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Abstract
In order to understand processes in life, in particular processes in biology, it is es-

sential to uncover the dependencies between the elements of the process. Meaning, to

understand which elements ’control’ other elements and/or interact with them. Often,

this knowledge is not known and we can gain information about the process from data,

i.e. from measurements of the values of the elements. One of the popular ways of rep-

resenting these dependencies (and independencies) between elements is using Bayesian

Networks. A Bayesian Network is a statistical model that represents dependencies and

independencies between a group of random variables. In recent years this model has

been used in many fields to learn processes from data. In particular, this model was

extensively used to learn biological processes.

In the first part of my work I show that it is possible to learn the structure of a

Bayesian Network from data, with high probability, provided the data is large enough.

Moreover, I derived upper bounds on this sample complexity. These bounds are rep-

resented as a function of the Bayesian Network parameters and as a function of the

probability with which we want to learn the correct structure. The upper bounds I re-

ceived suggest that in order to learn with high probability the correct network structure

from data, one needs a very large number of realizations (examples, measurements),

which rarely exist in biological data. Thus, it is very problematic to learn the exact

structure of a Bayesian Network that represents a biological process.

Due to the limitations of learning the exact structure of Bayesian Networks from data,

I looked for a different method to learn networks from data. This method is described

in the second part of my thesis: I developed a heuristic algorithm for reconstructing

transcriptional networks from both gene expression data and sequence data. In the

center of this algorithm is a classifier that uses gene expression data in order to predict

whether a certain transcription factor regulates a certain gene. Then, if the classifier

confirmed that the transcription factor regulates the gene, the algorithm continues by

verifying that the transcription factor binding motif appears in the promoter of the gene.

I applied this algorithm on a transcriptional network related to Smooth Muscle Cells

differentiation and discovered both previously well known transcriptional connections,

as well as new ones.
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Part I

On the sample Complexity of

Learning the structure of Bayesian

Networks from Data

1 Introduction

Bayesian Networks (BNs) are models for representing knowledge under uncertainty.

Their compact representation and modularity have made them very popular, and today

they are used in various fields such as AI, Expert systems, Economics and Computa-

tional Biology. The key idea of BNs is the explicit representation of (in)dependencies

in the distribution of measured data. These independencies are exploited to compactly

represent numerical parameters and for efficient inference.

1.1 What is a Bayesian Network ?

A BN is a model that represents the dependencies and independencies between a group

of random variables. It is composed of two components. The first component, called the

structure of the BN, is a directed acyclic graph (DAG) that represents the (in)dependencies

among the random variables. If X and Y belong to the group of the random variables,

we will say that X is a parent of Y if there is an edge from X to Y in the DAG. We would

say that X is independent of all variables that are not its parents, given his parents.

The second component, called the parametrization of the BN, consists of numerical pa-

rameters, which encode the conditional probability of each variable, given the values of

its parents in the network. An example of a BN can be seen in figure 1 ([1]).
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Figure 1: An example of a simple BN. There are fiveboolean variables in this BN: Earthquake, Burglary, Radio,

Alarm and Call. We can see that both Earthquake and Burglary are the parents of Alarm, Earthquake is also the parent

of Radio and Alarm is the parent of Call. Since Alarm has two parents that can take 2 values each, and since Alarm itself

can also take two values, it has four parameters, indicating the probability that it will take the value one, given each of

its parents configurations. In each case the probability that its value is zero is one minus the probability that its value is

one, given the specific parents configuration.

1.2 Bayesian Networks in Biology

In recent years, many works in bioinformatics use BNs in order to learn various biological

processes from various data types.

Friedman et. al. [2] used BNs in order to learn interactions between pairs of genes

in Saccharomyces Cerevisiae from gene expression data. In this work the BN repre-

sents connections between genes. The variables of the BN are the genes from the gene

expression data chip. The space of the values that each variable gets is specified using

two approaches. The first one is the discrete approach, in which each variable gets three

values: under-expressed, normal and over expressed (compared to a control, that could

define the normal value as the average expression value of each gene over all experiments

or the average expression value of all gene expression measurements in each experiment).

The second one is the linear gaussian approach, in which they learned a linear regression

model for each variable given its parents. Since the data contained only a few dozen

samples and thousands of variables it is not possible to learn the exact structure of

the network from it (in order to learn the exact structure of a BN with thousands of

variables one needs much more samples - described in details in my work), thus, they

chose to learn only small features of the network. Each feature is a pair of genes that

are related in one of two ways. The first relation, called Markov relation, contains pairs

of genes which have an edge between them in the BN or which are parents of a third

gene in the BN. The second relation, called order relation, contains pairs of genes with a
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path between them in the BN. In order to understand to what extent the data supports

a certain feature they used the bootstrap method, in which they generated ”pertubed”

versions of their data (smaller data sets that contain part of the samples of the full data,

chosen randomly) and learn the BN structure from them. The confidence of the feature

is the percent of times it appeared in the BN structures learned from the ”pertubed”

data versions. In order to learn the BN structure from data they developed an algo-

rithm that reduces the graphs search space, by identifying a relatively small number of

candidate parents for each gene, and restricting the search space to networks with these

parents. The search algorithm they developed is an iterative one, where at each stage

one adds more candidate parents to each gene, if they contribute to the score of the

gene.

Peer et. al. [3] have extended the previous work in a few directions. First of all,

they added a third feature type, called separator, which contains three genes, such

that one of them (the separator) separates the other two in the BN (or: the two genes

are independent given the separator). Second, they tried to reconstruct significant

subnetworks of the BN, built of several Markov pairs. In order to do so, they constructed

a graph, where 2 variables (genes) in the graph are connected if they are related with

a Markov relation (with confidence higher than a certain threshold). They took each

non trivial component from this graph (contains more than three variables), called it a

subnetwork, and tried to expand this subnetwork by adding variables that are Markov

related to the variables in the subnetwork, with a confidence that passed a certain

threshold, lower than the previous one. They also used another way for building these

subnetworks, in which they measured the probability that a certain subnetwork gets a

better confidence levels, than the ones it got. If this probability is low, they assumed

that this group of variables is indeed a subnetwork. They also used this method for

finding features and subnetworks of related genes in Saccharomyces Cerevisiae data.

Segal et. al. [4] learned transcriptional modules of Saccharomyces Cerevisiae, using

gene expression data and promoter sequences of the genes in the data chip. A transcrip-

tional module contains a set of genes that are co-regulated in a subset of the experiments

in the data, and share a common motif profile (the same transcription factors binding

sites in their promoters). In order to do so they used BNs in a different way than Fried-

man et. al. or Peer et. al.. Each gene in the data chip had its own BN, with a known

structure. Each such BN contained four groups of variables. The first group contained

a variable for each nucleotide in the promoter of the gene; the second group contained

a variable for each motif (they work with a fixed number of transcription factor binding
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site motifs); the third group contained one variable, representing the transcription mod-

ule that the gene belongs to; the fourth group contained a variable for each expression

value of each experiment in the data. The variables in the first group were the parents

of the variables in the second group. The variables in the second group were the parents

of the variable in the third group. The variable in the third group was the parent of the

variables in the fourth group. There were no other direct connections in the network.

The values of the variables in the first and fourth groups are observed from the data.

The variable in the third group contains the module to which the gene belongs. The

variables in the second group are boolean variables, indicating wether each motif belongs

to the gene module. These variables are not observed from the data, and were learned

using the Expectation Maximization (EM) algorithm.

Another work that used BNs in order to learn a biological network is the work of

Sachs et. al. [5]. They took 11 key phosphorylated proteins in human T-cell signalling,

and tried to learn the signalling causality map of them. In order to do so they generated

multivariate flow cytometry data (for more information about this method see [6], [7]).

This data was collected after a series of stimulatory cues and inhibitory interventions.

They made flow cytometry measurements of the 11 proteins. Because these measure-

ments were on a single cell, they managed to have thousands of data points. Now, they

used the data in order to learn the structure of the BN with the 11 genes as variables.

They used the same learning algorithm as Peer et. al. and discovered most of the known

connections between these 11 proteins and 2 new connections. In this case there were

much more data realizations and not so many variables as in the BN of Friedman et.

al. and Peer et. al., thus the chance to learn a structure that is close to the real one is

higher.

1.3 Sample Complexity of Learning Bayesian Networks - Back-

ground

Often there is no way of building BNs according to expert knowledge. In these cases one

needs to learn a BN from data, i.e. from a sample of N realizations (values taken by the

network’s variables). It is very important to assess the sample size one needs in order to

learn a BN that approximates the true network, with the desired precision. The learning

task can be described in the following way: given a database of independently drawn

instances, construct a BN that best describes the joint distribution in the database.

There are several ways to measure the quality of the learning procedure. One way
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is evaluating the difference between the learned distribution and the real distribution

(the distribution from which the samples are taken, called also the target or correct

distribution); this difference can be evaluated by calculating, for example, the Kullblack-

Leibler distance between the distributions (explained later). Another way is evaluating

the difference between the learned structure and the correct structure (the structure

from which the samples are taken, called also the target or correct structure). One

estimate of this difference is the number of different edges between the real and learned

models.

The subject of sample complexity (how many samples suffice in order to learn the

right target) of BNs has drawn some attention in the past decade.

Some of the works in this field used the PAC (probably approximately correct) frame-

work: consider a concept class C defined over a set of instances X of length n and a

learner L using hypothesis space H. C is PAC learnable by L using H if for all c ∈ C,

distributions D over X, ε > 0, δ ∈ (0, 1), learner L will, with probability at least (1− δ),

output a hypothesis h ∈ H, s.t. errorD(h) < ε, in time that is polynomial in 1/δ, 1/ε,

c and size(c) [8].

Dasgupta et. al.[9] used the PAC framework in order to obtain sample complexity

bounds for learning the conditional probability functions of BNs with known structure,

with and without hidden variables (variables whose existence we are not aware of). He

showed that for a Boolean BN (each variable can get 0 or 1) with n observed variables,

and with at most k parents to each variable, one can find a distribution function with

distance at most ε from the target distribution with probability > 1 − δ, provided the

learning set contains at least

O(
288n22k

ε2
log2 (1 +

3n

ε
) log

18n22k log (1 + 3n
ε

)

εδ
)

samples.

Friedman & Yakhini [10] have studied the problem of learning the distribution of a

discrete BN (each variable gets a finite number of values) with an unknown structure,

and without hidden variables. They showed that the number of samples needed to learn

a distribution which is not more then ε far from the target distribution, with probability

> 1− δ, is

O((
1

ε
)

4
3 log

1

ε
log

1

δ
log log

1

δ
) (1)

They used the MDL score with the BIC penalty (se eq. 6) to score the model selection

(the different BNs).
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Both works used the Kullblack-Leibler (KL) distance [11] (also termed relative en-

tropy) between the original and learned models to measure the quality of the approxi-

mation. This distance is defined by

KL(P ||Q) =
∑
x

P (x) log
P (x)

Q(x)

where P and Q are probability distributions.

It can be seen that when comparing the dependency of the last two bounds on δ and

ε, Friedman & Yakhini result is better than the result of Dasgupta et. al.; moreover, in

Friedman & Yakhini work the structure was not known and there was no restriction on

the parents’ number. However, Dasgupta et. al. worked with hidden variables and they

specified the dependency of the bound on the BN parameters (k and n).

A different criterion for estimating the distance between BNs was presented by

Greiner et. al. [12], whose main argument is that the learned BNs are typically used for

answering queries, therefore, in this context, a more appropriate measure is the perfor-

mance of the learned model (compared to the real one) when answering queries. They

assumed that the structure is known and presented a way of learning a distribution with

the optimal performance, given examples of both the underlying distribution and of the

queries that will be posed.

Haughton [13], [14] showed that the problem of learning the correct structure of

a curve exponential model (see section 4) is asymptotically consistent, using the MDL

score with the BIC penalty (see eq. 6). Simply stated, an (asymptotically) consistent

scoring criterion is one that - in the limit, as the number of samples grows to infinity -

prefers (almost surely) the model containing the fewest number of parameters that can

represent the generative distribution exactly [15]. Moreover, Haughton gave bounds on

the probability (δ) to learn a wrong model structure. A model is considered to be wrong

if it doesn’t contain the probability of the real model (models that underfit the data),

or if it contains the probability of the real model, but it contains more parameters then

the real model (models that overfit the data, see section 2.1). She has shown that if

a certain model doesn’t contain the probability of the real model then the probability

to learn this wrong’s model structure is O(e−Nα), where N → ∞ is the number of

samples and α > 0 is some constant. If a certain model does contain the probability

of the real model (but is not minimal) then the probability to learn this wrong model

structure is O(N−k), where N → ∞ and k > 0 is some constant. In the second case

the dependency of k on the model was also specified. Using the results of the work of

Geiger et. al. [16] that showed that discrete BNs without hidden variables are curved
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exponential models, we can conclude that Haughton’s findings are true for discrete BNs

without hidden variables.

1.4 Our work outline and main results

In our study, we prove that boolean BNs without hidden variables are asymptotically

consistent, using the MDL score (see eq. 6). We use a different, more directed, approach

to do so, compared to Haughton work. Moreover, we derive an upper bound on the

sample complexity of learning the correct structure of a boolean BN, without hidden

variables.

We were motivated by the experimental observation that often, two BNs with ex-

tremely close distributions (in KL or Lp sense) have totally different structures. Thus,

having samples that exceed the bound that was obtained by Yakhini et. al. ([10]) is not

enough when one wants to learn the correct structure.

To illustrate this, we present in figure 2 an example demonstrating the difficulty of

learning the correct structure of a small BN. On the basis of such examples it seems

that learning the correct structure is a much harder task (and hence requires a larger

number of samples) than approximating the underlying distribution.

For simplicity, we assume throughout our work that the ordering of the variables is

known, and w.l.o.g. is given by the identity permutation, so (i, j) ∈ E ⇒ i < j.

Moreover, we first show that when the samples do not contain noise, i.e., the samples

follow the exact distribution of the real BN (a detailed explanation of this concept is

given at the beginning of section 3), the MDL score is consistent for each penalty

Ψ(N) = o(N). Next, we showed that the bound on the sample complexity (N) that is

needed in order to learn the real network structure using the MDL score with the BIC

penalty is

N ≥ (|G∗| − n)

γ3
· 1

ε2
log(

(|G∗| − n)

γ3
· 1

ε2
) =

O(2n(
1

γ
)3(

1

ε
)2(log

1

ε
+ log

1

γ
+ n))

where G∗ is the real graph, |G∗| is the number of parameters in G∗, n is the number of

variables in G∗, γ is a lower bound on the probability of the BNs and ε is a lower bound

on the distance between parameters in the BNs (see section 3.1).

Next, we looked at noisy samples, since it is clear that in reality the sampling process

introduces noise. We first showed that learning the correct structure is asymptotically

consistent, using the MDL score with any penalty Ψ(N) = o(N), when looking only on

9



BNs that don’t contain the probability of the real BN. Moreover, we showed that we

will learn the right structure with probability > 1 − δ using the MDL score with the

BIC penalty for sample number

N ≥ max{2(|G∗| − n)

γ3
· 1
ε2

log(
2(|G∗| − n)

γ3
· 1
ε2

), 512[log(
1

δ
)+log(6)+n log(2)+log

(
n

2

)
](

1

γ
)n+6(

1

ε
)4} =

O((
1

γ
)n(

1

ε
)4(n + log(

1

δ
)))

(see section 3.2.1).

Then, we showed that learning the correct structure is asymptotically consistent,

using the MDL score with penalty Ψ(N) = N−η, η ∈ (1
2
, 1), when considering only BNs

that contain the probability of the real BN, and are larger (in the sense of parameters

number) than the real BN. Moreover, we showed that using the MDL score with the

above penalty function we will learn the right structure with probability > 1 − δ for

sample number

N ≥ [162n2(
1

γ
)n{log(

1

δ
) +

(
n

2

)
log(2) + 2 log(n) + log(6)}] 1

2η−1 =

O([n2(
1

γ
)n(log(

1

δ
) + n2)]

1
2η−1 ) ⇒

(see section 3.2.2).

In this work, we address to the simplest and strictest problem of learning the correct

BN structure, and do not consider the case of learning a structure that approximates

the original one. Clearly, a relaxation of this requirement (for example allowing a cer-

tain fraction of mis-learned edges), will lead to lower sample complexity. On the other

hand, when measuring the distance between the real and learned structures we restrict

ourselves to situations where the learner knows in advance the ordering of the variables,

which determines the directionality of every possible edge. We assume also that the

learner is computationally unbounded and learns by scoring all possible models exhaus-

tively and selecting the best scoring one. Obviously, due to the two above assumptions,

the number of samples needed by real-life algorithms for structure learning could be

higher.
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Figure 2: Learning a small Bayesian Network. We generated randomly 1000 4-node BNs, by choosing uniformly one

of the 543 4-nodes labelled DAGs, and for each such DAG, choosing uniformly the value for each parameter. For each

BN we generated 5000 realizations. The x axis represents the sample size N , i.e. the number of realizations, selected at

random out of the 5000, that were used for learning. For each network and sample we learned a model from the data by

exhaustively scoring all 543 labelled DAGs of size 4, and selected the best scoring model with the MDL score with BIC

penalty (see eq. 6). All three plots show mean ± one standard deviation of the measured quantity. The y-axes contains:

(a) the KL distance between the original and learned model. It nicely approaches zero. (b) the log2 of the rank of the

correct structure among all 543 DAGs. We can see that the rank doesn’t converge to zero after 5000 realizations, and

that its convergence is much slower than the KL distance. If the correct BN structure receives the same score as other

structures, it will get the lowest rank among them (the rank is according to score - the highest score graph is ranked 1

(log2 = 0), the lowest score graph is ranked 543 (log2 = 9.08)). (c) # edges that appear in the correct graph and not in

the learned graph or vice versa / # total edges in the four node clique (6). In this case we don’t take into account the

direction of the edges (meaning, we only check if during the learning procedure the skeleton of the correct structure was

learned, which is easier than learning the correct structure). We can see that the average of this fraction is not zero after

the 5000 realizations.

2 Preliminaries and Definitions

2.1 Bayesian Network Preliminaries and Definitions

Let X1, . . . , Xn be random binary variables, with joint probability distribution P . In gen-

eral, uppercase will denote random variables, and lowercase will denote their realizations.

We will sometimes skip the latter, so for example Pr(x1, . . . , xn) = Pr(X1 = x1, . . . Xn =

xn). Formally, a BN B = (G, Θ) is defined by the graph G and the parameters Θ. Here
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G = (V, E) is an n-vertex DAG (the structure) which represents (in)dependencies be-

tween the Xi’s, such that a variable is independent of its non-descenders , given its

parents [17]. Θ = {Θi}n
i=1 (the parameterization) specifies conditional probabilities,

such that Θi|paG(i) = Pr(Xi = 1|PaG(i) = paG(i)), where PaG(i) are the parents of

Xi in the graph G. The set of parents of Xj excluding Xi is denoted PaG(j \ i), and

its values by paG(j \ i). Keeping the other parent’s values and setting Xi = k will be

denoted by PaG(j \ i : k), for k = 0, 1.

The joint probability distribution associated with B is denoted PB, and satisfies :

PB(X1, . . . , Xn) =
n∏

i=1

Pr(Xi|X1, . . . , Xi−1) =

n∏

i=1

Pr(Xi|PaG(i)) =
n∏

i=1

Θxi

i|paG(i)(1−Θi|paG(i))
1−xi (2)

We assume our BN is ”non-deterministic”, which simply means that Θi|paG(i) ∈
(0, 1) ∀i, paG(i), and we define the ’determinism’ of B as the smallest deviation of its

parameters from 0 or 1:

γ = γ(B) = min
i,paG(i)

{Θi|paG(i), (1−Θi|paG(i))} (3)

We mark the space of all (labelled !) DAGs on n vertices by Λn. The graph dimension

|G|, is defined as the number of parameters needed to specify PB when the structure is

G.

G is called minimal (with respect to PB) if there is no B′ = (G′, Θ′), with |G′| < |G|,
and PB′ = PB (see figure 3). We assume data is generated from a minimal BN denoted

B∗ = (G∗, Θ∗) with G∗ = (E∗, V ∗). We refer to G∗ as the ’correct’ structure, and our

purpose is to recover it from the data.

Two BNs are equivalent if the set of distributions that can be represented using the

structure of one of them is identical to the set of distributions that can be represented

using the structure of the other [18]. An equivalence class of G is the group of DAGs

that are equivalent to G. There is a known criterion for two graphs to be in the same

equivalence class given by Pearl & Verma [17]: the graphs should have the same skeleton

(the skeleton of a DAG is its structure without the direction on the edges) and the same

V -structure (the set of all ordered triplets of vertices in G = (V, E) that form a v-shape,

meaning, two of these vertices are the parents of the third vertex, and neither of the

parents is a parent of the other) in order to be equivalent.

The clique satisfying the ordering {1, .., n} is denoted C∗. A BN associated with

C∗ is denoted by BC∗ = (C∗, ΘC∗). The clique with the edge (i, j) removed is denoted

C∗
i,j = C∗ \ {(i, j)}.

12



Figure 3: An example of a minimal BN. In (a) we can see a minimal BN. In (b) we can see a BN that represents the

same distribution as the one in (a), but has more parameters than the BN in (a), and thus is not minimal.

We denote by N the number of realizations (also referred to as samples) in the

learning set. The learning set will be denoted by DN . The samples will be denoted by

x(i), i = 1, .., N , with x(i) = (x
(i)
1 , .., x(i)

n ), so x
(i)
j is the value of the r.v. Xj in the i-th

sample. We assume the samples are identically distributed (i.i.d.), with x(i) ∼ PB∗ . The

sample distribution P̂N is simply the frequency function of the sample x(i), given by

P̂N(x) =
1

N

N∑

i=1

1x(i)=x

2.1.1 Learning the structure of a Bayesian Network from Data

In order to learn the correct structure of a BN (B = (G, Θ)) from data (DN) one needs

to calculate P (G|DN) for all possible n-vertex DAGs G (where n is the variables number

of the correct BN), and the graph G that maximizes P (G|DN) is the learned structure.

Using Bayes rule we get that:

P (G|DN) =
P (DN |G)P (G)

P (DN)

Since P (DN) doesn’t depend on G it is enough to calculate P (DN |G) and know

P (G) (the prior on each G) in order to learn which G maximizes P (G|DN). In the

Bayesian approach to model selection one starts with a prior distribution over all pos-

sible Bayesian networks. Given the learning set DN , one can evaluate the posterior

probability of each network structure. The score received in this way is called Bayesian

score and is calculated in the following way:

Bayesian Score(G|DN) = log P (DN |G) + log P (G)

13



where P (DN |G), called the marginal likelihood, is calculated by:

P (DN |G) =
∫

θ
P (DN |G, θ)P (θ|G)dθ

where P (DN |G, θ) =
∑N

i=1 P (x(i)|G, θ) is the likelihood function (see eq. 4), P (θ|G) is

the prior over the parameters and P (G) is the prior over the structures.

Although, in principle, this approach is appealing, in practice it is often impossible

to evaluate the integral over all possible parameters, when the number of parameters is

large.

Thus, we chose to use a different approach that approximates the marginal likelihood.

For any BN B = (G, Θ), the log-likelihood of the data has the form :

LL(DN |G, Θ) =
N∑

i=1

n∑

j=1

logPr(x
(i)
j |pa(i)

G (j)) =

n∑

j=1

N∑

i=1

(x
(i)
j logΘ

j|pa
(i)
G (j)

+ (1− x
(i)
j )log(1−Θ

j|pa
(i)
G (j)

)) (4)

Given G, the maximal likelihood parameterization Θ̂ = Θ̂(G), is simply given by

sample probability, so Θ̂i|paG(i) = P̂N(Xi = 1|paG(i)). Therefore, the maximum likeli-

hood of the data given G, denoted by LLN(G), is given by :

LLN(G) := LL(DN |G, Θ̂) =

−N
n∑

j=1

∑

paG(j)

P̂N(paG(j))hb(Θ̂j|paG(j)) =

−N
n∑

j=1

HP̂N
(Xj|PaG(j)) (5)

The definitions of hb and HP can be seen in eq. 7 and in eq. 9.

Clearly, the log-likelihood is not a useful score for comparing structures, since adding

edges to the graph always improves the likelihood, which makes the complete graph the

highest scoring graph. A common strategy to cope with this problem of overfitting,

is based on the Minimal Description Length (MDL) principle, introduced in [19]. The

MDL score ’penalizes’ complex models, thus giving a trade-off between data-fitting and

model complexity. A fairly general MDL score is described in [10], and is given by :

SN(G) = LLN(G)− |G|Ψ(N) (6)

where Ψ(N) is some penalty function.
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So, in order to learn the correct structure, we scan all n-vertex DAGs G and calculate

the score for each G. The graph that maximizes this score is the learned graph.

The penalty function Ψ(N) = 1
2
log N , also termed the Bayesian Information Cri-

terion (BIC), is particulary interesting because it turns out that SN(G) with Ψ(N) =
1
2
log N is an O(1) approximation of the Bayesian score Bayesian Score(G|DN) when

there are no hidden variables [20], [16].

2.2 Information Theory

We briefly recall some Information Theory formulas, which were used in this work [21].

Let X, Y, Z, T be discrete random variables and P be a probability function.

The binary entropy function is:

hb(p) = −p log p− (1− p) log(1− p) (7)

The entropy of a variable X with respect to P is:

HP (X) = − ∑

X=x

P (x) log P (x) (8)

The conditional entropy of a variable X given Y with respect to P is:

HP (X|Y ) = − ∑

X=x

∑

Y =y

P (x, y) log P (x|y) (9)

The mutual information between X and Y is:

IP (X, Y ) = HP (Y )−HP (Y |X) (10)

and the conditional mutual information of two variables is:

IP (X, Y |Z) = HP (Y |Z)−HP (Y |X, Z) (11)

In the context of BNs we say that

IPB
(X,Y |Z) = HPB(X,Y )

(Y |Z)−HPB
(Y |X, Z) (12)

where X and Y are variables in the BN, Z is a set of variables in the BN and the difference

between B(X,Y ) and B is that the edge (X, Y ) is in the DAG of B and not in the DAG

of B(X,Y ).
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3 Learning the correct structure

Following the framework of Friedman & Yakhini ([10]), we derive bounds on the sample

complexity of learning the correct structure in two steps. First, we assume that the

observed distribution is ideal, that is P̂N = PB∗ . In order to produce an ideal learning

set of size N, we calculate the expected number of 1s (0s) for each variable, based on

PB∗ , and then make sure that this will be the exact number of 1s (0s) in the learning set

(or if not possible, a value which is closest to that number). We start with the variables

with no parents and make sure that the number of 1s (0s) in the learning set represents

their probability according to PB∗ . For example, if X1 has no parents, N = 100 and

PB∗(X1 = 1) = 0.4, then we will prepare 40 samples with X1 = 1 and 60 samples

with X1 = 0. Next, we continue to variables with parents from the previous group

only, meaning, variables with no grandparents. For each such variable we calculate the

number of 1s (0s) given each configuration of its parents, that will exactly represent

PB∗ , and make sure that the learning set contains exactly this number of 1s (0s) (or if

not possible, a value which is closest to that number). For example, if the only parent

of X2 is X1, and PB∗(X2 = 1|X1 = 1) = 0.25, then in 10 if the 40 samples with X1 =

1, X2 will also be 1, in the rest of the 30 samples X2 will be 0. In the same way we

continue to the group of variables with parents from the 2 previous groups only, and so

on.

Here the number of samples needed is a result of a trade-off between the likelihood

term and the penalty term in SN (see eq. 6), since the number of samples affects both

the likelihood term, in the N that multiplies the conditional entropy, and the penalty

term. The conditional entropy in the likelihood term is the same for any N in the ideal

case (eq. 5).

Next, we study the effect of sampling noise on the sample complexity. Using Chernoff

bounds and the union bound, we show that with high probability P̂N is close to PB∗ ,

allowing us to bound the probability that the correct structure does not get the maximal

score.

In order to simplify our discussion, we assume throughout our work that the ordering

of the variables is known. Note that for a given ordering there is at most one DAG in

each equivalence class [17].

Before deriving our results, we will look deeper into the notion of minimality. A BN

is minimal (see figure 3), if every edge (i, j) gives extra information on Xj given all its

other parents. More formally, let B = (G, Θ) a BN with G = (V,E), then G is minimal
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with respect to PB if and only if

IPB
(Xi, Xj|PaG(j \ i)) > 0, ∀(i, j) ∈ E. (13)

The next lemma shows that the previous conditional mutual information stays pos-

itive when we add edges to G.

Lemma 1 Let B = (G, Θ) a BN with G = (V,E). If G is minimal and Θ ∈ (0, 1), then

∀(i, j) ∈ E, Xi gives extra information on Xj given all its other parents in the clique

C∗. Meaning,

IPBC∗
(Xi, Xj|PaC∗i,j(j)) > 0, ∀(i, j) ∈ E

Proof Let (i, j) ∈ E. From the minimality of G, we have some parents configuration

paG(j) such that Θj|paG(j\i:0) 6= Θj|paG(j\i:1), otherwise, eq. 13 is not satisfied because Xi

doesn’t add any new information on Xj. We know that Xj is conditionally independent

of {X1, . . . , Xj−1} \ PaG(j) given PaG(j), so , for k = 0, 1 :

PBC∗ (Xj = 1|PaC∗(j \ i : k)) = Θj|paG(j\i:k) (14)

and PBC∗ (paC∗(j \ i)) ≥ minx PBC∗ (x) ≥ γ(B∗)n > 0.

We know that

IPBC∗
(Xi, Xj|PaC∗i,j(j)) =

∑

paC∗
i,j

(j)

{PBC∗ (paC∗i,j(j))hb(Θj|paC∗
i,j

(j))−
1∑

k=0

PBC∗ (paC∗(j \ i : k))hb(Θj|paC∗ (j\i:k))} (15)

Due to the concavity of hb and to the fact that

PBC∗ (paC∗i,j(j))Θj|paC∗
i,j

(j) =
1∑

k=0

PBC∗ (paC∗(j \ i : k))Θj|paC∗ (j\i:k) (16)

we can say that each element in the sum of eq. 15 is non negative. Since we know

that we have some parents configuration paC∗(j) such that PBC∗ (Xj = 1|PaC∗(j \ i :

0)) 6= PBC∗ (Xj = 1|PaC∗(j \ i : 1)) and the probabilities in the last inequality are both

positive, we can be sure that at least the element with these probabilities in eq. 15 sum

is positive, and so IPBC∗
(Xi, Xj|PaC∗i,j(j)) > 0
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3.1 Deriving Bounds in the Ideal Case

As a first step we will show that the MDL score is consistent in the ideal case. Meaning,

that we can find N0, s.t. if N > N0 we will surely learn the correct structure of G∗. In

this case we will learn the right structure with probability 1 for large enough N, since

the sample is ideal. Thus, we show here that the MDL score is consistent, which is a

stronger requirement than asymptotical consistency (see proposition 1). Then, we will

show the dependency of this upper bound on the BN of G∗ (see proposition 2).

3.1.1 Consistency of the MDL Score with respect to BN structures

The following lemmas are true for the ideal case.

Lemma 2 If SN(G) > SN(G∗), then |G| < |G∗|.

Proof Since P̂N = PB∗ , we get LLN(G∗) = LLN(C∗). But clearly, LLN(G) ≤ LLN(C∗), ∀G,

therefore :

SN(G∗) = LLN(G∗)−|G∗|Ψ(N) < SN(G) = LLN(G)−|G|Ψ(N) ≤ LLN(C∗)−|G|Ψ(N) =

LLN(G∗)− |G|Ψ(N) (17)

So |G| < |G∗|.

Lemma 3

SN(G∗) ≥ max
(i,j)∈E∗

LLN(C∗
i,j)− nΨ(N) ⇒

SN(G∗) = max
G

SN(G) (18)

Proof Assume, negatively that ∃G ∈ Λn, SN(G∗) < SN(G). From lemma 2 we get

|G| < |G∗|, therefore we have some edge (i, j) ∈ E∗ \E. Thus, G ⊆ C∗
i,j and LLN(G) ≤

LLN(C∗
i,j). From the lemma’s condition we know that

SN(G∗) ≥ LLN(C∗
i,j)− nΨ(N)

and since |G| ≥ n we get

LLN(C∗
i,j)− nΨ(N) ≥ LLN(G)− nΨ(N) ≥ LLN(G)− |G|Ψ(N) = SN(G)

Meaning, we got SN(G∗) ≥ SN(G), which is a contradiction.
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The likelihood in the ideal case is given by :

LLN(C∗) = LLN(G∗) = −N
n∑

i=1

HPBG∗
(Xi|PaG∗(i)) (19)

Removing the edge (i, j), the likelihood of C∗
i,j is :

LLN(C∗
i,j) = −N [

n∑

i=1,i6=j

HPBC∗
(Xi|PaC∗(i))+

HPBC∗
i,j

(Xj|PaC∗i,j(i))] (20)

Using lemma 3 we will bound the number of samples needed to learn G∗ correctly

by comparing its score to the log likelihood of all the C∗
i,j minus the penalty function

multiplied with n. We demand that ∀(i, j) ∈ E∗:

SN(G∗) = LLN(G∗)− |G∗|Ψ(N) =

LLN(C∗)− |G∗|Ψ(N) ≥ LLN(C∗
i,j)− nΨ(N)

Or ∀(i, j) ∈ E∗:

LLN(C∗)− LLN(C∗
i,j) ≥ (|G∗| − n)Ψ(N) (21)

We will now compute the difference:

LLN(C∗)− LLN(C∗
i,j) =

N [HPBC∗
i,j

(Xj|PaC∗i,j(j))−HPBC∗
(Xj|PaC∗(j))] =

NIPC∗ (Xi, Xj|PaC∗i,j(i)) (22)

Using eq. 21 and eq. 22, we get:

Proposition 1 In the ideal case :

Ψ(N)

N
≤ 1

|G∗| − n
min

(i,j)∈E∗
IPBC∗

(Xi, Xj|PaC∗i,j(j))

⇒ SN(G∗) = max
G

SN(G) (23)

From lemma 1 we know that min(i,j)∈E∗ IPC∗ (Xi, Xj|PaC∗i,j(j)) is positive. So the

right hand side is a positive constant depending on B∗. Thus, for any reasonable penalty

Ψ(N) = o(N), there is some constant N0 = N0(B
∗) such that if there is no sampling

noise, the correct structure is learned for N ≥ N0 ⇒ the MDL score is consistent.
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3.1.2 Dependence of the Sample Complexity on the correct BN

We showed in proposition 1 that there exists an upper bound N0 = N0(B
∗) on the sample

size needed to learn the right BN structure from data. We now want to investigate the

dependency of the sample complexity upper bound on B∗. Note that the upper bound

(N∗
0 ) we specify in this section is not tight, meaning, N∗

0 > N0.

We assume that ∃ε > 0 s.t. ∀j, paC∗(j)

|Θj|paC∗ (j\i:1) −Θj|paC∗ (j\i:0)| > ε (24)

In order to find this N∗
0 we want to find a lower bound L on min(i,j)∈E∗ IPBC∗

(Xi, Xj|PaC∗i,j(j))

because from proposition 1 if Ψ(N)
N

≤ 1
|G∗|−n

L then SN(G∗) = maxG SN(G).

To do so, we define ∀j, paC∗(j) two variables: Θε
j|paC∗ (j\i:0) and Θε

j|paC∗ (j\i:1) with the

following characters: First of all, the difference between them is ε, Meaning

|Θε
j|paC∗ (j\i:1) −Θε

j|paC∗ (j\i:0)| = ε (25)

Second, eq. 16 is also true with Θε
j|paC∗ (j\i:0) and Θε

j|paC∗ (j\i:1) instead of Θj|paC∗ (j\i:0) and

Θj|paC∗ (j\i:1) respectively. Meaning, PBC∗
i,j

(xj|paC∗i,j(j)) is also the weighted average of

these two variables, with the same weights as it is the weighted average of Θj|paC∗ (j\i:0)

and Θj|paC∗ (j\i:1):

PBC∗
i,j

(paC∗i,j(j))PBC∗
i,j

(xj|paC∗i,j(j)) =
1∑

k=0

PBC∗ (paC∗(j\i:k))Θ
ε
j|paC∗ (j\i:k) (26)

Denote

Iε
PBC∗

(Xi, Xj|PaC∗i,j(j)) =

∑

paC∗
i,j

(j)

{PBC∗
i,j

(paC∗i,j(j))hb(Θj|paC∗
i,j

(j))−
1∑

k=0

PBC∗ (PaC∗(j \ i : k))hb(Θ
ε
j|paC∗ (j\i:k))} (27)

So the difference between IPBC∗
(Xi, Xj|PaC∗i,j(j)) and Iε

PBC∗
(Xi, Xj|PaC∗i,j(j)) is that

in Iε
PBC∗

(Xi, Xj|PaC∗i,j(j)) we use ∀j, paC∗(j) Θε
j|paC∗ (j\i:k) instead of Θj|paC∗ (j\i:k), k =

0, 1.

Lemma 4

IPBC∗
(Xi, Xj|PaC∗i,j(j)) ≥ Iε

PBC∗
(Xi, Xj|PaC∗i,j(j)) (28)
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Proof From the concavity of hb, from the fact that Θj|paC∗
i,j

(j) is the same weighted

average of both Θj|paC∗ (j\i:1) and Θj|paC∗ (j\i:0) and of Θε
j|paC∗ (j\i:1) and Θε

j|paC∗ (j\i:0) (eq.

16 and 26 respectively), and from the fact that the difference between Θj|paC∗ (j\i:1) and

Θj|paC∗ (j\i:0) is larger from the difference between Θε
j|paC∗ (j\i:1) and Θε

j|paC∗ (j\i:0) (eq. 24

and 25 respectively) we get that

1∑

k=0

PBC∗ (PaC∗(j \ i : k))hb(Θ
ε
j|paC∗ (j\i:k)) ≥

1∑

k=0

PBC∗ (PaC∗(j \ i : k))hb(Θj|paC∗ (j\i:k))

(29)

and thus

IPBC∗
(Xi, Xj|PaC∗i,j(j)) =

∑

paC∗
i,j

(j)

{PBC∗
i,j

(paC∗i,j(j))hb(Θj|paC∗
i,j

(j))−
1∑

k=0

PBC∗ (PaC∗(j \ i : k))hb(Θj|paC∗ (j\i:k))} ≥

∑

paC∗
i,j

(j)

{PBC∗
i,j

(paC∗i,j(j))hb(Θj|paC∗
i,j

(j))−
1∑

k=0

PBC∗ (PaC∗(j \ i : k))hb(Θ
ε
j|paC∗ (j\i:k))} =

Iε
PBC∗

(Xi, Xj|PaC∗i,j(j)) (30)

Which gives us the required result

Lemma 5 If ε > 0 and γ = γ(C∗) < 1
3

(see 3), then

lim
ε→0

IPBC∗
(Xi, Xj|PaC∗i,j(j))

ε2
≥ γ3 (31)

Proof From lemma 4 it is enough to show that

lim
ε→0

Iε
PBC∗

(Xi, Xj|PaC∗i,j(j))

ε2
≥ γ3

Denote

εpaC∗
i,j

(j)
= Θj|paC∗

i,j
(j) −Θε

j|paC∗ (j\i:1) (32)

from 26 and from the fact that

PBC∗
i,j

(paC∗i,j(j)) =
1∑

k=0

PBC∗ (paC∗(j \ i : k)) (33)

we get

Θj|paC∗
i,j

(j) −Θε
j|paC∗ (j\i:0) = −εpaC∗

i,j
(j)

PBC∗ (paC∗(j \ i : 1))

PBC∗ (paC∗(j \ i : 0))
(34)
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Combining the last two equations with eq. 25 we get that

|εpaC∗
i,j

(j)
| = ε

[1 +
PBC∗ (paC∗ (j\i:1))

PBC∗ (paC∗ (j\i:0))
]

(35)

Since γ < 1
3

we get that ∀paC∗(j)

γε ≤ |εpaC∗
i,j

(j)
| ≤ (1− γ)ε (36)

and thus we can say that ε → 0 ⇒ ∀paC∗(j), εpaC∗
i,j

(j)
→ 0.

Since ∀paC∗(j), εpaC∗
i,j

(j)
→ 0 we can execute Taylor expansion for log(Θj|paC∗ (j\i:k))

and for log(1−Θj|paC∗ (j\i:k)) around Θj|paC∗
i,j

(j) ∀j, paC∗i,j(j) and get:

Iε
PBC∗

(Xi, Xj|PaC∗i,j(j)) =

∑

paC∗
i,j

(j)

{PBC∗
i,j

(paC∗i,j(j))hb(Θj|paC∗
i,j

(j))−
1∑

k=0

PBC∗ (PaC∗(j \ i : k))hb(Θ
ε
j|paC∗ (j\i:k))} =

∑
xj ,paC∗

i,j
(j)

{
PBC∗

i,j
(paC∗i,j(j))PBC∗ (paC∗(j \ i : 1))

2PBC∗ (paC∗(j \ i : 0))Θj|paC∗
i,j

(j)(1−Θj|paC∗
i,j

(j))
ε2

paC∗
i,j

(j)
+ O(ε3

paC∗
i,j

(j)
)} (37)

and from 3 and 36 we can say that

lim
ε→0

Iε
PBC∗

(Xi, Xj|PaC∗i,j(j))

ε2
≥ 2j−2γ3

(1− γ)3
≥ γ3 (38)

Proposition 2 Let ε0 > 0 small enough. For Ψ(N) = log(N)
2

and 0 < ε < ε0 we get:

N ≥ N∗
0 =

(|G∗| − n)

γ3
· (1

ε
)2 log(

(|G∗| − n)

γ3
· (1

ε
)2) =

O(2n(
1

γ
)3(

1

ε
)2(log

1

ε
+ log

1

γ
+ n))

⇒ SN(G∗) = max
G

SN(G) (39)

Proof From the combination of proposition 1 and lemma 5 we get for Ψ(N) = log(N)
2

and ε < ε0, for some ε0 > 0 small enough:

log(N)

N
≤ 1

|G∗| − n
· γ3 · ε2
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⇒ SN(G∗) = max
G

SN(G) (40)

and it can be seen that

N ≥ (|G∗| − n)

γ3
· (1

ε
)2 log(

(|G∗| − n)

γ3
· (1

ε
)2) =

O(2n(
1

γ
)3(

1

ε
)2(log

1

ε
+ log

1

γ
+ n)) (41)

satisfies eq. 40

3.2 Treatment of the Noisy Case

Clearly, when sampling noise is introduced, we can not guarantee that the correct (mini-

mal) structure will attain the highest score. Since every sample has positive probability,

there will always be samples whose distributions P̂N are better represented by other

structures. If, however, the statistical weight of such samples approaches zero when

N →∞, the probability for an incorrect structure getting the highest score will be arbi-

trarily small for large enough N . Here we also assume that the ordering of the variables

is known. In the noisy case we want to show that the MDL score is asymptotically

consistent, meaning, we will show the existence of a function N0(B
∗, δ), such that for

N > N0(B
∗, δ) the correct structure gets the highest score with prob. > 1 − δ (see

proposition 3 and proposition 5). Then, we will investigate the dependency of the upper

bound we got on the BN B and on δ (see proposition 4 and proposition 6). Here also,

the bound we specify (N∗
0 ) is not tight (N∗

0 > N0).

In order to show that the entropy of a variable in the graph given its parents in the

noisy case (sample entropy) is not far away from this entropy in the ideal case (true

entropy) with high probability we use the following concentration lemma:

Lemma 6 Let B = (G, Θ) be a BN. Take two disjoint subsets S, T ⊂ {X1, .., Xn} of

r.v.s. Then if S=s and T=t:

a. For any α ∈ (0, 1) :

Pr(|P̂N(s)− PB(s)| ≤ αPB(s)) ≥ 1− 2e−α2PB(s)N/2 (42)

b. For any α ∈ (0, 1/3) :

Pr(|P̂N(t|s)− PB(t|s)| ≤ 3αPB(t|s)) ≥

1− 4e−α2PB(s,t)N/2 (43)
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Proof a. Let Y s
N =

∑N
j=1 1S(j)=s be the r.v. counting the number of samples in which

the value of the S variables was s. Then Y s
N ∼ Binomial(N, PB(s)). Using Chernoff

bounds we get for α ∈ (0, 1),

P r((1− α)PB(s)N ≤ Y s
N ≤ (1 + α)PB(s)N) ≥

1− 2e−α2PB(s)N/2 (44)

Noting that Y s
N = NP̂N(s) gives the desired result.

b. Take α ∈ (0, 1/3). Applying (a) on the sets S and S
⋃

T and the union bound, we

get that:

PB(s)[(1− α)P̂N(t|s)− PB(t|s)]
≤ P̂N(s, t)− PB(s, t) ≤ αPB(s, t) (45)

With prob. ≥ 1− 4e−α2PB(s,t)N/2. So :

(1 + α)PB(t|s) ≥ (1− α)P̂N(t|s) (46)

And finally :

P̂N(t|s)− PB(t|s) ≤

(
1 + α

1− α
− 1)PB(t|s) ≤ 3αPB(t|s) (47)

w.p. ≥ 1− 4e−α2PB(s,t)N/2.

Showing the other direction is done similarly.

A particular choice of our interest will be T = Xj, S = PaG(j), which gives us :

Pr(|Θ̂j|paG(j) −Θj|paG(j)| ≤ 3αΘj|paG(j)) ≥

1− 4e−α2PB(paG(j))Θj|paG(j)N/2 (48)

And by symmetry Θj|paG(j) can be replaced by 1−Θj|paG(j) in the upper bound and

the probability term of the above inequality.

We now bound the difference between the sample and the true entropies:

Lemma 7 Let B be a BN. Then for any DAG G, ∃α0 ∈ (0, 1) such that for α < α0 :

Pr(|HP̂N
(Xj|PaG(j))−HPB

(Xj|PaG(j))| < 4α) ≥

1− 6
∑

paG(j)

e−α2PB(paG(j))Θj|paG(j)N/2 (49)
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Proof

HP̂N
(Xj|PaG(j))−HPB

(Xj|PaG(j)) =
∑

paG(j)

[P̂N(paG(j))hb(Θ̂j|pa(j))− PB(paG(j))hb(Θj|pa(j))] (50)

Using lemma 6 both parts, with S = PaG(Xj), T = Xj, and the union bound, we get:

P̂N(paG(j))hb(Θ̂j|pa(j))− PB(paG(j))hb(Θj|pa(j)) ≥
−{(1− α)PB(paG(j))

[(1− α)Θj|pa(j) log((1 + α)Θj|pa(j))+

(1− α)(1−Θj|pa(j)) log((1 + α)(1−Θj|pa(j)))]−
PB(paG(j))hb(Θj|pa(j))} =

−PB(paG(j))[(1− 2α)α + 2αhb(Θj|pa(j))] + O(α2) (51)

With prob. ≥ 1− 6e−α2PB(paG(j))Θj|paG(j)N/2.

Take α0 for which the O(α2) term is bounded by α and for which max{(1+α)Θj|paG(j), (1+

α)(1−Θj|paG(j))} < 1 for α < α0. Since hb(Θj|pa(j)) ≤ 1, we can get :

HP̂N
(Xj|PaG(j))−HPB

(Xj|PaG(j)) ≥

−4α
∑

paG(j)

PB(paG(j)) = −4α , ∀α < α0 (52)

w.p. ≥ 1 − 6
∑

paG(j) e−α2PB(paG(j))Θj|paG(j)N/2. Showing the upper bound is done

similarly.

Our approach for bounding N0(B
∗, δ) is by considering separately graphs G with

PB∗ ∈ B∗ \B and graphs G with PB∗ ∈ B ∩B∗

3.2.1 Graphs G with PB∗ ∈ B∗ \B

Lemma 8 Lemma 3 is still valid, assuming that we require only SN(G∗) ≥ maxG,PB∗∈B∗\B SN(G).

Proof If G∗ ⊂ G then PB∗ ∈ B ∩ B∗, otherwise we have some edge (i, j) ∈ E∗ \ E,

G ⊆ C∗
i,j and the proof of lemma 3 remains the same.

The likelihood difference in eq. 22 is changed to:

LLN(C∗)− LLN(C∗
i,j) =

N [HP̂N
(Xj|PaC∗i,j

(j))−HP̂N
(Xj|PaC∗(j))] (53)

We will bound the difference between LLN(C∗)−LLN(C∗
i,j) in the noisy case and in

the ideal case:
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Lemma 9 ∀(i, j) ∈ E∗, ∃α0 ∈ (0, 1) such that for any α < α0:

Pr(|[HP̂N
(Xj|PaC∗i,j(j))−HP̂N

(Xj|PaC∗(j))]−

IPB
(Xi, Xj|PaC∗i,j(j))| < 8α) >

1− 12 · 2j−1 max
paC∗ (j)

e−α2PB(paC∗ (j))Θj|paC∗ (j)N/2 (54)

Proof First apply lemma 7 on C∗ and C∗
i,j. Then use the union bound and note

that the Θ parameters in C∗
i,j are weighted averages of the Θ’s in C∗. Due to convexity

of e−x, of the two probabilities we subtract, the one related to C∗ is therefore larger.

Finally replace the sum by the maximum of the summands.

Now we can give an asymptotic bound on N :

Proposition 3 For Graphs with PB∗ ∈ B∗ \B and Ψ(N) = o(N):

(|G∗| − n)Ψ(N)

N
≤ 1

2
min

(i,j)∈E
IPB∗ (Xi, Xj|PaC∗i,j) (55)

and

δ >
∑

(i,j)∈E∗
12 · 2j−1 max

paC∗ (j)
e−α2PB(paC∗ (j))Θj|paC∗ (j)N/2 (56)

for α = 1
16

min(i,j)∈E∗ IPBC∗
(Xi, Xj|PaC∗i,j(j))

⇒ Pr(SN(G∗) ≥ max
G,PB∗∈B∗\B

SN(G)) > 1− δ (57)

(Or: the MDL score with Ψ(N) = o(N) is asymptotically consistent for graphs with

PB∗ ∈ B∗ \B)

Proof Let δ ∈ (0, 1) be given. In the same way as in the ideal case (proposition 1) we

can say that:

(|G∗| − n)Ψ(N)

N
≤ min

(i,j)∈E∗
{H

P̂N
(Xj|PaC∗i,j(j))−H

P̂N
(Xj|PaC∗(j))}

⇒ SN(G∗) = max
G,PB∗∈B∗\B

SN(G) (58)

From lemma 9 with α = 1
16

mini,j IPBC∗
(Xi, Xj|PaC∗i,j(j)) we get, using the union

bound, that

Pr( min
(i,j)∈E∗

{H
P̂N

(Xj|PaC∗i,j(j))−H
P̂N

(Xj|PaC∗(j))} ≥ 1

2
min

(i,j)∈E∗
IPBC∗

(Xi, Xj|PaC∗i,j)) ≥
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1− ∑

(i,j)∈E∗
12 · 2j−1 max

paC∗ (j)
e−α2PB(paC∗ (j))Θj|paC∗ (j)N/2 (59)

So from the last two equations we get that if

(|G∗| − n)Ψ(N)

N
≤ 1

2
min

(i,j)∈E
IPB∗ (Xi, Xj|PaC∗i,j) (60)

then

Pr(SN(G∗) ≥ max
G,PB∗∈B∗\B

SN(G)) > 1− δ (61)

for

δ >
∑

(i,j)∈E∗
12 · 2j−1 max

paC∗ (j)
e−α2PB(paC∗ (j))Θj|paC∗ (j)N/2 (62)

Finally, we got two requirements for N: eq. 60 and eq. 62. Assuming Ψ(N) = o(N),

the first requirement (eq. 60) is satisfied for N larger than N0 = N0(B
∗), independent

of δ. The second requirement is satisfied for N > N0(B
∗, δ). Thus, we can conclude

that the MDL score is asymptotically consistent for G with PB∗ ∈ B∗ \B.

Proposition 4 Let ε0 > 0 small enough and δ > 0. For Ψ(N) = log(N)
2

and 0 < ε < ε0

we get:

N ≥ N∗
0 =

max{2(|G∗| − n)

γ3
· 1
ε2

log(
2(|G∗| − n)

γ3
· 1
ε2

), 512[log(
1

δ
)+log(6)+n log(2)+log

(
n

2

)
](

1

γ
)n+6(

1

ε
)4} =

O((
1

γ
)n(

1

ε
)4(n + log(

1

δ
)))

⇒ SN(G∗) = max
G,PB∗∈B∗\B

SN(G) (63)

Proof From proposition 2 we can conclude that for γ = γ(C∗) the first requirement

(eq. 60) is translated to

N ≥ 2(|G∗| − n)

γ3
· 1

ε2
log(

2(|G∗| − n)

γ3
· 1

ε2
) =

O(2n(
1

γ
)3(

1

ε
)2(log

1

ε
+ log

1

γ
+ n)) (64)

(the multiplication with 2 is performed because of the extra 1
2

in eq. 60).

The second requirement (eq. 62) is satisfied for

δ > 12 · 2n−1 ·
(
n

2

)
· e− γ6ε4γnN

512 (65)
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where γ = γ(C∗). The last equation is translated to

N > 512[log(
1

δ
) + log(6) + n log(2) + log

(
n

2

)
](

1

γ
)n+6(

1

ε
)4 =

O((
1

γ
)n(

1

ε
)4(log(

1

δ
))) (66)

Combining the two requirements together results in

N∗
0 (BC∗ , δ) =

max{2(|G∗| − n)

γ3
· 1
ε2

log(
2(|G∗| − n)

γ3
· 1
ε2

), 512[log(
1

δ
)+log(6)+n log(2)+log

(
n

2

)
](

1

γ
)n+6(

1

ε
)4} =

O((
1

γ
)n(

1

ε
)4(n + log(

1

δ
))) (67)

3.2.2 Graphs G with PB∗ ∈ B ∩B∗

Now, we require that that Pr(SN(G∗) ≥ maxG,PB∗∈B∩B∗ SN(G)) ≥ 1− δ. In this section

lemma 3 is not valid, so we will use a different approach to show that the MDL score

is asymptotically consistent and to find the dependency of the upper bound on B∗ and

on δ.

Notice that in this section |G| > |G∗|, because otherwise G is a smaller graph that

contains PB∗ , which is a contradiction to the minimality of G∗.

Lemma 10

LLN(G)− LLN(G∗) ≤ Ψ(N) ∀G, |G| > |G∗| ⇒
SN(G∗) ≥ max

G,|G|>|G∗|
SN(G) (68)

Proof Suppose LLN(G)− LLN(G∗) ≤ Ψ(N) ∀G, |G| > |G∗|.

SN(G∗) =

LLN(G∗)− |G∗|Ψ(N) ≥ LLN(G)−Ψ(N)− |G∗|Ψ(N) =

LLN(G)− (|G∗|+ 1)Ψ(N) ≥ LLN(G)− |G|Ψ(N) =

SN(G) (69)

⇒ SN(G∗) ≥ max
G,|G|>|G∗|

SN(G)
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Lemma 11 Let α ∈ (0, 1), ∀G, |G| > |G∗| :

Pr(LLN(G)− LLN(G∗) ≤

−N
n∑

i=1

HPB
(Xi|PaG(i)) + N

n∑

i=1

HPB∗ (Xi|PaG∗(i)) + 8αnN) ≥

1− 2(n
2) max

G,|G|≥|G∗|
n max

1≤i≤n
6

∑

paG(i)

e−α2PB(paG(i))Θi|paG(i)N/2 (70)

Proof From lemma 7 we can conclude, using the union bound, that for G ∈ Λn

Pr(|LLN(G) + N
n∑

i=1

HPB
(Xi|PaG(i))| ≤ 4αnN) ≥

1− n max
1≤i≤n

6
∑

paG(i)

e−α2PB(paG(i))Θi|paG(i)N/2 (71)

Thus, we can say that ∀G, |G| ≥ |G∗| :

Pr(LLN(G)− LLN(G∗) ≤

−N
n∑

i=1

HPB
(Xi|PaG(i)) + N

n∑

i=1

HPB∗ (Xi|PaG∗(i)) + 8αnN) ≥

1− 2(n
2) max

G,|G|≥|G∗|
n max

1≤i≤n
6

∑

paG(i)

e−α2PB(paG(i))Θi|paG(i)N/2 (72)

Proposition 5 For graphs with PB∗ ∈ B ∩B∗ and Ψ(N) = Nη, η ∈ (1
2
, 1):

δ ≥ 2(n
2) max

G,|G|≥|G∗|
n max

1≤i≤n
6

∑

paG(i)

e−
N2η−1PB(paG(i))Θi|paG(i)

162n2 ⇒

Pr(SN(G∗) ≥ max
G,PB∈B∩B∗

SN(G)) > 1− δ (73)

(Or: the MDL score with the above penalty function is asymptotically consistent for

graphs with PB∗ ∈ B∗ ∩B in the noisy case)

Proof Let α = Ψ(N)
9nN

. Since we know that in the ideal case

LLN(G∗) = LLN(C∗) ≥ LLN(G), ∀G

Or

−N
n∑

i=1

HPB∗ (Xi|PaG∗(i)) = −N
n∑

i=1

HPBC∗
(Xi|PaC∗(i)) ≥ −N

n∑

i=1

HPB
(Xi|PaG(i))
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using the last equation and lemma 11, we get that ∀G, |G| > |G∗| :

Pr(LLN(G)− LLN(G∗) ≤ 8αnN) ≥

1− 2(n
2) max

G,|G|≥|G∗|
n max

1≤i≤n
6

∑

paG(i)

e−α2PB(paG(i))Θi|paG(i)N/2 (74)

(Since: −N
∑n

i=1 HPB
(Xi|PaG(i)) + N

∑n
i=1 HPB∗ (Xi|PaG∗(i)) + 8αnN ≤ 8αnN)

And for the specified α we get that ∀G, |G| > |G∗| :

Pr(LLN(G)− LLN(G∗) ≤ 8

9
Ψ(N)) ≥

1− 2(n
2) max

G,|G|≥|G∗|
n max

1≤i≤n
6

∑

paG(i)

e−
N2η−1PB(paG(i))Θi|paG(i)

162n2 (75)

From lemma 10 we get that

Pr(SN(G∗) ≥ max
G,|G|>|G∗|

SN(G)) > 1− δ

for

δ ≥ 2(n
2) max

G,|G|≥|G∗|
n max

1≤i≤n
6

∑

paG(i)

e−
N2η−1PB(paG(i))Θi|paG(i)

162n2 (76)

and since the graphs G with PB ∈ B ∩ B∗ form a subset of the graphs G with

|G| > |G∗| we can say that for Ψ(N) = Nη, η ∈ (1
2
, 1) we get

δ ≥ 2(n
2) max

G,|G|≥|G∗|
n max

1≤i≤n
6

∑

paG(i)

e−
N2η−1PB(paG(i))Θi|paG(i)

162n2 ⇒

Pr(SN(G∗) ≥ max
G,PB∈B∩B∗

SN(G)) > 1− δ (77)

The last equation is satisfied for N > N0(B
∗, δ), and thus we can say that for G with

PB∗ ∈ B ∩B∗ the MDL score, with Ψ(N) = Nη, η ∈ (1
2
, 1), is asymptotically consistent

Proposition 6 Let δ > 0 and Ψ(N) = Nη, η ∈ (1
2
, 1)

N ≥ N∗
0 (B, δ) = [162n2(

1

γ
)n{log(

1

δ
) +

(
n

2

)
log(2) + 2 log(n) + log(6)}] 1

2η−1 =

O([n2(
1

γ
)n(log(

1

δ
) + n2)]

1
2η−1 ) ⇒

P (SN(G∗) = max
G,PB∗∈B∩B∗

SN(G)) > 1− δ (78)
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Proof In order to find out when eq. 77 is satisfied we denote:

γ̃ = min
G,|G|≥|G∗|

γ(G)

From the definition of γ̃ we can say that eq. 77 is satisfied for

δ ≥ 2(n
2) · n · 6 · (n− 1) · e−N2η−1γn

162n2 (79)

And the N that satisfies the last equation is

N ≥ [162n2(
1

γ
)n{log(

1

δ
) +

(
n

2

)
log(2) + 2 log(n) + log(6)}] 1

2η−1 (80)

And we can say that

N∗
0 (B, δ) = [162n2(

1

γ
)n{log(

1

δ
) +

(
n

2

)
log(2) + 2 log(n) + log(6)}] 1

2η−1 =

O([n2(
1

γ
)n(log(

1

δ
) + n2)]

1
2η−1 ) (81)

4 Comparing our results to prior works

As far as we know the only results that deal with the consistency of the MDL score, with

respect to learning the correct BN structure, and give bounds to the sample complexity

of learning the correct BN structure are derived from the combination of the works of

Geiger et. al. [16] and Haughton [13], [14].

Before introducing these results a few definitions are in order.

An exponential family is a set of probability density functions which are given by

P (x|η) = e〈η,t(x)〉−Ψ(η) (82)

where x is an element of a sample space χ with a dominating measure η and t(x) is a

sufficient statistic defined on χ taking values in Rk with an inner product. The quantity

Ψ(η) is the normalization constant. Where η has k coordinates and when P (x|η) can’t be

represented with a parameter vector smaller then k, then the representation is minimal

and the order (dimension) of this family is k, and the parameters are called natural

parameters. The natural parameter space is given by

N = {η ∈ Rk|
∫

e〈η,t(x)〉−Ψ(η)dη(x) < ∞} (83)
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A diffeomorphism f : U ⊂ Rn → Rm is a smooth (C∞) 1 − 1 function having

a smooth inverse. A subset M of Rn is called a k-dimensional smooth manifold in

Rn if for every point x ∈ M there exists an open set U in Rn containing x and a

diffeomorphism f : U ∩M → Rk [16].

A curved exponential family of dimension n is a subfamily of an exponential family

of order k, such that its natural parameter space N0 ⊂ N is a n-dimensional smooth

manifold in Rk.

Geiger et. al. [16] showed that BNs without hidden variables are curved exponential

families. Haughton [13] proved that the MDL score with the BIC penalty is asymptoti-

cally consistent, when trying to learn the structure of a curved exponential model from

data.

Translating this result to our context, meaning, to BNs without hidden variables, we

get that Haughton showed that the MDL score with the BIC penalty is asymptotically

consistent when trying to learn the correct BN structure from data.

When comparing these results to our work, we can see that for graphs G with PB∗ ∈
B∗\B our results are more general, since we prove that the MDL score is asymptotically

consistent with any penalty Ψ(N) = o(N). For graphs G with PB∗ ∈ B ∩ B∗ we

showed that the MDL score is asymptotically consistent with the penalty Ψ(N) = Nη,

η ∈ (1
2
, 1). The results of Haughton are stronger than our results, since she proved that

the MDL score is asymptotically consistent with the BIC penalty (which is a smaller

penalty function), but since in this part we are talking about graphs G larger than G∗

(|G| > |G∗|), and if the MDL score is asymptotically consistent with the BIC penalty,

it will sure be asymptotically consistent with penalties larger than the BIC penalty.

In a later work of Haughton [14], she derived bounds on the size of the error of

learning a wrong model when using the MDL score with the BIC penalty. Meaning, she

bounded the probability of learning a wrong model instead of the correct one.

She got the following results (translated to BNs language):

1. For G with PB∗ ∈ B∗ \ B Haughton said that the probability to learn a wrong

model is bounded by O(e−Nα), for some α > 0 as N →∞ (N is the samples number).

In order to compare this to our results of Section 3.2.1, we have to use the prob-

abilities that Haughton got to understand the upper bound on the sample complexity

needed to learn the correct BN with probability > 1 − δ. Since there are at most 2(n
2)

binary ordered BNs we can say, using Haughton’s results, that if

δ

2(n
2)

= O(e−Nα) (84)
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we will learn the correct BN with probability > 1− δ. The upper bound on the sample

complexity is:
log(1

δ
) + log(a) + n2

α
(85)

where a > 0 is some constant. Meaning, if

N ≥ log(1
δ
) + log(a) + n2

α
(86)

the right BN structure is learned with probability > 1− δ.

When comparing this to our result (eq. 67), we see that the dependency on δ is the

same in our result and in Haughton result (N ≥ O(log(1
δ
))). Moreover, we gave upper

bounds on α and a as a function of the BN parameters (γ, ε, |G∗| and n).

2. For G with PB∗ ∈ B∗∩B Haughton showed that the probability to learn a wrong

model is bounded by O(N−k) for some k > 0, as N → ∞. She also expressed k as a

function of the size of the wrong learned model (|G|), the size of the correct model (|G∗|),
and the the eigenvalues of the second derivative matrix Q = ( ∂2Ψ

∂ηi∂ηj
(η))i,j=1,...,s, where

η = (η1, . . . , ηs) is the dominating measure of the correct exponential family, Ψ(η) is

the normalization factor of the probability distribution of the correct exponential family

and s is the dimension of the correct exponential family (see eq. 82).

In order to compare these results with ours of Section 3.2.2, we will present the

results Haughton got in the way we did in 1:

If
δ

2(n
2)

= O(N−k) (87)

we will learn the correct BN with probability > 1− δ. For

N ≥ (
2(n

2)a

δ
)

1
k (88)

where a > 0 is some constant, we will learn the right BN structure with probability

> 1− δ.

When comparing this with our results in eq. (81) we can see that in our result the

dependency of N on δ is logarithmic, whereas Haughton gets a polynomial dependence

of N on δ. Moreover, we specified the dependence of the sample complexity bound on

the BN parameters. So for the penalty we work with (Ψ(N) = Nη, η ∈ (1
2
, 1)) our result

is better, but Haughton derived bounds on the sample complexity when working with

the BIC penalty, and thus she gives more information than we do about the bounds on

the sample complexity, when trying to learn the correct BN structure from data in this

case.
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5 Discussion

The goal of this work was to investigate the sample complexity (N) needed in order to

learn the right BN structure from data. The scoring criterion we used in order to rank

the different BN structures is the MDL score. As a first step we asked whether it is

possible to learn the structure of the correct BN from data using the MDL score, for

some N large enough, with high probability. Another way of asking this question is to

ask whether the MDL score is asymptotically consistent. Only if the answer to the above

question is yes, can we start talking about an upper bound on the sample complexity

one needs in order to learn the right BN structure from data with high probability.

Throughout our work, we assume that the ordering of the variables is known.

In order to simplify the discussion, we first assumed that the data has no sampling

noise (ideal case). In this case we are talking about consistency of the MDL score and

not asymptotical consistency, because we work with sampling without noise, and thus

we can be sure that as N → ∞ the right BN structure is learned. We proved that in

this case the MDL score with penalty Ψ(N) = o(N) is consistent. Then we derived an

upper bound on the sample complexity needed to learn the right BN structure in the

ideal case, using the BIC penalty. We got

(|G∗| − n)

γ3
· 1

ε2
log(

(|G∗| − n)

γ3
· 1

ε2
) =

O((
1

γ
)3(

1

ε
)2(log

1

ε
+ log

1

γ
+ n)) (89)

as an upper bound on the sample complexity needed to learn the right BN structure

in the ideal case. This bound depends on the BN parameters of G∗. We can see that

the sample complexity needed to learn the right structure is decreases (increases) as ε

increases (decreases), meaning, when the influence of a parent on its child is low (high),

it will be hard (easy) to learn this edge in the graph. We can also see that the sample

complexity needed to learn the right structure is decreases (increases) as γ increases

(decreases). γ > 0 is the lowest distance of the parameters of C∗ from 0 and 1 (the

’non-determinism’ parameter, see eq. 3). This can be explained with the following

example: Suppose X1 and X2 are two binary variables that are connected with an edge

from X1 to X2. Let P (X1 = 1) = 0.0001 (or even lower). Then in most of the samples

X1 will be 0 and it will seem as if P (X2 = 1|X1 = 0) = P (X2 = 1), thus, it will be very

hard to learn the edge (X1, X2).

In the same way we derived the last bound, we can also derive an upper bound

on the sample complexity needed to learn the right structure, using any other penalty
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Ψ(N) = o(N).

After understanding the behavior of the sample complexity bound in the ideal case we

continued with the noisy case. In this case we divided the BNs space to two subsets. The

first one includes BNs that don’t contain the real probability. Meaning, PB∗ ∈ B∗ \ B.

It can be noticed that all graphs G with less parameters then G∗ (|G| < |G∗|) are in this

subset. The second one includes the rest of the BNs, meaning, it includes all BNs with

PB∗ ∈ B ∩ B∗. All the graphs in this subgroup have more parameters than the correct

graph.

For the BNs in the first subgroup we showed the the MDL score is asymptotically

consistent for any penalty Ψ(N) = o(N). The upper bound we got on the sample

complexity needed to learn the correct structure with probability > 1−δ, using the BIC

penalty is

N ≥ max{2(|G∗| − n)

γ3
· 1
ε2

log(
2(|G∗| − n)

γ3
· 1
ε2

), 512[log(
1

δ
)+log(6)+n log(2)+log

(
n

2

)
](

1

γ
)n+6(

1

ε
)4} =

O((
1

γ
)n(

1

ε
)4(n + log(

1

δ
))) (90)

We can see that in this case the sample complexity needed to learn the right structure

is decreases (increases) when ε / γ / δ increases (decreases). The relation between the

upper bound and ε is the same as in the ideal case. The relation between the upper

bound and γ and the upper bound and ε is much stronger here compared to the ideal

case. This can be explained in one of two ways: the first reasonable explanation is that

it is much harder to learn the BN structure from noisy data; the second explanation is

that our bound in the noisy case is not tight. Probably, both of the explanations are

correct. The relation between the upper bound and δ means that the higher (lower)

the probability we want to learn the correct structure, the higher (lower) the sample

complexity needed (which is obvious). In the same way we derived the last bound, we

can also derive an upper bound for the sample complexity needed to learn the right

structure, using any other penalty Ψ(N) = o(N).

For the BNs in the second subgroup we showed the the MDL score is asymptotically

consistent for penalty Ψ(N) = Nη, η ∈ (1
2
, 1). The upper bound we got on the sample

complexity needed to learn the correct structure with probability > 1 − δ, using the

above penalty is

[162n2(
1

γ
)n{log(

1

δ
) +

(
n

2

)
log(2) + 2 log(n) + log(6)}] 1

2η−1 =

O([n2(
1

γ
)n(log(

1

δ
) + n2)]

1
2η−1 ) ⇒ (91)
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We can see that as in the previous case, in this case the sample complexity needed to

learn the right structure is decreases (increases) as γ / δ increases (decreases). Moreover,

the higher (lower) the penalty is, the lower (higher) the sample complexity needed to

learn the correct structure (dependence on η), which is very reasonable since in this

subgroup we are looking only on graphs with more parameters than the correct one.

All the bounds also increase (decrease) when the number of variables in the correct

BN, n, increase (decrease): In order to learn the correct structure of a BN with more

(less) variables one needs more (less) samples.

Our work follows prior work, which is a combination of Haughton ([14], [13]) and

Geiger et. al. ([16]). This work talks indirectly about the asymptotical consistency of the

MDL score with the BIC penalty, when learning the correct BN structure, and derives

bounds on the size of the error of learning a wrong structure instead of the correct one.

In our work we expend this work in a few ways.

First, for BNs with PB∗ ∈ B∗ \B, we showed that the MDL score is asymptotically

consistent for any penalty Ψ(N) = o(N), whereas, they showed that the MDL score is

asymptotically consistent only for the BIC penalty. Moreover, we presented the upper

bound on the sample complexity of learning the right structure, as a function of both δ

and the correct BN parameters. They only gave an bound on the error which depends

on δ, and didn’t specify the dependency on the BN. For BNs with PB∗ ∈ B∗ ∩ B they

showed that the MDL score is asymptotically consistent with a better penalty then us,

but we also specified the dependency of the upper bound we found on the correct BN

parameters.

There is more to be done in order to complete and expend our work:

1. Complete the proof of asymptotical consistency of BNs with PB∗ ∈ B∗ ∩ B for

any penalty Ψ(N) = o(N), Ψ(N) → ∞, and derive the upper bound on the sample

complexity of learning the correct structure from data. One way of doing it is by

translating the work on curved exponential families that Haughton ([14], [13]) did to

the language of BNs. We have started to work in this direction.

2. Check whether the bounds we got are tight. One way of doing it is by doing

simulations on the process of learning the correct BN structure from data.

3. Derive lower bounds on the sample complexity of learning the right BN structure

from data.

4. Work with all kinds of graphs, not only with graphs with ordered variables.

5. Think about ease the requirements of the structure learned. Meaning, allow to

learn BNs with graphs which are similar to the correct one. This similarity can be
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defined in various ways, for example: graphs with less then 5% difference between their

edges can be called similar.

To conclude, the upper bounds we got in this work indicate that it is very difficult

to learn the correct structure of a BN from data, with high probability. In order to do

so one needs an enormous amount of data. This amount is increased when the variables

number of the BN are high and when we want to learn the correct structure with a very

high probability (relation to δ). It is also increased when there are parameters in the

BN which are very close to 0 or to 1 (relation to γ), and when there are ’weak’ parents

in the BN, i.e., parents with low influence on their children (relation to ε). Moreover,

the upper bounds we gave can be even higher in real life since we worked with ordered

variables, and we assumed that we are computationally unbounded.

In the next part of my thesis I developed a heuristic algorithm for reconstructing

biological transcriptional networks from gene expression microarray data and sequence

data. In light of the results in this part, and the fact that there are only a few dozen

samples in gene expression microarray data, I chose not to use BNs in order to learn

the structure of the networks.
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Part II

An algorithm for Reconstructing

Transcriptional Regulatory

Networks

6 Introduction

6.1 Biological Motivation

Understanding transcriptional regulatory networks is a crucial step towards understand-

ing fundamental cellular processes, such as growth control, cell-cycle progression and

development, as well as differentiated cellular function such as hormone secretion and

cell-cell communication [22]. On a fundamental level, transcription determines when

and which genes are expressed. The determination of factors that control expression

can offer further insight into the misregulated expression that is common in many hu-

man diseases ([23], [24]). In order to understand transcriptional regulatory networks one

needs to ’reverse engineer’ the regulatory mechanism, given information that we have,

like gene expression data under various conditions, the upstream region of all genes

and biological experiments that check whether a transcription factor binds to a gene’s

promoter.

6.2 Recent work

Much research has been done in order to understand transcriptional regulatory networks

in the past few years. Researchers approached to this issue in various ways. One strategy

infers global networks directly from whole genome microarray data.

Qian et al. [25] introduced an approach based on support vector machines (SVMs)

to predict the targets of a transcription factor by identifying subtle relationships between

their expression profiles. They worked with microarray expression data of Saccharomyces

Cerevisiae, and constructed pairs of a transcription factor (TF) and one of its known

targets. Each pair was identified by a vector containing the gene expression data of

the TF and the gene expression data of the target. The vector length (L) was twice as

long as the number of samples taken for each gene in the gene expression data. They
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also constructed pairs of genes that are known not to be a TF and its target. They

took the good and bad examples of TF-target relationship as points in an L-dimension

hyperplane, and used SVM in order to separate the hyperplane, with good examples

on one side of the separating manifold and bad example on the other side. Now they

looked at pairs of Saccharomyces Cerevisiae genes and checked where their vector of

expressions falls; if it falls on the good examples side, this pair is considered to be a

TF-target pair.

Ihmels et al. [26] used microarray expression data of Saccharomyces Cerevisiae

in order to build transcription modules which consist of a set of genes that are co-

regulated in a specific cellular context, and a set of experimental conditions where this

co-regulation is most stringent. They used the signature algorithm [27] in order to do

so. The signature algorithm is an iterative algorithm that give scores to the genes and

to the conditions. The genes’ scores are combined of the condition scores and the gene

expression over all conditions. The conditions’ scores are combined of the genes scores

and the condition expression over all genes. A transcription module contains the genes

and conditions that their scores passed a certain threshold.

A different strategy combines between the whole genome microarray data approach

and another approach which focuses on the identification of shared regulatory motifs in

the promoters of co-regulated genes, signified by similar expression profiles.

Many approaches (e.g. [28], [29], [30], [31], [32]) use gene expression measurements

to define clusters of genes that are potentially co-regulated, and then search for common

motifs in the upstream regions of the genes in each cluster. Segal et al. [4] developed a

procedure that identifies modules of co-regulated genes, their regulators and the condi-

tions under which regulation occurs. The difference between their work and other works

is the fact that their algorithm works in an iterative way. It begins by clustering the ex-

pression data, creating one module from each of the resulting clusters. Then it searches

for a common motif in the upstream regions of genes assigned to the same module. It

then iteratively refines the model, trying to optimize the extent to which the expres-

sion profile can be predicted transcriptionally. They use the Expectation-Maximization

(EM) algorithm in order to learn the modules of the genes and the regulators of each

module properly. For example, if a gene in a cluster has the motif of a regulator of a dif-

ferent cluster and doesn’t have the motifs of the regulators of its own cluster, that gene

is moved to the other cluster (a more mathematical explanation of this work can be seen

in part I, section 1.2). This algorithm was also tested on Saccharomyces Cerevisiae

microarray data.
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Xing et. al. [33] developed a classifier for constructing transcriptional regulatory

networks using gene expression and sequence data. They first determined which TFs

are active in each experiment, using gene expression data; They assumed that each

TF expression has a normal distribution, and associated a p-Value to the expression

of each TF in an experiment, indicating the significance of the association between the

TF and the gene expression changes. If the p-Value is small enough they assumed

that the TF is active in the experiment. Next, for each experiment they calculated the

probability that each active TF regulates each of the genes that contain the binding site

of this TF in their promoter (the potential targets of the TF). They assumed that the

potential targets gene expression of each TF in each experiment are from a mixture of

three normal distributions: target genes that are repressed, not significantly regulated

and induced, under an experimental condition. They learned the mixing proportion,

mean and variance of each such distribution, and using these values they calculated the

probability that a gene is regulated (activated/repressed) by a TF in each experiment.

Last, for each TF and gene they calculated an average value, over all experiments, that

represents the probability that the TF regulates the gene, and if this value passed a

certain threshold they assumed that the TF regulates the gene. This classifier was

tested on Saccharomyces Cerevisiae microarray data.

6.3 Interesting Observations

I measured the relation between two genes in two ways. The first one is measuring

the Correlation Coefficients (CC) between expression of the genes, which searches for

the linear relation between them (see section 7.2.1). The second one is measuring the

Mutual Information (MI) between the expression of the genes, which captures also the

non-linear relations between them (see section 7.2.2).

When I looked deeply at various gene expression data sets I discovered that the

distribution of the relation between gene expression values of TFs and their target genes

is very similar to the distribution of the relation between expressions of two random

genes. That is, it is very hard to learn about a transcriptional connection between a

TF and a gene from the relation between their expression values. As opposed to this

observation, the distribution of the relation between two genes that are regulated by the

same TF (also referred to as SIM genes in this work) is different from the distribution

of the relation between two random genes. This difference is even stronger when the

two genes are regulated by the same pair of TFs (also referred to as MIM genes in this

work). In both cases, when the relation between two genes is higher it is more likely
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that the two genes share one or more TFs, and when the relation is low it is more likely

that the two genes are not co-regulated. Examples of the distribution functions that

demonstrate these observations can be seen in two different data sets for CC in figures

4 and 6 and for MI in figures 5 and 7.

These observations contradict previous approaches that use only correlation between

a TF and a putative target gene in order to determine whether the TF indeed regulates

the gene, for example, the approach by which Qian et. al. [25] learned direct transcrip-

tional relations in Saccharomyces Cerevisiae, and Xing et. al. approach [33].

I used these findings to develop a method for learning direction relations between

TFs and their target genes in human transcriptional network.
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Figure 4: CC Distribution functions of the Milyavsky data (see section 7.5). CC is the absolute value of the correlation

coefficients (see section 7.2.1). In all three graphs the blue line is the distribution function of the CC between 2 random

genes in this data set (Dist CC rand, see section 7.2.3 step I). This distribution function is a discrete function that

was calculated by dividing the [0,1] interval to 10, equal in size, bins. The vertical dotted blue line represents the mean

of the distribution function. The vertical ’XXX’ blue line represents the median of the distribution function. The two

vertical broken blue lines represent one standard deviation (std) of the distribution function from the mean. All other

distribution function were also calculated by dividing the [0,1] interval to 10 equal bins. a. The red line is the distribution

function of the CC between a TF and its target (Dist CC tf target, see section 7.2.3 step I). The vertical dotted red

line, the vertical ’XXX’ red line and the vertical broken red lines represent the mean, median and std of the TF-target

pairs distribution function respectively. b. The red line is the distribution function of the CC between genes that are

known to be regulated by the same TF (Dist CC SIM genes, see section 7.2.3 step I). The vertical dotted red line,

the vertical ’XXX’ red line and the vertical broken red lines represent the mean, median and std of the TF-target pairs

distribution function respectively. c. The red line is the distribution function of the CC between genes that are known to

be regulated by two identical TFs (Dist CC tf target, see section 7.2.3 step I). The vertical dotted red line, the vertical

’XXX’ red line and the vertical broken red lines represent the mean, median and std of the TF-target pairs distribution

function respectively.
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Figure 5: MI Distribution functions of the Milyavsky data (see section 7.5). MI is the mutual information (see section

7.2.2). In all three graphs the blue line is the distribution function of the MI between 2 random genes in this data set

(Dist MI rand, see section 7.2.3 step I). This distribution function was calculated by dividing the MI interval to 10,

equal in size, bins. The vertical dotted blue line represents the mean of the distribution function. The vertical ’XXX’ blue

line represents the median of the distribution function. The vertical broken blue lines represent the standard deviation

(std) of the distribution function. All Other distribution functions were also calculated by dividing the MI interval to 10

equal bins. a. The red line is the distribution function of the MI between a TF and its target (Dist MI tf target, see

section 7.2.3 step I). The vertical dotted red line, the vertical ’XXX’ red line and the vertical broken red lines represent

the mean, median and std of the TF-target pairs distribution function respectively. b. The red line is the distribution

function of the MI between genes that are known to be regulated by the same TF (Dist MI SIM genes, see section 7.2.3

step I). The vertical dotted red line, the vertical ’XXX’ red line and the vertical broken red lines represent the mean,

median and std of the TF-target pairs distribution function respectively. c. The red line is the distribution function of

the MI between genes that are known to be regulated by two identical TFs (Dist MI tf target, see section 7.2.3 step

I). The vertical dotted red line, the vertical ’XXX’ red line and the vertical broken red lines represent the mean, median

and std of the TF-target pairs distribution function respectively.
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Figure 6: CC Distribution functions of the Colon data (for annotations see figure 4).
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Figure 7: MI Distribution functions of the Colon data (for annotations see figure 5).
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6.4 My approach

I present here a method for completing knowledge on a local regulatory network for which

I have partial information. This method works with both gene expression microarray

data and with information on the binding sites of transcription factors. The key concept

of this method is that in order to learn whether a TF T regulates a gene G one needs to

look at the relation between G and other genes that T regulates. Moreover, if we have

a known target G̃ of T which is also a known target of another TF that also regulates

G, the relation between G̃ and G can tell us more about whether G is a target of T.

In order to determine the relation between two genes our algorithm measures both CC

and MI between these two genes. My method receives a TF T, a gene G and some prior

knowledge on the regulatory network related to T and / or G . Using gene expression

microarray data it calculates a score indicating whether T regulates G. The score is

combined of CC and MI measurements of relations between G and T, relations between

G and genes that are known to be regulated by T and relations between G and genes

that are regulated by both T and by another TF that also regulates G. If a score exceeds

a certain threshold I conclude that T regulates G. At this point I also check the promoter

of G in order to examine whether T’s binding site sequence appears in G’s promoter

with high probability compared to a random promoter.

The main difference between this method and other methods is the fact that other

methods look on the entire genome globally, while this method asks ’local’ questions

about a particular TF and gene at a time. Another difference is that most approaches

use the relation between co-regulated genes (Segal et al. [4]) or between a TF and a

gene (Qian et. al. [25]), but do not combine the two, as this method does. Moreover,

this method uses both linear (CC) and non-linear (MI) relations between genes, while

others use only linear relation between genes. The main disadvantage of our method is

the fact that it needs prior information about genes that the TF under study is known

to regulate. Another disadvantage of this method is that due to the fact that it looks

on specific genes and not on clusters of genes it is very sensitive to noise.

I checked the method on human microarray datasets, which is also interesting since

most works in this area checked their results on Saccharomyces Cerevisiae microarray

data.
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7 Methods and Materials

7.1 Database of human TF-target pairs (HTFT)

I constructed a database of human TF-target pairs. The database contains 54 TFs, 80

targets and 141 pairs. A TF in one pair can be a target in another pair. Most of the

database pairs are taken from TRANSFATH, Some of them are also taken from the

literature.

7.2 The Algorithm

Before describing the algorithm I want to explain how I calculate CC and MI.

Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn}.

7.2.1 Calculating Correlation Coefficients

The known equation of Correlation Coefficients is:

corrcoef(X, Y ) =
Cov(X,Y )√

Cov(X,X)Cov(Y, Y )
(92)

where Cov(X, Y ) is the covariance between X and Y. corrcoef(X, Y ) returns a number

between -1 and 1. In my calculations I take the absolute value of this number, because

at the first stage of my work I only ask if a transcription factor regulates a gene and not

whether the regulation is activation or repression, and thus I am not interested in the

sign. So, in this work I set

CC(X,Y ) =| corrcoef(X,Y ) |

7.2.2 Calculating Mutual Information

The known equation of Mutual Information between two factors X, Y is:

I(X, Y ) =
∑

x∈X

∑

y∈Y

P (X,Y ) log
P (X, Y )

P (X)P (Y )

The way I calculate MI in my context is the following. Say X and Y stand for the

expression levels of two genes, measured for n samples. I get n pairs of the kind (Xi, Yi),

i = 1, . . . , n. I divide the plane into rectangular bins of points. The way I do it

is by dividing the square with the corners (0, 0), (maxi=1...n Xi, 0), (0, maxi=1...n Yi),

(maxi=1...n Xi, maxi=1...n Yi) into n
6

rows and n
6

columns (if n
6

is not a natural number I
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take the rounded value of it). I get n2

36
bins. Now, I take bins with a number of points

that is much higher then average and divide them further, because I want to take a closer

look into regions with a large concentration of points. So, if a row (column) contains

more than four times the average number of points in each row (column) I divide this

row (column) into a few, equal in size, parts (the number of parts is proportional to the

number of points in this row (column)). An example can be seen in figure 8. Now, for

these bins the MI can be calculated:

MI(X, Y ) =
]columns∑

i=1

]rows∑

j=1

r(i, j) log
r(i, j)

p(i)q(j)

Where r(i, j) is the fraction of points in square (i, j) (out of the n points in the plane),

p(i) is the fraction of points in column i (out of the n points) and q(j) is the fraction of

points in row j (out of the n points).
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Figure 8: The squared bins of points from which I calculate the MI. Each vector (Vector X in axes X and vector Y

in axes Y) contains 30 points. The column between 12 and 18 is divided into two sub columns, because the number of

points in this column > 24 = 6 * 4, where fix is the average number of points in each column. From the same reason the

row between 18 and 24 is divided into two sub rows (the broken lines).

7.2.3 Algorithm Description

The algorithm receives as an input the following arguments:

1. A Transcription factor T.

2. A list {g1, . . . , gn} of the n genes that are known to be regulated by T .

3. A gene G.

4. Gene expression microarray data.

5. The database of human TF-target pairs (HTFT).

Remark: we assume that HTFT contains the pairs (T, gi), i = 1, . . . , n. If these pairs

are not in HTFT they should be added to the table before running the algorithm for

this T.
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The algorithm checks whether T regulates G. The algorithm gives a score to T,

indicating the certainty that T regulates G. If this score passes a certain threshold Θ,

the algorithm assumes that G is a target of T, and it’s output is 1. Otherwise, the

algorithm assumes that G is not a target of T and it’s output is 0.

Step I: Constructing the distribution functions

As a first step the algorithm constructs the distribution functions of the following dis-

tributions (these functions describe the distributions of the gene expression microarray

data that is one of the algorithm inputs):

1. Distribution of CC between random genes (Dist CC rand): the algorithm chooses

randomly 10000 pairs of genes of the gene expression microarray, and calculates for

each pair the CC between the two expression vectors. The distribution function is a

discrete function that is calculated in the following way: I divide the CC interval (the

[0, 1] interval) into 100 non-intersecting bins, count the number of CCs (from the 10000

random genes’ CCs) in each bin and divide this number by 10000 (for normalization).

More formally, Let x ∈ [0, 1] be a CC value of two genes

Dist CC rand(x) =
i

101
< ]CC ≤ i+1

101

10000

for i
101

< x ≤ i+1
101

and i = 0, . . . , 100.

2. Distribution of MI between random genes (Dist MI rand): This distribution

function is calculated in the same way as the previous one, with one exception. Here

the interval is between 0 and max MI (instead of 1), where max MI is the maximum

MI of all 10000 random MIs.

3. Distribution of CC between transcription factors and their targets (Dist CC tf target):

the algorithm goes over the pairs in HTFT and calculates the CC between each pair.

The distribution function is also discrete. It is calculated in the following way: I divide

the CC interval (the [0, 1] interval) into 40 bins. Now, each bin starts in the middle of

its previous bin. I then count the number of CCs in each bin and divide this number by

twice the number of pairs in HTFT (for normalization). More formally, Let x ∈ [0, 1]

be a CC value of two genes

Dist CC tf target(x) =
i−2
80

< ]CC ≤ i+2
80

2 ∗ ]TFs− targets

for i−1
80

< x ≤ i+1
80

and i = 0, 2, 4, 6, . . . , 80.

In this distribution function calculation the segments intersect. In this way we

use each CC measurement to calculate two values of the function, and work as if we

have twice as much points as we calculated. The difference between this distribution
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calculation and (Dist CC rand) lays on the fact that there are much less points from

which we build this distribution.

4. Distribution of MI between transcription factors and their targets (Dist MI tf target):

This distribution function is calculated in the same way as the previous one, with one

exception. Here the interval is between 0 and max MI (instead of 1), where max MI

is the maximum MI of all TF-target pairs.

5. Distribution of CC between genes that are regulated by the same TF (Dist CC SIM genes):

This distribution function is the same as Dist CC tf target (3), only measured for all

the pairs of genes that are regulated by the same TF from HTFT.

6. Distribution of MI between genes that are regulated by the same TF (Dist MI SIM genes):

This distribution function is calculated in the same way as the previous one, with one

exception. Here the interval is between 0 and max MI (instead of 1), where max MI

is the maximum MI of all the pairs of genes that are regulated by the same TF from

HTFT.

7. Distribution of CC between genes that are regulated by two identical TFs

(Dist CC MIM genes): This distribution function is the same as Dist CC tf target

(3), only measured for all the pairs of genes that are regulated by two identical TFs from

HTFT. Meaning, if the pairs TF1-target1, TF1-target2, TF2-target1 and TF2-target2

are all in the table, then target1-target2 is one of the pairs from which this distribution

function is measured.

8. Distribution of MI between genes that are regulated by two identical TFs (Dist MI MIM genes):

This distribution function is calculated in the same way as the previous one, with one

exception. Here the interval is between 0 and max MI (instead of 1), where max MI

is the maximum MI of all the pairs of genes that are regulated by the same 2 TFs from

HTFT.

Step II: Calculating the score

The algorithm calculates the score vector
−→
S = S1, . . . , S6 for T and G, using the

gene expression data set. The score vector is combined of the following components:

S1 - The log likelihood of the CC of T and G:

log
Dist CC tf target(CC(T, G))

Dist CC rand(CC(T,G))

S2 - The log likelihood of the MI of T and G:

log
Dist MI tf target(MI(T, G))

Dist MI rand(MI(T,G))
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S3 - The log likelihood of the CC between G and the genes that are regulated by T:

log
n∏

i=1

Dist CC SIM genes(CC(G, gi))

Dist CC rand(CC(G, gi))

S4 - The log likelihood of the MI between G and the genes that are regulated by T:

log
n∏

i=1

Dist MI SIM genes(MI(G, gi))

Dist MI rand(MI(G, gi))

S5 - The log likelihood of the CC between G and the genes that are regulated by

both T and by another TF from HTFT that regulates G:

log
n∏

i=1∧∃TF 6=T,s.t.(TF,gi)∈HTFT

Dist CC MIM genes(CC(G, gi))

Dist CC rand(CC(G, gi))

S6 - The log likelihood of the MI between G and the genes that are regulated by T

and by another TF from HTFT that regulates G:

log
n∏

i=1∧∃TF 6=T,s.t.(TF,gi)∈HTFT

Dist MI MIM genes(MI(G, gi))

Dist MI rand(MI(G, gi))

The score of T for this G is:

Score(T, G) =
−→
S ∗ −→W

Where
−→
W = W1, . . . ,W6 is a weight vector determined by a learning process, indicating

the influence of each score component Si; i = 1, . . . , 6 on the score.

Step III: Algorithm Output

The last step of the algorithm is to check if (Score(T, G) − Θ) > 0. If so, the

algorithm assumes that T regulates G and returns 1, otherwise, it returns 0.

The algorithm’s parameters
−→
W and Θ are determined by a learning process.

7.2.4 Learning the parameters

In order to learn the algorithm parameters I construct a set of examples. Each example

is a pair of a TF and a gene. The TF is one of the TFs in HTFT and the gene is one of

the targets in HTFT. For each pair I know from the database whether the TF regulates

the gene (if the pair exists in HTFT I know that the TF regulates the gene, otherwise

I assume that the TF doesn’t regulate the gene). Moreover, I can construct, using the

algorithm, a vector
−→
S = S1, . . . , S6 that contains the score components for each pair.

I divide the examples into two groups, a training set and a test set, in the following

way: I choose randomly 80% of the TFs in HTFT. All the pairs with one of these chosen
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TFs belong to the training set. The rest of the pairs belong to the test set. Suppose the

training set size is N and that the training set examples are {e1, . . . , eN}.
I use the Delta rule algorithm on the training set examples in order to learn the

parameters. The Delta rule algorithm is a version of the Perceptron algorithm for

examples which are not linearly separable. I chose a method which doesn’t impose linear

separation of the examples, because this problem is not necessarily linearly separable;

moreover, even if the problem were, I believe that HTFT is not a complete and perfect

database, and thus one should allow for false positives examples.

The key idea of the Delta rule algorithm is to use a gradient descent search (an

algorithm for finding the nearest local minimum of a function, using the gradient). The

Delta rule algorithm defines an error function

E =
1

2

N∑

i=1

(ti −Oi)
2

where ti is 1 if the couple in ei exists in HTFT, and -1 otherwise, and Oi = tanh(
−→
Si ∗−→W ),

where
−→
Si = {Si1, . . . , Si6,−1} (Si1, . . . , Si6 are the score vector components of ei TF and

ei gene from the algorithm) and
−→
W = {W1, . . . , W6,W7 = Θ}. The idea is to find a

minimum for the error function E in the space of weights (see figure 9).

Figure 9: Delta rule minimization of the energy.

In order to do so we calculate the gradient of E with respect to the weights vector
−→
W , denoted as ∇E(W ) = [ ∂E

∂W1
, . . . , ∂E

∂W6
, ∂E

∂Θ
].

The delta rule is:

Wi = Wi − η
∂E

∂Wi

(93)

for i = 1, . . . , 7 and η being a learning rate. I chose it to be 0.001.

The method for learning the parameters
−→
W = {W1, . . . ,W7} is:

Repeat 10 times or until E doesn’t improve (whatever comes first):
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1. Choose randomly values for
−→
W .

2. Calculate new values for
−→
W , using (93). In order to perform this step one needs to

run the algorithm on each example from the training set in order to receive new values

for S1, . . . , S6.

3. Calculate E with new
−→
W values.

I repeated this procedure 20 times, and chose the
−→
W that minimizes the error, but

now instead of calculating E, I calculate the exact error - using sign function instead of

tanh. The reason that I repeat this procedure is because this method can get stuck in

a local minimum.

7.3 Tools for searching binding site motifs in genes promoters

7.3.1 STOP - Searching TFs Of Promoters

STOP is a tool that was developed in our lab and is based on the work of Hertzberg et.

al. [34]. It receives a gene as an input and specifies the TFs whose binding sites appear

in that gene’s promoter with high probability compared to a random sequence. In order

to do so STOP uses the promoter of the gene and the Position Weight Matrix (PWM)

of each TF. A PWM is a common representation of transcription factor binding sites. It

is built out of all the known motifs to which the transcription factor binds, and it counts

the number of appearances of every nucleotide in every position of the motif. For each

TF, STOP calculates a score specifying the confidence that the TF binds to the gene

promoter. The p-Value of a TF and a gene is then determined to be the probability to

get a better score than the one the TF would get on a random promoter. Now, in order

to decide if the TF binds to the promoter of the given gene, STOP sets a threshold

on the p-Value. Each TF has a different threshold since each PWM was built from a

different number of promoters and each PWM has a different length. If the p-Value of

the gene and the TF is lower than the TF threshold, STOP will say that this TF binds

to the gene promoter. STOP works with the 392 TFs from TRANSFAC. It looks for

each promoter at 1000 bp upstream of the transcription start site.

7.3.2 POC - Promoters of Clusters

POC is another tool that was developed in our lab by Tabach [35]. It receives a cluster

of genes as an input, and finds statistically significant sequences of transcription factor

binding sites, that are enriched in the promoters of the cluster’s genes, compared to

the entire genome. POC examines 326 TFs binding sites within the promoters of the
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cluster’s genes. In order to do so it uses the human regulatory position specific score

matrices (PSSMs [36],[29]). To identify regulatory motifs in the promoter of a gene, the

PSSM assigns a weight to the presence of each nucleotide (A, C, T, G) at each position

in the motif; this weight represents the extent to which the nucleotide’s presence at this

position is associated with the motif. It is based on the PWM (see 7.3.1). The 326 TFs

that are examined by POC are the ones that their PSSMs appear in the Mathinspector

[37] database. POC looks for each promoter at 1000 bp upstream of the transcription

start site.

7.4 Tools for data analysis

7.4.1 SPIN

Another exploratory analysis method that uses groups of correlated genes for meaningful

ordering of patients is SPIN (Sorting Points Into Neighborhoods) (Tsafrir et. al., [38])

our recently proposed methodology for data organization and visualization. At the heart

of this method is a presentation of the full pairwise distance matrix of the samples,

viewed in pseudo-color. The samples are iteratively permuted in search of an optimal

ordering, i.e. one that can be used to study embedded shapes. Hence, certain structures

in the data (elongated, circular and compact) manifest themselves visually in a SPIN

generated distance matrix.

7.5 Data sets

I worked with two gene expression microarray data sets in order to examine this method.

1. The Milyavsky data. Milyavsky et al. [39] have modeled in-vitro cellular

transformation through a stepwise process that began with isogenic cells. A 600-days

long transformation process (see figure 10) started with normal WI-38 human diploid

fibroblasts that entered replicative senescence after 40 population doublings (PDLs).

In order to overcome replicative senescence, the cells were infected with over-expressed

human telomerase (hTERT), resulting in immortalization. In addition H-Ras was over-

expressed in the cells in several stages during the process. Samples of mRNA were taken

at 12 time points (stages), with two repeats from each stage. Expression profiles were

determined using the Affymetrix Human Genome Focus GeneChip Array. I worked with

the 24 samples and performed some pre-processing on the data. First I removed from

the data the genes whose expression level was less than 100 for all samples. Next, I
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changed all remaining expression values that were less than 1 to 1 and took log2 of the

data.

Figure 10: The 12 stages of the Milyavsky data.

2. The Colon data. I used 38 samples of normal tissues: 22 normal colon tissues, 11

normal liver tissues and 5 normal lung tissues. Expression profiles were determined using

the Affymetrix Human Genome U133 GeneChip Array (see [38] for more information).

I performed on this data the same pre-processing steps I did on the Milyavsky data.

8 Results

8.1 Learning the parameters of the data sets

First of all I checked the parameters that the algorithm learned (see section 7.2.4) for

each one of the data sets I worked with. Then, I compared the results of
−→
W to the

distribution functions of each data and saw if the results are logical. I also calculated

the error rate and the p-Value of the algorithm for each data set in order to evaluate its

performance and compare it to a random classifier.

8.1.1 The Milyavsky data

The parameters that were learned for the algorithm are:

−→
W = (0.0225, 0.029, 0.218, 0.4063, 0.3756, 0.5884)
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and

Θ = 1.2

It can be seen that S1 and S2, which are the score components that measure the log

likelihood of the relation (CC and MI respectively) between T and G, got significantly

lower weights, than the other score components. We can also see that the weight of

S3 (S4), which is the log likelihood of the CC (MI) between G and the genes that T

regulates, is lower then the weight of S5 (S6), which is the CC (MI) between G and the

genes that are regulated by T and by another TF that also regulates G.

All these observations strengthen my basic assumptions: the relation between a TF

and its putative target gene can’t be studied by the CC/MI between the TF and the

gene. However, it can be studied by the CC/MI between this putative target gene and

another gene that is a known target of the TF (if the CC/MI between these two genes

is high, there is a better probability that the putative target gene is indeed regulated

by the TF), and if these two genes have another TF that regulates both of them, the

CC/MI between them teaches even more about the connection between the TF and the

putative target gene.

It can be seen that the weights of the score components that measure MI (W2, W4,

W6) are higher than their corresponding CC score components: W2 > W1; W4 > W3;

W6 > W5. This last finding indicates that MI measurements teach us more than CC

measurements about the relationship between genes, at least for this data.

It is interesting to compare these results to the distribution functions of this data (see

7.2.3, step II). Figure 4 and figure 5 contain the Milyavsky data CC and MI distribution

functions (respectively) of TF-target pairs (a), SIM genes pairs (two genes that are

regulated by the same TF) (b) and MIM genes pairs (two genes that are regulated by

the same pair of TFs) (c), as opposed to the distribution function of random genes.

It is easy to understand from figure 4 the reasons that caused W1 to be lower than W3

and W5; the mean and median of SIM and MIM genes pairs are much higher than the

mean and median of TF-gene pairs (the last mean and median are even lower than the

mean and median of random genes). Moreover, the scattering of SIM and MIM genes

pairs are shifted to the right, compared to TF-gene pairs. It is harder to understand

why W5 > W3, since the mean of SIM genes pairs is much higher than the mean of MIM

genes pairs, and their medians are almost the same. One way of explaining this result is

by the fact that in the examples that are used to learn the parameters, there are genes

that appear only once, while others appear a few times (if we know of several TFs that

regulate them), so not all the MIM genes pairs have the same influence on the scores
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of all examples. It could be that taking into account the influence of each pair to all

the scores, will get us a new mean and median to the MIM genes pairs CCs, which are

higher than the SIM genes pairs CCs.

Now, let us look at figure 5. W2 > W1 can be justified by the fact that the mean and

median of CC of TF-gene pairs are lower than the mean and median of random genes’

CC, whereas in MI this is not the case. The fact that W4 > W2 can be explained using

the observations that the mean and median of SIM gene pairs’ MIs are higher than the

mean and median of TF-gene pairs’ MI. The explanation of W6 > W4 could be the same

as the explanation of W5 > W3.

I checked the percent of false positives (pairs that are not in HTFT but the algorithm

output to them was 1) and false negatives (pairs that are in HTFT but the algorithm

output to them is 0) over the test set examples. I ran the algorithm with the chosen
−→
W

on each pair of the test set. For each pair the algorithm determined whether the gene is

the TF’s target. I counted the number of FPs, and the number of FNs and found that

the algorithm had 10% false positives rate and the false negatives fraction was 60%.

The false positive (FP) percent and false negative (FN) percent are correlated with

the prior knowledge we have. The larger the prior information we have, the accurate

the algorithm results. Thus, although on the test set the FP percent and FN percent

are not so good (10% and 60% respectively), these values will be much lower when one

researches a specific transcriptional network, on which he has a lot of prior information.

Moreover, in order to reduce the FP fraction of the algorithm, I also check if the binding

site of the TF appears on the promoter of the gene with high probability, compared to a

random gene, for each pair that is chosen by the algorithm to be a TF-gene pair. Only

if this is the case I assume that the TF indeed regulates the gene.

I compared this classifier to a random classifier, also using the test set examples.

In order to determine whether this classifier is better than a random one I checked the

probability to get better results (lower FPs percent and / or lower FNs percent) using

the following formula: ∑FN
i=1

∑FP
j=1

(
]1s
i

)(
]0s
j

)

∑]1s
i=1

∑]0s
j=1

(
]1s
i

)(
]0s
j

) (94)

where ]1s is the number of pairs in the test set that are in HTFT, and ]0s is the number

of pairs in the test set that are not in HTFT.

I got that this probability is equal to 1.0695 ∗ 10−125, which is almost 0. Meaning,

this classifier is much better than a random one.
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8.1.2 The Colon data

The parameters that were learned by the algorithm are:

−→
W = (0.002, 0.0001, 0.01, 0.025, 0.2243, 0.3212)

and

Θ = 1.5

It can be seen that here also W6 > W4 > W2 and W5 > W3 > W1, and indeed looking

at the various distribution functions of the CC and MI of this data set (figure 6 and

figure 7) one can see that both for MI and CC the mean of MIM genes is higher than

the mean of SIM genes, and that the last mean is higher than the mean of TF-target

genes. Moreover, all of these means are higher than the random genes’ mean. These

results also strengthen our basic assumptions.

There are two obvious differences in this data set parameters, compared to the

previous data set parameters. The first one is that W1 > W2. This difference can be

explained by looking at the distribution functions of this data set, figure 6 (a) and figure

7 (a), and the distribution functions of the previous data set, figure 4 (a) and figure 5

(a). In this data set we can see that the mean and median of CC of TF-target genes is

higher than the mean and median of CC of random genes, however, when looking at MI

of TF-target genes, it can be seen that the mean and median of random genes is higher

than the mean and median of TF-target genes. In the previous data set we can see the

opposite. The second difference between this data set parameters and the previous data

set parameters is that the difference between W3(W4) and W5(W6) is much higher in

this data set (as opposed to the previous one). We can see in figure 6 (b,c) and figure

7 (b,c) that the mean and median of MIM genes’ CC and MI is much higher than the

mean and median of SIM genes’ CC and MI (respectively). This sharp difference is not

seen in the previous data set distribution functions.

I checked the percent of false positives and false negatives over the test set examples

(the same way as in the previous data set) and got that the false positives percent is

20% and the false negatives percent is 60%.

When comparing this classifier to a random one, using eq. 94, I got that the proba-

bility that a random classifier will be better than this one is 5.89 ∗ 10−69, which means

that on this data also this classifier is much better than random.
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8.2 Learning A Transcriptional Network related to Smooth

Muscle Cells Differentiation

As a next step, I tried to learn part of the transcriptional network that controls vas-

cular smooth muscle cells (SMC) differentiation. SMCs provide hemostatic control and

protect new endothelium-lined vessels against rupture or regression. SMCs also assist

endothelial cells in acquiring specialized functions in different vascular beds and main-

tain vascular tone and integrity in the adult [40]. Smooth muscle cells are important for

the functions of the circulatory, genitourinary, respiratory, and digestive systems [41].

Abnormal growth and proliferation of vascular SMCs is a key feature of vascular dis-

eases such as atherosclerosis, restenosis, and hypertension [42]. Despite the importance

of changes in the differentiated state of SMCs in vascular diseases, the molecular mech-

anisms controlling SMC differentiation are still largely unknown. An understanding of

the normal regulation of SMC development and differentiation will not only provide the

foundation for elucidating how these processes may be disrupted in vascular diseases

but will also be critical to understanding congenital defects in vascular development

and vascular development within solid tumors [42].

I chose to concentrate on the transcription factor SRF (Serum Response Factor) and

on two of its target genes: SM22α and SM α-actin.

SRF is a known regulator of SMC differentiation. SRF binding to CArG (CC[A/T]GG)

box has been shown to regulate numerous muscle-specific genes. In particular, SRF binds

to the promoters of SM α-actin and SM22α through the CArG box [42].

Both SM α-actin and SM22α are muscle differentiation marker genes [43]. SM α-

actin is a contractile protein that comprises 40% of total SMC protein [44]. It is required

for the contractile function of SMCs and is the first SMC differentiation marker to appear

during development [45]. SM22α is a calponin-related protein that is specific to adult

SMCs [42].

I wanted to discover more targets of SRF and more transcription factors of SM α-

actin and of SM22α. The first step I took is building a partial transcriptional network

around SRF, SM α-actin and SM22α (see figure 11). This network’s connections are

from [42], [46], [47], [48], [49] and [50]. There are more known SM α-actin TFs (PRRX1,

NKX3-1, KLF4, PURA, PURB, TEAD1 ARID5B and MYB [42]) and SM22α TFs

(BAPX1, SP1, SP3, KLF4, KLF5, TWIST1, SSRP1 and ARID5B [42]), but they are

not in HTFT, and thus I don’t have any prior information about their known target

genes, so I didn’t add them to the partial network, and I didn’t check whether my
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method identifies them as SM α-actin or SM22α TFs. There are more known SRF

targets (FOS, DES) but they do not appear in the FOCUS chip (the Milyavsky data

set) and thus I didn’t add them to the partial network.

I started with this partial network in order to check whether my method identifies

the known TFs of SM α-actin and of SM22α, and the known targets of SRF, and to

discover unknown transcriptional relationships.

Figure 11: The partial network of SRF, SM α-actin and SM22α. In the squares are the TFs, and in the circles are

the target genes. An arrow between each TF and its target represents an activation relation. A clean line represents an

unknown relation.

8.2.1 SM α-actin TFs

(I) I ran the algorithm on the Milyavsky data set with SM α-actin as the target gene

G, and with each of the 54 TFs from HTFT as a TF. When running the algorithm with

any known TF of SM α-actin (SRF / USF / TBP / p53) I didn’t use the transcrip-

tional relation between that TF and SM α-actin as prior knowledge of the algorithm.

Otherwise, the score of each of these TFs would have been biased because the relation

between SM α-actin and itself would be measured in S3 and S4.

The TFs that were chosen by the algorithm to be SM α-actin TFs can be seen in

table 1 (the ones with the Milyasvky data score > 1.2). It can be seen that the algorithm

identified SRF and USF as SM α-actin TFs, but didn’t identify TBP and p53 as its TFs

(the scores of these TFs can be seen in table 1).

In order to figure out which of the remaining TFs are more likely to be SM α-actin

TFs (and which of the remaining TFs are noise) I checked the promoter of SM α-actin,

using STOP (7.3.1), in order to examine which of these TFs binding sites appear in the

SM α-actin promoter with high probability comparing to a random promoter.

ETV7 binding site was found by STOP with p-Value < 0.05. I checked in the

literature to see whether a connection between ETV7 and SM α-actin is known. Such

a connection is not found in the literature.

58



The binding site of PBX1 was found by STOP with p-Value < 0.1. This binding

site is known to contain the binding site of HOX-PBX binding site, which means that

if the binding site of PBX1 is found in the promoter of SM α-actin, then the binding

site of HOX-PBX is also on this promoter. HOXB7 is known to bind to the HOX-PBX

binding site [51], so it is possible that HOXB7 binds to the promoter of SM α-actin.

There is no known direct transcriptional connection in the literature between HOXB7

and SM α-actin, but it is known (see partial network in figure 11) that HOXB7 regulates

SM22α.

The rest of the TFs got from STOP p-Value > 0.5 and are assumed to be noise.

(II) I repeated the same procedure using the Colon data set. The TFs that were

chosen by the algorithm to be SM α-actin TFs can be seen in table 1 (the ones with the

Colon data score > 1.5). Here we can also see that the algorithm identified both SRF

and USF as SM α-actin TFs, but it didn’t identify TBP and p53 as SM α-actin TFs

(the scores of these TFs can be seen in table 1).

Checking the promoter of SM α-actin, using STOP, returned the following results:

TTF1 binding site was found on the promoter of SM α-actin with p-Value < 0.05.

There is no known connection between SM α-actin and TTF1 in the literature.

VDR binding site was found on the promoter of SM α-actin with p-Value < 0.5. A

direct transcriptional connection between VDR and SM α-actin is not known, however,

there are some references of an influence of VDR on vascular SMCs. It is assumed that

the steroid hormone 1 ,25-dihydroxyvitamin D3 [1 , 25-(OH)2D3] promotes vascular

SMC growth and calcification via VDR [52], [53].

HOXB7 binding site was found in the promoter of SM α-actin with p-Value < 0.1

(see (I)).

The rest of the TFs got from STOP p-Value > 0.5 and are assumed to be noise.
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Table 1: SM α-actin TFs. The table contains the known SM α-actin TFs and new TFs that passed the algorithm

threshold, when running it with the TF and with SM α-actin, using the Milyavsky and / or the Colon data. The first

column contains the TF gene symbol. The second (third) column contains the score assigned to the TF by the algorithm,

using the Milyavsky (Colon) data. The fourth column contains the STOP p-Value of the appearance of the TF binding

site in SM α-actin promoter compared to a random gene. The fifth column contains literature information, it specifies

whether each TF is known to be SM α-actin TF (Known) or known to have a role in SMC (SMC related). Yellow TFs

are TFs that are known from literature to regulate SM α-actin. Blue indicates new TFs that were chosen by my method

to be SM α-actin TFs. These are TFs that both passed the algorithm threshold (for at least one of the data sets) and

whose binding site appears in the SM α-actin promoter with high probability compared to a random promoter (according

to STOP).

I checked the location of the known and new putative SM α-actin TFs on the pro-

moter of SM α-actin, in order to try to understand if any of these TFs work together,

as a complex, when regulating SM α-actin, or if one TF affects the regulation of SM

α-actin by another TF. As can be seen in figure 12 the pairs that might be connected

in some way are TTF1 and HOXB7, and/or ETV7 and USF.

Figure 12: The promoter of SM α-actin. The location of each known and new putative TF of SM α-actin on the

1000 base-pairs of this promoter. p53 binding site is not found on the promoter.
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Next, I asked which of the new TFs I found are SM α-actin activators and which

are its repressors. In order to answer this question I compared the gene expression of

SM α-actin to the gene expression of each of the new putative TFs found and to the

gene expression of the target gene of each TF, taken from HTFT. Moreover, I checked

the correlation coefficients (now without absolute value, see eq. 92) between SM α-actin

and each TF, and between SM α-actin and the target gene of that TF (from HTFT).

I used the two data sets I work with in order to do this. The results for the Milyavsky

data can be seen in figure 13, the results for the Colon data are very similar.

When specifying the correlation coefficients between any two genes the first value

denotes the correlation coefficients measured using the Milyavsky data and the second

value denotes the correlation coefficients measured using the Colon data.

In figure 13 (a) we can see the gene expressions of SM α-actin (red), of ETV7 (green)

and of LYN (blue), which is a known target of ETV7. We can see that there is high

correlation between LYN and SM α-actin (correlation coefficient 0.71/0.57). We can

also see that the correlation between SM α-actin and ETV7 is low (0.11/0.14) and thus

we can’t learn from it about the sign of the transcriptional connection between them. It

is not known from the literature if ETV7 activates or represses LYN, but I can assume

that ETV7 activates both LYN and SM α-actin or represses both of them.

In figure 13 (b) we can see the gene expressions of SM α-actin (red), of TTF1

(green) and of SELENBP1 (blue), which is a known target of TTF1. We can see that

there is high correlation between SELENBP1 and SM α-actin (correlation coefficient

0.4/0.56). We can also see that the correlation between SM α-actin and TTF1 is very

low (-0.08/-0.02) and thus we can’t learn from it about the sign of the transcriptional

connection between them. It is not known from the literature if TTF1 activates or

represses SELENBP1, but I can assume that TTF1 activates both SELENBP1 and SM

α-actin or represses both of them.

In figure 13 (c) we can see the gene expressions of SM α-actin (red), of HOXB7

(green) and of SM22α (blue), which is a known target of HOXB7. We can see that

there is a very high correlation between SM22α and SM α-actin (correlation coefficients

between them is 0.95/0.95). We can also see that the correlation between SM α-actin

and HOXB7 is low (0.02/-0.22) and thus we can’t learn from it about the sign of the

transcriptional connection between them. It is known from literature that HOXB7

activates SM22α, so we can conclude that HOXB7 also activates SM α-actin.

In figure 13 (d) we can see the gene expressions of SM α-actin (red), of VDR (green)

and of CDKN1A (blue), which is a known target of VDR. We can see that although the
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correlation coefficients between SM α-actin and CDKN1A is not very high (0.26/0.33)

the behavior of their gene expression is similar in most samples. Moreover, the correla-

tion coefficients between SM α-actin and VDR is relatively high (0.45/0.46). Combining

these facts with the fact that VDR is an activator of CDKN1A, leaded me to conclude

that VDR is an activator of SM α-actin.
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Figure 13: Gene expression of SM α-actin, it’s new putative TFs and their known targets, using the Milyavsky data

(these graphs using the Colon data are very similar). In each of the plots the x-axis contains the 24 samples and the

y-axis contains the gene expression of the gene, after the following pre-processing: log2, center and normalization. the

red line is SM α-actin gene expression, the green line is the TF gene expression and the blue line is the gene expression

of the TF known target gene. (a) TF: ETV7, known target gene: LYN. (b) TF: TTF1, known target gene: SELENBP1.

(c) TF: HOXB7, known target gene: SM22α. (d) TF: VDR, known target gene: CDKN1A.

8.2.2 SM22α TFs

(I) As before, I started by running the algorithm with SM22α as the gene G and with

each of the HTFT TFs using the Milyavsky data set. The results can be seen in table 2

(the TFs with the Milyasvky data score > 1.2).. When running the algorithm with any

known TF of SM22α (SRF / HOXB7 / YY1 / SMAD4) I didn’t use the transcriptional

relation between that TF and SM22α as prior knowledge of the algorithm. Otherwise,

the score of each of these TFs would have been biased because the relation between

SM22α and itself would be measured in S3 and S4.

It can be seen that the algorithm identified SRF and MADH4 as SM22α TFs, and

didn’t recognize YY1 and HOXB7.
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I checked, using STOP, which binding sites of the TFs that passed the algorithm

threshold appear in the promoter of SM22α with high probability compared to a random

promoter.

The binding site of ATF was found on the promoter of SM22α with p-Value < 0.05.

A direct transcriptional relation between ATF and SM22α is not known, but there are a

few references to the fact that ATF regulates other genes, like cyclin A gene and NOX1

(in rat), in vascular SMCs [54], [55].

The binding site of TOPORS was found on the promoter of SM22α with p-Value <

0.05. Any relation between TOPORS and SM22α on Vascular SMC is not known.

The binding site of VDR was also found on the promoter of SM22α with p-Value <

0.05. A direct transcriptional connection between VDR and SM α-actin is not known,

however, there are some references of an influence of VDR on vascular SMCs (see 8.2.1

(II)).

The rest of the TFs got from STOP p-Value > 0.5 and are assumed to be noise.

(II) I repeated the same procedure using the Colon data set. The results are in table

2. Using this data the algorithm identified SRF, YY1 and HOXB7 as SM22α TFs, but

didn’t identified MADH4 as SM22α TF. STOP found the binding sites of both VDR

and TOPORS on the promoter of SM22α with p-Value < 0.05.

The rest of the TFs got from STOP p-Value > 0.5 and are assumed to be noise.
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Table 2: SM22α TFs. The table contains the known SM22α TFs and new TFs that passed the algorithm threshold,

when running it with the TF and with SM22α, using the Milyavsky and / or the Colon data. The first column contains

the TF gene symbol. The second (third) column contains the score assigned to the TF by the algorithm, using the

Milyavsky (Colon) data. The fourth column contains the STOP p-Value of the appearance of the TF binding site in

SM22α promoter compared to a random gene. The fifth column contains literature information, it specifies whether each

TF is known to be SM22α TF (Known) or known to have a role in SMC (SMC related). Yellow TFs are TFs that are

known from literature to regulate SM22α. Blue indicates new TFs that were chosen by my method to be SM22α TFs.

These are TFs that both passed the algorithm threshold (for at least one of the data sets) and whose binding site appears

in the SM22α promoter with high probability compared to a random promoter (according to STOP).

I checked the location of the known and new putative SM22α TFs on the promoter

of SM22α, in order to try to understand if any of these TFs work together, as a complex,

when regulating SM22α, or if one TF affects the regulation of SM22α by another TF.

As can be seen in figure 14 the pairs that might influence one another are ATF and

VDR and/or SRF and SMAD4.

Figure 14: The promoter of SM22α. The location of each known and new putative TF of SM α-actin on the 1157

base-pairs of this promoter.

I checked which of the new SM22α putative TFs are its activators and which are its

repressors. I repeated the procedure I performed in 8.2.1 in order to do so. The results,
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using the Milyavsky data, can be seen in figure 15 (the Colon results are very similar to

the Milyavsky results).

In figure 15 (a) we can see the gene expressions of SM22α (red), of TOPORS (green)

and of TLN1 (blue), which is a known target of TOPORS. We can see that there

is high correlation between TLN1 and SM22α (correlation coefficients between them

is 0.77/0.75). We can also see that the correlation between SM22α and TOPORS is

low (0.14/0.08) and thus we can’t learn from it about the sign of the transcriptional

connection between them. It is not known from the literature if TOPORS activates or

represses TLN1, but I can assume that TOPORS activates both TLN1 and SM22α or

represses both of them.

In figure 15 (b) we can see the gene expressions of SM22α (red), of ATF (green) and

of GCA (blue), which is a known target of ATF. We can see that both the correlation

between SM22α and GCA (-0.15/0.11) and between SM22α and ATF (-0.15/-0.22) is

very low and thus I can’t say anything about the sign of the transcriptional relation

between ATF and SM22α.

In figure 15 (c) we can see the gene expressions of SM α-actin (red), of VDR (green)

and of CDKN1A (blue), which is a known target of VDR. We can see that although the

correlation coefficients between SM22α and CDKN1A is not very high (0.15/0.23) the

behavior of their gene expression is similar in most samples. Moreover, the correlation

coefficients between SM22α and VDR is high (0.53/0.53). From the combination of

these facts with the fact that VDR is an activator of CDKN1A, I concluded that VDR

is an activator of SM22α.
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Figure 15: Gene expression of SM22α, it’s new putative TFs and their known targets, using the Milyavsky data

(these graphs using the Colon data are very similar). In each of the plots the x-axis contains the 24 samples and the

y-axis contains the gene expression of the gene, after the following pre-processing: log2, center and normalization. the

red line is SM22α gene expression, the green line is the TF gene expression and the blue line is the gene expression of

the TF known target gene. (a) TF: TOPORS, known target gene: TLN1. (b) TF: ATF, known target gene: GCA. (c)

TF: VDR, known target gene: CDKN1A.

8.2.3 SRF targets

I ran the algorithm, using the Milyavsky data set, with SRF as the TF and with each

of the 5582 genes on the Milyavsky data set chip. I used only SM α-actin and SM22α

as prior knowledge about SRF targets (and not CNN1, CALD1, ACTG2 and PDE5A),

in order to make the algorithm task more difficult, and examine how it deals with little

prior knowledge. In order to eliminate noise I decided to work with threshold 2 (instead

of 1.2). 277 genes passed the threshold, meaning, the algorithm found 277 putative

targets to SRF. Then, I ran the algorithm, using the Colon data set, with SRF as the

TF and with each of the 22215 genes on the Colon data set chip. Here I also worked

with threshold 2 (instead of 1.5). 3499 genes passed that threshold.

Now, I looked at the intersection of the genes that were chosen by the algorithm as

SRF targets, both using the Milyavsky data and using the Colon data. There were 78

such genes. The promoter sequence of 75 of them is known.

I wanted to examine which of the promoters of the 75 genes contain the binding

sequence of SRF with high probability, compared to a random promoter. To do so I

worked with POC (see 7.3.2). I entered POC the 75 genes as a cluster. According to

POC the p-Value of SRF as a TF of this cluster of genes is 0.0047. Moreover, 41 of
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these genes’ promoters contain the binding site sequence of SRF with high probability

compared to a random promoter. I assume that these 41 genes are genes that are

regulated by SRF, and that the rest of the 75 genes (34 genes) are noise. The 41 genes

can be seen in table 4. We can see that both SM α-actin (gene symbol = ACTA2) and

SM22α (gene symbol = TAGLN) have been chosen as SRF targets. We can also see

that the four other genes that are known from literature to be regulated by SRF (CNN1,

ACTG2, PDE5A and CALD1) have been chosen by my method as SRF targets. Eight

of the remaining chosen genes: C3, SMTN, PTPLA, LIGP, ITPR1, IGFBP2, IL6R and

TNFRSF21 have a role in a process related to SMC ([56], [57], [58], [59], [60], [61], [62],

[63] and DAVID web site). The rest of the 27 genes are not known to have any role in

SMC.

An interesting phenomenon that occurs in the group of these 41 genes is related to

the location of the binding site of SRF in the promoters of the genes. In 23 genes (56

%) the binding sequence of SRF is found in the first 200 nucleotides of the promoter

(the 200 nucleotides that are closest to the starting site of the gene). Moreover, five of

these 23 genes are genes that are known to be SRF targets (SM22α, SM α-actin, CNN1,

ACTG2 and CALD1). This can indicate that SRF usually binds to the promoter of its

target genes in the first 200 nucleotides of the promoter. Therefore, the more confident

target candidates of SRF are the remaining 18 genes in this group. Especially the three

genes in this group that are known to have a role in SMC: C3, LIPG and IGFBP2.

There are some SRF targets that were not identified as SRF targets using this

method. These targets are DES (desmin) and FOS (c-foc) [64]. The reason that they

were not identified is because they do not appear on the Focus chip (the Milyavsky

data). When checking the initial results of the algorithm on the Colon data, we can see

that the algorithm identified DES as a putative SRF target, but didn’t identify FOS as

SRF target.

I now wanted to understand which of these 41 genes are activated by SRF and

which are repressed by it. I looked at the gene expression of the 41 genes and the gene

expression of SRF after log2, center and normalization of the data (for each of the two

data sets I work with). I sorted these 42 gene expressions using SPIN (see 7.4.1).

(I) The Milyavsky data: The results can be seen in figure 16. We can see that the

first 19 genes expressions are high in the first ∼10 samples, medium in the ∼4 samples

and low in the last ∼10 samples. Since five of these 19 genes (SM22alpha, SM alpha-

actin, CNN1, ACTG2 and CALD1) are known to be activated by SRF from literature,

I conclude that SRF also activates all the other 14 genes that are in this group.
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We can see that the last 11 genes expressions are low in the first ∼14 samples, and

high in the last ∼10 samples. Since the expression pattern of this group is opposite to

the expression pattern of the previous group I concluded that SRF represses this group.

There is no significant signal to the rest of the genes.
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Figure 16: Sorted gene expressions of SRF and its 41 putative targets, using the Milyavsky data. We can see that

the genes can be divided into three groups. The first one contains the 19 genes on the top, which are high in the first

samples and low in the last samples. The second one contains the 11 genes on the bottom, which are low in the first

samples and high in the last samples. The third one contains the rest of the 12 genes, which has no significant pattern

in their expression. The expression of SRF is the 12 from the end (SRF probe id is 202401 s at).

It is interesting to see that SRF is neither in the activated nor the repressed group,

but its expression is much closer to the later (SRF probe id is 202401 s at). Obviously,

naively we would expect SRF to be positively correlated with genes it activates, and

we seem to observe the opposite. This can be explained by the fact that the scattering

of SRF gene expression is relatively low, compared to the expression of its 41 putative

target genes; thus we can’t learn from its expression about its relation with its target

genes.

In order to make sure that this is the case I performed the following checks:

1. I plotted the gene expression of SRF and of its 41 putative target genes (figure

17). In the x-axis are the 24 samples of the data, in the y-axis are the gene expression

values (with log2 of the data). In each subplot we can see 5-6 of the 41 genes’ expressions

in different colors and the expression of SRF in red. The 41 genes are sorted according
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to the difference between maximum and minimum values of their expression; the first

subplot contains genes with the lowest difference between maximum and minimum values

of their expression, and the last subplot contains genes with the highest difference. We

can see that the variation of SRF expression is higher than the scattering in the first

subplot; the variation of SRF expression is similar to the scattering in the second subplot;

the variation of SRF expression is lower than the scattering in the rest of the subplots.
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Figure 17: Gene expressions of SRF 41 putative targets compared to SRF expression. In the x-axis are the 24 samples

of the data, in the y-axis are the gene expression values (with log2 of the data). In each subplot we can see 5-6 of the

41 genes expressions in different colors and the expression of SRF in red. The 41 genes are sorted according to their

difference between maximum and minimum values of their gene expression; in the first subplot there are genes with the

lowest difference between maximum and minimum values of their gene expression, in the last subplot there are genes with

the highest difference between maximum and minimum values of their gene expression.

2. In order to determine the ’scattering’ parameter of each gene, I measured for each

gene the std of the gene expression using raw data and divided by its mean. Only 2 of

the 41 genes got smaller results than SRF. The results can be seen in table 3.

The same results can be seen in figure 18: The x-axis contains the 41 putative SRF

target genes + SRF, the y-axis contains the ’scattering’ parameter of each gene. The

red x represents SRF. We can see here very clearly that SRF scattering is very low

compared to most of the other 41 genes.
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Table 3: ’Scattering’ parameter of SRF and of its 41 putative targets. The first column contains the gene symbol of

each gene; the second column contains the gene’s ’scattering’ parameter. We can see that only two genes (the ones in

blue) have lower ’scattering’ parameter then SRF (the one in yellow).
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Figure 18: Plot of the ’scattering’ parameter of SRF and of its 41 putative targets. The x-axis contain SRF and

its 41 putative target genes, the y-axis contains the ’scattering’ parameter of each gene. The red x is SRF point in this

plain.
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From the last two tests we can indeed conclude that we can’t learn about the relation

between SRF and its putative targets from its expression. This explains the fact that

its expression pattern goes in the opposite direction to that of the group of 19 genes,

that it is assumed to activate.

(II) The Colon data: The results can be seen in figure 19. We can see that the first

19 genes expressions are high in the first ∼21 samples, low in the next ∼11 samples and

high again in the last ∼6 samples. Since four of these 19 genes (SM22α, SM α-actin,

CNN1 and ACTG2) are known from literature to be activated by SRF, I concluded that

the rest of the 15 genes are also activated by SRF. We can see that the last 15 genes

expressions are of opposite pattern to the previous group and thus I concluded that

these 15 genes are repressed by SRF. The rest of the genes don’t have any significant

pattern. SRF is one of these genes. But in this data, we can see that its expression

pattern seems more like the group of genes it activates (SRF probe id is 202401 s at).
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Figure 19: Sorted gene expressions of SRF and its 41 putative targets, using the Colon data. We can see that the

genes can be divided into three groups. The first one contains the 19 genes on the top. The second one contains the 15

genes on the bottom. The third one contains the rest of the eight genes.

I assumed that the 15 genes that were in the activated genes group in both data sets

or were in the activated genes group in one data set, and in the non significant group

in the other data set are activated by SRF.

In the same way, I assumed that the 13 genes that were in the repressed genes group

in both data sets or were in the repressed genes group in one data set, and in the non
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significant group in the other data set are repressed by SRF.

I can’t learn whether SRF actives or represses the 3 genes that were in the non

significant group in both data sets, and the 10 genes that were in the activated genes

group in one data set and in the repressed genes group in the other data sets

(the list of activated / repressed genes can bee viewed in table 4, last column).

Table 4: The 41 genes that were chosen to be SRF targets. The first column contains the genes symbols. The second

(third) column contains the score that each gene got from the algorithm using the Milyavsky (Colon) data. The forth

column contains the location of the binding site of SRF on the gene promoter. The fifth column contains POC scores

(the higher the score, the better it is). The sixth column contains literature information, it specifies whether each gene

is known to be SRF target (Known) or known to have a role in SMC (SMC related). The seventh column contains

information about the sign of the transcriptional relation: a - activator; r - repressor; n - unknown. The yellow genes are

the ones that are known to be SRF targets. The bold genes are the ones which SRF binds to their promoters in locations

0-205.

To conclude, the network I learned can be seen in figure 20. The blue connections

are the new ones.
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Figure 20: The SRF, SM α-actin and SM22α network. In the squares are the TFs and in the circles are the target

genes. A black connection represent a prior known connection (see figure 11) and a blue connection represents a new

connection, that was learned using my method. An arrow represents an activation connection, a broken line represents a

repression connection and a clean line represents an unknown relation.

9 Discussion

In this work I developed a method for reconstructing a local transcriptional network. In

order to use this method, one needs to have some prior knowledge about the network.

This method uses gene expression microarray data, information about transcription

factors binding sites and promoter sequences of genes. The main idea behind this method

is that the relation, measured from gene expression data by CC and MI, between a TF

and its target genes is very similar to the relation between two random genes, and thus,

one can’t learn about the direct transcriptional connection between two genes only from

measuring the CC and / or MI between them. However, it is possible to learn whether

a TF regulates a gene from gene expression data. To do so one needs to look at the

relation (again, using CC and MI) between the gene and other genes, that are known

to be regulated by that TF. I showed, using comparison between distribution functions,

that in this case, the higher (lower) the relation between the gene checked and the

TF known target genes, the higher (lower) the probability that the TF regulates the

gene. Moreover, if the checked TF has known target genes that are also regulated by

another TF that is known to regulate the checked gene, the relation between these

target genes and the checked gene, can teach us even more about the transcriptional

connection between the TF and the gene: If the TF regulates the checked gene, the

relation between that checked gene and these target genes will be even higher (in most
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cases) than the relation between the checked gene and target genes that don’t share

another mutual TF with the checked gene. All the previous observations are based on

a database of known human TF-target pairs I built from literature.

In the center of my method, lays a classifier, that receives a TF and a gene and

specifies wether the TF regulates the gene. It uses gene expression microarray data

to do so. In order to decide if the TF regulates the gene, the classifier calculates a

score and checks whether the score passes a certain threshold. The score is combined

of six components that describe the relation between the TF and the gene, the relation

between known TF targets and the gene and the relation between known TF targets

that share another TF with the gene and the gene. These relations are measured by

both CC and MI. The threshold and the weights of the score components are determined

separately to each gene expression data set, using the delta rule learning algorithm.

If the classifier claims that the TF regulates the gene, this method will then check

whether the binding site of the TF exists on the promoter of the gene, with high prob-

ability compared to a random promoter. Only if this is the case my method assumes

that the TF indeed regulates the gene.

This method is different from existing methods for reverse engineering of transcrip-

tional networks in a few ways. First of all, most methods look at the entire genome glob-

ally and try to reconstruct the complete transcriptional network, whereas my method

aims to reconstruct a local network. To do so, it asks a local question, about a transcrip-

tional connection between a TF and a gene, at a time. The advantage of my approach

is that most of the times one wants to search for information about a specific tran-

scriptional network that interests him, and go deeply into that specific transcriptional

network.

Moreover, my method uses both the relation between the TF and the gene and the

relation between genes that are co-regulated, whereas other methods use the relation

between co-regulated genes ([4]) or the relation between TFs and genes ([25]), but not

both relations.

Another difference between my method and other methods is that I use both corre-

lation coefficient and mutual information in order to measure the relation between two

genes, while others use only correlation coefficient. Mutual information is stronger than

correlation coefficient, since it measures the non linear relation between two genes, while

correlation coefficient measures only the linear relation between two genes.

My method has some weaknesses. The first, and most central one is the fact that

prior knowledge about the network must be provided. Another drawback of this method

74



is the fact that it is very sensitive to noise, since it looks at specific gene expressions

from the microarray chip, and not on clusters of genes. The technology of microarray

chips is sensitive to noise, and when working with large groups of genes (clusters of

genes) that noise is eliminated, however, if we work with single gene expression, that

noise is still there.

In order to build and check this method I used 2 human microarray data sets. One

of these data sets contains in-vitro human cells that passed a series of transformations.

The other one contains samples of normal human tissues, taken from colon, liver and

lung.

First, I learned the algorithm parameters for both data sets. In both cases the weights

that were specified to the score components by the learning algorithm strengthen my

key assumptions, since the learned weights of the relation between the TF and the gene

were very low, whereas the learned weights of the relation between the gene and the

known targets of the TF were higher, and the learned weights of the relation between

the gene and the known targets of the TF that share another TF with the gene were

even higher.

I also checked the error rate of the algorithm with the learned parameters, and

discovered that in both data sets the false negatives rate was 60%. In one of the data

sets the false positives rate was 10% and in the other data set the false positives rate was

20%. These results can teach us that the algorithm is noisy, moreover it recognizes only

part of the direct transcriptional connections between TFs and genes. One way that

reduces the noise of the algorithm tremendously is the fact that if the algorithm predicts

that a TF regulates a gene, I check whether the TF binding site exists in the promoter of

the gene, and only if this is the case I assume that the algorithm prediction was true. Not

surprisingly, when I checked the algorithm on known transcriptional networks, which I

had a lot of prior information on, I saw that the algorithm discovered more than 40%

of the known transcriptional connections, and the rate of the connections that were

discovered falsely was less than 10%. Meaning, there is an anti-correlation between the

prior knowledge of the algorithm and its error rate; when the prior knowledge on the

network is high, the error rate of the algorithm is low and we can be more confident

about the algorithm results, and vise-versa.

I compared this error rate to error rates of other methods that reconstruct transcrip-

tional networks. Qian et. al. [25] got false negative rate of 64% and the false positives

rate of 1.8%. Xing et. al. [33] got false positive rate of 1% - 6.5%, and overall (false

positives and false negatives) rate of 2% - 33%, depending on the error of the system
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they developed, and the experiments number they used.

Segal et. al. [4] and Ihmels et. al. [26] didn’t provide direct error rate measurements.

I used this method in order to reconstruct a human transcriptional network, related

to SMC differentiation, around the TF SRF and two of its target genes: SM α-actin

and SM22α. I wanted to discover the TFs that regulate SM α-actin and /or SM22α and

the target genes of SRF. I worked with 54 TFs which I have prior information on. My

method identified two of the four known SM α-actin TFs (SRF and USF). These TFs

were identified by both of the data sets. Moreover, it discovered four new TFs as SM

α-actin regulators (ETV7, TTF1, VDR and HOXB7). Non of these TFs is known from

literature to regulate SM α-actin. One of these four TFs (HOXB7) was identified using

both of the data sets, the rest of the three TFs were found by one of the data sets. My

method also identified one of the four SM22α known TFs (SRF), using both data sets.

It identified the other three known SM22α TFs when using only one of the data sets.

Furthermore, this method identified three SM22α new TFs (VDR, ATF, TOPORS).

Two of these three TFs (VDR and TOPORS) were discovered by both data sets.

In order to learn which of the new TFs are activators and which are repressors

I looked at the correlation coefficients (now without absolute value) of SM α-actin /

SM22α with the new TFs and with the known target genes of these new TFs. My

results here were partial. I discovered that VDR activates both SM α-actin and SM22α,

and HOXB7 activates SM α-actin. I couldn’t draw any conclusions about the rest of

the new TFs, since I didn’t have any information about whether they activate / repress

their known target genes, and I couldn’t rely on the correlation coefficient between the

TF and SM α-actin / SM22α in order to examine the regulation relation between them.

Next, I checked which of the genes in each data chip are SRF targets. My method

found 41 putative SRF target genes. These genes were found using both of the data

sets. Six of these 41 genes are known to be SRF targets (five of them are known to be

activated by SRF). In order to check which of these 41 genes are activators and which are

repressors, I looked at their expression patterns, using both data sets. In each data set

the 41 genes could be divided to three groups (in each data set the groups were different):

One group with a certain expression pattern, another group with the opposite pattern

and a third group with no pattern. In each data set one of the groups with expression

pattern contained at least four of the genes that are known to be activated by SRF.

Thus, I concluded that the genes in this group are activated by SRF and the genes in

the group with the opposite expression pattern are repressed by SRF. 10 of the 41 genes

turned out to be activated by SRF using one data set and repressed by SRF by another
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data set, and thus I couldn’t conclude the regulation sign between SRF and those genes.

The rest of the 31 contained 15 activated genes (were in the activated genes group for

at least one data set), 13 repressed genes (were in the repressed genes group for at least

one data set) and three not known genes (were in the group without expression signal

in both data sets).

We can see that this method identifies known transcriptional relations, as well as

new ones. It would be very interesting to perform a biological experiment in order to

verify some of the new connections I found.

Moreover, it would be interesting to examine more gene expression data sets in order

to verify that the characters of the distribution functions are carried out for other data

sets.

Another goal for the future is to expend the human database of TF-target pairs in

order to be able to work with more TFs.
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