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Abstract

Density estimation with Gaussian Mixture Models is a popular gener-
ative technique used also for clustering. We develop a framework to
incorporate side information in the form ofequivalence constraintsinto
the model estimation procedure.Equivalence constraintsare defined on
pairs of data points, indicating whether the points arise from the same
source (positive constraints) or from different sources (negative con-
straints). Such constraints can be gathered automatically in some learn-
ing problems, and are a natural form of supervision in others. For the
estimation of model parameters we present a closed form EM procedure
which handles positive constraints, and a Generalized EM procedure us-
ing a Markov net which handles negative constraints. Using publicly
available data sets we demonstrate that such side information can lead to
considerable improvement in clustering tasks, and that our algorithm is
preferable to two other suggested methods using the same type of side
information.

1 Introduction

We are used to thinking about learning from labels as supervised learning, and learning
without labels as unsupervised learning, where ’supervised’ implies the need for human
intervention. However, in unsupervised learning we are not limited to using data statistics
only. Similarly supervised learning is not limited to using labels. In this work we focus
on semi-supervised learning using side-information, which isnot given as labels. More
specifically, we use unlabeled data augmented byequivalence constraintsbetween pairs
of data points, where the constraints determine whether each pair was generated by the



same source or by different sources. Such constraints may be acquired without human
intervention in a broad class of problems, and are a natural form of supervision in other
scenarios. We show how to incorporateequivalence constraintsinto the EM algorithm [1],
in order to fit a generative Gaussian mixture model to the data.

Density estimation with Gaussian mixture models is a popular generative technique, mostly
because it is computationally tractable and often produces good results. However, even
when the approach is successful, the underlying assumptions (i.e., that the data is gener-
ated by a mixture of Gaussian sources) may not be easily justified. It is therefore important
to have additional information which can steer the GMM estimation in the “right” direc-
tion. In this paper we propose to incorporate equivalence constraints into an EM parameter
estimation algorithm. One added value may be a faster convergence to a high likelihood
solution. Much more importantly, the constraints change the GMM likelihood function and
therefore may lead the estimation procedure to choose a better solution which would have
otherwise been rejected (due to low relative likelihood in the unconstrained GMM density
model). Ideally the solution obtained with side information will be more faithful to the
desired results. A simple example demonstrating this point is shown in Fig. 1.

Unconstrained constrained unconstrained constrained

(a) (b) (c) (d)

Figure 1:Illustrative examples for the importance ofequivalence constraints. Left: the data set con-
sists of 2vertically alignedclasses - (a) given no additional information, the EM algorithm identifies
two horizontalclasses, and this can be shown to be the maximum likelihood solution (with log likeli-
hood of−3500 vs. log likelihood of−2800 for the solution in (b)); (b) additional side information in
the form of equivalence constraints changes the probability function and we get a vertical partition as
the most likely solution. Right: the dataset consists of two classes with partial overlap - (c) without
constraints the most likely solution includes twonon-overlapping sources; (d) with constraints the
correct model with overlapping classes was retrieved as the most likely solution. In all plots only the
class assignment of novelun-constrainedpoints is shown.

Equivalence constraintsare binary functions of pairs of points, indicating whether the two
points come from the same source or from two different sources. We denote the first case
as “is-equivalent” constraints, and the second as “not-equivalent” constraints. As it turns
out, “is-equivalent” constraints can be easily incorporated into EM, while “not-equivalent”
constraints require heavy duty inference machinery such as Markov networks. We describe
the derivations in Section 2.

Our choice to use equivalence constraints is motivated by the relative abundance ofequiv-
alence constraintsin real life applications. In a broad family of applications,equivalence
constraintscan be obtained without supervision. Maybe the most important source of un-
supervisedequivalence constraintsis temporal continuity in data; for example, in video
indexing a sequence of faces obtained from successive frames in roughly the same location
are likely to contain the same unknown individual. Furthermore, there are several learning
applications in whichequivalence constraintsare the natural form of supervision.

One such scenario occurs when we wish to enhance a retrieval engine using supervision
provided by its users. The users may be asked to help annotate the retrieved set of data
points, in what may be viewed as ’generalized relevance feedback’. The categories given



by the users have subjective names that may be inconsistent. Therefore, we can only extract
equivalence constraintsfrom the feedback provided by the users. Similar things happen in
a ’distributed learning’ scenario, where supervision is provided by several uncoordinated
teachers. In such scenarios, whenequivalence constraintsare obtained in a supervised
manner, our method can be viewed as a semi-supervised learning technique. Most of the
work in the field of semi-supervised learning focused on the case of partial labels augment-
ing a large unlabeled data set [4, 8, 5].

A few recent papers use side information in the form ofequivalence constraints[6, 7, 10].
In [9] equivalence constraintswere introduced into the K-means clustering algorithm. The
algorithm is closely related to our work since it allows for the incorporation of both “is-
equivalent” and “not-equivalent” constraints. In [3] equivalence constraints were intro-
duced into the complete linkage clustering algorithm. In comparison with both approaches,
we gain significantly better clustering results by introducing the constraints into the EM al-
gorithm. One reason may be that the EM of a Gaussian mixture model is preferable as
a clustering algorithm. More importantly, the probabilistic semantics of the EM proce-
dure allows for the introduction of constraints in a principled way, thus overcoming many
drawbacks of the heuristic approaches. Comparative results are given in Section 3, demon-
strating the very significant advantage of our method over the two alternative constrained
clustering algorithms using a number of data sets from the UCI repository and a large
database of facial images [2].

2 Constrained EM: the update rules

A Gaussian mixture model (GMM) is a parametric statistical model which assumes that the
data originates from a weighted sum of several Gaussian sources. More formally, a GMM
is given byp(x|Θ) = ΣM

l=1αlp(x|θl), whereαl denotes the weight of each Gaussian,θl its
respective parameters, andM denotes the number of Gaussian sources in the GMM. EM
is a widely used method for estimating the parameter set of the model (Θ) using unlabeled
data [1].Equivalence constraintsmodify the ’E’ (expectation computation) step, such that
the sum is taken only over assignments which comply with the given constraints (instead
of summing overall possible assignments of data points to sources).

It is important to note that there is a basic difference between “is-equivalent” (positive)
and “not-equivalent” (negative) constraints: While positive constraints are transitive (i.e.
a group of pairwise “is-equivalent” constraints can be merged using a transitive closure),
negative constraints are not transitive. The outcome of this difference is expressed in the
complexity of incorporating each type of constraint into the EM formulation. Therefore, we
begin by presenting a formulation for positive constraints (Section 2.1), and then present a
different formulation for negative constraints (Section 2.2). A unified formulation for both
types of constraints immediately follows, and the details are therefore omitted.

2.1 Incorporating positive constraints

Let a chunkletdenote a small subset of data points that are known to belong to a single
unknown class. Chunklets may be obtained by applying the transitive closure to the set of
“is-equivalent” constraints.
Assume as given a set of unlabeled data points and a set of chunklets. In order to write
down the likelihood of a given assignment of points to sources, a probabilistic model of
how chunklets are obtained must be specified. We consider two such models:

1. Chunklets are sampled i.i.d, with respect to the weight of their corresponding
source (points within each chunklet are also sampled i.i.d).

2. Data points are sampled i.i.d, without any knowledge about their class member-
ship, and only afterwards chunklets are selected from these points.



The first assumption may be appropriate when chunklets are automatically obtained using
temporal continuity. The second sampling assumption is appropriate whenequivalence
constraintsare obtained usingdistributed learning. When incorporating these sampling
assumptions into the EM formulation for GMM fitting, different algorithms are obtained:
Using the first assumption we obtain closed-form update rules for all of the GMM parame-
ters. When the second sampling assumption is used there is no closed-form solution for the
sources’ weights. In this section we therefore restrict the discussion to the first sampling
assumption only; the discussion of the second sampling assumption, where generalized EM
must be used, is omitted.

More specifically, letp(x) =
∑M

l=1 αl pl(x|θl) denote our GMM. Eachpl(x|θl) term is a
Gaussian parameterized byθl = (µl, Σl) with a mixing coefficientαl. Let X denote the
set of all data points,X = {xi}N

i=1. Let {Xj}L
j=1, L ≤ N denote the distinct chunklets,

where eachXj is a set of pointsxi such that
⋃L

j=1 Xj = {xi}N
i=1 (unconstrained data

points appear as chunklets of size one). LetY = {yi}N
i=1 denote the source assignment

of the respective data-points, andYj = {y1
j . . . y

|Xj |
j } denote the source assignment of the

chunkletXj . Finally, letEΩ denote the event{Y complies with the constraints}.
The expectation of the log likelihood is the following:

E[log(p(X,Y|Θnew, EΩ))|XΘold, EΩ] =
∑
Y

log(p(X,Y|Θnew, EΩ)) ·p(Y|X, Θold, EΩ) (1)

where
∑

Y stands for a summation over all assignments of points to sources:
∑

Y ≡∑M
y1=1 . . .

∑M
yN=1. In the following discussion we shall also reorder the sum according to

chunklets:
∑

Y ≡ ∑
Y1

. . .
∑

YL
, where

∑
Yj

stands for
∑

yj
1
· · ·∑yj

|Xj |
.

First, using Bayes rule and the independence of chunklets, we can write

p(Y|X, Θold, EΩ) =
p(EΩ|Y,X, Θold) p(Y|X,Θold)∑
Y p(EΩ|Y,X, Θold) p(Y|X,Θold)

=

∏L
j=1 δYj p(Yj |Xj ,Θold)

∑
Y1

. . .
∑

YL

∏L
j=1 δYj p(Yj |Xj , Θold)

(2)

whereδYj ≡ δyj
1,...,yj

|Xj |
equals 1 if all the points in chunkleti have the same label, and 0

otherwise.

Next, using chunklet independence and the independence of points within a chunklet we
see that

p(X,Y|Θnew, EΩ) = p(Y|Θnew, EΩ) p(X|Y, Θnew, EΩ)

=
L∏

j=1

αyj

N∏

i=1

p(xi|yi, Θnew)

Hence the log-likelihood is:

log p(X,Y|Θnew, EΩ) =
L∑

j=1

∑

xi∈Xj

log p(xi|yi,Θnew) +
L∑

j=1

log(αyj ) (3)

Finally, we substitute (3) and (2) into (1); after some manipulations, we obtain the following
expression:

E(LogLikelihood) =
M∑

l=1

L∑

j=1

∑

xi∈Xj

log p(xi|l, Θnew) · p(Yj = l|Xj , Θold)

+
M∑

l=1

L∑

j=1

log αl · p(Yj = l|Xj ,Θold)



where the chunklet posterior probability is:

p(Yj = l|Xj , Θ
old) =

αold
l

∏
xi∈Xj

p(xi|yj
i = l, Θold)

∑M

m=1
αold

m

∏
xi∈Xj

p(xi|yj
i = m, Θold)

To find the update rule for each parameter, we differentiate (4) with respect toµl, Σl and
αl. We get the following rules:

αnew
l =

1
L

L∑

j=1

p(Yj = l|Xj , Θold)

µnew
l =

∑L
j=1 X̄jp(Yj = l|Xj ,Θold)|Xj |∑L

j=1 p(Yj = l|Xj , Θold)|Xj |

Σnew
l =

∑L
j=1 Σnew

jl p(Yj = l|Xj , Θold)|Xj |∑L
j=1 p(Yj = l|Xj , Θold)|Xj |

whereX̄j denotes the sample mean of the points in chunkletj, |Xj | denotes the number of
points in chunkletj, andΣnew

jl denotes the sample covariance matrix of thejth chunklet of
thelth class.

As can be readily seen, the update rules above effectively treat each chunklet as a single
data point weighed according to the number of elements in it.

2.2 Incorporating negative constraints

The probabilistic description of a data set using a GMM attaches to each data point two
random variables: an observable and a hidden. The hidden variable of a point describes its
source label, while the data point itself is an observed example from the source. Each pair
of observable and hidden variables is assumed to be independent of the other pairs. How-
ever, negativeequivalence constraintsviolate this assumption, as dependencies between
the hidden variables are introduced.

Specifically, assume we have a groupΩ = {(a1
i , a

2
i )}P

i=1 of index pairs correspond-
ing to P pairs of points that are negatively constrained, and define the eventEΩ =
{Y complies with the constraints}. Now

p(X,Y|Θ, EΩ) = p(X|Y, Θ, EΩ) p(Y|Θ, EΩ) =
p(X|Y, Θ) p(EΩ|Y) p(Y|Θ)

p(EΩ|Θ)

Let Z denote the constantp(EΩ|Θ). Assuming sample independence, it follows that
p(X|Y, Θ) · p(Y|Θ) =

∏N
i=1 p(yi|Θ)p(xi|yi, Θ). By definition p(EΩ|Y) = 1Y∈EΩ ,

hence

p(X,Y|Θ, EΩ) =
1
Z

1Y∈EΩ

N∏

i=1

p(yi|Θ)p(xi|yi,Θ) (4)

Expanding1Y∈EΩ gives the following expression

p(X,Y|Θ, EΩ) =
1
Z

∏

(a1
i
,a2

i
)

(1− δy
a1

i
,y

a2
i

)
N∏

i=1

p(yi|Θ)p(xi|yi, Θ) (5)

As a product of local components, the distribution in (5) can be readily described using a
Markov network. The network nodes are the hidden source variables and the observable



data point variables. The potentialp(xi|yi,Θ) connects each observable data point, in a
Gaussian manner, to a hidden variable corresponding to the label of its source. Each hidden
source node holds an initial potential ofp(yi|Θ) reflecting the prior of the cluster weights.
Negative constraints are expressed by edges between hidden variables which prevent them
from having the same value. A potential over an edge (a1

i −a2
i ) is expressed by1−δy

a1
i
,y

a2
i

(see Fig. 2).

Figure 2: An illustration of the Markov network required for incorporating “not-equivalent” con-
straints. Data points1 and2 have a negative constraint, and so do points2 and3.

We derived an EM procedure which maximizeslog(p(X|Θ, EΩ)) entailed by this distribu-
tion. The update rules forµl andΣl are still

µnew
l =

∑N
i=1 xip(yi = l|X, Θold, EΩ)∑N
i=1 p(yi = l|X, Θold, EΩ)

, Σnew
l =

∑N
i=1 Σ̂ilp(yi = l|X, Θold, EΩ)∑N

i=1 p(yi = l|X,Θold, EΩ)

whereΣ̂il = (xi − µnew
l )(xi − µnew

l )T denotes the sample covariance matrix. Note,
however, that now the vector of probabilitiesp(yi = l|X,Θold, EΩ) is inferred using the
net.

The update rule ofαl = p(yi = l|Θnew, EΩ) is more intricate, since this parameter appears
in the normalization factorZ in the likelihood expression (4):

Z = p(EΩ|Θ) =
∑

Y

p(Y|Θ)p(EΩ|Y) =
∑
y1

...
∑
yN

N∏

i=1

αyi

∏

(a1
i
,a2

i
)

(1− δy
a1

i
,y

a2
i

) (6)

This factor can be calculated using a net which is similar to the one discussed above but
lacks the observable nodes. We use such a net to calculateZ and differentiate it w.r.tαl,
after which we perform gradient ascent. Alternatively, we can approximateZ by assuming
that the pairs of negatively constrained points are disjoint. Using such an assumption,Z is
reduced to the relatively simple expression:Z = (1 −∑M

i=1 α2
i )

P . This expression forZ
can be easily differentiated, and can be used in the Generalized EM scheme. Although the
assumption is not valid in most cases, it is a reasonable approximation in sparse networks,
and our empirical tests show that it gives good results.

3 Experimental results

In order to evaluate the performance of our EM derivations and compare it to the con-
strained K-means [9] and constrained complete linkage [3] algorithms, we tested all 3 al-
gorithms using several data sets from the UCI repository and a real multi-class facial image
database [2]. We simulated a ’distributed learning’ scenario in order to obtain side informa-
tion. In this scenarioequivalence constraintsare obtained by employingN uncoordinated
teachers. Each teacher is given a random selection ofK data points from the data set, and is
then asked to partition this set of points into equivalence classes. The constraints provided
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Figure 3: Combined precision and recall scores (f 1
2

) of several clustering algorithms over 5 data
sets from the UCI repository, and 1 facial image database (YaleB). The YaleB dataset contained a
total of 640 images including 64 frontal pose images of 10 different subjects. In this dataset the vari-
ability between images of the same person was due mainly to different lighting conditions. Results
are presented for the following algorithms: (a) K-means, (b) constrained K-means using only posi-
tive constraints, (c) constrained K-means using both positive and negative constraints, (d) complete
linkage, (e) complete linkage using positive constraints, (f) complete linkage using both positive and
negative constraints, (g) regular EM, (h) EM using positive constraints, and (i) EM using both posi-
tive and negative constraints. In each panel results are shown for two cases, using15% of the data
points in constraints (left bars) and30% of the points constrained (right bars). The results were av-
eraged over 100 realizations of constraints for the UCI datasets, and 1000 realizations for the YaleB
dataset. Also shown are the names of the data sets used and some of their parameters: N - the size of
the data set; C - the number of classes; d - the dimensionality of the data.

by the teachers are gathered and used asequivalence constraints. Each of the 3 algorithms
(constrained EM, constrained K-means, and constrained complete linkage) was tested in
three modes: (i) basic algorithm without using any side information, (ii) constrained ver-
sion using only positiveequivalence constraints, and (iii) constrained version using both
positive and negativeequivalence constraints. The results of the 9 algorithmic variants are
compared in Fig. 3.

In the simulations, the number of constrained points was determined by the number of
teachersN and the size of the subsetK given to each. By controlling the productNK
we controlled the amount of side information provided to the learning algorithms. We
experimented with two conditions: using “little” side information (approximately15% of
the data points are constrained) and using “much” side information (approximately30%
of the points are constrained). All algorithms were given initial conditions that did not
take into account the availableequivalence constraints. The results were evaluated using a
combined measure of precisionP and recallR scores:f 1

2
= 2PR

R+P .

Several effects can clearly be seen in the results reported in Fig. 3:

• The constrained EM outperformed the two alternative algorithms in almost all
cases, while showing substantial improvement over the baseline EM. The one
case where constrained complete linkage outperformed all other algorithms in-
volved the “wine” dataset. In this dataset the data lies in a high-dimensional space
(R12) and therefore the number of model parameters to be estimated by the EM



algorithm is relatively large. The EM procedure was not able to fit the data well
even with constraints, probably due to the fact that only 168 data points were
available for training.

• Introducing side information in the form ofequivalence constraintsclearly im-
proves the results of both K-means and the EM algorithms. This is not always
true for the constrained complete linkage algorithm. As the amount of side-
information increases, performance typically improves.

• Most of the improvement can be attributed to the positive constraints, and can be
achieved using our closed form EM version. In most cases adding the negative
constraints contributes a small but significant improvement over results obtained
when using only positive constraints.
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