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Abstract 

Motivation: Genes are often characterized dichotomously as either housekeeping or 

single-tissue specific. We conjectured that crucial functional information resides in 

genes with midrange profiles of expression. 

Results: In order to obtain such novel information genome-wide, we have determined 

the mRNA expression levels for the one of the largest hitherto analyzed set of 62,839 

probesets in 12 representative normal human tissues. Indeed, when using a newly-

defined graded tissue specificity index τ, valued between 0 for housekeeping genes 

and 1 for tissue specific genes, genes with midrange profiles having 0.15 < τ < 0.85 

were found to constitute >50% of all expression patterns. We developed a binary 

classification, indicating for every gene the IB tissues in which it is overly expressed, 

and the 12 - IB  tissues in which it shows low expression. The 85 dominant midrange 

patterns with IB = 2 to 11 were found to be bimodally distributed, and to contribute 

most significantly to the definition of tissue specification dendrograms. Our analyses 

provide a novel route to infer expression profiles for presumed ancestral nodes in the 

tissue dendrogram. Such definition has uncovered an unsuspected correlation, 

whereby de novo enhancement and diminution of gene expression go hand in hand. 

These findings highlight the importance of gene suppression events, with implications 

to the course of tissue specification in ontogeny and phylogeny.  

Availability: All data and analyses are publically available at the GeneNote website, 

http://genecards.weizmann.ac.il/genenote/ and, GEO accession GSE803. 

Contact: Doron Lancet, Department of Molecular Genetics, Weizmann Institute of 

Science, Rehovot 76100, telephone +972 8-934-4121, fax +972 8 9344487, email: 

doron.lancet@weizmann.ac.il  

Supplementary Information: Four tables
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Introduction 

The ontogeny of complex multicellular organisms is enabled by the differential 

expression of genes across various cell types. Expression profiling with DNA arrays 

offers the opportunity to systematically identify such patterns (Halfon and Michelson 

2002; Slonim 2002). Housekeeping genes are expressed in all cell types, whereas 

other genes are expressed in a more restricted selection of tissues. In previous 

research on the tissue specificity of genes, emphasis has mainly been on the extremes 

of one-tissues specific (Hsiao et al. 2001; Su et al. 2002) and housekeeping genes 

(Eisenberg and Levanon 2003; Lercher et al. 2002; Warrington et al. 2000). However, 

many genes may show midrange patterns of expression, i.e. are expressed at a high 

level in a subset of the tissues, and at a much lower level or not at all in other tissues. 

This term is related to the cross-tissue “breadth” of gene expression, rather than high 

or low overall expression intensities. Here, we investigate the occurrence and 

potential significance of midrange patterns of expression, noting that important 

information about a given tissue may be harbored not only in tissue-specific 

enhancement of expression, but also in tissue-specific suppression. 

 

Some recent high-throughput DNA arrays studies of gene expression have been aimed 

at characterizing healthy tissue transcription patterns. One of these examined the 

transcription profiles in 28 normal human tissues and 45 mouse tissues, utilizing 

12,000 oligonucleotide probesets (Su et al. 2002). cDNA arrays have also been used 

to examine expression of over  genes across normal human tissues (Saito-Hisaminato 

et al. 2002). These, as well as other surveys on normal tissues (Haverty et al. 2002; 

Hsiao et al. 2001) were limited to only the more well-characterized genes, and did not 

afford a total genome-wide view. Studies on a more complete gene set focused on a 
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comparison between diseased and non-diseased states (Bakay et al. 2002; Iacobuzio-

Donahue et al. 2002; Mariani et al. 2002). In a recent report (Shmueli et al. 2003), as 

well as in the current work, we queried 12 normal human tissues with a complete 

gamut of 62,839 probesets, representing 23,271 identifiable human genes. This is one 

of the largest sets employed to date, and includes nearly 12,000 genes whose tissue 

expression has not been examined by the earlier studies. Most recently, Su et al have 

extended their expression atlas to encompass 79 human and 61 mouse tissues (Su et 

al. 2004). 

 

The resulting genome-wide view of gene expression patterns is used here to reveal 

relationships among healthy human tissues, as well as to generate new genome 

annotation tools. Specifically, our data shed new light on genes with midrange 

profiles of expression, with implications to the fine balance of gene expression and 

suppression that underlie tissue specification.  

 

Systems and Methods 

Expression data preprocessing. The expression intensity of mRNA was assayed 

across 5 microarrays (Affymetrix GeneChips U95A-E), containing a total of 62,839 

probesets, each in duplicate. PolyA+ RNA samples from the human tissues were 

purchased from Clontech (Palo Alto, CA, details in Table 5 in the Supplementary 

Materials). This collection of major human tissues includes: bone marrow, brain, 

heart, kidney, liver, lung, pancreas, prostate, skeletal muscle, spinal cord, spleen and 

thymus. These RNA samples have relatively coarsely-defined tissue delineations but 

are compatible in this respect to those used in other studies of transcription patterns in 

a group of normal human tissues (Su et al., 2002, Su et al., 2004, Saito-Hisaminato et 
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al. 2002). Each RNA sample was typically composed of a pool of 10-25 individuals. 

While such commercial pooled samples from anonymous donors are demographically 

ill-defined, they are advantageous in enabling others to reproduce the experiments.  

 

Replicate experiments were done independently, mostly from RNA of identical lot 

numbers. Exceptions are kidney, pancreas, and prostate. Aliquots of each sample (12 

µg cRNA in 200 µl hybridization mix) were hybridized to a GeneChip Human 

Genome U95A-E array set (Affymetrix, Santa Clara, CA, USA). Preparation and 

hybridization of cRNA were done according to the manufacture’s instructions 

(Affymetrix 2001).  

 

The expression value for each gene was determined using the MicrroArray Suite 

version 5.0 (MAS 5.0) software (Hubbell et al. 2002; Liu et al. 2003) with default 

parameters, without using the MAS 5.0 scaling and normalizing procedures. The 

quantilization procedure used here (see below) encapsulates some features of a 

preprocessing method, RMA normalization (Irizarry 2003) not used here. Affymetrix 

MAS 5.0 signal values were normalized by taking the log10 of all values (substituting 

-1 for zero intensities) and then subtracting the mean for the particular array and 

adding the total experimental mean (Shmueli et al. 2003). Finally, intensities less than 

log1030 were set to log1030 to eliminate the perturbation by the noise present in the 

low intensities. Variations in this threshold resulted in no significant changes. The 

MAS 5.0 intensities, ranging on a decimal logarithmic scale from log1030 to roughly 

4, were converted into a quantile scale. The expression data, averaged over the two 

replicates, were divided into 11 bins, whereby 10 equal density quantiles spanned the 
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values above log1030, and an 11th “ zero bin” included the remaining low intensity 

values. Henceforth, the quantiled profiles were used in the analysis. 

 

Statistical analysis of differential expression. Single-classification ANOVA with 

equal sample sizes was employed on the preprocessed 24 element expression vector 

composed of 12 tissues in two replicates. For each tissue profile, the sum of the 

squares of the differences between the replicates was compared with the sum of the 

squares of the differences between the averages of the tissue expressions. To account 

for the multiple comparison problem inherent in calculating the P-values for all 

62,839 probesets, we calculated the false discovery rate of the P-values (Benjamini 

and Hochberg 1995). We chose a 1% error rate, which gave a P-value cutoff of 

0.0036. This resulted in 22,936 profiles that were defined as “differentially 

expressed”. The remaining profiles were further divided into non-expressed profiles, 

defined as having all 12 values in the zero quantile, and housekeeping profiles, whose 

expression is non-zero quantile in all tissues and all intensities are of a similar value 

(standard deviation smaller than 1 quantile unit). The remaining profiles were defined 

as non-differentially expressed. The algorithms described below were deployed on the 

22,936 differentially expressed profiles. 

 

Probesets to genes analysis. The association of probesets to genes was performed 

using the GeneAnnot algorithm (Chalifa-Caspi et al. 2003a; Chalifa-Caspi et al. 

2003b). GeneAnnot comprehensively identifies relationships between oligonucleotide 

array probesets and annotated genes in GeneCards (Safran et al. 2002) by performing 

pairwise alignments between the probe sequences and gene transcripts, and assigning 

sensitivity and specificity scores to them. A further step of probeset annotation, 
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conducted by GeneTide (Shklar et al. 2004), was to assign annotation based upon the 

transcript from which the probeset was derived. This was carried out by an integration 

of transcript annotation data from several resources such as UniGene (Wheeler et al. 

2003) and AceView (http://www.humangenes.org). Furthermore, these target 

sequences were aligned against the human genome using BLAT (Kent 2002), and 

assigned a gene according to their genomic location using GeneLoc (Rosen et al. 

2003). 

 

Algorithms 

Tissue specificity index.  The index τ is defined as: 

1

)1(
1

−

−
=

∑
=

N

x
N

i
i

τ  

where N is the number of tissues and xi is the expression profile component 

normalized by the maximal component value. For example, expression profile ‘0 8 0 

0 0 2 0 2 0 0 0 0’ is said to have τ = 0.95. Other definitions, e.g. based on entropy or 

geometric considerations, were pursued but found less robust in terms of sensitivity to 

extreme profile component values. 

 

Binary patterns. We first defined the ‘gap’ index for each expression profile as the 

maximum difference between the two neighboring values in the sorted quantile 

vector. When the same ‘gap’ was found more than once in a profile, the first gap, 

between the smaller neighboring values with that gap was taken. The ‘gap’ was used 

to convert expression profiles into binary form. For those 8,224 differentially 

expressed profiles with a ‘gap’ of at least 3, expression above the ‘gap’ was 

interpreted as over-expressed (1) and the rest as under-expressed (0). This set of 8,224 
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probeset profiles form our ‘mingap’ set. The remaining 14,712 differentially 

expressed profiles were classified to the best matching binary patterns detected by 

‘gap’ as follows. The Euclidean distance was calculated between each of the 14,712 

profiles and the mean expression profile of each of the binary patterns. The pattern to 

which this distance was smallest was selected as the matching binary pattern for the 

profile. The binary index, IB, corresponding to each binary pattern is defined as the 

number of 1’s in the pattern.  

 

Unsupervised clustering. The Superparamagnetic Clustering (SPC) algorithm (Blatt 

et al. 1996) was applied to the same set of profiles used in the binary pattern analysis. 

Before clustering, each profile was centered and normalized such that its mean was 

centered to zero, and its norm became one (as described by (Kannan et al. 2001)). The 

SPC parameters used are detailed in Table 5 (Supplementary materials). 

 

Ancestral tissue reconstructions. Given two binary tissue expression profiles, an 

ancestor profile was inferred by first assuming that instances of agreement (both 1’s 

or both 0’s) are unaltered in the ancestor. In the disagreement cases (1 and 0, or 0 and 

1), maximum parsimony is applied, with a majority call of expression in the 

remaining tissues. Our method for inferring the ancestors of each node in a 

dendrogram including the deep internal nodes, involved following the linkages of the 

hierarchically clustered tree and successively inferring each node.  

 

Availability. All analyses were implemented in Matlab (www.mathworks.com). 

Scripts and intermediate data are all available upon request. 
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Implementation 

Expression profile categorization. Expression profiles were generated for a set of 12 

representative normal human tissues (Fig. 1). This was done with a total of 62,839 

oligonucleotide probesets, of which nearly 75% corresponded to annotated human 

genes, encompassing 23,271 GeneCards entries (Safran et al. 2002), and the rest could 

not be associated with currently known gene-related sequences (Table 1). The 50,214 

probesets included in the four less commonly used arrays U95B-E provided novel 

expression information on 11,418 GeneCards genes. This genome-wide view of 

human tissue expression patterns is available in the GeneNote database (Shmueli et al. 

2003) http://genecards.weizmann.ac.il/genenote/. The expression profiles were 

classified into four categories: differentially expressed, housekeeping, unexpressed 

and uncategorized (Fig. 1 and Table 1).  It is seen that a majority (~90%) of the 

probesets in the first two categories are related to known genes, while most of the 

unannotated probesets are included in the last two categories, as expected.  

 

Distribution of tissue specificities. To examine the complete expression pattern 

diversity, we developed a Tissue Specificity Index, τ, a quantitative, graded scalar 

measure of the specificity of an expression profile. τ values interpolate the entire 

range between 0 for housekeeping genes and 1 for strictly one-tissue specific genes. It 

is seen (Fig. 2A) that τ values near 0 and 1 tend to be more probable than the 

intermediate values, generating a U-shaped distribution. However, as many as 57% of 

all profiles have intermediate specificities: 0.15 ≤ τ ≤ 0.85, constituting the largest 

group, greater than the housekeeping and one-tissue specific sets combined.  
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To evaluate the robustness of the shape of the τ distribution to additional tissues and 

another organism, we calculated the same distributions for a previously published set 

(Su et al. 2002) where 27 human and 45 mouse normal tissues with replicates were 

analyzed for one fifth of the gene representations examined here. We found that the 

shape of the τ distributions was largely similar in all three data sets. Indeed, nearly 

identical percentages of profiles with intermediate specificity (0.15 ≤ τ ≤ 0.85) are 

detected: 56% for mouse and 57% for human.  

 

Do our tissue specificity (τ) estimates from 12 tissues scale up when a more 

comprehensive number of tissues is examined? A recently published study (Su et al. 

2004) provides human gene expression profiles across 74 non-cancerous human 

tissues. We found a high correlation (R=0.85) between the τ indices of genes across 

the two datasets for differentially expressed genes (Fig. 3). Two clusters of τ values 

differ markedly: low τ in GeneNote, high τ in the new study, and vice versa. The 

former correspond to genes specific to tissues not present in GeneNote, and the latter 

to spleen, not present in the more recent study. Congruence between the tissue 

specificity values based upon 12 and 74 tissues demonstrates the power of our newly 

defined tissue specificity index, and shows that our choice of tissues is fairly 

representative of the complete tissue-set transcriptome. An analysis of the distribution 

of τ values for the new data set (Fig. 2A, green line) shows a relatively high 

preponderance of intermediate τ values, likely stemming from the use of sub-tissues 

such as different brain regions. 

 

Binary expression patterns. The one-dimensional tissue specificity index is limited 

in its capacity to identify and categorize specific classes of expression patterns. To 
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overcome this, we developed a procedure that converts an arbitrary expression profile 

into a binary pattern. The quantiled expression profiles are mapped from a very large 

set of the cardinality 1112 (more than 3.1 billion) to a reduced set of 212 = 4,096 

possible patterns. This analysis was initially performed on a subset of 8,224 probeset 

expression profiles that fulfilled a specific intensity gap criterion (the mingap set, see 

Algorithms).  

 

Of the possible 4,094 binary patterns (excluding the all-0 and all-1 patterns), 859 were 

actually observed in this set. The probesets of the first microarray (U95A) detected 

only 498 of these patterns, while the remaining 42% of the patterns were found only 

on the four additional arrays (U95B-E). Further, the four additional arrays strengthen 

127 patterns that were populated by only one profile in the first array. Subsequently, 

the differentially expressed profiles not included in the mingap set were binarized by 

matching each one to its closest binary counterpart. 

 

The results of the binarization are shown in Fig 4. The different panels 4.i (i=1 to 12) 

have profiles (parsed from among the 8,224 gene representations of the differentially 

expressed and 4,216 housekeeping genes) with high expression in i tissues and under-

expression in 12 minus i tissues. Panel 4.12 contains the strictly-defined housekeeping 

genes. In panel 4.1 (single-tissue specificity), brain, bone marrow, pancreas, skeletal 

muscle and liver are more highly represented, while spinal cord, kidney, heart, and 

spleen have relatively few profiles. In panel 4.2, prevalent two-tissue specific patterns 

are brain and spinal cord, heart and skeletal muscle, bone marrow and thymus, and 

kidney and liver. Bone marrow, spleen, and thymus tissues define a major three-tissue 

pattern in panel 4.3. Panels 4.9 to 4.11 depict profiles with expression in all but 3, 2 or 
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1 tissue(s), respectively. Notably, the same five tissues with the most single tissue 

specific profiles (brain, bone marrow, pancreas, muscle, and liver) also have the 

greatest number of single tissue suppressed profiles.  

 

Of the individual profiles appearing in Fig. 4, 5,220 are not well annotated to any 

known gene and should therefore be considered interesting, as their function can be 

preliminarily ascertained based upon their expression profile. Table 2 (Supplementary 

Material) shows the expression profile along with the identifier of the sequence from 

which the probeset was derived. 

 

We subsequently defined the 99 most populated binary patterns among the 22,936 

differentially expressed genes as such that represent at least 25 probeset profiles, 

including the housekeeping (all 1’s) and null (all 0’s) patterns (Fig. 2B). The number 

of populated binary patterns in each binary index, IB, shows a clear bimodal 

distribution (Fig. 2C), with peaks at binary index values of 2 and 10. This behavior 

reflects the same bimodal trend seen for τ values in Fig. 2A. Whereas all 12 one-

tissue specific patterns are included, only about one third of the two-tissue expressed 

patterns (IB = 2) and about a quarter of the two-tissue repressed patterns (IB = 10) are 

included in this set, suggesting biases towards specific oligo-tissue combinations. The 

peak at high IB values in Fig.2C corresponds to profiles with low expression in 1 to 3 

tissues and high expression in the others. We use the term suppression to describe 

instances where genes are expressed at lower levels in a few tissues. This does not 

necessarily imply an active process where the expression of a gene is specifically 

turned off. It could equally be due to a loss of activation in expression or a dilution of 

mRNA levels in one tissue relative to another, due to a different cellular 
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composition”. 

 

To test the validity of the supervised binary clustering, we also applied unsupervised 

Superparamagnetic clustering (SPC) (Blatt et al. 1996; Getz et al. 2000) to our data 

(Fig. 5A). SPC is suitable for the clustering of gene expression profiles due to its 

stability against noise and the inherent measure of cluster stability (Getz et al. 2000). 

The identified seventy SPC clusters showed a strong correlation with the 97 binary 

clusters (Fig. 5B). Some binary patterns are represented by multiple SPC clusters, 

thus serving to further refine the relevant binary patterns (Fig. 5C). The high level of 

overall agreement between the two clustering methods lends additional credence to 

the binary classification proposed here.   

 

Tissue relationships based upon the expression repertoire. Inter-tissue distances 

were calculated between pairs of tissue vectors, each containing the 22,936 expression 

values of the set of differentially expressed profiles. The resulting tissue dendrogram 

(Fig. 6A) shows a specific set of groupings relating to different degrees of inter-tissue 

similarities. The dendrogram reveals a set of tissue relationships that is consistent 

with previous knowledge (Hsiao et al. 2001). The immunological tissues, bone 

marrow, thymus and spleen, along with the lung, cluster together. Pairs of related 

tissues are also coupled in the dendrogram: heart and skeletal muscle, kidney and 

liver, brain and spinal cord, and prostate and pancreas.  

 

To isolate those profiles that specify the underlying relationships among the tissues, 

we split the differentially expressed profiles into two groups: those with IB=1 and 

those with IB= 2 to 11. We found that the tree based upon the second group, with 
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midrange profiles (Fig. 6B) recovers the most important features of the dendrogram 

based on the entire set: a united nervous system, muscle tissues juxtaposed, and 

immune system mutually coherent. In contrast, the dendrogram based upon the IB=1 

group (Fig. 6C) is very different and appears much more removed from known tissue 

relationships. For example, the spinal cord is closest to heart and very distant from 

brain. One could argue that the visible non-zero off-diagonal values in the IB=1 

patterns (Fig. 4.1) would contribute sufficient information, so as to generate a more 

biologically-realistic tissue dendrogram.  

 

Inferring ancestral tissue profiles. The availability of genome-wide expression 

profiles for each of the tissues provides a unique opportunity to obtain additional 

information regarding mutual relationships among different tissues. Specifically, it is 

possible to derive from the tissue dendrogram an inferred gene expression profile for 

each of the “ancestral” tissues represented by the internal nodes (Fig. 7A). As an 

example, it is seen (Fig. 7B) that in most cases of expression in brain but not in spinal 

cord, under-expression is inferred for the ancestral tissue, reflecting de novo 

specificities for brain. On the other hand, most of the high expressions found in spinal 

cord but not in brain are also positive in the inferred ancestral tissue, suggesting that 

the difference corresponds to brain-specific suppressions. More generally, we found 

that for most ancestral tissues, including all but one of the most closely-related 

doublets, the tissue with more genes showing novel expression also exhibits more 

genes with novel suppressions (Fig. 7C). This phenomenon is also gleaned by visual 

inspection of panels 1 and 11 of Fig. 4, as described above. 
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Discussion 

This paper proposes a set of novel genome-wide specific annotation tools. First, each 

of the 23,271 genes targeted by 46,185 probesets (Table 1) has one or more tissue 

expression profiles, documented in GeneNote. A set of tools has been developed to 

allow one to generate a consensus expression pattern for each of these genes, with the 

exclusion of outliers. Second, every gene is marked with a specific value of τ, 

identifying it as belonging to a particular range on a graded tissue specificity measure 

between extreme tissue specificity and a complete absence of such specificity. Third, 

a gene with a differentially expressed profile is related to a binary pattern, indicating 

the combination of tissues in which it is more highly expressed and suppressed. We 

believe that these binary patterns are more amenable to intuitive scientific 

interpretation than classification based on standard clustering algorithms. It is 

reassuring, though, that a high degree of correlation is demonstrated between the two 

systems. All the above information provides tools for assigning potential function to 

novel and hitherto un-annotated genes. As the annotation tools presented here are 

easily generalized, we believe they can be fruitfully applied to a wide spectrum of 

datasets, for example to sets with tumor and non-tumor samples. 

  

The binary pattern analysis is particularly useful in revealing expression profiles that 

constitute unusual tissue combinations. For example, the pattern number 36 in Fig. 2B 

denotes high expression in bone marrow, pancreas and liver; pattern number 47 

denotes high expression in heart, prostate and spinal cord. In general, among the 98 

binary patterns of Fig. 2B that show expression in at least one tissue, one pattern 

corresponds to the housekeeping expression profile, and another 12 denote single-
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tissue specific profiles. The remaining 85 patterns are defined here as denoting 

midrange profiles of expression. Of these, a maximum of 33 patterns may be 

considered as consistent with tissue clustering as defined by the dendrogram of Fig. 

6A, as they correspond to the groups of tissues defined by the terminal and internal 

nodes of the dendrogram. Thus, a majority of the dominant binary patterns 

corresponding to midrange profiles may be viewed as unexpected. Such patterns are 

difficult to explain in terms of tissue similarities, including the sharing of common 

cell types among disparate tissues. Alternatively, there may be yet undiscovered 

underlying transcription control mechanisms that could be discerned by future 

research. Some such unexpected expression patterns may be a neutral mode of 

expression (Khaitovich and et al. 2004; Yanai et al. 2004).   

 

The approach explored here focuses on midrange profiles of transcription, with 

elevated expression/suppression in specific tissue combinations, and intermediate 

values of the tissue specificity index τ. Our analysis has revealed that midrange 

profiles constitute a majority of the tissue specificity expression patterns. Despite its 

ubiquity, this category has received remarkably little attention relative to its 

housekeeping and tissue-specific counterparts. Of the nearly 100 most populated 

binary patterns, more than 80% are midrange patterns. A recent expression study in 

maize has also shown that a relatively small portion of genes tend to be organ specific 

while the remaining show diverse expression (Cho et al. 2002).  

 

Most focused arrays with specific subsets of genes used by various authors contain 

mostly tissue-specific genes whose level is elavated in a single tissue. Such arrays 

may be considered "too focused". Our results and analyses, suggesting the importance 
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of genes with midrange expression profiles, could have serious impact in terms of 

array design planning as well as experimental design planning. 

 

A dominant property of midrange profiles is the surprising preponderance of patterns 

with tissue specific gene suppression (IB=9 to 11), which are almost as populated as 

oligo-expression patterns (IB=2 to 4). The most underrepresented set of profiles are 

the midrange profiles with IB =5 to 7. Our results also indicate that in the evolution of 

a tissue, de novo expression and de novo suppression go hand in hand. 

It thus appears that gene suppression plays a major role in tissue evolution and is 

tightly coupled with novel expression in the origin of distinct tissues. Such tissue-

specific gene suppression may be mediated by specific pathways of transcription 

control (Hsia and McGinnis 2003), as well as by other cellular mechanisms, including 

those mediated by RNA interference (Cerutti 2003). One practical conclusion related 

to tissue-specific arrays is that these should preferably contain, in addition to single-

tissue specific genes, also genes that manifest more complex patterns of expression-

suppression.  

   

Conclusion  

Understanding the signaling and control pathways that govern organ development 

during ontogeny constitutes a fundamental problem of developmental biology 

(Burgess et al. 2002). Studies in model organisms such as Drosophila have 

demonstrated the complex interplay of signaling molecules that underly 

developmental events associated with the embryonic maturation of tissues and cell 

types (St Johnston 2002). The exact spatial and temporal expression of genes, and the 

interaction of their protein products elicit a developmental code of organ commitment 
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and early patterning. This code likely manifests itself in the pattern of gene expression 

in each of the tissues. Furthermore, when new tissues are formed in ontogeny or 

phylogeny, their ancestral precursors should have their own expression patterns, 

complexly related to those of the more highly differentiated derived tissues. To 

validate this concept in the future, direct experimental testing of expression patterns at 

early stages in embryogenesis will be required. Our analysis of ancestral tissue 

expression, which points to a correlation between novel tissue expression and 

suppression, and the availability of a tissue dendrogram relating to the full gamut of 

genes of the human genome, can serve as a valuable tool for such studies. 

 



 19

Acknowledgements 

This work was made by possible by the generosity of the Abraham and Judith 

Goldwasser Foundation. It was further supported by the Crown Human 

Genome Center.  IY is a Koshland Scholar, DL is the incumbent of the Ralph 

and Lois Silver Chair in Human Genomics, and ED is the incumbent of the 

Henry J. Leir Professorial Chair. 

 

References 

Affymetrix. 2001. Microarray Suite User Guide, Version 5. Affymetrix, 

http://.com/support/technical/manuals.affx. 

Bakay, M., Zhao, P., Chen, J., and Hoffman, E.P. 2002. A web-accessible complete 

transcriptome of normal human and DMD muscle. Neuromuscul Disord 12 

Suppl 1: S125-141. 

Benjamini, Y. and Hochberg, Y. 1995. Controlling the False Discovery Rate: a 

Practical and Powerful Approach to Multiple Testing. Journal of the Royal 

Statistical Society B 57: 289-300. 

Blatt, M., Wiseman, S., and Domany, E. 1996. Superparamagnetic clustering of data. 

Physical Review Letters 76: 3251-3254. 

Burgess, R., Lunyak, V., and Rosenfeld, M. 2002. Signaling and transcriptional 

control of pituitary development. Curr Opin Genet Dev 12: 534-539. 

Cerutti, H. 2003. RNA interference: traveling in the cell and gaining functions? 

Trends Genet 19: 39-46. 

Chalifa-Caspi, V., Shmueli, O., Benjamin-Rodrig, H., Rosen, N., Shmoish, M., Yanai, 

I., Ophir, R., Kats, P., Safran, M., and Lancet, D. 2003a. GeneAnnot: 

Interfacing GeneCards with high throughput gene expression compendia. 

Brief. Bioinformatics in press. 

Chalifa-Caspi, V., Yanai, I., Ophir, R., Rosen, R., Shmoish, M., Benjamin-Rodrig, H., 

Iny-Stein, T., Shmueli, O., Safran, M., and Lancet, D. 2003b. GeneAnnot: 

Comprehensive two-way linking between oligonucleotide array probesets and 

GeneCards genes. in press. 



 20

Cho, Y., Fernandes, J., Kim, S.H., and Walbot, V. 2002. Gene-expression profile 

comparisons distinguish seven organs of maize. Genome Biol 3: research0045. 

Eisenberg, E. and Levanon, E.Y. 2003. Human housekeeping genes are compact. 

Trends Genet 19: 362-365. 

Getz, G., Levine, E., and Domany, E. 2000. Coupled two-way clustering analysis of 

gene microarray data. Proc Natl Acad Sci U S A 97: 12079-12084. 

Halfon, M.S. and Michelson, A.M. 2002. Exploring genetic regulatory networks in 

metazoan development: methods and models. Physiol Genomics 10: 131-143. 

Haverty, P.M., Weng, Z., Best, N.L., Auerbach, K.R., Hsiao, L.L., Jensen, R.V., and 

Gullans, S.R. 2002. HugeIndex: a database with visualization tools for high-

density oligonucleotide array data from normal human tissues. Nucleic Acids 

Res 30: 214-217. 

Hsia, C.C. and McGinnis, W. 2003. Evolution of transcription factor function. Curr 

Opin Genet Dev 13: 199-206. 

Hsiao, L.L., Dangond, F., Yoshida, T., Hong, R., Jensen, R.V., Misra, J., Dillon, W., 

Lee, K.F., Clark, K.E., Haverty, P. et al. 2001. A compendium of gene 

expression in normal human tissues. Physiol Genomics 7: 97-104. 

http://www.humangenes.org. 

Hubbell, E., Liu, W.M., and Mei, R. 2002. Robust estimators for expression analysis. 

Bioinformatics 18: 1585-1592. 

Iacobuzio-Donahue, C.A., Maitra, A., Shen-Ong, G.L., van Heek, T., Ashfaq, R., 

Meyer, R., Walter, K., Berg, K., Hollingsworth, M.A., Cameron, J.L. et al. 

2002. Discovery of novel tumor markers of pancreatic cancer using global 

gene expression technology. Am J Pathol 160: 1239-1249. 

Irizarry, R., Hobbs, B, Collin, F, Beazer-Barclay, YD, Antonellis, KJ, Scherf, U, 

Speed, TP. 2003. Exploration, Normalization, and Summaries of High Density 

Oligonucleotide Array Probe Level Data. Biostatistics 4: 249-264. 

Kannan, K., Kaminski, N., Rechavi, G., Jakob-Hirsch, J., Amariglio, N., and Givol, 

D. 2001. DNA microarray analysis of genes involved in p53 mediated 

apoptosis: activation of Apaf-1. Oncogene 20: 3449-3455. 

Kent, W.J. 2002. BLAT--the BLAST-like alignment tool. Genome Res 12: 656-664. 

Khaitovich, P. and et al. 2004. A Neutral Model of Transcriptome Evolution. PLoS 

Biology 2: (in press). 



 21

Lercher, M.J., Urrutia, A.O., and Hurst, L.D. 2002. Clustering of housekeeping genes 

provides a unified model of gene order in the human genome. Nat Genet 31: 

180-183. 

Liu, G., Loraine, A.E., Shigeta, R., Cline, M., Cheng, J., Valmeekam, V., Sun, S., 

Kulp, D., and Siani-Rose, M.A. 2003. NetAffx: Affymetrix probesets and 

annotations. Nucleic Acids Res 31: 82-86. 

Mariani, T.J., Budhraja, V., Mecham, B.H., Gu, C.C., Watson, M.A., and Sadovsky, 

Y. 2002. A variable fold-change threshold determines significance for 

expression microarrays. Faseb J. 

Rosen, N., Chalifa-Caspi, V., Shmueli, O., Adato, A., Lapidot, M., Stampnitzky, J., 

Safran, M., and Lancet, D. 2003. GeneLoc: exon-based integration of human 

genome maps. Bioinformatics 19 Suppl 1: I222-I224. 

Safran, M., Solomon, I., Shmueli, O., Lapidot, M., Shen-Orr, S., Adato, A., Ben-Dor, 

U., Esterman, N., Rosen, N., Peter, I. et al. 2002. GeneCards 2002: towards a 

complete, object-oriented, human gene compendium. Bioinformatics 18: 

1542-1543. 

Saito-Hisaminato, A., Katagiri, T., Kakiuchi, S., Nakamura, T., Tsunoda, T., and 

Nakamura, Y. 2002. Genome-wide profiling of gene expression in 29 normal 

human tissues with a cDNA microarray. DNA Res 9: 35-45. 

Shklar, M., Shmueli, O., Strichman-Almashanu, L., Shmoish, M., Iny-Stein, T., 

Safran, M., and Lancet, D. 2004. Terra Incognita Discovery Endeavor. 

Comprehensive EST assignment to GeneCards genes. Presented at ISMB. 

Shmueli, O., Horn-Saban, S., Chalifa-Caspi, V., Shmoish, M., Ophir, R., Benjamin-

Rodrig, R., Safran, M., Domany, E., and Lancet, D. 2003. GeneNote: whole 

genome expression profiles in normal human tissues. C. R. Biologies 326: 

1067-1072. 

Slonim, D.K. 2002. From patterns to pathways: gene expression data analysis comes 

of age. Nat Genet 32 Suppl: 502-508. 

St Johnston, D. 2002. The art and design of genetic screens: Drosophila melanogaster. 

Nat Rev Genet 3: 176-188. 

Su, A.I., Cooke, M.P., Ching, K.A., Hakak, Y., Walker, J.R., Wiltshire, T., Orth, A.P., 

Vega, R.G., Sapinoso, L.M., Moqrich, A. et al. 2002. Large-scale analysis of 

the human and mouse transcriptomes. Proc Natl Acad Sci U S A 99: 4465-

4470. 



 22

Su, A.I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K.A., Block, D., Zhang, J., 

Soden, R., Hayakawa, M., Kreiman, G. et al. 2004. A gene atlas of the mouse 

and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101: 

6062-6067. 

Warrington, J.A., Nair, A., Mahadevappa, M., and Tsyganskaya, M. 2000. 

Comparison of human adult and fetal expression and identification of 535 

housekeeping/maintenance genes. Physiol Genomics 2: 143-147. 

Wheeler, D.L., Church, D.M., Federhen, S., Lash, A.E., Madden, T.L., Pontius, J.U., 

Schuler, G.D., Schriml, L.M., Sequeira, E., Tatusova, T.A. et al. 2003. 

Database resources of the National Center for Biotechnology. Nucleic Acids 

Res 31: 28-33. 

Yanai, I., Graur, D., and Ophir, R. 2004. Incongruent expression profiles between 

human and mouse orthologous genes suggest widespread neutral evolution of 

transcription control. Omics 8: 15-24. 
 



 23

Legends to Figures 

Figure 1: Gene expression profiles across 12 normal human tissues.  

Classification of the 62,839 expression profiles (horizontal lines) into four 

groups indicated by the right bar: HK, housekeeping; DE, differentially 

expressed; UC, uncategorized; NE, not expressed (Table 1). The left bar 

indicates the origin from Array A (peach) and Arrays B-E (brown). The 

profiles within each category were sorted in ascending order according to 

τ, the tissue specificity index. Expression intensities are color coded by 

quantile values on the bottom bar. Tissue abbreviations: BRN, Brain; SPC, 

Spinal cord; BMR, Bone marrow; SPL, Spleen; TMS, Thymus; LNG, Lung; 

PNC, Pancreas; PST, Prostate; HRT, Heart; MSL, Skeletal muscle; KDN, 

Kidney; LVR, Liver.  

 

Figure 2: Tissue specificity index and expression pattern repertoire.  

A. Distribution of τ values for 27,152 profiles which include the 22,936 

differentially expressed and 4,216 housekeeping profiles (bars). The 

τ distributions are also shown for the 12,626 profiles across 74 human tissues 

(green curve) from a recent study (Su et al. 2004), as well as 27 human tissues 

(red curve), and 12,654 across 45 mouse tissues (yellow curve) from another 

set (Su et al. 2002). B. A summary representation of the most populated binary 

patterns (columns), where blue circles indicate high expression. The patterns, 

enumerated on the abscissa, are sorted according to binary value. Tissue 

abbreviations as in Fig. 1. C. The frequency distribution of IB values of the 

binary patterns shown in (B). The green curve indicates the expected 

distribution following a random binomial model. 
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Figure 3:  Comparison of tissue specificity indices (τ) in different data 

sets. The τ indices of the current work (GeneNote) were compared with those 

of a recently published set with 74 human tissues (Su et al. 2004). The two 

sets were compared based upon the probeset mappings (U95 and U133) 

released by Affymetrix, where if more than one U133 probeset could be 

matched for a given U95 probeset, only one was taken. This restriction 

resulted in 13,124 probeset pairs. The expression intensities of the two sets 

were normalized by quantile normalization, and subsequently the mean of 

each expression profile for each set was scaled to the total mean of the profile. 

Replicates were averaged and signal quantilization was carried out as 

described in Methods. Shown are the τ pairs for the 9,450 differentially 

expressed genes of our set.  

 

Figure 4: Profile clustering in 12 binary pattern sets. Each panel contains 

all mingap set expression profiles with binary patters having the IB value 

indicated on top, sorted by the pattern’s binary value. Housekeeping profiles 

are taken as IB = 12.  The profiles of each pattern were further sorted 

according to the mean of expression values corresponding to the non-zero 

elements in the corresponding binary pattern. The color code for expression 

intensity is as in Fig. 1. Table 3 (Supplementary Material) specifies the 

accession identifiers for each expression profile shown. 

 

Figure 5: Superparamagnetic clustering (SPC). A. A summary 

representation of the results of superparamagnetic clustering (SPC). Each 
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column (enumerated on the abscissa and sorted by gap-computed binary 

values) represents an average pattern of all profiles in a cluster. The 

predefined SPC minimal cluster size was set to 10 profiles. B. Each element in 

the matrix is a comparison between the profiles of an SPC cluster and those of 

a binary cluster. Binary clusters were obtained for the 8,224 profiles of the 

mingap set, and only the patters with at least 10 profiles are shown. The color-

coded score (right bar) is calculated as the number of shared profiles between 

the two cluster patterns, divided by the size of the smaller of the two clusters. 

C. Augmented view of 11 individual SPC clusters. Centered and normalized 

quantiled expression profiles of the cluster’s members are shown. The clusters 

2, 23 and 65 (corresponding to their rows in (B)) manifest expression in both 

brain and spinal cord; 2 is equally expressed in both tissues, 23 is higher in the 

brain and 65 is higher in spinal cord. Similar relationships are seen in the 

cluster triplets 12, 42 and 59, expressed in both heart and skeletal muscle, and 

15, 36 and 46, expressed in both liver and kidney (not shown). Table 4 

(Supplementary Material) specifies the accession identifiers for all profiles 

clustered by SPC. 

 

Figure 6: Midrange specificity profiles and the tissue dendrograms. Tissue 

dendrograms, based upon a hierarchical clustering using average linkage of the 

differentially expressed genes. A, based on all differentially expressed (DE) profiles; 

B, based upon the 4,921 mingap profiles with IB = 2-11; C, based upon 3,303 profiles 

with IB = 1. A systematic analysis of this trend (data not shown) suggests that the 

contribution to the dendrogram from profiles with high binary values (IB = 8-11) is 
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greater than that from the symmetrically disposed patterns with low binary index (IB = 

2-5). 

 

Figure 7: Ancestral tissue patterns. A. The tissue dendrogram, based upon 

the differentially expressed genes, is shown with superimposed tissue vectors 

and inferred ancestral tissue vectors based upon the binary profiles of the 

mingap set. B. Two instances of ancestral tissue (ANC) inferences for brain 

and spinal cord (left) and for kidney and liver (right). C. Correlation of novel 

tissue expression and novel tissue suppression of profiles with reference to 

their inferred ancestor. For each internal ancestral node, a ratio was calculated 

between the novel expressions in the two derived tissue vectors with respect to 

the ancestral tissue vector (abscissa). Similar ratios were also calculated for 

the novel suppressions (ordinate). Points represent all internal nodes, with 

tissue pair order selected to have an abscissa value higher than 1. Only two of 

the internal nodes (labeled red and orange, similarly marked in panel A) had 

an ordinate value lower than 1, indicating lack of correlation. The node 

corresponding to the brain spinal-cord ancestor is highlighted in green.
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Table 1 

 
                      

Differentially 
Expressed Housekeeping 

Not 
Expressed Uncategorized Total 

GeneCards 20,589 3,181 9,859 12,726 46,185 
Not Annotated 2,347 1,035 6,502 6,600 16,654 

Total 22,936 4,216 16,361 19,326 62,839 
 
Partition of U95A-E probesets into four expression categories (Fig. 1). The probesets to GeneCards 

associations were done using the GeneAnnot algorithm (Chalifa-Caspi et al. 2003b), and annotation 

from the original transcripts from which the probesets were derived (see Systems and Methods).   
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Figure 6
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Figure 7 
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