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  Abstract 

 
 
Leukemia is not a single homogenous disease and can be divided into 

subtypes, based on the associated chromosomal abnormalities. Recently, using 

microarray data analysis, several research groups characterized the gene 

expression profiles of different, previously known, leukemia subtypes. Our aim 

was class discovery: to identify new partitions of leukemia samples, into novel 

sub-groups with no previously known common label, on the basis of their gene 

expression profiles. Using a combination of supervised statistical methods and 

unsupervised clustering, we analyzed 12 publicly available datasets of 

leukemia and other cancers. Surprisingly, we observed two unanticipated 

partitions of the leukemia patients to novel subgroups. These two partitions are 

induced by two different clusters of genes. In both partitions clear and sharp 

separation of the patients was demonstrated on the basis of the expression 

levels of the corresponding gene clusters. While for one cluster the biological 

meaning of this separation is still vague, we suggest an interesting 

interpretation to the partition induced by the expression levels of the genes of 

the other cluster: this interpretation strengthens previous epidemiological and 

molecular studies, which suggested a role for viral infection in the etiology of 

leukemia and other cancers.  
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1 Introduction 

 

1111....1111 LeukemiaLeukemiaLeukemiaLeukemia    

 

Leukemia is a type of cancer that arises in the blood and bone marrow. Bone 

marrow, a soft type of tissue that is found in the center of some bones, is the 

body's "blood factory." It produces immature cells that eventually develop into 

new blood cells.  

1.1.1  Hematopoietic Differentiation  

Blood cell development begins in the marrow with the formation of 

hematopoietic stem cells. These primitive cells are capable of developing into 

any kind of blood cell. The first step in this evolution, or differentiation, is into 

one of two slightly more mature types of stem cells: lymphocytic progenitor 

cells and myeloid progenitor cells (Figure 1). These cells then undergo further 

specialization. Lymphocytic stem cells mature into either T cells, B cells, or 

natural killer cells. Myeloid stem cells mature into erythrocytes (red blood 

cells); platelets (which clot the blood); monocytes (a type of white blood cell); or 

granulocytes (a group of white blood cells that includes neutrophils, basophils, 

and eosinophils). Each of these types of cell has a specific role in the 

functioning of the body. 

1.1.2 Leukemia: unregulated proliferation of hematopoietic cells  

A malignant transformation can happen at any stage of blood cell development. 

These abnormal blood cells are characterized by abnormal unregulated 

proliferation of one or more cells of the hematopoietic lineage. This abnormal 

behavior is due to the generation of somatic mutations which confer the 

affected cells a proliferative or survival advantage over the normal cells. The 

mutations include translocations, deletions and insertions that usually affect 

oncogenes or tumor suppressors1.  
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Most leukemias fall into one of two general groups: myeloid leukemia (about 

60% of the cases) and lymphocytic leukemia (about 40%). People also classify 

leukemias according to whether they are acute (55%) or chronic (45%). In 

acute leukemias, the malignant cells, or blasts, are immature cells that are 

incapable of performing their immune system functions. The onset of acute 

leukemias is rapid (weeks), and, in most cases, fatal unless the disease is 

treated quickly. Chronic leukemias develop in more mature cells, which can 

perform some of their duties but not well. These abnormal cells also increase at 

a slower rate (years).  Hence, there are four main types of leukemia: Acute 

Lymphocytic Leukemia (ALL), Chronic Lymphocytic Leukemia (CLL), Acute 

Myelogenous Leukemia (AML), Chronic Myelogenous Leukemia (CML). Each of 

these leukemia types consist of several subtypes. We will focus on the ALL.  

1.2.1 Subtypes of ALL 

There are several ways to classify ALL patients2. One method sub-divided the 

ALL into subtypes on the basis of morphological criteria into FAB (French-

American-British) subtypes L1, L2, and L3. ALL cells are also classified by 

 Figure 1 | Stem cell 
differentiation.  Stem cells 

differentiate into the major players 

in the immune system 

(granulocytes, monocytes, and 

lymphocytes). Stem cells also 

differentiate into cells in the blood 

that are not involved in immune 

function, such as erythrocytes (red 

blood cells) and megakaryocytes 

,for blood clotting (Adopted from 

http://www.biology.arizona.edu) . 
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immunophenotype, the lymphocytic cell line from which they are derived; in 

ALL disease arises in either B or T cells, which each have characteristic 

markers on their cell surfaces. Another important classification is based on the 

chromosomal abnormalities in the diseased cells.  

1.2.1.1 Chromosomal abnormalities in ALL 

The chromosomal changes, which contribute to the leukemiagenesis, contain: 

gain of chromosomes, loss of chromosomes, insertions, deletions and most 

prominent, chromosomal translocations (chromosome breaks and fusions). 

These chromosomal abnormalities occur in specific regions, and certain 

abnormalities are related to particular ALL subtypes. Chromosome 

translocations involve illegitimate recombination of normally separate genes1 

(Figure 2). This can result in dysregulation of expression of an oncogene by 

association with a powerful and constitutively active regulatory element1,3. 

More than 200 genes have been found to be involved in translocations in 

childhood leukemia3, but many of these are rare and certain genes 

predominate (Table 1). The DNA breaks always occur in non-coding regions 

(introns) of genes. Breaks always occur, more or less randomly, within a limited 

region of these genes, but each patient's leukaemic cells have a unique (or 

clone specific) breakpoint in the DNA sequence, providing a specific, sensitive, 

and stable marker for tracking leukemic clones 4.  

 Table 1| Main biological subtypes and chromosome changes in childhood ALL (adopted 

from 3) 

 



  - 6 -

 

 
 
Figure 2 | Chromosomal translocation to form the TEL-AML1 fusion gene in childhood 
acute lymphoblastic leukaemia. The TEL and AML1 genes lie at the breaks and are brought 

together by the exchange. The genes break in non-coding (grey) regions between the coding 

regions (numbered, green or red), and re-joining of the two broken genes forms a novel fusion 

gene. (adopted from 5) 

 

1.2.2 The frequency of leukemia subtypes as a function of age  

There are marked differences in the frequency of specific subtypes as a 

function of age. Although the total number of hematopietic neoplasms in adults 

far exceeds the number seen in children, in the pediatric and adolescent 

populations these malignancies comprise almost 50% of all cancers, whereas in 

adults they comprise only 5%-8%6 . In addition, the rate of certain subtypes of 

leukemia varies significantly between pediatric and adult patients. Acute 

lymphoblastic leukemia is the most common cancer seen in the pediatric 

population and accounts for greater than 50% of hematopoietic malignancies in 

this age group6. By contrast, ALL is a relatively rare leukemia subtype in 

adults, accounting for only 2%�3% of hematopoietic malignancies.  Moreover, 

the rate of the secondary types of leukemia subtypes is also varying as a 

function of age. In ALL patients, MLL-AF4 gene fusion is much more frequent 

in infants than in children, and BCR-ABL gene fusion is more common in 

adults than in infants and children5 (Figure 3).   

One of the main datasets we analyzed in this study was derived from leukemic 

blasts of childhood ALL7.  
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Figure 3 | Major molecular subtypes of acute lymphoblastic leukemia: in infants (<1 years 

old) children (2-10 years old) and adults. (adopted from 5) 
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As mentioned above, childhood leukemia is not one homogenous disease and 

can be divided into subtypes, based on the chromosomal abnormalities. These 

include chromosome translocations, resulting in the generation of chimeric or 

fusion genes1 and change in chromosome number (hyperdiploidy or 

hypodiploidy). Genes involved in these abnormalities have very diverse 

functions, but it seems that most of them are involved in some critical stage of 

cell growth, development, or survival1.  

 

There is now evidence8,9 that the chromosome translocations are often the first 

of initiating events of leukemia, occurring prenatally during fetal development. 

This evidence comes mainly from studies of identical twin infants with TEL-

AML1 translocation8,9. Analysis of pairs of identical twins with concordant 

acute lymphoblastic leukaemia shows that leukemic cells from both twins 

share the identical breakpoints in TEL and AML1 genes8,9. This contradicts the 

statement made above, that each patient's leukemic cells have a unique 
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breakpoint in the DNA sequence. Since gene breakpoints in leukemic cells are 

not inherited, the only plausible explanation for twin leukemias sharing the 

same gene breakpoints is that the chromosomal breaks generating the fusion 

gene must have occurred just once, in one blood stem cell, in one twin in utero. 

But, is this single chromosome translocation itself enough to generate 

leukemia?  

It turns out that for identical twins aged 2-6 years, with acute lymphoblastic 

leukemia, the concordance rate of leukaemia is considerably low, around 5% 

only10; meaning that in 95% of the pairs, who shared the very same 

translocation, one twin did not suffer from leukemia. This indicates the need 
for some additional postnatal event(s).  For this additional event(s) there is a 

1 in 20 chance (although it still represents a 100-fold extra risk of leukaemia 

for the twin of a patient with ALL). 

1.3.1 The "two hit" model 

The above finding suggests, at a minimum, a "two hit" model for the etiology of 

childhood leukemia. If this model of leukemia development is correct, then, for 

every child with acute lymphoblastic leukaemia diagnosed, there should be at 

least 20 healthy children who have had a chromosome translocation. This 

possibility has been investigated by screening unselected samples of newborn 

cord blood for fusion genes. About 600 samples have been screened, and 

around 1% have a leukaemic TEL-AML1 fusion gene11. This 1% represents 

100 times the cumulative rate or risk of acute lymphoblastic leukaemia (with a 

TEL-AML1 gene). It turns out that the real bottleneck in development of acute 

lymphoblastic leukaemia therefore seems to be a strict requirement for a 

second "hit" after birth � in other words, additional chromosomal or molecular 

abnormalities are therefore needed for childhood leukaemia to develop. 

1.3.2 The viral infection theory 

Epidemiological evidence suggests that ionizing radiation and certain chemicals 

(such as benzene) may play a part in the development of some subtypes of 

leukaemia and lymphoma in adults and children12. In addition to these agents, 

it was suspected that common childhood infections contribute to the etiology 
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of childhood leukemia, in particular ALL. Most spontaneous leukemias in 

domesticated animals are related to viruses12. Several human lymphoid 

malignancies are associated with infectious agents: Burkitt�s lymphoma with 

Epstein-Barr virus13, ATL with HTLV-I14, body-cavity lymphoma with human 

herpes 815, B-cell non-Hodgkin Lymphoma with hepatitis C15 and gastric MALT 

lymphoma with Helicobacter Pylori16.  

 

The infectious etiology hypothesis is based on two distinct but complementary 

schools of two British researchers: M. Greaves and L. Kinlen. Both claim that 

infection in previously unexposed individuals may cause dysregulated immune 

response. This response, added upon the innate chromosomal abnormality, is 

blamed to be the "second hit" which contributes to leukemogenesis. They differ 

mainly in the suggested reason of the delayed exposure. The Kinlen theory17, 

based on transiently increased rates of leukemia in geographical clusters, 

suggests that population mobility and mixing result in infection occurring in 

susceptible, previously unexposed individuals.  Several epidemiological studies 

supported the population mixing theory18,19. The  alternative �delayed infection� 

hypothesis20-22 focuses on the timing of common childhood infections and 

claims that leukemia are associated with a lack of exposure in infancy. 

 

Many common or endemic infections are encountered around birth through the 

mother, or during infancy through breast milk or other siblings or contacts. 

Such early exposures to the infectious agent should occur in the context of the 

immune protection that derives from the mother�s transplacental antibodies 

and from breast milk thereafter. Early exposures modulate the infant�s 

immunological repertoire and prepare it for future potential exposure. The 

changes in lifestyles in developed countries, in particular in high socioeconomic 

levels, including child-rearing and breastfeeding practices, compromise this 

evolutionary adaptation of the immune system. Pregnant women may not have 

been exposed to some infections and therefore will not provide immune 

protection to the infant. Moreover, the withdrawal of prolonged breastfeeding 

compromises immune protection and eliminates early oral transmission of 

infectious agents23 .  
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Lack of early exposure leaves the immune system unmodulated, and later 

infection with common infectious agents might lead to inappropriate immune 

response. It was suggested that in some children abnormal immunological 

response to common infection may increase the risk of leukemia and it is 

postulated that it is the aberrant response to infection that promotes the 

crucial second, postnatal event22.   

Dysregulated immune response upon delayed exposure to infection is blamed 

to contribute to leukemogenesis. The dysregulated response to infection is 

suggested to provide, probably indirectly, proliferative or apoptotic stress to the 

bone marrow, leading to the complementary essential �hit�22. The exposure is 

predicted to occur proximally to clinical disease5, suggesting that a �smoking 

gun� can be identified when leukemic cell samples are studied. 

Despite intense research24,25, no direct biologic supportive evidence, such as 

identification of microbial agent sequences, was provided. Similarly, no 

epidemiologic data linking any specific pathogen to ALL development were 

described. Several anecdotal reports described rare cases of ALL diagnosis 

preceded by a preleukemic phase known as pre-ALL in association with EBV or 

parvo B19 infection26,27.    

 

1111....4444 The importance of class discoveryThe importance of class discoveryThe importance of class discoveryThe importance of class discovery    

 

Pediatric acute lymphoblastic leukemia is one of the great success stories of 

modern cancer therapy, with contemporary treatment protocols achieving 

overall long-term event-free survival rates approaching 80%28. This success has 

been achieved, in part, by using risk-adapted therapy that involves tailoring 

the intensity of treatment to each patient's risk of relapse. This approach was 

developed following the realization that pediatric ALL is a heterogeneous 

disease consisting of various leukemia subtypes that differ markedly in their 

response to chemotherapy29. Critical to the success of this approach has been 
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the accurate assignment of individual patients to specific leukemia subtypes. 

The underlying genetic abnormalities in these leukemia subtypes influence the 

response to cytotoxic drugs. Moreover, understanding of the molecular biology 

of certain subtypes can lead to smarter drug design, improved clinical efficacy 

and potentially more acceptable side-effects. While traditional cytotoxic cancer 

treatments such as chemotherapy or radiation therapy kill all dividing cells, 

these drugs can act on a molecular target by a mechanism that is more specific 

to particular leukemia subtype. Such a drug, Gleevec, was approved by the 

FDA in 2001 for the treatment of the BCR-ABL subtype30  

Another implication of class discovery may be the recognition of a class of 

patients, who all share a certain causative agent in the pathogenesis of 

leukemia. This causative agent may contribute to the development of leukemia 

(in addition to the inborn chromosomal abnormality). The importance of the 

finding of such an agent on therapy and prevention of childhood leukemia is 

enormous.  As mentioned, several human malignancies are associated with 

infectious agents. Some of them may be prevented or treated by vaccines 

designed to induce appropriate immune responses. Several efforts are currently 

carried out, in order to develop such a vaccine; among them: HPV vaccines for 

HPV-associated head and neck squamous cell carcinoma31,32 and EBV vaccines 

for Hodgkin's disease (lymphoma)33.   

Naturally, the usage of such drugs and vaccinations is based on the accurate 

assignment of individual patients to a particular known and novel leukemia 

subtype. One hopes that the characteristics of each subtype can be determined 

using microarray studies. 

1.4.1 A molecular-targeted drug: BCR-ABL and Gleevec 

Traditional cytotoxic cancer agents have serious side effects such as nausea, 

weight loss, hair loss and severe fatigue that result from their lack of specificity 

in killing cells. Gleevec was designed as an inhibitor of a specific receptor 

associated with BCR-ABL, and so produces less severe side effects than other 

cancer agents30. The BCR-ABL translocation occurs at the site in the genome of 

a protein tyrosine kinase called ABL, creating the abnormal BCR-ABL protein, 
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a fusion of the ABL gene with another gene called BCR. The kinase activity of 

ABL in the BCR-ABL fusion is activated and unregulated, driving the 

uncontrolled cell growth. White blood cells containing the BCR-ABL mutation 

become able to proliferate in the absence of growth factors they normally 

require. Gleevec inhibits ABL kinase activity (Figure 4), helping to reverse 

uncontrolled cell growth. The activation of BCR-ABL also represses apoptosis 

through induction of anti-apoptosis factors such as Bad, allowing transformed 

cells to divide.  

 

 

 

Figure 4| Inhibition of cellular proliferation by Gleevec in BRC-ABL subtype. (adopted 

from www.biocarta.com) 
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Recently, using microarray data analysis, several research groups 

characterized the gene expression profiles of different known leukaemia 

subtypes and even revealed new ones7,34-36. Golub et al.34 analyzed the gene 

expression of 38 acute leukemia samples and found groups of genes that 

distinguish ALL from acute myeloid leukemia (AML). Armstrong et al.35 
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analyzed 72 samples and showed that ALL with MLL translocations have a 

distinct gene expression profile and can be distinguished as a unique subtype 

of leukemia (MLL), separable from both ALL with no MLL translocation, and 

AML. Rozovskaia et al.36 examined the gene expression of 60 ALL and AML. 

They found that 2/3 of the genes that separate MLL patients with t(4,11) 

translocations from the other ALL are, in fact, sensitive to the differentiation 

stage (mostly early for MLL). Only one third of the separating genes respond to 

the translocation. Yeoh et al.7 analyzed the gene expression of 360 pediatric 

ALL patients and demonstrated that using the microarray platform, patients 

can be accurately classified to the relevant ALL subtypes (T-ALL, E2A-PBX1, 

BCR-ABL, TEL-AML1, MLL and hyperdiploid >50 chromosomes). In addition, a 

novel ALL subgroup was identified based on its unique expression profile. A 

different attempt was preformed trying to predict relapse, and indeed within 

some of these subgroups, distinct expression profiles that can predict relapse 

were identified.  

 

1111....6666 Class Discovery Class Discovery Class Discovery Class Discovery –––– M M M Methodologethodologethodologethodologiesiesiesies    

 

1.6.1 Laboratory techniques 

Class discovery refers to defining previously unrecognized tumor subtypes34. 

Historically, class discovery was a difficult task, because it has relied on 

specific biological insights. The traditional techniques were prolonged 

procedures, which typically evolved through years of hypothesis-driven 

research. A more recent technique, FISH � Florescence-In-Situ-Hybridization 

uses fluorescent DNA probes that hybridize to specific portions of 

chromosomes. These probes can be used to identify certain parts of 

chromosomes, and to count the number of copies of each chromosome within 

tumor cells (Figure 5). A more effective technique, known as Spectral 

KaryotYping (SKY) is a technology based on FISH that is combined with 

another technology called spectral analysis. SKY, like FISH, employs florescent 

DNA probes that attach themselves to parts of chromosomes. The tagged 

portion of each chromosome appears in a different color, creating a multi-color 
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pattern that distinguishes one chromosome from another (Figure 5) 1,37. Using 

these techniques, one can reveal previously unknown genetic abnormalities (as 

hyperdiploidity or novel translocations). 

 

 

 

Figure 5| Left: The molecular basis of the FISH (Florescence In Situ Hybridization) technique. 

Right: The multi-color pattern of Sky - Spectral Karyotyping (adopted from 

http://www.accessexcellence.org).  

 

1.6.2 Class discovery by gene expression analysis 

An alternative approach may be based on global gene expression analysis, 

instead of applying labor intensive molecular examinations. As mentioned 

above, using microarray data analysis, several research groups have recently 

identified some known and even some previously unrecognized leukemia 

subtypes, based on common gene expression patterns 7,34-36; each of the 

leukemia subtypes were identified by distinct gene expression profiles. These 

profiles may also serve as new and low-cost diagnostic tools.  In addition, a 

detailed examination of these profiles may suggest candidate genes and 

proteins against which novel therapeutic drugs may be developed. 

The class discovery problem involves two issues: first, using an unsupervised 

method such as  clustering to group leukemia samples by their gene 

expression levels, and second, the determination whether putative classes 

produced by such a clustering algorithm are biologically meaningful.  
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In order to deal with both issues, we used a method which combined a 

clustering algorithm and other statistical tests and involved the analyses of 

several different datasets which were produced by several different research 

groups34-36,38-45; among them are 4 datasets of leukemia patients and 8 

datasets of other types of cancer 38-45. We employed the following multi-steps 

iterative approach, combining unsupervised and supervised techniques, 

consisting of several consecutive steps (Figure 6): 

 

Step 1 – Discover a novel subgroup of samples within a known subtype 

The aim of this step is to identify a new partition of the samples, into 

previously unrecognized sub-groups, on the basis of the gene expression 

profiles. The input for this step is gene expression data of leukemic patients. 

We start with one leukemic subtype only so that no 'inter-subtype' noise would 

affect the results. In order to perform a totally 'blind' analysis, an unsupervised 

technique is required.  For this end we use CTWC, a bi-clustering method 

(which was developed in our lab, see Methods section). The result of this step is 

(hopefully) a group of co-expressed genes whose expression levels separate the 

studied subtype of leukemia into two unrecognized sub-groups. If indeed was 

found, such a group of genes is thought to participate in a particular biological 

pathway.   

Step 2 – Refine the gene list 

The two unfamiliar sub-groups of patients are identified by distinct expression 

levels of a certain set of co-expressed genes. However, there are, probably, 

additional genes that are also likely to be involved in the same pathway. In the 

same manner, some of the genes within the cluster may have been mistakenly 

included. Therefore, a refinement and an expansion of the cluster of genes are 

required. This may be done by standard supervised tests; the two novel sub-

groups are treated as "ground truth" and taken as the basis for the test. The 

resulting refined list of genes is expected to differentiate between the two new 

sub-groups. The TNOM test is applied for this purpose (see Methods section). 
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Step 3 – Expanding the novel subgroup of samples 

The novel sub-group we have at this point consists solely of one known subtype 

of leukemia. As a result, we might miss interesting insights; revealing the 

distribution of all given leukemia subtypes within the novel subgroup can shed 

biological light on the demonstrated phenomenon. Hence, we turn to expand 

the novel subgroup by analyzing other leukemia subtypes as well. For this aim, 

we use again a clustering algorithm (SPC), clustering samples from all subtypes 

using the refined list of genes. The output of this step is an expanded list of 

samples, which co-express these genes.  

Step 4 – Refine the list of genes 

To complete the refinement process, supervised analysis (TNOM) is performed 

again. This time, we try to find genes that separate the expanded list of 

samples (taken from all given subtypes of leukemia) from the remaining 

samples, on the basis of their expression values.  At this point we expect to 

keep fixed the final refined list of genes that are expressed distinctively by the 

members of the novel subgroup.  

At this point, we should pose hypotheses regarding the biological meaning of 

the novel subgroup of genes that generated the novel partition of the patients. 

We do so, on the basis of two types of information: the annotations of the genes 

and clinical data of the samples.    

Step 5 – Other leukemia datasets 

To substantiate the findings obtained from previous steps, we may test whether 

we can find a similar sub-division in other leukemia data sets34-36, using the 

same set of genes. Similar sub-division may strengthen the significance of the 

results; on the other hand, difficulties in the ' transferability' of our results to 

other leukemia datasets can imply that our findings are an artifact specific only 

to the particular dataset studied. This step allows us to try to verify the 

hypothesis we posed in the previous step. 
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Step 6 – Other cancer datasets 
Successful 'transfer' of our findings out of the leukemia limits can demonstrate 

a wider phenomenon, which is not necessarily limited to leukemia. For this 

reasons, we analyze, in addition to the leukemia datasets, several other 

datasets taken from lymphoma40, prostate41,44 various mixed tumors 39,42,  

ovary43 , lung38 and breast45, always trying to induce an unknown separation, 

using the same novel cluster of genes . Individual analyses of certain datasets 

allow examination of specific aspects of the biological hypothesis (e.g. analysis 

of lymphoma datasets in order to examine whether the demonstrated 

phenomenon exists in similar types of tissues too).   
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Figure 6 | The multi-step iterative approach we applied in this study. 
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Steps 5 and 6: Clustering 
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test whether we can find a sub-
division of samples in other 
datasets on the basis of the 
expression levels of genes found 
in step 4. 
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Our procedure is reminiscent in spirit of the signature method46. This 

algorithm uses a set of genes as input (Figure 7); usually, genes that are known 

to be co-expressed. The algorithm identifies the samples in which the input 

genes are highly expressed. The score of each sample is the average change in 

the expression of the input genes. Only samples with a large absolute score are 

selected. Next, the algorithm searches the whole set of genes and selects those 

that show a significant and consistent increase of expression in the samples 

selected in the first stage. By doing so, the algorithm refines and extends the 

original set of genes. 

 

Figure 7| The signature Algorithm (adopted from 46). 

The signature method starts with a known/suspected set of genes, while our 

procedure searches for them in an unsupervised way. Moreover, the signature 

method analyzes all samples in the first step (analysis of each sample 

separately). We use a clustering algorithm, which takes into consideration the 

information from all given samples together, and therefore we believe that 

'inter-subtype' noise can increase the Signal to Noise Ratio. We prefer to first 

search for a clue to the pathway within one subtype and then to expand it to 

the rest. Another crucial step we take is the 'transferability' test to other 
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datasets. This step can demonstrate the significance of the findings and to 

shed a light on the biological meaning which may remain obscure.  

 

Applying our procedure on any given gene expression data allows us to reveal 

hidden subtypes in the data. Understanding the biological meaning of these 

subtypes is much more difficult, and depends also on the existence of relevant 

solid genomic, molecular or biological knowledge.  
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2 Results and discussion 

 

Our aim was class discovery: to identify new partitions of the samples, into 

sub-groups with no previously known common label, on the basis of the 

expression profiles of a group of genes with correlated expression levels. To this 

end we applied the CTWC method (see methods section) on the data of Yeoh et 

al7.  The expression levels of 3000 probe sets (representing about 2500 genes) 

that passed a variance filter were used in this analysis. We applied the 

algorithm on each of the ALL subtypes separately, in order to avoid 'inter-

subtype' noise. ALL subtypes with large numbers of samples were the first to 

be analyzed.  We used both unsupervised and supervised approaches. The 

search for the characteristic gene set was performed in a totally "blind" way, 

without posing any hypothesis regarding either the separating gene set or the 

resulting partition of the samples.  

 

Surprisingly, we observed two unanticipated partitions of the ALL patients to 

novel subgroups, induced by two different clusters of genes (referred to as 

cluster no.1 and cluster no. 2). In both partitions clear and sharp separation 

was demonstrated, but while for cluster no.2 the biological meaning of this 

separation is still vague, we suggest an interesting interpretation to the 

partition induced by the expression levels of the genes of cluster no. 1.     

 
2222....1111 Class discovery within the TELClass discovery within the TELClass discovery within the TELClass discovery within the TEL----AML1 subtypeAML1 subtypeAML1 subtypeAML1 subtype    

 

Cluster no. 1 was obtained while starting the class discovery procedure with the 

TEL-AML1 subtype.  

2.1.1 Discovery of novel subgroup – unsupervised step 

When we applied the CTWC algorithm on the TEL-AML1 samples, we noticed 

an interesting group of 16 probe-sets (Table 3) that separated the TEL-AML1 

subtype very clearly into two sub-groups (Figure 8): in 8 TEL-AML1 samples 
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these probe-sets had high expression levels whereas in the remaining 71 

samples their expression levels were relatively low (see Appendix, Table 1). The 

distinct group of 8 samples shared no clinical label (such as same protocol of 

treatment or same prognosis). Many of the differentiating genes belong to the 

JAK/STAT1 pathway induced by interferon. 

 
Figure 8 | Expression values of the cluster of 16 genes, found by CTWC, in 79 TEL-AML1 
samples. The values are centered (mean of each gene = 0) and normalized (STD = 1). These 

genes are overexpressed in a group of 8 (out of 79) TEL-AML1 samples. 

 

2.1.2 Refine the list of genes – supervised step    

Next, we refined the list of these genes, using supervised analysis (see methods 

section). First, we took the separation into the two groups of 8 versus 71 

samples as "ground truth" and searched for genes that differentiate between 

these two groups. This search was performed on an extended set of 6500 

genes. 184 probe-sets passed the TNoM as differentiating, with p-values below 

0.05. To overcome the problem of multiple comparisons we applied the FDR 

method; 23 were identified as separating at an FDR level of 5% (Table 3). 
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The practical meaning of this statement is that out of these 23 probe-sets we 

expect about one to be a false positive, present due to random fluctuations. 

2.1.3 Expanding the novel subgroup – unsupervised step 

The next step of our iterative refinement process was unsupervised; we used 

the expression levels of the 23 probe-sets found above to characterize all 

samples, and clustered them using SPC. This way we identified a group of 50 

samples, selected from all the ALL subtypes that have high expression levels of 

the 23 probe-sets (Figure 9 and Figure 10). The average fold change of the 

absolute expression values between the two sub-groups is 2.63 (Table 2). This 

group of samples consists mainly of hyperdiploid>50 and TEL-AML1 subtypes, 

but contains almost all other subtypes as well (Table 4). The hyperdiploid>50 

subtype was significantly over-represented among the 50 samples with high 

expression; no other clinical label, specific to these samples, was found.  

 

Figure 9 | Expression values of the 23 genes in 335 ALL samples. The values are centered 

(mean of each gene = 0) and normalized (STD = 1). These genes are correlated and 

overexpressed in a group of 50 ALL samples, that consist mainly of hyperdiploid>50 and TEL-

AML1 subtypes. 
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Figure 10 | The mean absolute expression values of all 23 probe-sets for each of the 335 
samples. The 50 samples of cluster no. 1 are circled in red. The values are log scaled.   

 

Table 2| The novel sub-groups' means of the absolute expression values of each probe-
set. The last column represents the fold change of each probe-set between the sub-groups. The 

average fold change is 2.63. 

Probe-set ID* Samples  
1-50 

Samples 
 51-335 

Fold change 

38014_at 24100 16884 1.4273 
1358_s_at 4870 2215 2.1964 
1107_s_at 21260 7626 2.7875 
36412_s_at 13650 4030 3.3875 
38432_at 11600 4196 2.7648 

37641_at 8680 2305 3.7646 
38662_at 6640 3309 2.0061 
41745_at 77170 42048 1.8352 
37014_at 43140 8707 4.9547 
37353_g_at 4910 3427 1.432 
37360_at 13950 7366 1.8934 
1184_at 22220 18058 1.2306 
915_at 6880 1349 5.0982 
38584_at 7470 2171 3.441 
39263_at 13220 6328 2.0893 
39264_at 3420 1576 2.1708 
36927_at 17160 2122 8.0905 

40505_at 16490 10999 1.4991 

41171_at 30870 25571 1.2073 
37352_at 2340 1646 1.4217 

38389_at 2920 1071 2.7268 
676_g_at 146260 89327 1.6374 
464_s_at 7800 4953 1.5746 

* See Table 3 for additional gene annotation information 



  - 25 -

2.1.4 Refine the final group of genes – supervised step 

To complete the refinement process, supervised analysis was performed again, 

using TNoM on 6500 probe-sets, revealing 28 probe-sets that most significantly 

separate the new sub-group of 50 samples from the remaining 285 samples. 

 
Table 3 | Genes that separate the ALL samples into two subgroups 
Gene 
Probe ID 

Title Gene 
Symbol 

TEL-AML1
CTWC 

TNoM 1 
( P val) 

TNoM 2 
(P val) 

36927_at chromosome 1 open reading frame 29 C1orf29 + 0.000115 6.69E-35 

925_at interferon, gamma-inducible protein 30 IFI30 +  2.51E-32 

915_at 

(32814_at) 

interferon-induced protein with 
tetratricopeptide repeats 1 

IFIT1 + 6.06E-06 2.51E-32 

37641_at interferon-induced protein 44 IFI44 + 6.06E-06 4.44E-31 

37014_at myxovirus (influenza virus) resistance 1, 
interferon-inducible protein p78 (mouse) 

MX1 + 6.06E-06 7.40E-30 

38584_at interferon-induced protein with 
tetratricopeptide repeats 4 

IFIT4 + 0.000115 1.17E-28 

1107_s_at 

(38432_at) 

interferon, alpha-inducible protein (clone 
IFI-15K) 

G1P2 + 6.06E-09 3.41E-25 

38389_at 2',5'-oligoadenylate synthetase 1, 40/46kDa OAS1 + 0.000115 4.43E-24 

39263_at 

(39264_at) 

2'-5'-oligoadenylate synthetase 2, 69/71kDa OAS2 + 0.000115 5.51E-23 

38014_at adenosine deaminase, RNA-specific ADAR  6.06E-09 6.57E-22 

38517_at interferon-stimulated transcription factor 3, 
gamma 48kDa 

ISGF3G   8.76E-19 

1358_s_at   + 6.06E-09 8.35E-16 

38662_at Homo sapiens, clone IMAGE:4074138, mRNA  

sequence 

  6.06E-06 7.67E-15 

37360_at lymphocyte antigen 6 complex, locus E LY6E  6.06E-06 3.94E-11 

35718_at SP110 nuclear body protein SP110   2.35E-09 

33339_g_at 

(32860_g_at) 

signal transducer and activator of 
transcription 1, 91kDa 

STAT1 +  1.74E-08 

464_s_at interferon-induced protein 35 IFI35  0.000115 8.77E-07 

914_g_at  

(36383_at) 

v-ets erythroblastosis virus E26 oncogene like 

(avian) 

ERG   5.98E-06 

40054_at KIAA0082 protein KIAA0082   5.98E-06 

37352_at 

(3753_g_at) 

nuclear antigen Sp100 SP100 + 6.06E-06 5.98E-06 

34947_at 

(41472_at) 

apolipoprotein B mRNA editing enzyme, 

catalytic polypeptide-like 3G 

APOBEC3G   3.97E-05 

36845_at nuclear matrix protein NXP-2 NXP-2   3.97E-05 

40505_at ubiquitin-conjugating enzyme E2L 6 UBE2L6  0.000115 3.97E-05 

41841_at Homo sapiens clone 23718 mRNA sequence    0.000257 

39061_at bone marrow stromal cell antigen 2 BST2   0.000257 

32800_at retinoid X receptor, alpha RXRA   0.000257 

38805_at TGFB-induced factor (TALE family homeobox) TGIF   0.000257 
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890_at ubiquitin-conjugating enzyme E2A (RAD6 

homolog) 

UBE2A   0.000257 

40852_at tudor repeat associator with PCTAIRE 2 PCTAIRE2BP +   

32775_r_at phospholipid scramblase 1 PLSCR1 +   

36412_s_at interferon regulatory factor 7 IRF7 + 2.36E-07  

41745_at interferon induced transmembrane protein 
3 (1-8U) 

IFITM3  6.06E-06  

676_g_at 6-pyruvoyltetrahydropterin synthase PTS  0.000115  

1184_at 

(41171_at) 

proteasome (prosome, macropain) activator 

subunit 2 (PA28 beta) 

PSME2  6.06E-06  

We list in the 'TEL-AML CTWC' column the genes that were obtained by the initial CTWC analysis; two out of the 16 

probe-sets corresponded to the same gene and hence only 15 genes are marked. The 'TNoM1' column gives P-value of 

the genes that separate 8 versus 71 TEL-AML1 samples according to the TNoM test, at FDR=0.05. Only 19 genes are 

indicated (out of 23 probe-sets), again because of multiple representation.. The 'TNoM2' column indicates 28 genes that 

separate all the ALLs into two subgroups of 50 versus 285 samples (see  text). The genes that are known to be part of 

the interferon-JAK/STAT pathway are in bold face. In cases when two probe sets represent the same gene symbol, the 

lower p-value was taken.  

 
Table 4 | The number of samples from each subtype in the Yeoh et al.7 dataset.  

Subtype name Number  
of samples

Number 
in subgroup

Hyperdip>50 65 24 

TEL-AML1 79 10     

Pseudodip 29 4 

Normal 19 4 

Hyperdip 47-50 23 3 

T-ALL 45 2 

BCR-ABL 16 2 

MLL 21 1 

Hypodip 11 0 

E2A-PBX1 27 0 

Total: 335 50 
   

Novel subtype 

(as found by Yeoh et al.)

14 6 

 

2.1.5 Analyzing other datasets34-36,38-45 

We now turned to search for other types of cancer in which a similar finding 

may hold; we tested whether we can find a sub-division of samples in other 

datasets on the basis of the expression levels of genes from the same pathway. 
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However, in each of the following datasets we had to use a different subset of 

the separating genes: In some cases some of the relevant genes did not appear 

in the dataset (different versions of DNA chips were used) and in other cases 

some genes had too many missing values. We ran the SPC algorithm for each of 

the datasets, using for each the appropriate subset of our gene list. Our aim 

was to find a distinct group of samples, in which these genes were 

overexpressed. In addition, we checked the samples' labels, in order to find 

common clinical indicators, shared by the members of the selected subgroup.    

 

Firstly, we analyzed the leukemia data  of Golub et al.34, Armstrong et al.35 and 

Rozovskia et al.36. In each of these datasets we also found clear subgroups 

(containing about 10% of the samples), with overexpressed levels of these 

genes. Again, no common label was shared by the subgroup's members.  

 

Next, we ran CTWC with datasets of other types of cancer : lymphoma40, 

prostate41,44 mix of cancers39,42,  ovary43, lung38 and breast45. In the lymphoma 

and prostate data sets we found very small or negligible sub-groups of samples 

that co-expressed our sub-group of genes. Analysis of the data published by 

Ramaswamy et al.39, which contains samples from various types of cancer, 

revealed a small sub-group, 7 out of 280, that also contains samples from 

other types of cancer, but mainly from leukemia, lymphoma and even from 

normal peripheral blood samples. In the lung cancer data set of Bhattacharjee 

et al.38, a subset of 1.5% of the samples showed high expression levels. Another 

20% of the samples exhibited intermediate expression levels of these genes.  

 

In two datasets we did find significant overexpression:  ovary and breast 

cancers. In the ovary cancer data set of Welsh et al.43 the interferon-related 

genes were overexpressed in about 20% of the samples and in the breast 

cancer data of van 't Veer et al.45overexpression in about 40% of the samples 

was found (Figure 11) . 
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Figure 11| Expression values of the 12 probe sets in 96 breast cancer samples45. The 

values are centered (mean of each gene = 0) and normalized (STD = 1). Approximately 40% of 

the samples (to the right of the black dotted line) overexpress these genes. The 12 probe-sets 

correspond to 11 differentiating genes: ifi35, stat1, ly6e, oas2, oas1, ifit1, ube2l6, ifit4, plscr1, 

irf7, mx1 

 

2.1.6 Cluster No. 1 - Discussion 

We observed cluster no. 1 while performing a class discovery procedure with 

published gene expression data of childhood ALL's of the TEL-AML1 subtype. 

Surprisingly, a special set of genes was found to be highly expressed in a small 

minority (0-14%) of samples of the various leukemia subtypes, in a relatively 

high fraction (37%) of the hyperdiploid (>50) ALL subgroup and in a clear 

subgroup of the TEL-AML1 ALL 

2.1.6.1 Differentiating genes - biological meaning  

A set of 34 genes was obtained during all the supervised and the unsupervised 

steps. These genes separate the TEL-AML1 samples or the whole group of the 

ALL samples into two subgroups, on the basis of their expression levels. It 
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turns out that 29 of the 34 genes that appear in the gene cluster are known; 17 

of these are directly related to the interferon-JAK/STAT1 pathway (Table 3). 

These include signal transducer and activator of transcription 1 (STAT1) and 

interferon regulatory factor 7 (IRF7), both involved in signal transduction 

downstream to interferon receptors, as well as many interferon alpha induced 

proteins such as interferon induced protein 44, interferon induced 

transmembrane protein 3, interferon induced protein 35, 2�5�-oligoadenylate 

synthetase 1 and 2, myxovirus resistance 1 interferon-inducible protein 78 and 

adenosine deaminase RNA specific. Interferon gamma-induced proteins such 

as protein 30 and interferon gamma-induced transcription factor 3 were also 

found in the special gene cluster. Interestingly, several ubiquitin-conjugating 

enzymes such as E2L6 and E2A and proteasome system components such as 

activator subunit 2 (PA28 beta), some of them known to be induced by 

interferon, were also expressed in the cluster. Such proteins are involved in the 

generation of antigenic peptides that are presented to CD8 T cells by MHC 

class I molecules. Taken together, many genes relevant to the immune 

response, and in particular immune response to viruses, were found to be 

expressed in the special cluster of genes that are highly expressed in the 

hyperdiploid leukemia and TEL-AML1 variants. Of great interest is the finding 

of the expression of apolipoprotein B mRNA editing enzyme, catalytic 

polypeptide-like 3G (APOBEC3G) in the gene cluster. This enzyme was shown 

lately47,48 to confer antiretroviral defense against HIV and other retroviruses 

through lethal editing of nascent reverse transcripts. Hypermutation by editing 

mediated by this enzyme was shown to be an innate defense mechanism 

against retroviruses. One may speculate that the expression of this gene is an 

indication for retrovirus involvement in childhood leukemogenesis. 

2.1.6.2 Subtypes of ALL within cluster no.1 
The JAK/STAT genes were overexpressed in samples of various leukemia 

subtypes, but particularly in a relatively high fraction (37%) of the hyperdiploid 

(>50) ALL subgroup and in a clear representation of the TEL-AML1 ALL 

subgroup (Table 4); it turns out that these two subtypes have a common 

feature: both constitute a large part of the cases in the early childhood peak of 

leukemia (See introduction section, Figure 2). 
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2.1.6.3 Inferring from other datasets' analyses 
Search for the interferon gene cluster in other datasets of several malignant 

diseases indicates that in other datasets of leukemia about 10% of the samples 

expressed the special gene set. In lymphomas, prostate cancer and datasets of 

a mixture of tumors none or very low percentage of the samples expressed the 

set. In the datasets of 49 ovarian cancer samples and 203 lung cancer 

samples, subsets of ~20% expressed the gene set. In the dataset of breast 

cancer45, a subset of ~40% of the samples overexpressed the genes. It is of 

great interest that some epidemiologic studies suggested a role for infection in 

the pathogenesis of cancers other than leukemia; among them ovarian49, 

lung50, and breast51 tumors. The finding that about 40% of breast cancer 

samples expressed the �infection associated� gene signature is of special 

significance.  Retrovirus-like particles were demonstrated in a breast cancer 

cell line52  and Mouse mammary tumor virus (MMTV)-like gene sequences were 

detected by PCR in about 40% of  breast cancer samples in several studies51,53. 

Interestingly, the percentage of cases where retroviral gene sequences were 

identified is very similar to the percentage of cases where the interferon gene 

signature was identified (~ 40%).  The experiment to be done is to look at the 

same tumor samples for both interferon-associated gene expression and for the 

MMTV-like gene sequences. 

 

The prominent appearance of hyperdiploid leukemic samples (that occur at 

early childhood, where viral infection is most natural to occur) and the 

overexpression of these genes in cancers that are suspected to have a role for 

infection in the their pathogenesis, strengthens the hypothesis of Greaves and 

Kinlen17,21.   

 

The samples with high expression of the special genes constitute a small 

minority of the leukemic samples. Even in the hyperdiploid subgroup only one 

third of the samples were positive. Several explanations can be suggested for 

this finding. First, infection can represent only one type of �second hit� in 

childhood leukemia, and other mechanisms may operate in the rest of the 

cases. Second, the role of infection may be indirect, via the dysregulated 
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immune response, as suggested by the Greaves hypothesis. Under such a 

scenario the infectious agent can contribute to leukemogenesis in a transient 

�hit and run� fashion and its fingerprints may not be found at the time of 

leukemia diagnosis. 

  

Our finding, of a highly expressed �interferon cluster�, combined with the 

epidemiological evidence, implies that a viral infection induced an immune 

response, which resulted in interferon secretion, activation of interferon 

receptors and JAK/STAT signaling, resulting in the activation of many 

interferon regulated genes. Nevertheless, a less likely possibility, that the 

pathway was activated by a mutation, independent of viral infection, cannot be 

completely ruled out. The role of aberrant STAT signaling and constitutive 

STAT activation in leukemia is the subject of recent intensive research54.  

Activation of STATs and specifically STAT1 has been demonstrated in leukemic 

cell lines and blasts from 22-100% of patients with AML by several groups54. 

There are several reports of constitutive STAT1 activity in some of the ALL 

samples, similar to our findings. It is unclear whether constitutive STAT 

activation itself is the cause or the result of a transforming process. 

 

Our findings identified a set of interferon regulated genes suggestive of immune 

response to viral infection mainly in the hyperdiploid leukemia subtype. Taken 

together with the epidemiology-based hypotheses of Greaves and Kinlen, 

suggesting abnormal activation of immune response as contributing factor in 

leukemogenesis, the possible role of infectious agents, and in particular 

viruses, is strengthened. We also showed overexpression level of the anti-viral 

genes in ovary and breast cancers samples; other epidemiologic studies 

suggested a role for infection in the pathogenesis these cancers. These findings 

might strengthen the above hypotheses.  

A search of infectious agents, mainly in those leukemias where high expression 

of the �interferon cluster� is identified, may lead to the identification of the 

putative viral pathogen. The implications of the finding of such a causative 

agent on diagnosis, therapy and prevention of childhood leukemia are clear.  
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2222....2222 Class discovery within the hyperdiploid>50 subtypeClass discovery within the hyperdiploid>50 subtypeClass discovery within the hyperdiploid>50 subtypeClass discovery within the hyperdiploid>50 subtype    

Cluster no. 2 was obtained while starting the class discovery procedure with the 

hyperdiploid>50 subtype.  

2.2.1 Discovery of another subgroup – unsupervised step 

Applying the CTWC algorithm on the 65 samples of hyperdiploid>50 subtype 

revealed an interesting group of 14 probe-sets (Table 5) that separated the 

hyperdiploid subtype sharply into two sub-groups (Figure 12): in 15 

hyperdiploid>50 these probe-sets had relatively low expression levels whereas 

in the remaining 50 samples their expression levels were relatively high (see 

Appendix, Table 2). As before, the distinct group of 15 samples shared no 

known clinical label.  

 

 

Figure 12 | Expression values of the cluster of 14 genes, found by CTWC, in 65 
hyperdiploid>50 samples. The values are centered (mean of each genes = 0) and normalized 

(STD = 1). These genes are underexpressed in a cluster of 15 (out of 65) hyperdiploid>50 

samples. Columns represent the genes and rows represent the samples.  

 

2.2.2 Refine the list of genes – supervised step    

Next, we refined the list of these genes, using the same approach that we used 

while analyzing cluster no 1. We searched for genes that differentiate between 

these two groups, of 15 versus 50 samples, using TNoM. This search was 
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performed on an extended set of 6500 genes. 38 probe-sets were identified as 

separating at an FDR level of 1% (Figure 13 and Table 5). 

2.2.3 Expanding the novel subgroup – unsupervised step 

Subsequently, we used the expression levels of the 38 probe-sets found above 

to characterize all 335 ALL samples, and clustered them using SPC. This way 

we identified a group of 37 samples, selected from all the ALL subtypes that 

have high expression levels of the 38 probe-sets (Figure 14). This group of 

samples contains almost all subtypes; No common translocation or other 

clinical label, specific to these samples, were found (see Appendix, Table 3). 

 

Figure 13| Expression values of the expanded group of 38 genes, found by TNoM, in 65 
hyperdiploid>50 samples. The samples are sorted according to the CTWC results of the 

previous step. The 38 genes are underexpressed in a cluster of 15 (out of 65) hyperdiploid>50  

samples. Columns represent the genes and rows represent the samples. 
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Figure 14| Expression values of the expanded group of 38 genes. The 38 genes are 

underexpressed in a cluster of 37 (out of 335) samples. Columns represent the genes and rows 

represent the samples.   

 
Table 5 | Genes that separate the hyperdiploid > 50 subtype into two novel subgroups 

Probe Set  Title  Gene symbol ↓ Hyperdiploid
CTWC 

1474_s_at     + 

1839_at      

1903_at      

1928_s_at      

31608_g_at      

41842_at hypothetical gene supported by AK026880   

262_at 

263_g_at 

36684_at 

adenosylmethionine decarboxylase 1 AMD1  

1984_s_at Rho GDP dissociation inhibitor (GDI) beta ARHGDIB + 

40096_at ATP synthase, H+ transporting, mitochondrial F1 

complex, alpha  

ATP5A1  

38085_at chromobox homolog 3 (HP1 gamma homolog, 

Drosophila) 

CBX3  

38791_at dolichyl-diphosphooligosaccharide-protein DDOST  
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glycosyltransferase 

826_at DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-

linked 

DDX3X  

33647_s_at GM2 ganglioside activator protein GM2A  

1139_at 

33635_at 
guanine nucleotide binding protein (G protein), 

alpha 13 

GNA13 + 

466_at general transcription factor II, i GTF2I  

36783_f_at Krueppel-related zinc finger protein H-plk  

41300_s_at integral membrane protein 2B ITM2B  

1457_at Janus kinase 1 (a protein tyrosine kinase) JAK1 + 

39471_at membrane component, chromosome 11, surface 

marker 1 

M11S1  

32571_at methionine adenosyltransferase II, alpha MAT2A  

37711_at MADS box transcription enhancer factor 2, 

polypeptide C (myocyte enhancer factor 2C) 

MEF2C  

1472_g_at 

1473_s_at 

1475_s_at 

1476_s_at 

v-myb myeloblastosis viral oncogene homolog 

(avian) 

MYB + 

+ 

+ 

+ 

38614_s_at O-linked N-acetylglucosamine (GlcNAc) transferase  OGT  

40440_at PAI-1 mRNA-binding protein PAI-RBP1  

1318_at retinoblastoma binding protein 4 RBBP4 + 

865_at ribosomal protein S6 kinase, 90kDa, polypeptide 3 RPS6KA3  

351_f_at splicing factor, arginine/serine-rich 3 SFRS3 + 

34709_r_at stromal antigen 2 STAG2  

32548_at unactive progesterone receptor, 23 kD TEBP  

1581_s_at topoisomerase (DNA) II beta 180kDa TOP2B + 

504_at ubiquitin-conjugating enzyme E2D 3 (UBC4/5 

homolog, yeast) 

UBE2D3 + 

34642_at tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, zeta polypeptide 

YWHAZ + 

826_at Homo sapiens helicase like protein 2 DDX14 + 

We list in the 'hyperdiploid CTWC' column the genes that were obtained by the initial CTWC analysis; DDX14 (in italic 

face) was obtained by the first unsupervised analysis but didn't separate significantly the 335 samples into two sub-

groups.  
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2.2.4 Analyzing other datasets34-36,39-41 

Since we can not point to a common pathway for the differentiating genes of 

cluster no. 2, it is vital to test whether we can find a similar sub-division in 

other leukemia datasets and in other types of cancer. For this end, we used the 

38 separating genes from the refined list which was obtained by supervised 

analysis of the hyperdiploid>50 subgroup. In each of the following datasets we 

had to use a different subset of the 38 separating genes, since some genes 

simply did not appear in these datasets and others had too many missing 

values. We ran the SPC algorithm for each of the data, using the appropriate 

sub-set of our gene list.   In the cases in which we indeed found a similar sub-

division, we checked the labels shared by the member of the selected subgroup. 
A common label for the similar sub-division in other datasets might reveal the 

meaning of the novel sub-group of ALL samples, and shed a light on the 

function of the differentiating genes. 

2.2.4.1 Leukemia datasets  
The analyses of the leukemia datasets, published by Golub et al34 and 

Armstrong et al35., revealed small sub-groups that exhibited relatively low 

levels of mRNA expression. We find among these samples different subtypes of 

leukemia. No other common clinical label was shared. 

Clear and interesting results were obtained while analyzing the expression data 

of Rozovskaia et al36 (Figure 15). We observed very sharp separation; in 40% of 

the samples the genes were underexpressed, while in the remaining 60% they 

were overexpressed. The distribution of the leukemia's subtypes between these 

two subgroups is not random at all (see Appendix, Table 4):  The first subgroup 

(overexpression) consists of MLL t(4:11),  CD10- ,AML(*:11) and the normal 

samples.  The second subgroup consists of ALL controls, AML control, AML-

dup and 3 MLL t(4:11) samples. These 3 MLL samples were found to have lower 

expression levels of  "differentiation sensitive genes"36 than the other MLLs. The 

normal samples overexpressed all but one of the 37 genes; the C-MYB gene 

(which is represented by a few probe-sets). 
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Figure 15 | Clustering the 60 samples of Rozovskaia et al. based on 37 genes from 
cluster no. 2. Sharp and clear separation was detected.  The samples' labels are not randomly 

distributed. Columns represent the genes and rows represent the samples. 

 

2.2.4.2 Analyzing other datasets39-41 
In the dataset of Ramaswamy et al., the samples were collected from different 

types of cancer. Analysis of this data, using genes from cluster no. 2, showed 

that almost all of the 60 blood-related samples had relatively high expression 

levels. The remaining 220 samples, which were produced from non-blood 

tissues, exhibited relatively low expression levels.  In the prostate data of Singh 

et al. 102 samples were collected from normal and tumor tissues. We observed 

two distinct pattern of expression in two different sub-groups of samples. Each 

sub-group consists of both normal and tumor prostate tissues.  In the 

lymphoma data of Shipp et al. we observed about 15 samples (out of 77) that 

underexpressed these genes; the genes from cluster no. 2 were co-expressed in 

all of these datasets. 

2.2.5 Search for common transcription factors (TF) 

A further analysis was needed, since the biological meaning of cluster no. 2 

remained vague at this point. This analysis should involve information from 

additional sources, beyond expression data. We decided to examine the 

promoter regions of the genes in this cluster, in order to identify the main 

transcriptional regulators and to reveal the underlying regulatory network. To 

MLLt(4:11),  CD10- 
,AML(*:11)

Normal 

ALL controls, AML 
control, AML-dup 
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this aim we used recently developed program called POC. This program is 

aimed at finding significant TFs' binding-sites in a given cluster's promoters 

(for more details see 55).    

We used the promoters of 20 out of the 38 probe-sets, due to multiple 

representation of some genes and the lack of known promoters of others. The 

promoter region was defined as the 1000 upstream base-pairs, from the start 

codon, Using POC, we have screened the promoters of the genes in this cluster 

for all known human regulatory motifs in the TRANSFAC database 

(http://www.gene-regulation.com/). The POC program identified four 

transcription factors, Hoxa5 Hoxa9, Hox-7 and COMP1, which were 

overrepresented in the cluster�s promoters. The first three belong to the HOX 

family which contains genes that encode a set of master transcription factors 

which act during development to control pattern formation, differentiation and 

proliferation. 

 

2.2.6 Cluster No. 2 – Discussion 

Cluster no. 2 was identified while performing a class discovery procedure on 

the hyperdiploid>50 subtype samples of the data of Yeoh et al7. Contrary to 

findings in class no 1, the co-expressed genes here share no common known 

pathway. These genes demonstrated interesting expression patterns in several 

distinct datasets. In addition to the data of Yeoh et al., three other leukemia 

datasets were examined. In each one of them, a clear separation of the samples 

was demonstrated, using the genes of cluster no 2. The genes were again co-

expressed in the lymphoma and prostate, while separating the samples of these 

data-sets into novel sub-groups. The distribution of the different subtypes of 

leukemia within the new cluster provided no new insights in all but one 

dataset; a non-random distribution of the samples was obtained within the two 

clusters formed in the leukemia data of Rozovskaia et al36. One cluster consists 

mainly of samples that are thought to be immature and the other consists of 

samples that are supposed to be late differentiated. The composition of the 

obtained clusters could imply that these are differentiation sensitive genes, but 

the knowledge we currently hold for these genes does not support this 
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hypothesis. Moreover, comparison of our list of genes with previously published 

differentiation sensitive genes36 yields no significant overlap.  

The extremely preliminary and basic recent analysis of the promoter regions 

yielded interesting findings. This analysis identified four transcription factors, 

Hoxa5 Hoxa9, Hox-7 and COMP1, which were overrepresented in the cluster�s 

promoters. Three of these are part of the HOX family and are known to be 

related to leukemia. Gene expression profiling revealed that expression of the 

fusion protein MLL-AF9 led to over-expression of Hoxa5, Hoxa6, Hoxa7, Hoxa9 

and Hoxa1056  In an experimental setting, a high proportion of mice 

transplanted with bone marrow cells overexpressing Hoxa9 developed AML57. 

In humans, the MLL/ALL-1 gene, which normally functions to maintain Hox 

gene expression, is a frequent target of chromosomal rearrangements. Joh et 

al58 demonstrated that a chimeric MLL-LTG9 protein led to the inhibition of 

Hoxa7, Hoxb7 and Hoxc9 expression in mouse myeloid cells. Rozovskaia et al59 

found that the t(4;11) translocation was associated with increased expression 

of HOXA9. Importantly, HOXA9 has been identified in a gene expression array-

based screen as the single gene whose expression most correlated with 

treatment failure in AML34.  

The strong association of the HOX family and leukemia allow us to suggest 

several different hypotheses, in order to elucidate the correlation between the 

above Hox TFs, the genes of cluster no. 2 and the novel subgroup of leukemia 

patients. These hypotheses should be examined deeply and carefully, but 

unfortunately such an examination is not in the scope of this thesis.     

Nevertheless, we do present these findings, due to the unusually clear 

separation we obtained within one leukemia subtype. It is a reasonable 

assumption that these genes are co-regulated and share a certain pathway 

with specific function. The distinct two sub-groups may be an evidence for 

some important biological phenomenon. At the moment we lack essential 

information, such as additional gene annotations or supplementary clinical 

data for the samples to reveal the biological process. Analysis of more advanced 

chips can be useful too, due to the constant improvement of the DNA chips 
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technology. More thorough examination of the promoters regions and careful 

exploration of the HOX TFs are likely to elucidate the hidden connections 

between the genes. Analysis of other published datasets, containing more 

relevant clinical labels for the samples, can illuminate the biology behind this 

obscure pathway. 

 

We believe that in the near future, with the help of new data, the yet 

unrecognized pathway, whose existence we demonstrated, will be elucidated 

and completed and its role in the pathogenesis of leukemia will become clear. 
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3 Materials and Methods 

 
3333....1111 PatientsPatientsPatientsPatients    

There are several publicly available gene expression datasets on leukaemia7,34-

36 We decided to start our analysis with the data of Yeoh et al.7 since it had the 

largest number of patients. The experiments were done using Affymetrix U95A 

chips containing 12,533 probe sets. Expression levels were measured for 335 

samples, of bone marrow and peripheral blood, representing several different 

ALL subtypes (T-ALL, E2A-PBX1, BCR-ABL, TEL-AML1, MLL, hyperdiploid >50 

chromosomes, hyperdiploid 47-50 and hypodiploid). We also used additional 

details, such as protocol of treatment and prognosis that were supplied by the 

authors.  

To substantiate our findings that were derived from the data of Yeoh et al.7, we 

analyzed other publicly available datasets of leukemia and of other cancers34-

36,38-45.  

3333....2222 Preprocessing and filteringPreprocessing and filteringPreprocessing and filteringPreprocessing and filtering    

 

We started out with an expression matrix organized in 335 columns (samples) 

and 12,533 rows (genes). Each value in the matrix is the gene expression level 

of a certain gene for one patient. First, rows (genes) in which more than 20% of 

the values were lower than some threshold (we chose T=10) were removed. 

After this filtering we were left with 6,653 genes. In these rows the values that 

were lower than T were replaced by estimates based on the values of the 13 

nearest neighbors' genes60. Next, logarithm (base 2) of each entry was taken, 

and the genes were filtered on the basis of their variation across the samples. 

Two sets, of 3000 and of 6500 genes, were chosen for the CTWC step and the 

TNoM test respectively, based on their standard deviation.  
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3333....3333 Unsupervised AnalysisUnsupervised AnalysisUnsupervised AnalysisUnsupervised Analysis    

3.3.1 Clustering Analysis 

In order to separate the ALL samples into unanticipated sub-groups, we 

search for a cluster (e.g. correlated set) of genes with a distinct expression 

profile in one part of the samples, and another profile in the other part. This 

task can be done using an unsupervised clustering algorithm. Standard 

statistical methods are useful for hypothesis testing: in the present context, if 

we know that there are two subclasses of the disease, A and B, we can use 

standard methods in order to find the genes whose expression levels 

differentiate these two classes. Hypothesis testing will not reveal unexpected 

partitions; unsupervised techniques, such as clustering, are more suited for 

such a task. Once a class is proposed, a hypothesis can be formulated and the 

powerful standard methods of statistical analysis can be used to substantiate 

and validate the finding. We used here such a hybrid approach, combining 

unsupervised cluster analysis with standard supervised statistical tests. 

3.3.2 Super Paramagnetic Clustering (SPC) 

We use SPC61 as our clustering algorithm. SPC is based on the physical 

properties of an inhomogeneous ferromagnet61,62 ; it has been tested on data 

from a large number of problem areas including image analysis and speech 

recognition, computer vision [CCP] and gene expression [SPC on gene exp]. SPC 

belongs to the family of hierarchical clustering algorithms. Its main advantage 

is that it provides for each cluster of the hierarchy a stability index, whose 

value indicates the statistical significance or reliability of the cluster. This 

allows us to recognize stable clusters, an essential ingredient for using CTWC.  

Other attractive features of SPC are stability against noise in the data and that 

one does not need to specify in advance the number of clusters. For more 

details see 61,62. 

3.3.3 Coupled Two-Way Clustering (CTWC) 

Coupled Two-Way Clustering63 is a method for reducing noise by focusing on 

small subsets of genes and samples. This is achieved by using only genes (and 

samples) that were identified previously as a stable cluster for the clustering 
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process. The procedure is iterative; each stable cluster of genes that was found 

is used, in the next iteration, for the clustering of each of the stable clusters of 

samples that were previously found and vice versa. This process is repeated 

until no more clusters answering our criteria are discovered. 

This method is especially appropriate for analyzing DNA microarray data, 

where different biological processes are simultaneously occurring, influencing 

different genes and samples. As a result, a great deal of noise is present, 

masking the effects individual processes. By focusing on correlated groups of 

genes and samples, CTWC is able to minimize the noise generated by the 

majority of genes and identify specific biological processes involving specific 

genes or samples. Moreover, by using a group of correlated genes, noise of the 

individual measurements averages out and is reduced. 

CTWC can be used with a variety of clustering algorithms. We use CTWC with 

SPC because of its robustness against noise and because it is one of the few 

algorithms that provides a reliable stability index to each cluster. 

 

3333....4444 Supervised AnalysisSupervised AnalysisSupervised AnalysisSupervised Analysis    

 

We used supervised methods in order to expand and refine the lists of genes 

that were obtained in the unsupervised CTWC analysis. Using hypothesis 

testing (TNoM64), we identified genes, one at a time, whose expression differed 

between the two groups of samples that were identified by CTWC: the group in 

which the  genes (initially found by clustering) were overexpressed, and all the 

remaining samples. The process was then repeated: an extended group of 

separating genes was then used to identify, in a supervised manner, samples 

that belong to groups of relatively high expression. This procedure is 

reminiscent in spirit of the signature method46.  

3.4.1 Parametric vs. nonparametric methods 

Parametric approaches model expression profiles within a parametric 

representation, and ask how different the parameters of groups A and B are65. 
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The t test, for instance, compares the mean of group A and the mean of group 

B.  The t test assumes approximately normal distribution and roughly similar 

variances.  

On the opposite side, nonparametric methods (such as TNoM) use no a priori 

assumptions, meaning no assumptions are made about the distribution of 

expression profiles in the data. Instead, we attempt to directly examine the 

degree to which the two groups, A and B, are distinguished. The main 

weakness of parametric approaches is the assumptions that they make about 

the data. For example, outliers can significantly bias the t test score by 

changing the variance estimated in the samples. In a similar manner, working 

in logarithmic scale can have drastic impact on the scores. Nonparametric 

approaches are more robust against these types of problems, but less sensitive 

to the  individual expression values.  

3.4.2 The TNoM Test  

The TNoM test is nonparametric method64. The Threshold Number of 

Misclassification (TNoM) measures how successful we are in separating the two 

groups of samples by a simple threshold over the expression values. In other 

words, we search for threshold value of the gene's expression that will 

distinguish the two groups, A and B, and not for difference between means. A 

gene is scored by the number of misclassifications made by the best threshold 

that we can find for it. If the expression value of the gene allows us to separate 

the groups perfectly, the gene has a TNoM score of zero. On the other hand, if 

the two groups are interspersed, the gene has a score that may be close to the 

size of the smallest group of samples (which is the maximum possible number 

of misclassifications). 

More formally, in order to calculate the minimum number of misclassifications, 

we first define a vector g, such as: 

Equation 1    
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where x is an expression profile , j is an index of a gene, x[j] is the expression 

value of the j�th gene in the vector x, t is a threshold corresponding to gene, and 

 is a direction parameter.  

The number of errors is defined as: 

 

Equation 2    

where xi[j] is the expression value of gene g in the i�th sample and li is the label 

of the i�th sample. 

The TNoM score of a gene is:  

Equation 3    

meaning, the minimum number of errors for different values of t. 

 

In order to ask whether genes with low TNoM scores are indeed indicative of 

the classification of expression, we are calculating their P-values, as describe in 

Ben-Dor et al64.  

3.4.3 FDR 

In DNA microarray experiments the number of supervised tests preformed is in 

the order of thousands. Therefore, the multiplicity problem should be taken 

into consideration. In order to address contamination with false positive genes 

associated with multiple comparisons we use the method of Benjamini and 

Hochberg66 that bounds the average False Discovery Rate (FDR); namely, the 

fraction of false positives among the list of differentiating genes. See 66 for 

further information regarding FDR. 

3.4.4 POC 

In order to analyze the promoter regions of a cluster of genes and to identify the 

main common transcriptional regulators of these genes, we used a recently 

developed program called POC, which searches for significant presence  of 

known TFs' binding-sites in a given cluster's promoters. See 55 for further 

information regarding POC. 
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4 Summary 

 

In this work we analyzed recently published gene expression data of different 

subtypes of childhood ALL. We applied an unsupervised approach, using the 

SPC and CTWC clustering methods in order to search for a set of genes, whose 

expression profile separates the samples into two unanticipated distinct 

groups. This class discovery analysis is of great importance in leukemia and it 

may contribute to the accurate assignment of individual patients to specific 

leukemia subtypes. Previous discovery of novel subtypes led to more efficient 

targeted drug design. Of great interest is the possible recognition of a class of 

patients, who all share a certain causative agent in the pathogenesis of 

leukemia.  

We observed two unanticipated partitions of the ALL patients to novel 

subgroups, induced by two different clusters of genes. We examined these two 

clusters separately:  

The first cluster contains many genes that are relevant to the immune 

response, and in particular immune response to viruses. Most of these are 

directly related to the interferon-JAK/STAT1 pathway. It has long been 

suspected that common childhood infections contribute to the etiology of 

childhood leukemia, in particular ALL. Notably, the interferon genes presented 

high expression values in the hyperdiploid leukemia variant that occurs in 

early childhood, when viral infection is most likely to occur. Our findings were 

confirmed on additional published datasets. A clear signature of overexpression 

of the interferon genes was found for two other cases:  breast cancer and ovary 

cancer. These observations strengthen previous epidemiological and molecular 

studies, which suggested a role for infection in the etiology of these cancers. A 

search for infectious agents, mainly leukemias and breast cancer cases where 

high expression of the interferon genes are identified, may lead to the 

identification of the putative viral pathogen. The implications of the finding of 

such a causative agent on diagnosis, therapy and prevention of childhood 

leukemia, breast cancer and other malignancies are clear. 
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The second cluster of genes induced interesting separations in several datasets. 

The common pathway of these genes is still vague, but by performing a 

preliminary sequence analysis of the promoter regions of these genes, we 

revealed potential common transcription factors.  These TFs are known to be 

associated with leukemia, but at the moment we lack essential information, 

such as additional gene annotations or supplementary clinical data for the 

samples to indicate the relevant biological process. Hopefully in the near 

future, using supplemental data and further analysis of the promoter regions, 

the yet unrecognized pathway, whose existence we demonstrated, will be 

elucidated and completed and its role in the pathogenesis of leukemia will 

become clear. 

In order to discover new classes, we used a method which combined a 

clustering algorithm with other statistical tests, and involved the analyses of 

several different datasets which were produced by several different research 

groups; among them are 4 datasets of leukemia patients and 8 datasets of 

other types of cancer. The search for the characteristic gene set was performed 

in a totally unprejudiced "blind" way, regarding both the separating gene set 

and the resulting partition of the samples. 

Our findings demonstrate the importance of class discovery using 

unsupervised methods. While 'traditional' supervised methods use prior 

knowledge about the data and do not allow extracting hidden information 

underlying in the data, our method, which combined a clustering algorithm 

and other statistical tests, was able to discover unexpected partitions in the 

data.   
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 AppendiAppendiAppendiAppendixxxx    

 
Table 1| A list of 79 TEL-AML1 samples from the Yeoh et al.7 dataset. The 

samples from the novel sub-group that overexpressed the genes of cluster no. 1 are 

in bold face.  

No. Clinical label Label ID 
 

1 TEL-AML1 CCR T13B TEL-AML1-C52 
2 TEL-AML1 CCR T13A TEL-AML1-C24 
3 TEL-AML1 CCR T13B TEL-AML1-C38 
4 TEL-AML1 CCR T13A TEL-AML1-C1 
5 TEL-AML1 CCR T13A TEL-AML1-C16 
6 TEL-AML1 CCR T13B TEL-AML1-C51 
7 TEL-AML1 CCR T13A TEL-AML1-C15 
8 TEL-AML1 CCR T13B TEL-AML1-C56 
9 TEL-AML1 CCR T13B TEL-AML1-C39 
10   TEL-AML1 CCR T13B TEL-AML1-C31 
11 TEL-AML1 CCR T13A TEL-AML1-C28 
12 TEL-AML1 T13A TEL-AML1-#2 
13 TEL-AML1 CCR T13B TEL-AML1-C48 
14 TEL-AML1 CCR T13A TEL-AML1-C5 
15 TEL-AML1 CCR T13B TEL-AML1-C45 
16 TEL-AML1 Hematologc Relapse T13B TEL-AML1-R3 
17 TEL-AML1 CCR T13B TEL-AML1-C35 
18 TEL-AML1 CCR T13A TEL-AML1-C17 
19 TEL-AML1 CCR T13B TEL-AML1-C46 
20 TEL-AML1 CCR T13A TEL-AML1-C6 
21 TEL-AML1 CCR T13B TEL-AML1-C53 
22 TEL-AML1 T15 TEL-AML1-#11 
23 TEL-AML1 CCR T13A TEL-AML1-C20 
24 TEL-AML1 CCR T13B TEL-AML1-C33 
25 TEL-AML1 T15 TEL-AML1-#7 
26 TEL-AML1 second AML T13A TEL-AML1-2M#3 
27 TEL-AML1 T15 TEL-AML1-#6 
28 TEL-AML1 CCR T13B TEL-AML1-C57 
29 TEL-AML1 CCR T13B TEL-AML1-C55 
30 TEL-AML1 CCR T13A TEL-AML1-C11 
31 TEL-AML1 CCR T13A TEL-AML1-C26 
32 TEL-AML1 CCR T13B TEL-AML1-C54 
33 TEL-AML1 T15 TEL-AML1-#9 
34 TEL-AML1 T15 TEL-AML1-#12 
35 TEL-AML1 CCR T13B TEL-AML1-C44 
36 TEL-AML1 CCR T13A TEL-AML1-C2 
37 TEL-AML1 CCR T13A TEL-AML1-C23 
38 TEL-AML1 CCR T13B TEL-AML1-C42 
39 TEL-AML1 CCR T13A TEL-AML1-C21 
40 TEL-AML1 CCR T13A TEL-AML1-C3 
41 TEL-AML1 T15 TEL-AML1-#8 
42 TEL-AML1 second AML T13B TEL-AML1-2M#4 
43 TEL-AML1 CCR T13A TEL-AML1-C27 
44 TEL-AML1 CCR T13A TEL-AML1-C19 
45 TEL-AML1 T15 TEL-AML1-#5 
46 TEL-AML1 CCR T13B TEL-AML1-C37 
47 TEL-AML1 CCR T13B TEL-AML1-C32 
48 TEL-AML1 T15 TEL-AML1-#10 
49 TEL-AML1 second AML T13A TEL-AML1-2M#1 
50 TEL-AML1 CCR T13A TEL-AML1-C13 
51 TEL-AML1 CCR T13A TEL-AML1-C25 
52 TEL-AML1 Hematologc Relapse T13A TEL-AML1-R2 
53 TEL-AML1 T15 TEL-AML1-#13 
54 TEL-AML1 CCR T13A TEL-AML1-C22 
55 TEL-AML1 CCR T13B TEL-AML1-C34 
56 TEL-AML1 CCR T13B TEL-AML1-C30 
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57 TEL-AML1 CCR T13B TEL-AML1-C29 
58 TEL-AML1 CCR T13B TEL-AML1-C47 
59 TEL-AML1 CCR T13B TEL-AML1-C40 
60 TEL-AML1 CCR T13A TEL-AML1-C7 
61 TEL-AML1 second AML T13B TEL-AML1-2M#5 
62 TEL-AML1 second AML T13A TEL-AML1-2M#2 
63 TEL-AML1 CCR T13A TEL-AML1-C12 
64 TEL-AML1 Hematologc Relapse T13A TEL-AML1-R1 
65 TEL-AML1 CCR T13B TEL-AML1-C43 
66 TEL-AML1 CCR T13A TEL-AML1-C18 
67 TEL-AML1 T13A TEL-AML1-#3 
68 TEL-AML1 CCR T13B TEL-AML1-C36 
69 TEL-AML1 CCR T13B TEL-AML1-C50 
70 TEL-AML1 T13B TEL-AML1-#1 
71 TEL-AML1 T15 TEL-AML1-#14 
72 TEL-AML1 CCR T13A TEL-AML1-C4 
73 TEL-AML1 CCR T13B TEL-AML1-C41 
74 TEL-AML1 CCR T13A TEL-AML1-C14 
75 TEL-AML1 CCR T13A TEL-AML1-C10 
76 TEL-AML1 T13B TEL-AML1-#4 
77 TEL-AML1 CCR T13B TEL-AML1-C49 
78 TEL-AML1 CCR T13A TEL-AML1-C9 
79 TEL-AML1 CCR T13A TEL-AML1-C8 
Subtype Name-C# Dx Sample of patient in CCR (Continuous complete remission) 
Subtype Name-R# Dx Sample of patient who developed a  hematologic relapse 
Subtype Name-# Dx Sample used for subgroup classification only 
Subtype Name-2M# Dx Sample of patient who later developed 2nd AML 
Subtype Name-N Dx Sample in novel groupas was found by Yeoh et al.  
T## - Protocol that patient was treated on 
 
 
  
Table 2| Hyperdiploidity samples from the Yeoh et al.7 dataset. The samples 

from the novel sub-group that underexpressed the genes of cluster no. 2 are in bold 
face. The samples are ordered by CTWC. 

No. Samples' clinical labels Samples' ID 
1 Hyperdyp>50 T15 Hyperdip>50-#11 
2 Hyperdyp>50 T15 Hyperdip>50-#6 
3 Hyperdyp>50 CCR T13B Hyperdip>50-C43 
4 Hyperdyp>50 CCR T13A Hyperdip>50-C1 
5 Hyperdyp>50 CCR T13A Hyperdip>50-C12 
6 Hyperdyp>50 CCR T13B Hyperdip>50-C34 
7 Hyperdyp>50 CCR T13B Hyperdip>50-C17 
8 Hyperdyp>50 T15 Hyperdip>50-#10 
9 Hyperdyp>50 CCR T13A Hyperdip>50-C3 
10 Hyperdyp>50 Hematologc Relapse T13B Hyperdip>50-R5 
11 Hyperdyp>50 second AML T13A Hyperdip>50-2M#1 
12 Hyperdyp>50 CCR T13A Hyperdip>50-C4 
13 Hyperdyp>50 CCR T13A Hyperdip>50-C6 
14 Hyperdyp>50 CCR T13B Hyperdip>50-C23 
15 Hyperdyp>50 CCR T13B Hyperdip>50-C15 
16 Hyperdyp>50 T13B Hyperdip>50-#2 
17 Hyperdyp>50 Hyperdip>50-#4 
18 Hyperdyp>50 T15 Hyperdip>50-#14 
19 Hyperdyp>50 CCR T13A Hyperdip>50-C13 
20 Hyperdyp>50 CCR T13B Hyperdip>50-C42 
21 Hyperdyp>50 CCR T13B Hyperdip>50-C21 
22 Hyperdyp>50 T15 Hyperdip>50-#12 
23 Hyperdyp>50 CCR T13B Hyperdip>50-C25 
24 Hyperdyp>50 CCR T13B Hyperdip>50-C20 
25 Hyperdyp>50 Hyperdip>50-#3 
26 Hyperdyp>50 CCR T13B Hyperdip>50-C40 
27 Hyperdyp>50 T15 Hyperdip>50-#9 
28 Hyperdyp>50 T12 Hyperdip>50-#5 
29 Hyperdyp>50 CCR T13A Hyperdip>50-C5 
30 Hyperdyp>50 T15 Hyperdip>50-#7 
31 Hyperdyp>50 CCR T13B Hyperdip>50-C19 
32 Hyperdyp>50 CCR T13B Hyperdip>50-C16 
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33 Hyperdyp>50 CCR T13B Hyperdip>50-C32 
34 Hyperdyp>50 CCR T13B Hyperdip>50-C33 
35 Hyperdyp>50 CCR T13A Hyperdip>50-C8 
36 Hyperdyp>50 T15 Hyperdip>50-#13 
37 Hyperdyp>50 CCR T13B Hyperdip>50-C35 
38 Hyperdyp>50 CCR T13B Hyperdip>50-C24 
39 Hyperdyp>50 CCR T13A Hyperdip>50-C9 
40 Hyperdyp>50 CCR T13A Hyperdip>50-C7 
41 Hyperdyp>50 CCR Novel Group T13B Hyperdip>50-C27-N 
42 Hyperdyp>50 T13A Hyperdip>50-#1 
43 Hyperdyp>50 second AML T12 Hyperdip>50-2M#3 
44 Hyperdyp>50 T15 Hyperdip>50-#8 
45 Hyperdyp>50 CCR T13A Hyperdip>50-C11 
46 Hyperdyp>50 CCR T13B Hyperdip>50-C37 
47 Hyperdyp>50 CCR T13B Hyperdip>50-C30 
48 Hyperdyp>50 CCR T13B Hyperdip>50-C41 
49 Hyperdyp>50 CCR T13B Hyperdip>50-C31 
50 Hyperdyp>50 CCR T13B Hyperdip>50-C28 
51 Hyperdyp>50 CCR T13B Hyperdip>50-C29 
52 Hyperdyp>50 CCR T13B Hyperdip>50-C39 
53 Hyperdyp>50 Hematologc Relapse T13B Hyperdip>50-R4 
54 Hyperdyp>50 Hematologc Relapse T13A Hyperdip>50-R2 
55 Hyperdyp>50 CCR T13B Hyperdip>50-C22 
56 Hyperdyp>50 CCR T13B Hyperdip>50-C26 
57 Hyperdyp>50 second AML T13B Hyperdip>50-2M#2 
58 Hyperdyp>50 CCR T13A Hyperdip>50-C14 
59 Hyperdyp>50 CCR T13A Hyperdip>50-C10 
60 Hyperdyp>50 CCR T13B Hyperdip>50-C18 
61 Hyperdyp>50 CCR T13B Hyperdip>50-C36 
62 Hyperdyp>50 Hematologc Relapse T13A Hyperdip>50-R1 
63 Hyperdyp>50 CCR T13B Hyperdip>50-C38 
64 Hyperdyp>50 CCR T13A Hyperdip>50-C2 
65 Hyperdyp>50 Hematologc Relapse T13A Hyperdip>50-R3 
Subtype Name-C# Dx Sample of patient in CCR (Continuous complete remission) 
Subtype Name-R# Dx Sample of patient who developed a  hematologic relapse 
Subtype Name-# Dx Sample used for subgroup classification only 
Subtype Name-2M# Dx Sample of patient who later developed 2nd AML 
Subtype Name-N Dx Sample in novel groupas was found by Yeoh et al.  
T## - Protocol that patient was treated on 

 
Table 3 | The distribution of samples within the two novel sub-groups. The sub-
groups were obtained by the analysis of the Yeoh et al.7 dataset, using the genes of 
cluster no. 2. 

Subtype name Number  
of samples 

Number 
in subgroup

Hyperdip>50 65 13 
TEL-AML1 79 6     
Pseudodip 29 2 
Normal 19 1 
Hyperdip 47-50 23 4 
T-ALL 45 3 
BCR-ABL 16 3 
MLL 21 3 
Hypodip 11 1 
E2A-PBX1 27 1 
Total: 335 37 
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Table 4| The samples and their labels of Rozovskia et al.36 dataset. The samples 

that underexpressed the genes of cluster no. 2 are in bold face. The samples within 

the subgroups are reordered according to their labels.  

 
No. Main 

Label 
patient/cell line Label ID

1 CD10-ALL Patient 12ht 
2 CD10-ALL Patient 14ht 
3 CD10-ALL Patient 16ht 
4 T-cell ALL Patient 03ht 
5 M5AML Patient 48.1ht 
6 M5AML Patient 48.2ht 
7 M5aAML Patient 51ht 
8 M5aAML Patient 52ht 
9 t(6;11)AML ML2-cell line 44ht 
10 t(9;11)M5AML Patient 35ht 
11 t(9;11)M5AML Patient 36ht 
12 t(9;11)M5AML Patient 37ht 
13 t(9;11)M5AML Patient 38ht 
14 t(9;11)AML TPH1-cell line 38.1ht 
15 t(9;11)AML MONO6-cell line 38.2ht 
16 t(9;11)AML PER377-cell line 38.4ht 
17 t(4;11)ALL Patient 13ht 
18 t(4;11)ALL Patient 18ht 
19 t(4;11)ALL Patient 19ht 
20 t(4;11)ALL Patient 20ht 
21 t(4;11)ALL Patient 22ht 
22 t(4;11)ALL Patient 23ht 
23 t(4;11)ALL Patient 24ht 
24 t(4;11)ALL Patient 25ht 
25 t(4;11)ALL Patient 26ht 
26 t(4;11)ALL B1-cell line 27.1ht 
27 t(4;11)ALL RS(4;11)-cell line 27.2ht 
28 Nor  33.1ht 
29 Nor  33ht 
30 Nor  33.2ht 
31 Nor  28ht 
32 Nor  29ht 
33 Nor  30ht 
34 Nor  32ht 
35 Nor  31ht 
36 T-cell ALL Patient 01ht 
37 T-cell ALL Patient 02ht 
38 CD10+ALL Patient 05ht 
39 CD10+ALL Patient 06ht 
40 CD10+ALL Patient 07ht 
41 Ph+ALL Patient 09ht 
42 Ph+ALL Patient 10ht 
43 Ph+ALL Patient 11ht 
44 CD10-ALL Patient 15ht 
45 M4AML Patient 45ht 
46 M4AML Patient 46ht 
47 M4AML Patient 47ht 
48 M5AML Patient 48ht 
49 M5aAML Patient 49ht 
50 M5aAML Patient 50ht 
51 MLLdup.M4AML Patient 39ht 
52 MLLdup.M5bAML Patient 40ht 
53 MLLdup.M5aAML Patient 41ht 
54 t(10;11)M5AML Patient 42ht 
55 t(11;19)AML Patient 43ht 
56 t(4;11)ALL Patient 17ht 
57 t(4;11)ALL Patient 21ht 
58 t(4;11)ALL Patient 27ht 
59 t(9;11)M5AML Patient 34ht 
60 t(9;11)AML MOL13-cell line 38.3ht 
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    באמצעות חקר ביטוי גנטיבאמצעות חקר ביטוי גנטיבאמצעות חקר ביטוי גנטיבאמצעות חקר ביטוי גנטי

    

    

    

    

    

    

    

    אוּרי עינבאוּרי עינבאוּרי עינבאוּרי עינב

 תזה לשם קבלת התואר מוסמך במדעים מוגש למועצה המדעית של

 מכון ויצמן למדע
 

 בהדרכת
 פרופסור איתן דומאניפרופסור איתן דומאניפרופסור איתן דומאניפרופסור איתן דומאני

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2003דצמבר 


