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Abstract

We address the problem of learning distance
metrics using side-information in the form of
groups of “similar” points. We propose to use
the RCA algorithm, which is a simple and
efficient algorithm for learning a full ranked
Mahalanobis metric (Shental et al., 2002).
We first show that RCA obtains the solu-
tion to an interesting optimization problem,
founded on an information theoretic basis. If
the Mahalanobis matrix is allowed to be sin-
gular, we show that Fisher’s linear discrimi-
nant followed by RCA is the optimal dimen-
sionality reduction algorithm under the same
criterion. We then show how this optimiza-
tion problem is related to the criterion opti-
mized by another recent algorithm for metric
learning (Xing et al., 2002), which uses the
same kind of side information. We empir-
ically demonstrate that learning a distance
metric using the RCA algorithm significantly
improves clustering performance, similarly to
the alternative algorithm. Since the RCA al-
gorithm is much more efficient and cost ef-
fective than the alternative, as it only uses
closed form expressions of the data, it seems
like a preferable choice for the learning of full
rank Mahalanobis distances.

Keywords: Learning from partial knowledge, semi-
supervised learning, feature selection, clustering

1. Introduction

Many learning algorithms use a distance function over
the input space as a principal tool, and their perfor-
mance critically depends on the quality of the metric.
Learning a “good” metric from examples may there-
fore be the key to a successful application of these
algorithms. In many cases choosing the right metric

may be more important than the specific algorithm
which is later used.

Choosing the right metric is especially important in
the unsupervised setting of clustering tasks, for such
clustering algorithms as K-means and graph based
methods. There are also supervised classification tech-
niques which are distance based such as K-Nearest-
Neighbors. Kernel machines use inner-product func-
tions which are closely related to the Euclidean dis-
tance metric. In this wide variety of algorithms the
problem of finding a good metric is equivalent to
the problem of finding a good representation function
f X = Y, transferring the data X into represen-
tation Y. We will therefore discuss the two problems
interchangeably. Our main goal in this paper is to de-
sign a simple method for learning a metric, in order
to improve the subsequent performance of unsuper-
vised learning techniques. This is accomplished using
side-information in the form of equivalence relations.
Equivalence relations provide us with small groups of
data points that are known to be similar (or dissimi-
lar).

A key observation is that in many unsupervised learn-
ing tasks, such groups of similar points may be ex-
tracted from the data with minimal effort and possi-
bly automatically, without the need for labels. This
occurs when the data originates from a natural se-
quence that can be modeled as a Markovian process.
Consider for example the task of movie segmentation,
where the objective is to find all the frames in which
the same actor appears. Due to the continuous na-
ture of most movies, faces extracted from successive
frames in roughly the same location can be assumed
to come from the same person. This is true as long as
there is no scene change, which can be automatically
and robustly detected (Boreczky & Rowe, 1996). An-
other analogous example is speaker segmentation and
recognition, in which a conversation between several
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speakers needs to be segmented and clustered accord-
ing to the speaker identity. Here, it may be possible to
automatically identify small segments of speech which
are likely to contain data points from a single unknown
speaker.

In this paper we discuss the problem of learning lin-
ear representation functions, or equivalently an opti-
mal Mahalanobis distance between data points, using
equivalence relations. Specifically, we focus here on
the Relevant Component Analysis (RCA) algorithm,
which was first introduced in (Shental et al., 2002);
the algorithm is reviewed in Section 2. In Section 3
we present a new analysis, based on a novel informa-
tion theoretic optimality criterion. RCA is shown to be
an optimal learning procedure in this sense. We show
that Fisher’s linear discriminant function followed by
RCA optimizes the same criterion if dimensionality re-
duction is allowed.

In Section 4 we show that RCA can be presented as
an optimal solution to a problem of minimizing inner
class distances. Viewed this way, RCA can be directly
compared with the approach proposed in (Xing et al.,
2002), which is another recent algorithm for metric
learning with side information. The comparison shows
that the optimality criteria of the two algorithms are
similar, but some arbitrary aspects of the criterion pre-
sented in (Xing et al., 2002) do not exist in RCA. Our
empirical study also shows that the results of the al-
gorithms are comparable: We empirically tested the
RCA algorithm on a number of databases from the
UCI repository, showing significant improvement in
clustering performance which is similar or better than
the improvement reported in (Xing et al., 2002). The
major difference between the two algorithms is com-
putational: RCA is robust and efficient since it only
uses closed-form expressions of the data; the algorithm
described in (Xing et al., 2002), on the other hand,
uses iterative methods which are sensitive to param-
eter tuning and which are very demanding computa-
tionally.

Related work

There has been much work on learning representations
and distance functions in the supervised learning set-
ting, and we can just briefly mention some examples.
(Hastie & Tibshirani, 1996) and (Jaakkola & Haus-
sler, 1998) use labeled data to learn good metrics for
classification. In (Thrun, 1996) a distance function (or
a representation function) is learned for classification
using a “leaning-to-learn” paradigm. In this setting
several related classification tasks are learned using
several labeled data sets, and algorithms are proposed

which learn representations and distance functions in a
way that allows for the transfer of knowledge between
the tasks. In (Tishby et al., 1999) the joint distribu-
tion of two random variables X and Y is assumed to
be known, and the problem is reduced to the learning
of a compact representation of X which bears high rel-
evance to Y. This work, which is further developed in
(Chechik & Tishby, 2002), can be viewed as supervised
representation learning. Information theoretic criteria
for unsupervised learning in neural networks were first
suggested by (Linsker, 1989), and has been used since
in several tasks in the neural network literature, e.g.,
(Bell & Sejnowski, 1995).

In recent years some work has been done using equiva-
lence relations as side information. In (Wagstaff et al.,
2001) equivalence relations were introduced into the
K-means clustering algorithm. Both positive (’a is
similar to b’) and negative (’a is dissimilar from b’)
relations were used. The problem of finding a bet-
ter Mahalanobis metric using equivalence relations was
addressed in (Xing et al., 2002), in conjunction with
the constrained K-means algorithm. We compare this
algorithm to our current work in Section 4, and com-
pare our empirical results with the results of both al-
gorithms in section 6. We have also recently developed
a way to introduce both positive and negative equiv-
alence relations into the EM algorithm for the esti-
mation of a mixture of Gaussian models (Hertz et al.,
2002; Shental et al., 2003).

2. Relevant Component Analysis

Relevant Component Analysis (RCA) is a method that
seeks to identify and down-scale global unwanted vari-
ability within the data. The method changes the fea-
ture space used for data representation, by a global lin-
ear transformation which assigns large weights to “rel-
evant dimensions” and low weights to “irrelevant di-
mensions” (cf. (Tenenbaum & Freeman, 2000)). These
“relevant dimensions” are estimated using chunklets.
We define a chunklet as a subset of points that are
known to belong to the same although unknown class;
chunklets are obtained from equivalence relations by
applying a transitive closure. The RCA transforma-
tion is intended to reduce clutter, so that in the new
feature space, the inherent structure of the data can
be more easily unraveled. The method can be used as
a preprocessing step for the unsupervised clustering of
the data or nearest neighbor classification.

Specifically, RCA does the following (see illustration
in Fig. 1la-f):

1. For each chunklet, subtract the chunklet’s mean



Figure 1. An illustrative example of the RCA algorithm applied to synthetic Gaussian data. (a) The fully labeled data
set with 3 classes. (b) Same data unlabeled; clearly the classes’ structure is less evident. (c) The set of chunklets that are
provided to the RCA algorithm (points that share the same color and marker type form a chunklet). (d) The centered
chunklets, and their empirical covariance. (e) The whitening transformation applied to the chunklets. (f) The original

data after applying the RCA transformation.

from all of the points it contains (Fig. 1d).

2. Compute the covariance matrix of all the centered
data-points in chunklets (Fig. 1d). Assume a total
of p points in k chunklets, where chunklet j con-
sists of points {z;;}.’, and its mean is ;. RCA
computes the following matrix:

k
Z _ (zji — ) (zj; — y)t (1)

3. Compute the whitening transformation W =
C-% associated with this covariance matrix
(Fig. 1e), and apply it to the original data points:
Znew = Wz (Fig. 1f). Alternatively, use the in-
verse of C' as a Mahalanobis distance.

In effect, the whitening transformation W assigns
lower weight to some directions in the original feature
space; those are the directions in which the data vari-
ability is mainly due to within class variability, and is
therefore “irrelevant” for the task of classification.

3. Information maximization under
chunklet constraints

In this section we suggest an information theoretic for-
mulation for the problem at hand. The problem is

formulated as a constrained search for a good repre-
sentation function . Although it is possible to state
the problem for general families of transformations,
we treat here only the linear case. In section 3.1 we
present and discuss the problem formulation. In 3.2
we show that RCA solves this problem when only lin-
ear invertible transformations are considered. In sec-
tion 3.3 we extend the family of functions considered
to include non-invertible linear transformations, which
leads to dimensionality reduction. We show that when
the data is Gaussian, the solution is given by Fisher’s
linear discriminant followed by RCA.

3.1. An information theoretic perspective

Following (Linsker, 1989), an information theoretic cri-
terion states that when an input X is transformed into
a new representation Y, we should seek to maximize
the mutual information 7(X,Y") between X and Y un-
der suitable constraints. In the general deterministic
case a set X = {z;}", of data points in R is trans-
formed into the set Y = {f(2;)}1, of points in RM.
We wish to find a function f € F that maximizes
I(X,Y), where F' is the family of allowed transforma-
tion functions (the “hypotheses family”).

In our case we are also given a set of chunklets of

data points from X, {xji}fz’l,?:"l, which the repre-



sentation function f is required to keep close to each
other. Therefore, we may pose the problem as:

k n;
1
I(X,Y 1. - —mYP <K (2
max (V) ot L3S fyi-mlP <K )

j=1i=1

where m? denotes the mean of points in chunklet j af-
ter the transformation, P is the total number of points
in chunklets, and K is a constant. The mutual in-
formation here is the differential mutual information
between two continuous variables X and Y, and it de-
pends on their respective densities. One should note
that we can only asses these densities using the pro-
vided sample of data points.

Since in our case f is deterministic, the maximiza-
tion of I(X,Y) is achieved by maximizing the entropy
H(Y) alone. To see this, recall that

I(X,Y)=H(Y) - HY|X)

Since f is deterministic, there is no uncertainty con-
cerning Y when X is known. Thus H(Y|X) has its
lowest possible value at —oo.! However, as noted in
(Bell & Sejnowski, 1995), H(Y|X) does not depend on
f but on the quantization scale. For every finite quan-
tization of the space this term is a constant. Hence
maximizing with respect to f can be done by consid-
ering only the first term, H(Y).

It should be noted that H(Y) can be increased by
simply ’stretching’ the data space (e.g. by choosing
f = Az, where A > 1 ). Therefore, a constraint that
keeps certain points close together is required in order
to prevent this trivial scaling solution. Also the fam-
ily F of representation functions should be carefully
chosen to avoid trivial solutions.

3.2. RCA from an information theoretic
perspective

We now look at the problem posed for the family F
of invertible linear functions. When f is an invert-
ible function, the connection between the densities of
Y = f(X) and X is expressed by p,(y) = %l‘, where
|[J(x)| is the Jacobian of the transformation. Not-
ing that p,(y)dy = p,(z)dz, we can relate H(Y) and
H(X) as follows:

HY)=- / p(y) logp(y)dy =
Yy

'This non-intuitive divergence is a result of the gen-
eralization of information theory to continuous variables;
specifically, it is a result of ignoring the discretization con-
stant in the definition of differential entropy.

- [ ptey10g Bodo = 1) + (o817 0))

| ()]

For a linear function Y = AX the Jacobian is constant
and equals |4|, and it is the only term in I(X,Y") that
depends on the transformation A. Hence problem (2)
becomes

xz

k N
1
max |4 - s.t. BZZHW—WH%ASK 3)

j=1i=1

Let B = A'A denote a Mahalanobis distance matrix,
where B is positive definite and log |[A| = 1 log|B|. (3)
can now be rewritten as

max |B| (4)

k nj
1
s.t. _ZZ||wji_ij2BSK’ B>0

j=1i=1

Writing and solving for the Lagrangian, we get the so-
lution B = EC~1 where C is the average chunklet
covariance matrix (1) and N is the dimension of the
data space. The solution is identical to the Maha-
lanobis matrix proposed by RCA up to a scale factor.?
Hence RCA is the solution of (4).

3.3. Dimensionality reduction

In this section we analyze the problem posed in Section
3.1 for the case of general linear transformations, i.e.
Y = AX where A € My xn and M < N. To simplify
the analysis, we assume that X is a multivariate Gaus-
sian. As we saw earlier, maximizing H(Y") is equivalent
to maximizing I(X,Y’) with respect to f. Since X is
assumed to be Gaussian, Y is also Gaussian and its
entropy is given by

d 1
HY) = 510g27re + 510g|2y|

d 1
= glog2me+ Slog |AXZ, AY|

so that (2) becomes

max log |AX, AY| (5)
1 &
st =3 > lwji —myl[hea <K
pj:l i=1

For a given target dimension M the solution to the
problem is Fisher linear discriminant followed by ap-
plying RCA in the reduced dimensional space. A
sketch of the proof is given in appendix A.

2Such a scale constant is not important in classification
tasks, i.e. when using relative distances.



4. RCA also minimizes inner class
distances

In order to gain some intuition to the solution provided
by the information maximization criterion formalized
in Eq. (2), let us look at the optimization problem
obtained by reversing the roles of the maximization
term and the constraint term:

Hlln ZZHm], m;||% st |B|>1 (6)

]111

In (6) a Mahalanobis distance B is sought, which min-
imizes the sum of all inner chunklet squared distances.
Demanding that |[B| > 1 amounts to the demand
that minimizing the distances will not be achieved by
“shrinking” the entire space. Using Kuhn-Tucker the-
orem, we can reduce (6) to

k nj
min Y Y " ||zji —myllf; — Mog|B|  (7)

j=1i=1

st. A>0, Alog|B|=0

Differentiating the Lagrangian above shows that the
minimum is given by B = |C|2C~!, where C is the
average chunklet covariance matrix. Once again, the
solution is identical to the Mahalanobis matrix pro-
posed by RCA up to a scale factor.

It is interesting, in this respect, to compare RCA and
the method proposed recently by (Xing et al., 2002).
They also consider the problem of learning a Maha-
lanobis distance using side information in the form of
pairwise similarities.?> They assume knowledge of a set
S of pairs of points known to be similar, and a set D
of pairs of points known to be dissimilar. Given these
sets, they pose the following optimization problem.

min > lm —2llB (8)
(a:l,a:Q)ES
s.t. Z ||z1 — z2||B, B >0
(z1,22)ED

This problem is solved using gradient ascent and iter-
ative projection methods.

To allow a clearer comparison of RCA to Eq. (8), we
can cast (6) as a minimization of inner chunklet pair-
wise distances. For each point zj; in chunklet j we

have:
7
Tji —mj = Tji — E  Tik = — E (zji — zjk)
i = i =
k#1

3Chunklets of size > 2 are not considered.

Problem (6) can now be rewritten as

mlnz Z“Z Tji — Tjk NIF

J =1  k#i

Bl =1 (9)

When only chunklets of size 2 are given (as in the case
studied by Xing et al.), the problem reduces to

k
1
min 5 > 1:||1Ej1 —wpllp st [B|>1 (10)
]:

Clearly the minimization terms in problems (10) and
(8) are identical up to a constant (1). The differ-
ence between the two problems lies in the constraint
term they use. The constraint proposed by Xing et
al. tries to use information concerning pairs of dissim-
ilar points, whereas the constraint in the RCA formu-
lation can be interpreted as a pure scale constraint,
which does not allow the ’volume’ of the Mahalanobis
neighborhood to shrink.

Although the constraint used by Xing et al. appears
to take into consideration further information, closer
look shows that it is somewhat arbitrary. The usage
of squared distance in the minimization term and the
root of square distance for the constraint term is ar-
bitrary and a-symmetric. Most importantly, it should
be noted that in most unsupervised applications dis-
similar pairs are not explicitly available. In this case
(Xing et al., 2002) recommends to take D to be all the
pairs of points that are not in S. This is a problem-
atic choice for two reasons: In most practical scenarios
pairs of points which are not in S are not necessarily
dissimilar. In addition, this definition usually yields a
very large set D, which substantially slows the algo-
rithm’s running time. In contrast, the RCA distance
computation is simple and fast (requiring a single ma-
trix inversion) without any need for an iterative pro-
cedure.

In order to further justify the constraint suggested in
problem (6), we proceed to suggest a probabilistic
interpretation of the RCA algorithm.

5. RCA and Maximum Likelihood

We now analyze the case of data which consists of
several normally distributed classes which share the
same covariance matrix. Under the assumption that
the chunklets are sampled i.i.d and that points within
each chunklet are also sampled i.i.d, the likelihood of
the chunklets’ distribution can be written as:

HH

j=li=1

exp (- 2($J1_m.7)2 1(“”']2"’”])) (11)



It is easy to see that the RCA Mahalanobis matrix
C from (1) maximizes (11) over all possible choices of
¥~ !, and is therefore the Maximum Likelihood esti-
mator in this setting.

In order to gain further insight into the constraint cho-
sen in (6), we take the log of the likelihood equation
(11), drop constant terms and denote B = ¥71, to
obtain:

A k nJ

C= arg;ninz > llzji — mjl[% — plog|B|  (12)

j=1i=1

where p denotes the total number of points in all
chunklets. This equation is closely related to the La-
grangian in (7), but here A (the Lagrange multiplier)
is replaced by the constant p. Hence, under Gaussian
assumptions, the solution of problem (7) has a proba-
bilistic justification.

The effect of chunklet size

Under Gaussian assumptions, we can define an unbi-
ased version of the RCA estimator. Assume for sim-
plicity that there are p constrained data points divided
into n chunklets of size k each. The unbiased RCA es-
timator can be written as follows :

n k

A 1 1 i A i A

C(n, k) = - Z 1 Zl(xf — ) (2! — )t (13)
=1 j=

where :Uf denotes the data point j in the chunklet i, and
;i denotes the empirical mean of chunklet i. C(n, k)
in (13) is the empirical mean of the covariance estima-
tors produced by each chunklet. It can be shown that
the variance of the estimator matrix elements Cj; is

bounded by

Var(C’ij (n,k)) < k—ﬁIVar(CA',-j(l,nk)) (14)
where C’ij(l,nk) is the estimator when all the p = nk
points are known to belong to the same class, thus
forming the best estimate possible when given p points.
For proof see (Hertz et al., 2002). The bound shows
that the variance of the RCA estimator using small
chunklets rapidly converges to the variance of this best
estimator.

6. Experimental Results: Application
to clustering

As noted in the introduction, the main goal of our
method is to use side information in the form of equiv-
alence relations to improve the performance of unsu-
pervised learning techniques. In order to test our pro-
posed RCA algorithm and to compare it with the work

presented by Xing et. al, we used six data sets from the
UC Irvine repository which were used in (Xing et al.,
2002). As in (Xing et al., 2002) we are given a set S
of pairwise similarity constraints (or chunklets of size
2).* We used the following clustering algorithms:

1. K-means using the default Euclidean metric (i.e.
using no side-information).

2. Constrained K-means: K-means subject to points
(xi,zj) € S always being assigned to the same
cluster (Wagstaff et al., 2001).

3. Constrained K-means + Metric proposed by
(Xing et al., 2002): Constrained K-means us-
ing the distance metric proposed in (Xing et al.,
2002), which is learned from S.

4. Constrained K-means + RCA: Constrained K-
means using the RCA distance metric learned
from S.

5. EM: Expectation Maximization of a Gaussian
Mixture model (using no side-information).

6. Constrained EM: EM using side-information in
the form of equivalence constraints (Hertz et al.,
2002; Shental et al., 2003), when using the RCA
distance metric as an initial metric.

Following (Xing et al., 2002) we will use a normal-
ized accuracy score to evaluate the partitions obtained
by the different clustering algorithms presented above.
More formally, in the case of 2-cluster data the accu-
racy measure used can be written as:

HHei =¢} =1{a =¢}}
Z 0.5m(m — 1)

i>j

where 1{} is the indicator function (1{True} =
1),1{False} = 0), {é;}2, is the cluster to which point
x; is assigned by the clustering algorithm, and c¢; is
the “correct” or desired assignment. The score above
is equivalent to computing the probability that the al-
gorithm’s assignment ¢ of two randomly drawn points
z; and z; agrees with the “true” assignment c.?

4To allow for a fair comparison with (Xing et al., 2002),
we repeated their exact experimental setup and criteria.

5As noted in (Xing et al., 2002), this score needs nor-
malization when the number of clusters is larger than 2.
The normalization is achieved by sampling the pairs z;
and z; from the same cluster (as determined by &) with
probability 0.5 and from different clusters with probabil-
ity 0.5, so that “matches” and “mismatches” are given the
same weight.
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Figure 2. Clustering accuracy on 6 UCI datasets. In each panel, the six bars on the left correspond to an experiment with
"little” side-information, and the six bars on the right correspond to "much” side-information. From left to right the six
bars are respectively: (a) K-means over the original feature space (without using any side-information). (b) Constrained
K-means over the original feature space. (c) Constrained K-means over the feature space suggested by (Xing et al., 2002).
(d) Constrained K-means over the feature space created by RCA. (e) EM over the original feature space (without using
any side-information). (f) Constrained EM (Shental et al., 2003) over the feature space created by RCA. Also shown are
N - the number of points, C' - the number of classes, d - the dimension of the feature space, and K. - the mean number

of connected components (see footnote 6). The results were averaged over 20 realizations of side-information.

As in (Xing et al., 2002) we tested our method using
two conditions: (1) using “little” side-information S;
(2) using “much” side-information.® As in (Xing et al.,
2002) in all of our experiments we used K-means with
multiple restarts.

Fig. 2 shows the results of all algorithms described
above when using the two conditions of “little” and
“much” side-information.

Clearly using RCA as a distance measure significantly
improves the results over the original K-means algo-
rithm. When comparing our results with the results re-
ported in (Xing et al., 2002), we see that RCA achieves
similar results. In this respect it should be noted that
the RCA metric computation is a single step efficient
computation, whereas the method presented in (Xing
et al., 2002) requires gradient descent and iterative
projections.

5S was generated by choosing a random subset of all
pairs of points sharing the same class ¢;. In the case of little
side-information, the size of the subset was chosen so that
the resulting number of connected components K. (using
transitive closure over pairs) is roughly 90% of the size of
the original dataset. In case of much side information this
was changed to 70%.

7. Discussion and Concluding remarks

We have presented an algorithm which makes use of
side-information in the form of equivalence relations
to learn a Mahalanobis metric. We have shown that
our method is optimal under several criteria, and also
showed considerable improvement in clustering on sev-
eral standard datasets.

RCA is one of several techniques which we have de-
veloped for using equivalence relations to enhance un-
supervised learning. In a related technique, we in-
troduced the constraints into an EM formulation of
a Gaussian Mixture Model (Hertz et al., 2002; Shen-
tal et al., 2003). This work enhances the power of
RCA in two ways: First, it makes it possible to incor-
porate negative constraints. Second, it allows further
improvement of the RCA metric, as may be seen in
Fig. 2.
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Appendix A: Information
Maximization in the case of non
invertible linear transformation

Here we briefly sketch the proof of the claim made in
Section 3.3. As before, we denote by C' the average
covariance matrix of the chunklets. We can rewrite
the constrained expression as:

k nj
;—) S5 (g — my) AL A(mjs — my) = tr(APAC) = tr(A'CA)

j=1i=1
Hence the Lagrangian may be written as:

log |AX, At| — A(tr(ACA?) — K)
Differentiating the Lagrangian w.r.t A leads to

YL AAS, AT =MCA (15)

Multiplying by A! and rearranging we get: + = A*CA.
This equation does not give us information concerning
the subspace to which the optimal A takes us. How-
ever, A whitens the data with respect to the chunklet
covariance C' in this subspace, similarly to RCA. From
A # 0 it then follows that the inequality constraint is
an equality, which can be used to find A.

I M M
ty — —_) = — = = —
tr(ACA") = tr(/\) 3 K= A\ %
K
t _
= ACA’ = MI
Now, since in our solution space ACA! = %I ,

log |[ACAt| = M log £ holds for all points. Hence we
can modify the maximization argument as follows

0 |AX, AY| K
log|AX, A" = log TAcAr| +MlogM

Now the optimization argument has a familiar form.
It is known (Fukunaga, 1990) that maximizing the de-
terminant ratio can be done by projecting the space on
the span of the first M eigenvectors of C~!'X,. Denote
by B the solution matrix for this unconstrained prob-
lem. In order to enforce the constraints we define the
K A;*°B and we claim that A is the

solution of the constrained problem. Notice that the
value of the maximization argument does not change
when we switch from A to B since A is a product of B
and another full ranked matrix. It can also be shown
that A satisfies the constraints and is thus the solution
of the problem presented in Eq. (5).

matrix A =



