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Abstract

We present a mean field solution to the inhomogeneous ferromagnetic Potts model. We

study the model’s phase transition and show that within mean field, as a result of the

model’s inhomogeneity, each region in space has its unique critical temperature. We

estimate the local density function of spins in space using the local critical temperatures.

We present a novel clustering algorithm - DEC, which generates a hierarchial clustering

solution from the local density functions of the data points on varying length scales.

DEC makes no assumptions on the clusters’ structure and is more robust than other non-

parametric clustering methods. We demonstrate how the use of DEC can improve gene

expression clustering analysis.





Chapter 1

Outline

The outline of this work is as follows:

1. Introduction - the clustering problem and gene expression.

We start with an overview of gene expression and the central role of clustering in

their analysis, then introduce the clustering problem and different approaches to

solving it. A general definition of a cluster is suggested, as a region of points with

local density higher then the surrounding points. To identify such a region, we need

to calculate the local density of points in various regions of space. The problems

of calculating the density function and in particular, the effect of noise in the data,

are discussed. The main idea is to use statistical physics in order to estimate the

density function in a very robust way.

2. Estimation of the density using statistical physics.

Brief overview of the ferromagnetic Potts model and the relation between order-

disorder phase transitions and estimation of the density. We define local disorder-

order phase transitions in Inhomogeneous Potts models which are related to the local

density. The local phase transitions of Inhomogeneous Potts models are calculated

using the following approximations:

• Monte Carlo (the method used by the existing version of SuperParamagnetic

Clustering, SPC).
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• Mean Field

• Approximate Mean Field

3. Description of the new version of the SPC algorithm, using the mean field approx-

imation. We compare the results of the different approximations to synthetic and

real data examples. Then we discuss the main problems of SPC algorithm, mainly

the major influence of the parameter K (the number of neighbors with which a

spin interacts) on the SPC results, which rise the idea of suggesting new clustering

algorithm.

4. Description of the new algorithm - DEC, we replace K by a different parameter,

a length scale - a. The main idea is that each cluster has a specific a which best

distinguishes between the typical distances in the cluster and the typical distances

between the cluster’s surface and the surrounding points; for the optimal a the

cluster has it’s maximal stability. By running the clustering algorithm with different

values of a we obtain a dendrogram for each a; scanning all the dendrograms we

find for each cluster its optimal a and define each cluster as the one obtained for it’s

optimal a. Using this approach we get a general clustering algorithm whose results

are not sensitive to any arbitrarily tuned parameters, but which remains sensitive

to probing the data at different length scales.

5. We test DEC on representative gene expression data sets.

6. Appendix: Gene expression analysis tools - CTWC. Description of the algorithm,

focusing on the improvements in CTWC due to this work.



Chapter 2

Introduction

Cluster analysis is an important technique in exploratory data analysis, where a priori

knowledge of the distribution of the observed data is not available. Clustering methods,

that divide the data according to the natural classes present in it, have been used in a

variety of scientific disciplines and engineering applications. Recently, clustering methods

have extensively been used in analyzing biological data, especially from DNA microarraies

[12] measurements.

DNA microarray technologies enable monitoring simultaneously the expression level

of thousands of genes. This allows a global view on the transcription levels of many

genes when the cell undergoes specific conditions or processes. The potential of this

technologies for functional genomics is tremendous: Measuring gene expression levels in

different developmental stages, different body tissues, different clinical conditions etc. is

instrumental in understanding genes function, gene networks, biological processes, effects

of medical treatment, in the discovering of new diseases and it is also used as a diagnostic

tool.

A key step in the analysis of gene expression data is the identification of group of

genes or conditions. Grouping together genes that manifest similar expression patterns

over several conditions into clusters helps in revealing relations between genes and their

function. Grouping together conditions that manifest similar expression patterns over

several genes helps in discovering common biological processes.

3
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The problem of clustering can be formally stated as follows. Determine the partition

of N given patterns {vi}N
i=1 into groups, called clusters, such that the patterns of a cluster

are more similar to each other than to patterns in different clusters. It is assumed that

each pattern vi is represented by a point −→x i in a D-dimensional metric space; the distance

between points dij = |−→x i − −→x j| is the measure of the dissimilarity between patterns vi

and vj.

The two main approaches to clustering are called parametric and non-parametric. In

parametric approaches some knowledge of the clusters’ structure is assumed, mostly that

the clusters are compact; for instance, each cluster can be parameterized by a center

around which the points that belong to it are spread with a locally Gaussian distribution.

The classical representatives for this approach are fitting Gaussian mixtures and the K-

means algorithm.

In many cases of interest, however, there is no a priori knowledge about the data

structure. Therefore we prefer to adopt a non-parametric approach and suggest a general

definition of clusters. A cluster will be defined as a region of points in space, in which

the local density is higher than in it’s surrounding region. To identify such a region, we

need to calculate the local densities of points in space, assuming that the N given points

constitute a sample of reasonable size, to use this local density function as an estimate of

the distribution function of the observed data. The density of points is governed by two

factors: (a) the typical distance between nearest neighbors, and (b) the number of nearest

neighbors of a point, indicative of the dimension in which the points are embedded. A

typical example for a popular non-parametric algorithm is the Single Linkage version of

Agglomerative Hierarchical Clustering [20]. This algorithm ignores part (b) of the den-

sity definition, and gives a hierarchical clustering affected only by the distances between

nearest neighbors points. Because of this the algorithm is very sensitive to noise. In high

dimensions there is considerable probability that points be placed by chance on a quasi

one dimensional string with relatively short distances between the points. Single Linkage
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will not distinguish between this string and points of a dense, high dimensional region.

Calculating the local density function is a complex task. In a typical clustering problem

we have a dilute background of points with varying densities in a high dimensional space.

It is clear that in each region we need to work at a specific resolution, i.e. at a length

scale that reflects the typical distances between points, in order to obtain the correct

estimation for the distribution function. The naive approach for calculating local densities

at a specific resolution, a, is to count for each region the number of points in a sphere

with radius a and divide it to the sphere volume. This method, however, suffers from

large fluctuations especially in high dimensions; for example, it produces variance in the

local densities measured for uniformly distributed data points.

The main idea of this work is to use statistical physics, more precisely the physical

properties of a ferromagnetic system, in order to estimate the local density function in

a very robust way, to get a better signal to noise ratio. We will present two algorithms:

(a) a new version of SPC, Super-Paramagnetic Clustering, [3] based on mean field ap-

proximation, which is much more efficient than the presently used, Monte Carlo based

implementation. This algorithm yields a hierarchical clustering solution (dendrogram),

with resolution controlled by a single parameter that combines the effects of length and

dimensionality. (b) a novel clustering algorithm - DEC, which gives a hierarchial cluster-

ing solution along two separate axes: length and dimensionality. Although we present a

general clustering algorithm which can be applied to any applications, in this work we are

focusing on implement it on gene expression data.

The outline of this work is as follows. The estimation of the local density function

using statistical physics is described in chapter 3. The new version of SPC is presented in

chapter 4. The new clustering algorithm, DEC, is described in chapter 5. In chapter 6 we

analyze gene expression data examples to demonstrate the main features of the method,

and compare its performance with other techniques.



Chapter 3

Density estimation using statistical
physics of ferromagnetic system

To estimate the local density of points ~xi, i = 1, ...N , we place at every ~xi a Potts spin

si and introduce ferromagnetic couplings between neighboring spins. We now present a

brief review of the physical properties of homogenous Potts ferromagnets and our novel

Mean Field approximation for inhomogenous Potts models.

3.1 The Potts model

We now briefly describe the physics of the Potts model, focus on its ferromagnetic-

paramagnetic phase transition and explain its relation to density.

Ferromagnetic Potts models have been extensively studied for many years [26]. The

basic spin variable s can take one of q integer values: s = 1, 2, ...q. In a magnetic model

the Potts spins are located at points vi that reside on (or off) the sites of some lattice.

Pairs of spins associated with points i and j are coupled by an interaction of strength

Jij > 0. Denote by S a configuration of the system, S = {si}N
i=1. The energy of such

configuration is given by the Hamiltonian

H(S) = − ∑

<i,j>

Jijδsi,sj
(3.1)

Where the notation < i, j > stands for neighboring sites vi and vj. In order to calculate

the thermodynamic average of a physical quantity A at a temperature T (in kB units),

6
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one has to calculate the sum

〈A〉 =
∑

S
A(S)ρ(S) (3.2)

where ρ(S) plays the role of the probability density which gives the statistical weight

of each spin configuration S. Thermal equilibrium is characterized by ρ(S) that minimizes

the free energy, which is the sum of two parts, energy and entropy:

F = 〈H〉 − T 〈S〉 =
∑

S
Hρ + T

∑

S
ρ log ρ (3.3)

F is minimized by the Boltzmann factor,

ρ(S) =
1

Z
e−

H(S)
T , (3.4)

where Z ,the partition function, is a normalization constant, Z =
∑
S e−

H(S)
T .

3.2 Homogenous Potts Model

First we look at the simple homogeneous Potts model: the spins reside on the site of a

D dimensional hypercubic lattice with distance a between nearest neighbor sites, with

periodic boundary conditions. The interaction between two spins is J > 0 if they are

nearest neighbors and 0 otherwise. A simple generalization is to allow further neighbor

interactions that are a decreasing function of the distance dij ≡ d(vi, vj).

We are interested in the properties of the thermal average of the magnetization, the

order parameter of this ferromagnetic system. The magnetization of specific configuration

is defined as

m(S) =
qNmax(S)−N

(q − 1)N
(3.5)

with

Nmax(S) = max{N1(S), N2(S), ...Nq(S)}, (3.6)

where Nµ(S) is the number of spins with the value µ; Nµ(S) =
∑

i δsi,µ.
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Another quantity of interest is the thermal average of δsi,sj
, the spin-spin correlation

function,

Gij = 〈δsi,sj
〉 (3.7)

which is the probability of the two spin si and sj to be aligned. Assuming Nµ(S) of

the non most occupied states is equal we find that the relation between the correlation

and the magnetization is

Gij ≥ (q − 1)m2 + 1

q
(3.8)

where the equality exist when the distance between spin i and j is much larger then

the correlation length.

The competition between energy and entropy is clear from (eq. 3.3 and 3.4). At high

temperatures the entropy is the dominant term; at T = ∞ each configuration has the

same probability and the system is paramagnetic or disordered; 〈m〉 = 0.

As the temperature is lowered the energy becomes the dominant term, and config-

urations with low energy, with most spins aligned, have high probability; the system

undergoes transition to an ordered, ferromagnetic phase. In first order transitions the

magnetization jumps from zero to 〈m〉 6= 0.

Direct evaluation of sums like (eq. 3.2) is impractical, since the number of configu-

rations S increases exponentially with the system size N . We will use a mean field ap-

proximation to demonstrate the main features of the ferromagnetic-paramagnetic phase

transition, The main idea of mean field is to perform the partition sum for each spin indi-

vidually, with only one spin ”active” at a time, while all the others are ”held fixed”: their

interaction with the active spin produces an external field on it. Using the variational

method, see for example [7], we substitute in eq. (3.3) a trial probability density

ρt(S) =
1

Zt

e−
H0(S)

T , (3.9)
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H0 = −∑

i

∑

j

J〈m〉δsi,q0 (3.10)

where q0 is the most occupied state. For a homogenous model all sites are equivalent

and hence
q〈δsi,q0〉−1

q−1
= 〈m〉 for every i. Denoting by

∑
j ≡ ζ the number of nearest

neighbors and by α ≡ Jζ〈m〉
T

, the trial density function takes the form

ρt =
∏

i

eαδsi,q0

(q − 1) + eα
(3.11)

Substituting ρt in (eq. 3.3) we get

Ft

N
= −Jζ

2
(

(q − 1) + e2α

((q − 1) + eα)2
) + T (

αeα

(q − 1) + eα
− log((q − 1) + eα)). (3.12)

Minimizing Ft with respect to the model parameter α, we get the self-consistent mean

field equation

α =
1

T

Jζ(eα − 1)

eα + (q − 1)
(3.13)

At T >> J (near infinite temperature) there is only one, paramagnetic solution,

α = 0. For T → 0 the solution is α ≈ Jζ
T

or 〈m〉 ≈ 1, i.e. we have a fully aligned

ferromagnet. Hence there is a transition at some T , which, for Potts models with q > 2

the ferromagnetic-paramagnetic phase transition is of first order. Within our mean field

approximation the free energy has, near the transition, two minima, one at 〈m〉 = 0 and

the other at some 〈m〉 6= 0. At the transition temperature Tc the values of the free energy

at the two minima become equal. Thus, in order to find the critical temperature and

critical magnetization we add a second equation:

F (αc, Tc) = F (0, Tc) (3.14)

solving these equations and changing variables from α to 〈m〉 we get

mc =
q − 2

q − 1
(3.15)
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Tc =
1

2 log(q − 1)
mcJζ (3.16)

We can see that the discontinuity of m increases with q and the transition (from

mc → 1 to zero) becomes sharper and more strongly first order. The relation between

Tc and the density of the points at which the spins reside is now clear: the critical

temperature is proportional to Jζ, where the strength of J is determined by the nearest

neighbors’ distances a, and the number of interacting neighbors ζ = 2D. Increasing the

local density of lattice points, by either reducing a, increasing the dimension of the lattice

or the range of the interactions, induces increase of the critical temperature. This is the

basis of our method, discussed below, of using hence Tc to estimate density.

The approximations inherent in mean field neglect fluctuations of the spins that pro-

vide the ”mean field”, and the effect of the state of the active spin on the field it feels. The

approximation’s accuracy depends on the model dimension and the number of interacting

neighbor spins [8]. Since the higher the number of interacting neighbors spins, lower is

the influence of a few individual spins’ fluctuations, we expect to get better accuracy from

the mean field approximation when the density increases. In particular, the mean field

estimation to the critical temperature, which is in general higher than the true value, is

expected to approach the true transition temperature as the model’s dimension increases.

3.3 Inhomogeneous Potts model

We are interested, however, in a finite system where the local density varies, i.e. the

typical distances between points and also the local dimensionality change. We model

such a system by an inhomogeneous Potts model. In inhomogeneous Potts models there

is no equivalence of all sites, since the symmetry of the homogeneous model is broken;

each spin i has different interactions Jij and the assumption of one order parameter, the

global magnetization, is no longer valid. In the case typical for the clustering problem

there is no symmetry in the model, and we define as an order parameter for each spin it’s
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magnetization

〈mi〉 =
q〈δsi,qi0

〉 − 1

q − 1
(3.17)

where qi0 is the most occupied state in the region of spin i. We look for local disorder-

order phase transitions in the system, which makes the picture much more complicated.

Think, for example, of a system composed of two similar, very dense region of spins, sep-

arated by a dilute region. The spins of the two dense regions will have a phase transition

at T 1
c , causing their magnetizations to jump from 〈mi〉 = 0 to 〈mi〉 ≈ 1 (for large q).

These two ordered regions will act like a field on the interface with the dilute region,

causing a (usually small) jump in the magnetization of its spins. At a lower temperature,

T 2
c , the dilute region’s spins will undergo a phase transition ”of their own”, with their

magnetization jumping to ≈ 1. This picture may of course be richer, as the spins’ distri-

bution in space may be more complicated. The outcome is that the spins’ magnetization,

instead of having a clear jump only at a single phase transition, may undergo many jumps

due to phase transitions in the neighborhood and to their own phase transition. We will

identify the temperature at which the largest jump in the local magnetization occurs as

the local critical temperature. This local critical temperature will be our estimate of the

local density.

First we review how this model is solved using Monte Carlo simulations, which yield

the best approximation to the exact solution. Then we introduce our solution that uses

a mean field approximation, which is much more efficient computationally than Monte

Carlo, and compare it’s accuracy with the Monte Carlo results.

3.3.1 Monte Carlo simulation of Potts models

As mentioned, direct evaluation of sums such as eq. (3.2) is impractical, since the number

of configurations S increases exponentially with the system size N . Monte Carlo simula-

tion methods overcome this problem by generating a characteristic subset of configurations
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which are used as a statistical sample. They are based on the notion of importance sam-

pling, in which a set of spin configurations {S1,S2, ...SM} is generated according to the

Boltzmann probability distribution. Then, the thermodynamic average is reduced to a

simple arithmetic average

〈A〉 ≈ 1

M

M∑

i

A(Si) (3.18)

We will use the Swendsen-Wang [27] Monte Carlo algorithm (SW) to generate those

M configurations we will use the two-points connectedness cij

cij =

{
1 if i and j belong to the same SW-cluster
0 otherwise

(3.19)

and calculate the spin-spin correlation Gij from the relation

Gij =
(q − 1)〈cij〉+ 1

q
(3.20)

Further details regarding the exact Monte Carlo algorithm appear in paper by Blatt

et al. [5].

In order to use Monte Carlo to estimate local Tc we identify for each interaction its

critical temperature, Tcij
, as the temperature in which the larger jump in its correlation

function occur and then identify for each spin i its critical temperature as max(Tcij
).

3.3.2 Mean field of Potts models

The inhomogeneous Potts model Hamiltonian is defined in (eq. 3.1). Using the variational

method we write a model Hamiltonian

H0 = −∑

i

∑

j

Jij〈mj〉δsi,q0 (3.21)

and use

ρt(S) =
1

Zt

e−
H0(S)

T , (3.22)
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as the trial probability density. We assume that the most occupied state in all the

regions in space have the same direction q0, this is a reasonable assumption since the

entropy the system can gain from different most occupied states is at maximum q log q,

which is not extensive, moreover this quantity is decreasing with the temperature, thus

has low influences on the free energy. Setting αi ≡
∑

j
Jij〈mj〉
T

we obtain the trial density

function

ρt =
∏

i

eαiδsi,q0

(q − 1) + eαi
(3.23)

The trial free energy is given by

Ft =
∑

S
Hρt + T

∑

S
ρt log ρt (3.24)

where
∑

S
Hρt = − ∑

<i,j>

Jij
(q − 1) + eαi+αj

((q − 1) + eαi)((q − 1) + eαj)
(3.25)

∑

S
ρt log ρt =

∑

i

[
αie

αi

(q − 1) + eαi
− log((q − 1) + eαi)] (3.26)

Minimizing Ft with respect to αi yields the mean field equations for each site i =

1, 2, ...N :

αi =
1

T

∑

j

Jij
eαj − 1

(q − 1) + eαj
(3.27)

which become upon changing variables to mi

mi =
1− e−

∑
j

Jijmj

T

1 + (q − 1)e−
∑

j
Jijmj

T

(3.28)

We solve these N non linear coupled equations iteratively for each temperature to

obtain the magnetization of each spin as a function of the temperature. We are interested

in the global minimum of the free energy. We start from T = 0, where the solution is

known: mi = 1 for every i. Then we heat the system slowly, moving to the next (slightly

higher) temperature; the solution at the previous temperature is the starting point for the

iterative search for the new minimum. Note that the free energy increases with increasing
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T . For small changes of the temperature one normally expects small changes of the local

magnetizations that minimize the free energy at the new T . However, as a transition

is approached, a new (local) minimum {m′
i} appears; initially it’s free energy is higher,

but as we pass the transition temperature, it’s free energy becomes the global minimum.

Since our search follows the ”old” minimum {mi}, from this point on we are stuck in

a local minimum of the free energy function, fig. 3.1. To avoid this, we use the fact

that as the temperature increases such a local minimum disappears at some ”spinodal”

Ts. So if we had T1 < Ts and T2 > Ts up to T1 we followed adiabatically one minimum,

{mi}, and at T2 suddenly our solution ”spills over” to the true global minimum {m′
i}.

In this case F [m′(T2)] < F [m(T1)] and hence the easiest way to observe that this has

happened is to lower the temperature to its previous value, T ′
1, redo the minimization,

but starting from {m′
i}, and compare the new value of the free energy, F [m′(T1)], to the

previous value F [m(T1)]. If we were following the same solution, m′
i = mi and the two

free energies must be equal. If we find that F [m′(T1)] < F [m(T1)], this means that while

raising the temperature from T1 to T2 we left one branch of solutions and spilled over to a

different one of lower free energy, i.e. we have been following for a while a local minimum.

In this case we use the solution of lower free energy and slowly lower the temperature,

retracing our path, and identifying the temperature at which the free energies of the two

solutions ({mi(T )} obtained by heating and {m′
i(T )}, obtained by cooling) cross. After

every heating step we perform such a check.

The procedure outline above is summarized in the following scheme:

1. General Initialize:

mi(0) = 1

F (0) = F (mi(0), 0)

F (T ) = ∞, ∀T > 0

T = 0

Tnext = Tstep
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Figure 3.1: Sketch of the free energies as a function of the magnetizations, m1...mN , for
different temperature, we start from the global minimum at T ¿ Tc, marked by arrow,
and follow this minimum while increasing the temperature, from T > Tc we stack in a
local minimum until it disappears at T À Tc.

2. Initialize:

m0
i = mi(T )

T = Tnext

3. Iterative step:

mn+1
i = 1−e

−

∑
j

Jijmn
j

T

1+(q−1)e
−

∑
j

Jijmn
j

T

4. Stopping condition:

if max{mn
i −mn−1

i } > Threshold move to step 3

5. Setting:

if F (mn
i , T ) < F (T )

(a) mi(T ) := mn
i

(b) F (T ) := F (mi(T ), T )

(c) Tnext := T − Tstep

else Tnext := T + Tstep move to step 2.
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3.3.3 Approximation of Potts models Mean field

Finally we present a very simple way to approximate the local critical temperature, which

gives us an intuition of the statistical physics effect on the density estimation. This

approximation uses a simplified local magnetization function and assumes that it behaves

like the magnetization of the homogeneous Potts model’s mean field solution in the large

q limit, i.e. as a step function

〈mi(T )〉 =





1 T ≤ Tci

0 T > Tci

(3.29)

those magnetizations, of course, does not obey the mean field equations (3.28) but we

can use them with a little manipulation to estimate the local critical temperature. At

the critical temperature of spin i, Tci
, the local magnetization mi jumps from 0 to 1, i.e.

these two solutions coexist. We approximate this fact by assuming that mi[Tci
] = 1

2
on

the left side of eq. 3.28, which then become

1

2
=

1− e
−

∑
j

Jijmj(Tci )

Tci

1 + (q − 1)e
−

∑
j

Jijmj(Tci )

Tci

(3.30)

Remembering that all the neighbor spins have mj(Tci
) = 0 or 1, depending on whether

Tci
> Tcj

, after a little algebra this becomes

Tci
=

1

ln(q + 1)

∑

j

Jij





1 Tci
≤ Tcj

0 Tci
> Tcj

(3.31)

We solve those N self consistent coupled equation for Tci
using the following iterative

process:
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1. Initialize:

T 0
ci

= ∞

2. Iterative step:

T n+1
ci

= 1
ln(q+1)

∑
j Jij





1 T n+1
ci

≤ T n
cj

0 T n+1
ci

> T n
cj

3. Stoping condition:

if max{T n+1
ci

− T n
ci
} > Threshold move to step 2

To gain insight into the solution obtained this way, take the following simple form of

the couplings Jij:

Jij =





1 dij ≤ a

0 dij > a
(3.32)

where a is some characteristic length scale. The naive approach of local density estimation

near point i at this length scale is to count Ni(a), the number of point that reside in a

sphere of radius a centered at i: i.e. Ni(a) =
∑

j Jij. This is proportional to the value we

get for Tci
in the first iteration. Using statistical physics, we improve on this estimate by

sharing information between points, giving less weight to points in a low density region.

In the above example, our solution will count the number of points in the sphere that have

the same local density as point i or higher. This makes our method much more robust

against noise; when our method is tested on points selected randomly from a uniform

distribution, the measured variation of local densities is reduced by a factor of 10.



Chapter 4

Super-Paramagnetic Clustering -
SPC

4.1 Description of the algorithm

In the new version of the Super-Paramagnetic Clustering (SPC) algorithm various equilib-

rium averages are calculated using the mean field approximation instead of Monte Carlo

simulations. This replacement has two advantages: running time is much shorter and

the algorithm is deterministic. Here we describe briefly the original SPC algorithm (for a

detailed description see [5]) and emphasize the differences with the approach introduced

here, as they arise. The algorithm has three main stages which can be summarized as

follows:

1. Preprocess - Construct the physical analog Potts model:

(a) Associate a Potts spin variable si = 1, 2, ...q to each data point; usually we

work with q = 20.

(b) Identifying neighbors:

Whenever the data do not form a regular lattice, we need to give a reasonable

definition of (interacting) neighbor spins. We identify the neighbors of each

point vi according to the K mutual nearest neighbors criterion: vi and vj are

regarded as a neighbors if and only if vi is one of the K nearest neighbors of

vj and vj is one of the K nearest neighbors of vi. Connecting each neighbors

18
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pair with an edge we construct the initial SPC graph. Since we want to work

with a connected graph [5], we superimpose on the initial SPC graph the edges

corresponding to the minimal spanning tree associated with the data. The

result is the SPC graph we work with.

(c) Calculate the model coupling constants Jij:

Jij =





1
K̂

exp(− d2
ij

2a2 ) if vi and vj are neighbors

0 otherwise

(4.1)

The ”local length scale” a is the average of all distances dij between neigh-

boring pairs vi and vj. K̂ is the average number of neighbors. Choosing Jij

this way creates strong interactions between spins associated with data from

high density regions, and weak interactions between neighbors that are in low

density regions.

After these steps we finally have the Potts model Hamiltonian associated with the

data:

H(S) = − ∑

<i,j>

Jijδsi,sj
(4.2)

2. Calculating the correlations of neighbor spin pairs: For each edge 〈ij〉 of the

SPC graph we calculate Gij, the correlation of the two spins, si and sj connected

by the edge. We calculate Gij for a range of temperatures 0 ≤ T < Tmax with a

temperature step Tstep. While the original SPC calculates this correlation function

using Monte Carlo, we will calculate it by mean field. The results of the two methods

are compared in the next section.

Once the correlations between neighbor spins have been calculated, we estimate

the local density function, by calculating the local ferromagnetic - paramagnetic

critical temperatures. For each edge 〈ij〉 of the SPC graph we define a local critical

temperature Tcij
as that temperature, below which both si and sj are in their
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respective local ferromagnetic phases. A simple estimate of this critical temperature

is obtained by setting

Gij(Tcij
) = 0.5. (4.3)

An alternative definition of the Tcij
is the temperature at which the temperature

derivative of the spin-spin correlation function has its maximum. The values of Tcij

obtained by the two definitions are very close.

3. Constructing clusters; we have two options:

(a) Building the cores of clusters: Vary the temperature (say, increase) in steps

Tstep. At each temperature define as ”valid” those edges of the SPC graph,

whose Tcij
> T . The connected components of the graph constructed from the

valid edges constitute the clusters at the specific temperature at which we work.

As the temperature increases the set of clusters changes, from one cluster that

contains all the data points at T = 0, to each single point being a cluster at high

enough temperatures. Since as T increases edges can turn from valid to non-

valid (and not vice versus), this procedure yield a tree or dendrogram, i.e. a

hierarchical clustering solution. As opposed to most agglomerative algorithms,

SPC has a natural measure for the relative stability of any particular cluster:

the range of temperatures ∆T = T2 − T1, that define the ”lifetime” of each

cluster, from separation from its parent cluster at T1 to breaking up at T2 > T1.

The more stable the cluster, the larger the range ∆T .

(b) Directed Growth method: expanding the cluster core and building a larger,

less stable cluster. At each temperature step we extend the set of valid edges

obtained as described above; for each spin i we identify the edge 〈ij〉 with

maximal Gij(T ), and call it also valid. The clusters are defined as before, but

using this extended set of valid edges.
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4.2 Evaluating the correlation function: comparison

of different methods

The main advantage of using the mean field approximations is their shorter running time.

We first discuss the computational complexity and efficiency of the different methods.

The first stage of the SPC algorithm, identifying neighbors and calculating the in-

teractions, is of O(N2 · max{D, log(N)}). This part is common to all the methods we

compare and in terms of the N -dependence it dominates the complexity. The typical sizes

of gene expression data have N in the range of thousands of genes or data points. The

corresponding Potts model is equilibrated, typically, at order 10 temperatures, with a few

thousand Monte carlo step at each temperature. The computational complexity of each

Monte carlo step is O(N). Under these circumstances, equilibration, using Monte Carlo,

takes at least 10 times more time then the first, preparatory stage. The gain of mean field

is in its efficiency of the second stage, which we now discuss.

A Monte Carlo step takes O(N) operations; the same is needed for one iteration of the

mean field solution. Hence the computational complexity of all the methods is of O(NK̂),

where K̂ is the average number of neighbors for each point. However, the pre factors are

very different:

1. Monte Carlo: (Number of cycles) · (number of temperature steps) ∼ (thousands) ·
(tens)

2. Mean field: (number of iterations needed to convergence) · (number of temperature

steps) ∼ (tens) · (tens)

3. Approximate solution of the mean field equations: (number of iteration to conver-

gence) ∼ tens

so practically, for a typical clustering problem the ratio between running time of a

Monte Carlo simulation and that of a mean field solution is governed by the ratio of

Ncyc, the number of MC cycles at each T , to Nit, the number of mean field iterations
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needed to converge to a solution. This ratio is between 100 to 1000. Using the mean

field approximation reduced the running time of SPC by factor of 10, using approximate

solution of the mean field equations will not help has more at this stage, thus in this

section we compare only the results obtained using Monte Carlo versus mean field.

Using Monte Carlo we calculate the correlation between interacting spins, Gij, in

a direct fashion, while using the mean field approximation we can calculate only the

magnetization of each spin, mi. We need a way to relate the spin magnetizations and

spin-spin correlation.

The edges of the SPC graph consist of two types: (a) edges due to the K mutual

nearest neighbors criterion, and (b) edges from the minimal spanning tree, mst. For edges

of type (a) we assume that the two neighbors i, j also share other spins as neighbors.

Hence the mean field on i is in the same state as on j, and in their magnetized phases we

expect si and sj to be in the same most occupied state, in which case eq. 3.8 holds as an

equality within the mean field approximation. Using this we get

Gijmf
=

(q − 1)m2
mf + 1

q
(4.4)

For edges of type (b) this assumption is not always valid. We estimate correlation of

two spins connected by an mst edge on the basis of their direct interaction alone. Since

the mst edges belong to a tree, they do not belong to a loop, and the correlation of the two

spins depends only on the direct interaction and can be calculated analytically, yielding

Gi,jmf
=

1

1 + (q − 1) exp(−Ji,j

T
)

(4.5)

In regions with only mst edges this definition is accurate, in regions with both edges

types the meaning of this definition is neglecting of those mst edges.

In the mean field approximation we neglect fluctuations of the spins that produce

the mean field. Thus the approximation’s quality depends on the model’s dimension and

connectivity, which determine the number of interacting neighbor spins. The higher the
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dimension and the number of interacting neighbors, the lower is the influence of a few

spins’ fluctuations. In general, since fluctuations reduce the field felt by a spin, we expect

the mean field estimation for the local magnetization to be higher then the real value, but

this differences is expected to decrease as the dimension and the connectivity increase.

We expect two contradicting effects:

1. For some edges Gij > Gijmf
, due to direct spin-spin interaction dependencies which

are neglected by mean field, causing Tcij
> Tcijmf

. These differences may happen

at a cluster’s core and have no important influence on the clustering results, which

depend on the ability to distinguish between the cluster and the surrounding region.

2. Edges where Tcijmf
> Tcij

, due mainly to regions of low connectivity in the SPC

graph; these differences are much more significant. The K mutual nearest neighbors

criterion can induce low connectivity even in high dimensional data. For example, if

two highly connected regions in the SPC graph are connected via a one dimensional

string, for the string’s edges we get Tcijmf
> Tcij

, decreasing the algorithm’s sensi-

tivity. This problem is noticeable when one of the highly connected regions is more

dilute and smaller than the other, in such a case the estimated critical temperature

of the string’s spins may be raised to the critical temperature of the dilute cluster

and our procedure will not distinguish this cluster. We will test and discuss those

problem on examples from real data.

After defining the spin-spin correlation in the mean field approximation we compare

its result to Monte Carlo. First, we test a very simple inhomogeneous model: a 30 × 30

square lattice without periodic boundary conditions, with Jij = 1 for nearest neighbors

and 0 otherwise. We compare the spin-spin correlation, Gij as a function of temperature,

for each pair of interacting spins, obtained using Monte Carlo and mean field.

In fig. 4.1 we can see that even in this low connectivity model the mean field approxi-

mation gives accurate results for most of the temperature steps and capture qualitatively

the overall behavior of the correlation function.
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Figure 4.1: Mean field vs. Monte Carlo Comparison on a 2D lattice model. On the left,
histogram of the differences of spin-spin correlation functions for all interacting pairs, at
all temperatures. In the middle and right typical examples of the correlation function
between spins on the edge of the lattice and near the edge, respectively; dots represent
MC and + mean field.

Now we move to examples with real gene expression data, each experiment monitoring

the mRNA expression of many thousands of genes simultaneously over ns (a few tens) of

different samples. First one we filters the genes down to ng of a few thousands, keeping

those genes whose expression levels varied significantly over the different samples, obtain-

ing an ng × ns raw data matrix <. Then we adopt a standard preprocessing procedure

and apply logarithmic transformation to the raw data and normalize each gene, such that

its mean vanishes and its norm is one. We compare results obtained for the following

representative experiments:

1. Leukemia data [2], with ns = 72 and ng = 906 (see Fig. 4.2).

2. Breast cancer primary tumor tissues [22], with ns = 49 and ng = 1572 (see Fig.

4.4).

We can see from fig. 4.2 that except of the two edges marked with an arrow, the mean

field approximation gives very similar correlations to those of Monte Carlo, hence yielding

similar hierarchical clustering results. Moreover, this case is an example to two highly

connected subgraphs connected via a one dimensional string (fig. 4.3). The effect of

mean field’s over estimation of the local critical temperatures of the string is that the two
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Figure 4.2: Monte Carlo Tcij
vs. Mean Field estimated values for the leukemia data [2].

On the left - 906 genes in the space of 72 samples, with ∼ 5.5 neighbors, on average, for
each gene. On the right - 72 samples in the 906 dimensional space of gene expression,
with average ∼ 2.33 neighbors for each sample. The major differences, corresponding to
edges 31− 39 and 47− 39 (see Fig 4.3), are directed by an arrow.
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Figure 4.3: The initial SPC graph obtained from the leukemia data [2], for 72 samples,
obtained using K = 4 (without minimal spanning tree edges). A string of two edges,
(31 − 39 and 47 − 39), bridges between two highly connected subgraphs. As expected,
for these two edges mean field significantly overestimates the local critical temperatures
estimation (points directed by an arrow in Fig. 4.2).
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clusters connected by it disassociate from each other at a higher T , thereby reducing of

the the two clusters’ stability estimates, ∆T , but without losing the ability to distinguish

between them.
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Figure 4.4: Monte Carlo Tcij
vs. Mean Field estimated values for the breast cancer data

[22]. On the left 1572 genes in 49 dimensional space with average of ∼ 7.9 neighbors for
each gene. On the right 49 samples in 1572 dimensional gene-space, with average ∼ 2.3
neighbors for each sample.

On the other hand, for breast cancer data we obtained very accurate fit between mean

field and Monte Carlo (see Fig. 4.3). However, in this case there were a few small clusters

connected via single edges to bigger clusters. The mean field approximation overestimate

the correlation of these edges by a small amount, rising their critical temperature to that

of the small clusters, and one loses the sensitivity to identify the small clusters. We

can reconstructed these small clusters using the directed growth cluster building method

(which was also essential for increasing the sensitivity of the Monte Carlo-based version

of SPC).

SPC with mean field version was used for clustering analysis of stem cells gene ex-

pression dataset [18], This experiment contains total of 17 Affymetrix chips (samples)

monitoring the gene expression from different development stages: (a) embryonic stem

cells (ESC), (b) adult stem cells (ASC) from a variety of tissues: hematopoietic (HSC)
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and keratinocytic (KSC), and (c) their terminally differentiated counterparts (HDC and

KDC). The new method enable us cluster more then 8000 genes with many different

parameters assignments with a reasonable running time.

4.3 SPC - Discussion

As described above, SPC yields a hierarchical clustering solution; the parameter that

controls resolution is the local critical temperature of the spins. This critical temperature

is a single parameter that represents both of the two factors that determine the local

density of points: (a) the typical distance between nearest neighbors, and (b) the number

of nearest neighbors of a point. Both of these factors affect the local critical temperature:

the closer the neighboring points and or higher the dimensionality, a higher critical tem-

perature is obtained in that region. This behavior is illustrated in the following example.

Our dataset consists of three well separated groups of 216 points in each, taken from three

uniform distributions : (1) embedded in 2D with typical nearest neighbor distance of 1
6

between points, (2) embedded in 3D with typical distence of 1
6

between nearest neighbor

points, and (3) 3D with typical distance of 2
15

between nearest neighbor points. We show

in Fig. 4.5 the dendrogram obtained from this data; the critical temperatures of the three

clusters are in the expected ascending order.

Returning to the manner in which the local critical temperature reflects the density

which, in turn, is governed by the dimensionality and the distance to neighbors, one

should note the significant influence the choice of K (the number of mutual neighbors)

has on these factors. K determines the length scale a, whose value is the global average of

the distances between neighbors. K also determines the maximum distinguishable dimen-

sionality by limiting the number of nearest neighbors, thus restricts SPC distinguishing

ability to a limited range of length scale and dimensionality. The result’s of applying

SPC depend significantly on the parameter K. There are two procedures for choosing the

optimal K for a specific problem. The first is heuristic [1] and the second is more rigor-
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Figure 4.5: Dendrogram obtained from synthetic data consisting of three groups of 216
points in each. On the left, points embedded in 2D with typical length of 1

6
between

nearest neighbor points, in the middle, cluster of points embedded in 3D with typical
length of 1

6
between nearest neighbors, and on the right, points embedded in 3D with

typical length of 2
15

between nearest neighbor points.

ous (based on comparison of resampled partial data) but very time consuming [21]. The

heuristic method may choose the ”right” value for K, that captures the most information

of the specific problem’s features, but there are distributions of data with locally varying

intrinsic length scales and local dimensionality, for which no single optimal K exists.

As shown in [13], the main influence of the choice of K on the SPC graph and on

the clustering results is in regions where the density gradient is high. In these regions

there are less mutual nearest neighbors then in a region of uniform density. Since near

the surface of a cluster the density gradient likely to be high, the mutual neighborhood

criterion helps to separate the cluster from its surrounding points. It was found that in

some cases we can neglect the distance dependence of the interaction strength, and use a

constant J 6= 0 only for all the edges of the SPC graph, without a significant effect on the

clustering results. However, the mutual K criterion has no physical sense; it may cause

that pairs of spins that are at a large distance (in dilute regions) have a non-vanishing

interaction, whereas much less separated pairs, that belong to a dense region, do not

interact. This introduces and error in our estimation of the local density by the local
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transition temperature; the estimated local density in regions with high gradients are

underestimated.

We will use the advantage of the high efficiency of our mean field approximation;

instead of obtaining an exact (up to sampling errors) estimate of the correlations, using

Monte Carlo, which then is used to estimate the local density in an approximate way,

we suggest a method to solve approximately the ”right question”. Instead of fixing K

and scanning all temperatures, we will scan a and for each a obtain a dendrogram as a

function of temperature. This will yield a dendrogram controlled by in two parameters:

the length scale - a, and temperature T . We extract from the dendrogram the stable

clusters, each at it’s maximal stability. This novel method of constructing the clusters

from the critical temperatures information is presented in the next chapter.



Chapter 5

Density estimation clustering - DEC

We define a cluster as a region in space in which the density of data points is higher then

in the surrounding region. This definition implicitly assumes that each cluster c has an

optimal length scale ac which is larger than the typical distances between neighbor points

within the cluster, and less than typical distances from the cluster to points around it

(that do not belong to c). Say we measure the local density at a data point by centering

a sphere Sa of radius a on it and counting the number of points within Sa. This way of

estimating the local density yields maximal difference between the local densities of the

cluster c and its surrounding region if we choose a = ac, i.e. measure local densities at

the optimal length scale of cluster c. Our approach, outlined here and presented in detail

below, relies on using statistical mechanics methods to estimate the local density, with the

length scale a playing a role that resembles that of the simple method mentioned above.

The outline of our novel clustering algorithm, DEC, can be summarized as follows:

1. select a set of length scales aµ

2. Use approximate solution for the mean field equations to calculate the local critical

temperatures Tci
at all points i. The length scale aµ affects of estimates Tci

(a)

which, in turn, serve as our estimates of the local density function.

3. For each length scale aµ generate a dendrogram of clusters by varying the temper-

ature T . This yields a dendrogram of clusters at each point in the two-dimensional

30
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parameter space (a, T ).

4. Mapping between dendrograms of ascending a′µs, combing homolog clusters and

generate the final list of clusters in the data.

5. Overcome possible ambiguities between clusters obtained at different length scales

and generate a dendrogram with a single resolution axis, which contains the most

significant clusters present in the data.

We turn now to a detailed description of the method, illustrating and explaining the

procedure by treating a synthetic example, that consists of the following 400 points in 2D

(shown in Fig. 5.1:

1. 100 points from a Gaussian distribution with mean [0, 0] and variance [1, 1].

2. 100 points from a Gaussian distribution with mean [3, 3] and variance [1, 1].

3. 100 points from a Gaussian distribution with mean [8, 8] and variance [2, 2].

4. 100 points from a uniform distribution with coordinates [−2,−2] < x, y < [12, 12].

5.1 Critical temperatures at different resolutions

First we need to find the relevant length scales on which we will probe a specific problem.

We use as a lower bound the minimal distance between points, and as an upper bound

the average distance between all the points in the data. Next we choose a step to generate

a sequence of length scales aµ, equally spaced between the lower and the upper bounds.

If the user is interested in a specific range of length scales he can insert the desired set of

aµ as an input.

At each length scale aµ we estimate the local density function by calculating the local

critical temperature Tci
at each point i, using the simplest and most efficient version of

calculating the critical temperatures, the approximate solution of the mean field equations,



5.1. Critical temperatures at different resolutions 32

−2 0 2 4 6 8 10 12 14

−2

0

2

4

6

8

10

Figure 5.1: The synthetic data points example, 400 points in 2D.

Sec. 3.3.3. We first set the interaction between spins Jij to be the following step function

of the distance dij between points i, j:

Jij =





1 dij ≤ aµ

0 dij > aµ

(5.1)

neglecting the pre-factor, equations (3.31) become

Tci
=

∑

j

Jij∆ij ∆ij =





1 Tci
≤ Tcj

0 Tci
> Tcj

(5.2)

This generates a very simple interpretation of the local critical temperature Tci
, as the

number of neighbors of point i, whose local critical temperature is equal to or higher than

Tci
.

The advantage of using statistical physics for estimating the local density function is

it’s ability to overcome fluctuations in the data and generate a much smoother density

function. These properties make DEC more robust and are crucial for its next steps.
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5.2 Building dendrograms along two axes

First we describe how at a fixed length scale a we construct a dendrogram for varying T .

Within our approximation all Tci
take integer values; therefore at each length scale

aµ we vary the temperature from max{Tcµ} to 1 with steps of 1. At each temperature

T we identify cluster cores as follows: set as ”valid” the points i with Tci
> T , and

then set as valid all the edges for which Jij = 1 and both i, j are valid nodes. Each

disconnected subgraph of points connected by valid edges constitutes the core of a cluster

at the temperature T .

The effect of lowering T: Say we have our clusters Cα at a temperature T and now

lower the temperature to T ′ < T , and perform the procedure described above to create a

new clustering. The simplest change is the emergence of C ′, composed of points that did

not belong to any cluster at T and now, at T ′ they do form the core of a new cluster; with

the membership of the old clusters, Cα, unchanged. In this case C ′ is added as a new

cluster. Another possible change of the clustering assignment of the data is the following:

N1 points, that did not belong to a cluster at T , become connected to each other at T ′,

and become also connected to an old cluster, say C1. In order to increase our algorithm’s

sensitivity to small clusters, we optionally check whether N1 exceeds by more than twice

the number of those points of the old cluster, to which the new cluster is connected. If it

does, we first identify these N1 points as a new independent cluster C2, and then merge

it with C1 to form their “parent” cluster C. Otherwise - we simply expand C1 to include

the new group.

The third possible change is that the N1 points that became valid at T ′ connect two

or more old clusters, Cα. Again we compare N1 to the number of members of old clusters

to which the new points became connected, and either generate a new cluster of size N1

which is then joined to the Cα to form a single cluster C, or we form C directly.

New directed growth. Treating the local density function as a topographic map, we

think of a cluster’s core as the peak of a mountain, above any saddle leading to neighbor
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mountains. We suggest a new version of the directed growth procedure, see chapter 4.1,

which expands a cluster’s core to contain also the hillside points. Say at some temperature

T we have created the core of a particular clusters, C1. Now we lower the temperature by

one step, to T ′ < T , setting additional points as valid. If a group of such additional valid

points is connected only to C1 (and not to another existing cluster), we add them to C1

at temperature T . Now we lower the temperature by another step, expanding the current

C1 the same way. The process of expanding C1 terminates when no new points join it.

Note that for the growth process we retain the identity of C1 even below temperatures at

which it merged with another cluster.

The new directed growth version has three advantages compared to the previously

introduced directed growth method:

1. The old directed growth is based on correlations. When two clusters C1 and C2 are

connected via a relatively high saddle, their separation temperature will be high,

and it is likely that at this temperature the correlation between the core of C1 and

a set of points H1, which are at the hillside of C1 (and “belong” to it), are already

lower than the old directed growth threshold. In such a case the old directed growth

method will not expand C1 to its maximal natural size; H1 will be added only to the

cluster obtained by merging C1 and C2. In the new method C2 does not influence

the expansion of C1.

2. When the correlation is low, its dominant part is due to the direct interaction

between neighbor spins, i.e. is a function of the distance between them. Thus, like

the Single Linkage method, it may suffer from high sensitivity to fluctuations in

the data. The new method uses only information due to collective behavior of the

points.

3. The new method expands only an existing cluster’s core and does not generate new,

less significant clusters, like the old directed growth.
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Thus, the new expansion method yields larger clusters in a more reliable fashion.

Creating dendrograms: The procedures described above assign data points to clusters,

at each length scale aµ and temperature T . In order to construct a dendrogram at each

fixed aµ, we move from low to high T and connect each parent cluster to it’s ”children”,

that split from it as T is raised. The results for our synthetic example are shown in fig.

5.2. As expected, for the very small value of a1 = 0.3 we get a trivial ”dendrogram”, in

which only the core of the first dense Gaussian shows up, for a short range of very low

temperatures, as a cluster. For a wide range of subsequent aµ the ”true” structure becomes

apparent - each Gaussian cloud is identified and is long-lived (exists over a significant range

of T values), until the true structure starts to get washed out, for a ≥ 1.9.
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Figure 5.2: Dendrograms obtained from 3 gaussians in 2D data points for several ai. The
vertical coordinate is T and the horizontal coordinate is the indices of the data points.

5.3 Extracting the relevant clusters from the dendro-

grams

Since the natural clusters in the data are represented many times in our dendrograms,

we merge duplicates of the same cluster in two steps: first at fixed aµ, identify homolog
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clusters that appear at various T values, and then do the same for different values of aµ.

The first step is done in the following way: say C ′ is a cluster at T ′ < T and C1 is a

cluster at T . We call them homolog clusters if C ′ contains the members of C1 but does

not contain points that belong (at T ) to another cluster C2, which is a “brother” of C1

(i.e. its merge with C1 created C in the process described above).

We scan this way at each ai the clusters that were generated by lowering T and find

chains of homolog clusters and gather every chain to one united cluster. Each such chain

extends over a range of temperatures; in the resulting reduced dendrogram we display

each of these united clusters at the highest temperature at which the chain of homolog

clusters exists. The reduced dendrograms obtained for our example at each aµ are shown

in Fig. 5.3. Finally, the stability of each united cluster is represented by ∆T , the range

of temperatures over which it exists.
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Figure 5.3: The reduced dendrograms obtained from 3 Gaussians in 2D data points for
several ai.

Next we turn to merge duplicates of the same united cluster that were obtained at

different aµ. We scan the a axis and construct a mapping between clusters obtained at

two consecutive ascending aµ in the following way. First, calculate the Jaccard similarity
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measure between each pair of clusters from different a’s, defined as the ratio of the size

of their intersection to the size of their union. For each cluster at aµ we identify the one

most similar to it out of the clusters at aµ′ , and do the same for each cluster at aµ′ . If two

clusters are mutually at the top of the other’s list, we tentatively call them homologous.

For each tentatively homologous pair we perform a test to check that it generates less

than the maximum allowed ambiguity which is defined in the next section, 5.4. If the pair

passes the test, it’s two clusters are identified as homologous.

This procedure yields chains of homolog clusters; a chain typically starts from a core

of a cluster obtained at some small a. As we increase a, the stability of the cluster, ∆T ,

increases, reaching a maximal value at the cluster’s optimal a, and then ∆T starts to

decrease. The chain ends when the cluster stops existing as an independent entity. From

each chain of homolog clusters we choose as representative the cluster with maximal ∆T .

This procedure yields, finally, a single representative for each relevant family of homolog

clusters in the data. We can also define an additional stability measure for each such

cluster: the range of a values through which the corresponding chain of homolog clusters

exists, ∆a.

5.4 Creating the final dendrogram, in a and T

A legal single-rooted dendrogram must have a tree structure; the constituent clusters

must obey the following conditions:

1. The root is a cluster that contains all points

2. When a cluster C splits into two (or more) parts (i.e. clusters or singletons), a point

of C must belong to one (and only one) of these parts.

3. C must contain all the points that constitute it’s descendant clusters.

The clusters created by the procedure outlined in the previous Section may violate these

conditions, giving rise to ambiguities that prevent us from composing from them a legal
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dendrogram. Some of these ambiguities are minor, related to only a few points at the

borders of the clusters. Other ambiguities can be more acute, related to a discontinuity

in the data structure in the length scale space, as shown in Fig. 5.4. In this example

we generate two elongated clouds of points in 2D, each cloud contains 400 points from

exponential distributions centered at the top and bottom edges of the clouds. When

the clustering procedure outlined above is applied to this data, we get the following

assignments. For length scales a < 1 at high T we identify first the four edges of the

clouds as independent clusters. At some lower temperature the two clusters that grew

out of the top and bottom edges of a cloud are merged and we have two clusters, each

containing the pints of one cloud. If the temperature is lowered at length scales a > 1,

there are also interactions with Jij = 1 between points that belong to different clouds.

Then the four edges are merged differently: first the two upper edges merge and the lower

edges merge, and at some lower temperature we obtain one large cluster which consists

of all the data points. It is clear that we can not build a legal dendrogram by combining

the clusters of the two dendrograms obtained in these two regimes of a.

We leave for future work the optimal solution of such problems, which probably will be

based on some a fuzzy clustering procedure. Here we present one particular protocol that

ensures that we do obtain a legal dendrogram that contains the most significant clusters.

The idea is to solve the minor ambiguities by making the minimal number of changes

in a cluster, and identify the acute ambiguities that cannot be eliminated by moving or

adding a few points. These more serious conflicts are resolved by choosing the more stable

of two competing clustering assignments of the same points and ignoring the other. In

the context of our example the upper part of the left cloud can form C1 by merging with

the lower part of the left cloud, or C ′
1 by merging with the upper part of the right cloud.

These two clustering assignments conflict and we select the first if C1 is more stable than

C ′
1. To implement this we sort the clusters according to their ∆T and then create the final

list of clusters incrementally; we add to the current list of clusters (which do not violate
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Figure 5.4: two elongated clouds of points in 2D, both with exponential distributions of
points centered at the top and bottom edges of the clouds.

the dendrogram rules), the most stable new cluster if by adding or removing less than

Nm points we can ensure that it’s addition generates a legal dendrogram. The parameter

Nm is called the maximum allowed ambiguity. If we have to add or remove more than Nm

points, this cluster is ignored, and so on. The maximum allowed ambiguity is usually set

to be close to the minimal size of clusters that are of interest to the user.

When this procedure is applied to the clusters generated for the data of our example

of three Gaussians, we obtain the final dendrogram shown in Fig. 5.5. Each cluster is

placed at coordinates that represent it’s optimal length scale a and critical temperature

at that a.

5.5 Future improvements

The proposed way of scanning resolution space is not the most efficient one. Developing

a better way for probing the data only at it’s relevant length scales will decrease the

algorithm’s running time and improve it’s performance.
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Figure 5.5: The final dendrogram obtained from 3 gaussians in 2D data points.

However, the scheme outlined above does have several advantages. One is the obser-

vation regarding a cluster’s ∆T , which is maximal at the cluster’s optimal a. This part of

the procedure is general, allowing deduction of the optimal a of a cluster from calculating

the stability along the chain of homolog clusters. By searching a using the ”lion in a

desert” method, a cluster’s optimal a can be found efficiently with any desired accuracy.

Development of a fuzzy clustering solution, where a point can belong to many clusters

with some probability may help to overcome the violations of the dendrogram rules, in a

less ad hoc way than that of our present procedure of enforcing generation of a legal final

dendrogram.

These suggestions are left for future development.



Chapter 6

Applications - Clustering Gene
Expression data

In this chapter we test our algorithm’s performance on real data sets. Although the

algorithm is general and can be applied to any kind of data, in this work we are focusing

on gene expression.

A typical gene expression experiment monitors the concentrations of many thousands

of mRNA transcripts simultaneously, over ns (of a few tens) of different samples. After

filtering the probe sets down to ng of a few thousands, keeping those genes whose ex-

pression levels varied significantly over the different samples, we obtain an ng × ns raw

data matrix <. Then a logarithmic transformation is applied to the raw data in order

to bring the gene expression values to the same relative scale and to turn the noise into

(approximately) additive.

When clustering gene expression data one has to keep in mind some of it’s unique

properties; (a) The points, both representing genes in sample space or the samples in gene

space, are embedded in a high dimensional space. (b) Usually the shapes of the clusters

are not known; a cluster may be compact as well as elongating. If we apply a typical

preprocessing, of centering and normalizing each gene, such that its mean vanishes and

its norm is one, i.e. the distance between genes is simply related to their correlations,

clusters tend to be compact, but exceptions are fairly common. (c) The sizes of the

relevant clusters have large variations. When clustering genes, we are interested in clusters
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whose size varies from several hundreds to a few. The ability to identify small clusters is

an important test of the sensitivity of the clustering algorithm.

Assessing clustering results is a hard question. The clustering problem is ”ill defined”

and the answer is largely subjective. Moreover, when clustering gene expression data we

do not have the true solution. There are a few scores which try to measure the cluster

homogeneity and separation , see for example [24]; these scores must assume something

about the cluster’s desired structure and may miss relevant clusters. For biological data

the structure of the distribution function from which the data points were sampled is

unknown, which prevents us from giving a biology-based p-value to a cluster. Only

by combining the clustering results with known biological information, such as genes’

annotation and the clinical labels of the samples can reveal which are the meaningful

clusters in the data. Following this point of view, we adopt a practical test of the clustering

results; we are looking for a clustering algorithm that minimizes both (a) the false positive

rate: (number of found clusters - number of found relevant clusters) / number of found

clusters, and (b) the false negative rate: (number of relevant clusters - number of found

relevant clusters) / number of relevant clusters.

We will compare DEC’s results, for a few representative examples, with other clustering

algorithms that do not make any assumption on the clusters’ structure: SPC and Single

Linkage.

Leukemia data: We ran DEC to cluster ng = 906 normalized genes in the space of

ns = 72 samples [2], (see Fig. 6.1).

The comparison to the other methods is summarized in table 6.1

Most of the clusters which DEC identifies are relevant and we would recommend that

the user checks their possible biological meaning. It is clear that SPC without directed

growth and Single Linkage are missing many small but interesting clusters, i.e. have

higher false negative rate, while SPC with directed growth has a very poor false positive

rate, which makes it hard to extract the relevant clusters. Moreover, most of the clusters
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Figure 6.1: Projection of the final dendrogram on the distance axis and the reordered
Leukemia data [2], obtained from clustering 906 normalize genes in the space of 72 samples,
using the DEC algorithm. The dendrogram contains clusters with minimal size of four
genes. The vertical lines indicate the group of datapoints that belong to the cluster
through which the line passes.

Method ] Clusters with size > 3 Size of largest relevant clusters

DEC 38 329, 78, 54
SPC with directed growth 92 293, 100, 82

SPC without directed growth 13 152, 51, 48
Single Linkage 17 241, 49, 25

Table 6.1: A comparison between DEC, SPC with and without directed growth and Single
Linkage on the Leukemia data [2].
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were created by the directed growth part of SPC and thus they are less stable and reliable.

Breast cancer: Similar behavior was observed from another data set. We clustered

ng = 1572 normalized genes in the space of ns = 49 breast cancer samples, taken from

primary tumor tissues [22] (see Fig. 6.2). This data contains many clusters, all of which

have with relatively small size. The comparison is summarized in table 6.2
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Figure 6.2: Projection of the final dendrogram on the distance axis and the reordered
breast cancer data [22], obtained from clustering 1572 normalized genes in the space of 49
samples, using the DEC algorithm. Clusters with minimal size of eight genes are shown
in the dendrogram. The vertical lines indicate the group of datapoints that belong to the
cluster through which the line passes.

Method ] Clusters with size > 7 Size of largest relevant clusters

DEC 31 62, 32, 30
SPC with directed growth 51 56, 74, 54

SPC without directed growth 11 21, 23, 14
Single Linkage 19 70, 39, 19

Table 6.2: A comparison between DEC, SPC with and without directed growth and Single
Linkage on the breast data [22].
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The advantage of DEC over Single Linkage can be understood in the following way. In

DEC we add a new axis, of temperature, to the distance axis of the hierarchial dendrogram

solution of the Single Linkage algorithm. The new axis measures the local density of the

points at a given length scale, a, since the critical temperature of a point i is determined

by the number of neighbors it has at a distance less than a.

In high dimensions there is considerable probability that points be placed by chance on

a quasi one dimensional string with relatively short distances between the points. While

Single Linkage will not identify the separation of two well separated highly dimensional

clouds connected via a quasi one dimensional string, along the new axis the two clouds

will be recognized as independent at high temperatures and will be connected only at low

temperatures; thus DEC is more robust against noise in the datasets.

DEC is implemented in Matlab, its running time is O(n2), taking a few minutes to

cluster thousands of points.



Chapter 7

Summary

This work has two main parts. In the first, which deals with statistical physics, we pre-

sented a mean field solution to the inhomogeneous Potts model, we studied the model’s

Paramagnetic-Ferromagnetic phase transition and showed that within mean field, as a

result of the model’s inhomogeneity, each region in space has its unique critical temper-

ature. Then we described the relation between this local critical temperature and the

local density of spins in space. We used this mean field solution in order to improve

dramatically the running time efficiency of the previously introduced clustering algorithm

- SPC.

The second part deals with the clustering problem. We introduced the problem and

suggested a general definition of a cluster as a region in space with higher density than

in it’s surrounding regions. We presented a novel clustering algorithm - DEC, which

generates a hierarchial clustering solution from the local density function of the data

points in space. The density of points was measured at fixed values of a length scale

parameter a. The value of a was varied; at each length scale we calculated, using an

approximate mean field solution, the local density function of the data points. At each

length scale we produced a hierarchial clustering solution as a function of temperature.

The critical temperature of a point i is determined by the number of neighbors it has at

a distance less than a, i.e. Tc(i) is indicative of the local dimensionality near point i at

length scale a. This way we get a clustering assignment of points with two axes: length
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scale and temperature. We describe a procedure to extract the relevant clusters and give

a final hierarchial assignment, where each cluster has two coordinate: its optimal length

scale and its corresponding critical temperature at this length scale.

We demonstrated how to add a new axis within DEC to the hierarchial dendrogram

solution of Single Linkage algorithm, which measures the dimensionality of the points.

Adding the new axis enables us to overcome Single Linkage’s limitations and to suggest

a general and robust clustering algorithm.

Although there are still open issues for further development in order to exhaust the

algorithm’s potential, even the current version demonstrates its power and significant

advantages. Gene expression analysis provides a great challenge to a clustering algorithm;

we demonstrated how the use of DEC can improve clustering analysis and give a better

data mining from gene expression data sets.



Appendix A

Coupled Two Way Clustering
(CTWC)

Coupled Two-Way Clustering (CTWC) [14] is a method designed to mine data from

gene expression microarray experiments. The basic idea is to perform two kinds of cluster

analysis; (a) viewing the samples as the data points for clustering (b) clustering the genes.

The standard approach is to use for aim (a) all genes (that passed some threshold) to

represent a sample, and cluster all samples, and for aim (b) to use all samples to represent

a gene, and then cluster all genes.

The novelty of the CTWC method is that the clustering operations are preformed in

an iterative and coupled fashion. The idea is to use a subset of the genes to cluster a

subset of the samples, and vice versa. The underlying reason is that only a small subset

(a few tens) of the genes is expected to belong to a particular process of interest, while

the vast majority (thousands) of the genes are bystanders and play no role in the process.

Hence when clustering samples on the basis of similarity of their expression profiles, the

“message” of the small but relevant gene subset might be masked by transcriptional

’noise’ from the many irrelevant genes. Similarly, the genes that belong to the relevant

subset may have highly correlated expression over those samples in which the process of

interest actually takes place; including samples in which it does not occur may mask these

correlations.

Furthermore, one may have a situation in which the expression levels of the relevant
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subset of genes clearly separates a group A of the samples into two subgroups, A1 and A2,

but this partition is hidden by the presence of an unrelated group of samples B. Hence

in order to see the partition one should use only a submatrix of the expression matrix;

one that contains only the rows corresponding to the relevant genes and the columns that

contain the samples of group A; such a submatrix is called bicluster. Checking every

possible partition in the data guarantees that one finds every possible bicluster in the

data. This approach is, of course, impossible to implement, since the number of possible

biclusters in the data grows exponentially with the size of the problem. Several algorithms

were developed during the recent years to attack this problem ([9], [6], [19], [25]).

CTWC provides an efficient heuristic method to identify such biclusters; it breaks down

the total data set into subsets of genes and samples that can reveal significant partitions

into clusters. This is done in an iterative way. The iterative step is the following: First

we cluster all samples using all genes, and vice versa (these operations are referred to

as DEPTH 1), and identify stable clusters (of genes and of samples). Then (at DEPTH

2 and 3) each stable gene cluster, GI, is used to cluster all stable sample clusters, SJ;

this clustering operation is denoted by SJ(GI). The operations GI(SJ), using each SJ to

cluster the members of every GI, are also performed. Note that G1 is the group of all

genes and S1 - of all samples. Whenever a clustering operation generates a new stable

subcluster, it is recorded and its members are used in the next iterative step (DEPTH 4

and higher). The process stops when no new stable clusters, that exceed a minimal size,

are generated.

The output of the procedure is a set of statements of the following kind: “when the

genes of GI are used to cluster the samples of SJ , one obtains the following dendrogram,

which contains stable sample clusters SK”.

CTWC is implemented by a publicly available web-server [15] and has been used

extensively for gene expression analysis in the last few years and for applications to colon,

breast [16], skin cancer [10], leukemia [23, 11] and glioblastoma [17] data analysis.
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The core of the CTWC method is a clustering algorithm. The most important re-

quirement from the clustering algorithm used is its ability to identify stable clusters.

Identifying all the stable clusters is crucial for mining all the information from the data.

It is also essential not to identify clusters due to noise and fluctuations in the data as

stable (avoid false positives). This ability not only reduces dramatically the running time

of the algorithm preventing, CTWC wasting time on irrelevant clusters, but also, and

maybe more importantly, reduces the output size of the method, enabling the user to

focus his attention on the relevant and meaningful results.

Another requirement is to obtain the clusters at their maximal size,; it is important

that the samples’ clusters be as large as possible to make the next iterative step mean-

ingful.

The current version of CTWC uses the mean field SPC version as an option, which

reduces significantly the CTWC running time.

Its seems that DEC meets better the CTWC requirements, and using it as the under-

lying clustering algorithm will make CTWC much more efficient for users, to

1. Generate the significant clusters at their maximal size,

2. with only minor dependence on specific parameters.
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