form. We focus on equivalence constraints, which
determine whether two data points come from the same



class or not. We denote the former as “is-equivalent” con-
straints, and the latter as “not-equivalent” constraints. We
note that in both cases, the labels themselves are unknown.
We studied three alternative techniques to use equivalence
constraints (see details in Section 2):

1. Constrained Gaussian mixture models (GMM): we
show how to incorporate equivalence constraints in a
GMM formulation using the EM algorithm. As it turns
out, “is-equivalent” constraints can be easily incorpo-
rated into EM, while “not-equivalent” constraints re-
quire heavy duty inference machinery such as Markov
networks.

2. Relevant Component Analysis (RCA) combined with
nearest neighbor classification: In this algorithm we
use “is-equivalent” constraints to determine the dimen-
sions relevant for classification and to implement a
semi-supervised learning process. The algorithm was
first introduced in [9].

3. Clustering with graph-based algorithms: equivalence
constraints are directly incorporated into the Typical-
cut algorithm [4] as weights on edges.

1.2 Related work

There has been numerous work in the field of semi-
supervised learning. Most of these papers consider the case
of partial labeling in which a large unlabeled data set is aug-
mented by a much smaller labeled data set [7, 10]. There
are a few papers which exploit equivalence constraints as
well. In [12] equivalence constraints are introduced into
the K-means clustering algorithm; but since the algorithm
computes hard partitioning of the data, the constraints are
introduced in a heuristic manner. Another example of intro-
ducing equivalence constraints into a graph-based cluster-
ing algorithm is given in [13], showing nice improvement
in image segmentation.

Different forms of partial information have also been ex-
plored. The notion of “preference learning” was studied
in [6], where a utility function which corresponds to the
teacher’s preferences is learned. It is interesting to note that
in [6] a set of ordinal labels is assumed to exist, and rela-
tions are extracted from labels rather than obtained directly.

2 Using equivalence constraints

In this section we describe three alternative (but re-
lated) techniques to use equivalence constraints: Section 2.1
presents a constrained Expectation Maximization (EM) for-
mulation of a Gaussian mixture model (GMM). Section 2.2
describes the RCA algorithm, and Section 2.3 outlines a
constrained graph based clustering algorithm.

2.1 Constrained EM

A Gaussian mixture model (GMM) is a parametric sta-
tistical model which assumes that the data originates from a
weighted sum of several Gaussian sources. More formally
a GMM is given by: ������� �	��

���������� � ������� � � � , where � �
denotes the weight of each Gaussian, � � its respective pa-
rameters and � denotes the number of Gaussian sources
in the GMM. EM is a widely used method for estimating
the parameter set of the model ( � ) using unlabeled data [3].
The algorithm iterates between two steps:
� ’E’ step: calculate the expectation of the log-likelihood

over all possible assignments of data points to sources.

� ’M’ step: differentiate the expectation w.r.t current pa-
rameters.

Equivalence constraints modify the ’E’ step in the fol-
lowing way: instead of summing over all possible assign-
ments of data points to sources, we sum only over assign-
ments which comply with the given constraints. For exam-
ple, if points ��� and ��� form an “is-equivalent” constraint,
we only consider assignments in which both points are as-
signed to the same Gaussian source. If on the other hand,
these points form a “not-equivalent” constraint, we only
consider assignments in which each of the points is assigned
to a different Gaussian source.

There is a basic difference between “is-equivalent” (pos-
itive) and “not-equivalent” (negative) constraints: While
positive constraints are transitive (i.e. a group of pairwise
“is-equivalent” constraints can be merged using a transitive
closure), negative constraints are not transitive. The out-
come of this difference is expressed in the complexity of
incorporating each type of constraint into the EM formula-
tion. Therefore we begin by presenting a formulation for
positive constraints (Section 2.1.1), and then present a dif-
ferent formulation for negative constraints (Section 2.1.2).
We conclude by presenting a unified formulation for both
types of constraints (Section 2.1.3).

2.1.1 Incorporating “is-equivalent” constraints

We begin by defining a chunklet: a small subset of data
points that are known to belong to a single unknown class.
Chunklets can also be obtained by the transitive closure of
the group of “is-equivalent” constraints.

In this settings we are given a set of unlabeled data
points, and a set of chunklets. In order to write down the
likelihood of a given assignment of points to sources, a
probabilistic model of how chunklets are obtained must be
specified. We consider two such models:

1. Data points are sampled i.i.d, without any knowledge
about their class membership, and only afterwards
chunklets are selected from these points.



2. Chunklets are sampled i.i.d, with respect to the weight
of their corresponding source (points within each
chunklet are also sampled i.i.d).

Although the first model above seems more sound statis-
tically, it suffers from two major drawbacks: (i) All our cur-
rent suggestions for how to automatically obtain chunklets
do not fit this statistical model. (2) Unlike the standard EM
formulation for a GMM, it does not have a closed form iter-
ative solution for the sources’ weights. In this case we must
apply generalized EM (GEM) [3] using gradient ascent. We
therefore defer the discussion of this model to Section 2.1.3.

The second model suggested above often complies with
the way chunklets are “naturally” obtained. For example,
in surveillance applications data is obtained in chunklets.
Therefore the probability of obtaining a chunklet of a spe-
cific person is proportional to the number of events that the
person was tracked by the surveillance cameras.

Fortunately, the EM update rules for the second model
have a closed form solution. More specifically, let � � ������ ���
denote the data points. Let ��� ������ ����	�

��� denote the
distinct chunklets, where each � � is a set of points ��� (one
or more) such that � �� ��� � � 
�� �� ��� ��� . Let � � denote the

label assignment of point � , and � � 
���� �������� ��� ������ � denote
the label assignment of the chunklet � � . The iterative EM
equations for the parameters of the � ’th model are:
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where .� � denotes the mean of the points in chunklet < , � � � �
the number of points in chunklet < , and � � �"!� � the mean co-
variance matrix of the < th chunklet. The chunklet probabil-
ity is:
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As can be readily seen, the update rules above effectively

treat each chunklet as a single data point weighed according

to the number of elements in it. Note that in our formulation
unconstrained data points appear as chunklets of size 1.

2.1.2 Incorporating “not-equivalent” constraints

The probabilistic description of a data set using a GMM at-
taches to each data point two random variables: an observ-
able and a hidden. The hidden variable of a point describes
its source label, while the data point itself is an observed ex-
ample from the source. Each pair of observable and hidden
variables is assumed to be independent of the other pairs.
Note, however, that negative equivalence constraints vio-
late this assumption, as dependencies between the hidden
variables are introduced.

Specifically, assume we have a group C 
D� �2E �� 	 EGF� � � �� ���
of pairs of indices corresponding to � pairs of points
that are negatively connected, and define the event HJI 
���LKNM OQPSR=T=U�VXW�TZY\[]Y^[_U`K�M a_VbY^cedfT=agY\V � .
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We denote the constant ���2H I � �	� as j . Using the indepen-
dence of samples we get
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Expanding

#3k 8 l�m gives the following expression
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As a by-product of its local components, the distribution

in (2) can be readily described using a Markov network.
Each observable data point depends, in a Gaussian manner,
on a hidden variable corresponding to the label of its source.
Negative constraints are expressed by edges between hidden
variables which prevent them from having the same value
(see Fig. 1).

We derived an EM procedure which maximizes�%z�{ � ���h� � � 	 HiI � � entailed by this distribution. The update
rules for , � and � � are still
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where | � � 
 ��� �i9 , � �"!� � ��� ��9 , � �"!� ��; . Note that now
���h� � 
 � � � 	 � ( �+* � are inferred using the net. The update
rule of � � is more intricate, since this parameter appears in
the normalization factor j 
 ���%H I � �	�
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This factor can be calculated using a net which is similar
to the one discussed above but lacks the observable nodes.
We use such a net to calculate j and differentiate it w.r.t � � ,
after which we perform gradient ascent.

Figure 1. Illustration of the Markov network structure required
for incorporating “is-equivalent” and “not-equivalent” constraints.
Data points

�����
are positively constrained, and so are points � �	� .

Data points
���
�

have a negative constraint with point � and with
point � ��� .

2.1.3 Combining “is-equivalent” and “not-equivalent”
constraints

Both kinds of constraints can be combined in a single
Markov network by a rather simple extension of the network
described in the previous section. The data distribution can
be expressed by a Markov network similar to the network
from the previous section, where every pair of data points
related by a positive constraint share a hidden father node
(see Fig 1).

The complexity of an EM round is dominated by the in-
ference complexity, which is


 � � � � *���� � * ! � *���� o�� u � by us-
ing the Jtree algorithm [8]. Hence the algorithm is limited
to

 � � � ”not equivalent” constraints. The general case of
 � � F � is NP-hard, as it may be reduced to the graph col-

oring problem. To achieve scalability to large sets of con-
straints two approximations are used: the graph is replaced
by its minimal spanning tree, and the normalization factorj is approximated (for details see [1]).

2.2 Relevant Component Analysis

Relevant Component Analysis (RCA) is a method that
seeks to identify and down-scale global unwanted variabil-
ity within the data. The method changes the feature space
used for data representation (or equivalently the distance be-
tween data points in feature space), by a linear transforma-
tion which assigns large weights to “relevant dimensions”
and low weights to “irrelevant dimensions” (cf. [11]).
Hopefully, in the new feature space the inherent structure
of the data could be more easily unraveled. The method can
be used as a preprocessing step both for unsupervised clus-
tering of data, or for using nearest neighbor classification.
Specifically, we do the following:

1. Assume that chunklets are provided as input (Fig. 2a-
c).1 For each chunklet: subtract the chunklet’s mean
from all of the points belonging to it (Fig. 2d).

2. Merge the recentered chunklets into a single data set
and compute the covariance matrix of the merged set
(Fig. 2d).

3. Compute the whitening transformation � associated
with this covariance matrix (Fig. 2e) and apply it to
the data. Apply the transformation � to the original
data points: � � �"! 
�� � (Fig. 2f).

What the whitening transformation � effectively does,
when applied to the original feature space, is give lower
weight to directions in feature space in which the variabil-
ity is mainly due to within class variability, and is therefore
“irrelevant” for the task of classification.

In section 3 we provide results using RCA on both un-
supervised clustering and nearest neighbor classification of
real image data. In [2] we provide the theoretical justifi-
cation of RCA. RCA is analyzed from an an information-
theoretic view and is shown to be the optimal procedure un-
der several criteria.

2.3 Constrained graph-based clustering

Graph based clustering methods represent the data points
as a graph in which the nodes correspond to data points, and
the edge values correspond to the similarity between pairs
of data points. In this representation there are several ways
of introducing equivalence constraints, which depend on the
specific clustering algorithm used.

In the examples below we describe results of incorporat-
ing equivalence constraints in the Typical Cut clustering al-
gorithm [4]. The incorporation of is-equivalent constraints
is done by assigning � weight to all edges connecting chun-
klet points. However, in order to incorporate not-equivalent

1“not-equivalent” constraints are ignored in the current version of RCA.



(a) (b)

(c) (d)

(e) (f)

Figure 2. An illustrative example of the RCA algorithm applied
to synthetic Guassian data. (a) The fully labeled data set with 3 la-
bels. (b) Same data unlabeled; clearly the classes’ structure is less
evident. (c) The set of chunklets that are provided to the RCA algo-
rithm. (d) The centered chunklets, and their empirical covariance.
(e) The whitening transformation applied to the chunklets. (f) The
original data after applying the RCA transformation to it.

constraints edges should be assigned the value 9�� . Such
assignment poses a technical difficulty when using graph
cut methods, and as a result has not been implemented yet.

3 Experimental results

3.1 Image retrieval and clustering of facial images
To evaluate the performance of our algorithms we used a

subset of the Yale face database B [5] which contains a total
of 1920 images, including 64 frontal pose images from 30
different subjects (see examples in the top row of Fig. 3).
In this database the variability between the images of the
same person is due mainly to different lighting conditions.
We automatically centered all the images using optical flow.
Images were then converted to vectors, and each image was
represented using the first 60-100 PCA coefficients.

Our experimental setup We constructed an experimen-
tal design using the Yale B face database and a simple dis-
tributed retrieval engine. The retrieval engine used a naive

(a) (b) (c)

Figure 3. (a) Original images taken from the yaleA image
database. (b) Reconstructed images using RCA. (c) Reconstructed
images using PCA. Notice that although the original images are
taken under very different lighting conditions, their RCA recon-
structions cancel out this effect.

metric for locating the K-nearest neighbors of a query im-
age. The naive metric was a Mahalanobis distance which
used the total covariance matrix of the dataset as weights.2

The experiment was conducted as follows: each user se-
lected a facial image (data point) from the database, and
presented it as a query to the system. The retrieval engine
computed its

�
-nearest neighbors and presented them to

the user. The user was then asked to partition the set of
retrieved images into equivalence classes (i.e., into groups
of pictures containing the same individual). Each user thus
supplied the system with both positive and negative con-
straints, in what may be viewed as generalized relevance
feedback. These equivalence constraints were used to test
the performance of our algorithms.

Using the RCA algorithm and the procedure described
above for obtaining equivalence constraints, we studied the
effect of the number of data queries while

�
(the number

of neighbors) was set to 10. The beneficial effect of RCA
on nearest neighbor classification is shown in Fig. 4.

It is also interesting to observe the visual effect of ap-
plying RCA to facial images with varying lighting condi-
tions. We computed the RCA transformation using a set of
chunklets, applied it to the data, and then reconstructed the
transformed images. Fig. 3 illustrates the “effect” of RCA
when applied to facial images of a single subject.

We used similarity constraints obtained in the distributed
learning scenario to test our constrained EM algorithms.

2This naive metric proved to be empirically superior to the simple Eu-
clidean metric.
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Figure 5. Purity (precision) and accuracy (recall) scores of EM face clustering. The results were averaged over 100 tests.
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Figure 4. Mean cumulative neighbor purity (percentage of cor-
rect neighbors) before and after applying RCA to the Yale B facial
image database. The graph compares different Mahalanobis dis-
tance matrices: (a) Euclidean distance (b) Euclidean distance after
a global whitening of the data. (c) inner class covariance matrix.
(d,e) RCA estimators of the inner class covariance matrix using 20
and 60 distributed queries respectively. Results were averaged over
50 chunklet realizations, while the error bars depict standard devia-
tions. The results are shown for 20, and 60 queries. As can be seen,
performance improves as the number of queries increases, although
a large part of the performance gain is obtained with 20 queries.

The task was the clustering of 640 facial images belong-
ing to 10 subjects. We compared the performance of the
following: (1) Regular EM, (2) Positively constrained EM
and (3) Fully constrained EM (both positive and nega-
tive constraints). The constraints were obtained using dis-
tributed queries of 15 faces each, randomly selected. Fig. 5
shows the results. As may be seen, incorporating the con-
straints improves both purity (precision) and accuracy (re-
call) scores by 20-25%, depending on the number of con-
straints used. Most of the improvement can be achieved
using the positive constraints alone, in which case the algo-
rithm has a closed form fast implementation.

3.2 Visual surveillance

In the surveillance application data was collected by a
stationary indoor surveillance camera, from which short

video clips were extracted. The beginning and end of each
clip were automatically detected by the appearance or dis-
appearance of a moving target. The database included many
clips, each displaying only one person; however, the iden-
tity of the intruder was unknown. The task was to retrieve
images from this database, based on individual query im-
ages.

The task and our approach In this experiment the data
was taken in entirely natural conditions, and was therefore
rather challenging. Specifically, in a certain video clip an in-
truder may have walked all over the scene, coming closer to
the camera or walking away from it. Thus the size and reso-
lution of each image varied dramatically. In addition, since
the environment was not controlled, images included vari-
ability due to occlusions, reflections and (most importantly
from our perspective) highly variable illumination. In fact,
the illumination changed dramatically across the scene both
in intensity (from brighter to darker regions), and in spec-
trum (from neon light to natural lighting). Fig. 6 displays
several images from one input clip.

Our goal was to devise a representation that would en-
able effective retrieval of images. We found that the only
low-level attribute that could be reliably used in this ap-
plication was color. Therefore our task was to accomplish
some sort of color constancy, i.e., to overcome the irrelevant
variability created by the changing illumination.

Figure 6. Several images from a video clip of one intruder.

Image representation and the application of our meth-
ods Each image in a clip was represented using its color
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Figure 7. Fraction of correct retrievals as a function of the num-
ber of retrieved images. Remark about retrieval in the clustering
cases: Both clustering algorithms produce a hierarchy of clusters,
i.e. a dendrogram, which is used in the retrieval procedure. In order
to retrieve the neighbors of a certain point � , one locates the small-
est cluster which includes � , and retrieves its neighbors in ascending
distance from � (ignoring neighbors that belong to the same chun-
klet as � ). If needed one climbs up the dendrogram, and repeats
this process disregarding points that were part of lower levels in
the dendrogram.

histogram in 
�� E ����� space (we used 5 bins for each dimen-
sion). Since a clip forms a chunklet by definition, we can
naturally apply our methods without further preprocessing
of the data. We tested the effect of chunklets in two of
our methods, i.e, graph based clustering and RCA. We used
4600 images from 130 clips (chunklets) of 20 different peo-
ple. We tested the percent of correct retrievals as a function
of the number of retrieved images, over four methods of k-
nearest neighbor classification: (1) Whitened feature space:
First whiten the data, and then sort the neighbors using
the 
 # distance between images in the transformed feature
space. (2) RCA: Perform RCA and then sort the neighbors
using the 
 # distance in the new feature space. (3) Uncon-
strained Typical-cut algorithm. (4) Constrained Typical-cut:
Cluster the data in the whitened feature space using a con-
strained version of the Typical-cut algorithm. Results are
shown in Fig. 7 As may be seen using constrained Typical-
cut significantly outperforms all other methods. A smaller
but still noticeable difference exists between RCA and the
whitened space.

4 Concluding remarks
In this paper, our key observation was that equivalence

constraints between data points can be automatically ob-
tained in some applications. It is also possible to obtain
such partial information in a distributed manner. We pre-
sented a number of novel algorithms which make use of
equivalence constraints and significantly enhance classifi-
cation and clustering performance in image retrieval and in
surveillance applications.
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