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Abstract

This study deals with the problem of wind waves generation. Scientific interest in mo-
mentum and energy transfer between the ocean and atmosphere and wave forecasting
are examples of directly related research topics of the wind waves generation prob-
lem. The problem deals with the instability of water waves in the presence of a shear
flow. The study contains a full formulation of the linear stability problem in 2D for the
viscous and inviscid models. The formulation leads to an ODE which controls the prob-
lem. The governing equation for the inviscid model is Rayleigh’s equation, whereas the
governing equation for the viscous model is the Orr-Sommerfeld equation. After ap-
plying the boundary conditions the resulting problem is an eigenvalue problem for the
wavenumber or for the wave frequency. These eigenvalue problems were solved using
numerical methods chosen especially for each model. The mean flow of the air and wa-
ter plays a main role in the problem because the solution is sensitive to this choice. We
use three versions of the mean flow profile; two of them are profiles which have been
used in previous studies and one of them is a new profile which we suggest as a more
physical profile. The results were calculated for both models and many different sce-
narios. In the viscous model, we expand the range of wavelengths and wind intensities
with respect to previous studies to 0.001m < A < 0.2m,0.1m/sec < u, < 1lm/sec. The
results are presented in a comprehensive set of figures. In the viscous model we discov-
ered the presence of a new unstable mode at high wind intensities for the case in which
we used a profile with a shear current. This second unstable mode is characterized by a
slower phase velocity. A comparison between the results of the inviscid model and the
viscous model is of major important. We compare these two models not only by com-
paring the eigenvalues and the eigenfunctions, but also by comparing the pattern of the
dynamic boundary condition. The comparison at low wind intensities shows that the

inviscid model and the viscous model have similar patterns, although the growth rates



2 Abstract

in the viscous model are twice as large or more than those of the inviscid model. At
high wind intensities the results of these two models are far from similar. The results
of the comparison emphasize the question, in what sense is Rayleigh’s equation is an

approximation for a large Reynolds number to the Orr-Sommefeld equation.
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Chapter 1

Introduction

1.1 Description of the problem and motivation

Human kind’s interest in the behavior of water waves began when man started to settle
along the coasts and travel the oceans. The interest in the generation mechanisms of
waves was a challenging problem for scientists since ancient times. The motivation for
a better understanding of this complex phenomenon comes from many disciplines. The
problem of water wave generation by wind basically deals with the interaction between
two fluids: one is a liquid and the other a gas; Together these two fluids generate a
coupled system. Such systems exist in nature and there are additional scenarios of
coupled systems, other than ones including water and air. For example, there can be
oil instead of water or even waves at other planets when the liquid is hydrogen and
the gas is the planet atmosphere. Generally, the problem deals with the transport of
momentum and energy between the atmosphere and the ocean. This knowledge is
important in order to estimate the mixing of the upper layer of the ocean. Another
important process which is related to this subject is gas dissolution in the ocean; For

instance, the gas can be COs(which is a greenhouse gas).

In our problem the air is above the water, as there is a wavy interface between the
two fluids. There is a velocity field in the air which can be divided into two compo-
nents. The main component is the mean flow-which is the wind, and the secondary
component is the flow due to the waves. The assumption is that the mean wind is a

parallel flow and the nature of the wind depends on the specific scenario. There can be
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Wind

‘Wind Momentum

Interface

Figure 1.1: Schematic description of the problem
Noyan SY SVNOD RN

a similar division for the velocity field in the water where the main component is the
current, and the secondary component is the flow due to the waves. The mean current
is assumed to be a parallel flow. In the more specific problem which this study deals
with, the water depth, as well as the air layer thickness, are infinite. Between the atmo-
sphere and the ocean there is momentum and energy exchange. For example, when the
wind starts to blow above an Slightly wavy interface it loses energy and momentum to
the water. This momentum and energy produce waves and current, which in case of
energy transfer can be dissipated when the waves are breaking. The opposite scenario
is when waves travel against the wind; The water can lose energy and momentum and

thus the waves will decay.

1.2 Literature survey

In this section we will survey only the publications which we think to be important to
our study, since throughout the years there has been an enormous number of publica-

tions on the subject. The discussion of wave generation in modern science is almost 150
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years old, since the days of Kelvin, Stokes, Rayleigh and others. Since ancient times,
men began to understand that water waves are generated by the wind. The history of
scientific publications on the subject in the 20th century started in 1925 when Jeffreys
published his sheltering theory [10]. He suggested that the mechanism of wave gener-
ation is such in which there is some kind of separation in the air flow above the waves.
This separation occurs somewhere in the leeward side of the wave crest. Such a sepa-
ration produces a phase shift between the wave shape signal and the pressure signal.
Jeffreys also showed that such a phase shift can do work on the water and formulated
the energy flux as:

OF on

T p(z = 77)5

Where E is energy per area unit, ¢ is time, p is the air pressure and 7 is the interface

(1.2.1)

curve. The bar denotes averaging with respect to time over the wave period. Ma-
jor progress was made in 1957 with the publication of two groundbreaking studies by
Miles [14] and Phillips [18]. These two studies suggest two different mechanisms for the
wave generation. Phillips argued that waves can be generated by a resonance mecha-
nism between the air turbulent eddies and the water [18]. In his study he assumed that
the water is an inviscid fluid and the initial water state is rest. Miles proposed that the
growth of waves is caused by interaction of the surface waves with a parallel shear flow
[14]. In his first article he assumed that the fluids are inviscid and presented Rayleigh’s

equation as the governing equation of the problem.
(U =)@ —k*) —opU" =0 (1.2.2)

He also argued that the rate of energy transfer to a wave of speed c is proportional to the
wind profile curvature —U/(z.,) at the critical height, where U,(z) = ¢. In 1959 Miles
published a further article [16]. In this article he studied aspects such as: imposing the
boundary conditions at the water surface rather than at the mean surface, including
the viscosity and applying more accurate numerical calculations. His results showed
that imposing the boundary conditions at a more accurate location has no effect, the
viscosity has a very small effect in gravity waves and the more accurate numerical
results estimate smaller growth rate than his previous study. Miles actually used a
perturbation model when he assumed that the wave amplitude is infinitesimal and the
flow due to the waves is laminar. In his model there is a background velocity (i.e. mean

flow profile). This profile depends on the specific case, but since the assumption that
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the air flow is turbulent is very common this mean flow profile is often taken as an
approximation of the turbulent boundary layer equation. Phillips and Miles suggest
different approaches in order to estimate the influence of wind on water waves. These
different approaches influence the many publications which came later. Many authors

after Phillips have studied the effect of small scale turbulence on wave growth.

Chalikov [5] published a model in 1976 which deals with the growth of a single
wave and the effects of nonlinearity, as well as the structure of airflow over a spectrum
of waves and the effects of atmospheric stability. A further study by Chalikov and
Makin [6] contains a determination of the drag coefficient over water waves. More com-
plicated turbulent models were advocated by Gent and Taylor [8]. The former uses one
equation model, whereas the latter uses a two equation model. These studies deal with
a numerical calculation of the wave growth due to a Phillips-like mechanism because
of the complexity of the problem. However Jacobs [9] uses a simple eddy-viscosity
model and obtains a very elegant expression of the growth rate by means of a matched
asymptotic expansion, where the small parameter is the drag coefficient. Valenzuela
[24] made a comprehensive numerical study of the growth of gravity-capillary waves.
He adopted Miles’ approach and solved the coupled air-water stability problem for two
viscous fluids in by a shear flow. Valenzuela uses finite-difference methods in order to

transform the problem to an algebraic eigenvalue problem.

Valenzuela uses the lin-log profile in both media as the base flow and shows that
the shear flow in the water can not be ignored. Kawai [11] investigates the generation
of initial wavelets, and combines experimental and theoretical studies. Kawai’s main
interest is in the most unstable wave which can grow under a specific friction veloc-
ity. Kawai uses a lin-log wind profile and an error-function-like current Profile in his
calculations. The numerical solution that Kawai uses is based on an integration of the
Orr-Sommerfeld equation using Runge-Kutta method with a purifying procedure in
order to keep the solution stable. He argues that the linear instability mechanism con-
trols the process of wave generation for the first 10sec. Van-Gastel et al. [26] study the
effect of wind on gravity-capillary wind waves using asymptotic methods. They also
solve a pair of Orr-Sommerfeld’s equations. They argue that in the growth of the initial
wavelets, the first wave to be generated is proportional to 2. Van-Gastel et al. also

study the effect of the wind and current profile shape, and find that the growth rate
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is very sensitive to the wind profile shape; the influence of the current shape is much
smaller, but the drift current and the shear current at the interface have a great influ-
ence on the phase velocity. Wheless and Csanady [27] use compound matrix methods
in order to integrate the Orr-Sommerfeld equation and investigate the stability of short
waves. In their calculations they use an error-function-like wind profile and an expo-
nential current profile. They also study the effects of wind profile on the growth rate,
and argue that the surface tension has less influence; the growth rate increases when
the surface tension decreases. Wheless and Csanady try to study the meaning of the
eigenfunction vertical distribution and argue that the perturbation vorticity is high; the
streamwise surface velocity perturbation in typical cases can be five times the orbital
velocity of free waves on undisturbed water surface. Hence this suggests that unstable
waves should therefore be thought of as a fundamentally different flow structure from
free waves. Boomkamp et al. [3] solve the problem of waves on a thin film of liquid
sheared by gas, which is a very similar problem. Boomkamp et al. use the Cheby-
shev collocation method for solving the stability problem. They show a robust method
which converges easily for many cases and that is easy to apply. Tsai Grass and Simon
[23] study the spatial growth of gravity-capillary waves sheared by laminar air flow,
using experimental and theoretical tools. They use a fourth order Runge-Kutta method
to integrate the Orr-Sommerfeld equation and some kind of filtering scheme in order
to remove parasitic errors. They use a Lock-like profile for both the wind and the cur-
rent. Zhang [28] studies the effects of shear flow on the stability of short surface waves.
He uses an inviscid model and as a result uses Rayleigh’s equation as the governing
equation. Zhang proposes a new method in order to get an approximate solution. The
method which is called piecewise linear approximation (PLA), approximates the wind
and current profile as linear in a specific segment, and thus the curvature is zero and the
equation has a very simple form. A special segment is when it contains the critical point
where U(z.) = ¢, and Zhang gives this segment a special treatment. Stiassnie Agnon
and Janssen [21] also study the instability of water waves where the fluids are assumed
to be inviscid. They use the so-called regular approach in order to pass through the
critical point when integrating the Rayleigh’s equation. The results of their calculation
are similar to those of previous calculations for 2= < 2, for {= > 2 they obtain a max-

imum in the growth rate, which does not appear in previous studies. Stiassnie et al.
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study the difference between the temporal and the spatial case and find that the ratio

of growth rates % deviate up to 20% from the leading order of value of 2.

Shemdin and Yun [20] try to validate Miles’ theory by experimenting. They measure
aerodynamic pressure over mechanically generated water waves. They use a pressure
sensor that follows the water surface. Shemdin and Yun show that there is a significant
phase shift between the pressure signal and the water surface, and that this phase shift
grows when increasing the wind intensity. Larson and Wright [13] did a comprehen-
sive experimental study of the temporal growth of gravity-capillary waves. They used
microwave backscatter as a measurement technique. Larson and Wright find that the
growth rate is independent of the fetch, dependent on the wavenumber and varying
with w, like a power law § = f(k)u? where n ~ 1.484. They also find that the growth
rate has a maximum near \,,;, ~ 1.73cm. Banner and Melville [2] experimentally in-
vestigate the flow separation over water waves. They generate short gravity waves
and use visualization methods to show the separation in a breaking wave. They ar-
gue that the condition for separation, which is a stagnation point, can occur only for
the case of a breaking wave. They also study how this separation affects the air mean
flow profile. Kawai [11] in his studies also experimented with gravity-capillary waves
and tried to show a correlation between the theoretical results and the experimental
results. He looked for the first wave to be generated at a given friction velocity wu..
Kawai also measured the flow in the water and the drift current, and showed the evo-
lution of the current with time. Kawai used a resistance type wave-gauge to measure
the wave growth and a shadowgraph-photography to measure the phase velocity. Mit-
suyasu and Honda [17] measured spatial growth of mechanically generated gravity
waves 0.6sec < T < 1.3sec, 0.95m < Ag < 2.63m. They found that the mechanically
generated waves grew exponentially under the action of the wind. They transfered the
spatial growth rate to temporal growth rate through 8 = C,o and proposed a new em-
pirical formula for the growth rate in the range 0.1 < == < 1. Mitsuyasu and Honda
also studied the effects of wave steepness H/L and argued that it seems that this ef-
fect is small. Caulliez Ricci and Dupont 1998 [4] experimentally study the first visible
ripples that appear on the water surface. They argue that the laminar-turbulent transi-
tion of the near surface water flow causes an explosive growth of the wind generated

ripples. These ripples become visible and thus mark the surface of the well localized
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V-shape turbulent zone forming the streaks. As previously mentioned Tsai et al. [23] ,
also performed experimental studies of the spatial growth of gravity-capillary waves.
They measure a laminar wind profile at varying fetches and emphasize the develop-
ment of the boundary layer with fetch. The experimental procedure they used was a
wind-tunnel wave tank in-which they could produce the laminar profile and then use
a twin laser beam technique to measure the wave properties. The waves were mechan-
ically generated waves with ka ~ 1073, They argue that there is a good correlation
between the experimental and numerical results and hence this linear stability mecha-
nism determines the initial stage of wave growth. In all these articles the subject of the
wind velocity profile is a dominant issue and sometimes it seems as though the number
of authors is equal to the number of profile versions.

Charnock [7] measures the air mean velocity profile above a large reservoir. He

finds that the air flow fits a logarithmic law according to:

z

I (1.2.3)

ux k 20

Charnock obtains that 23> = constant and suggests that the wind profile over the water
surface will be:
gz

1
L log = + constant (1.2.4)
u, k u?2

Miles [15] suggests an approximation to the solution of the boundary layer equation
which has a linear zone and a logarithmic-like profile. This profile was very useful for
many authors because of its smooth first derivative for all values of u,. and matching
height between the linear and the logarithmic regions. Most of the field measurements
were made at a low wind speed. As evidence of the nature of air flow above water at
high speed wind, we can cite Powell et al. [19] who made field measurements in trop-
ical cyclones. They found that the wind profile correlates very well to the logarithmic
shape at the first 200m. By determining surface stress roughness length and natural
stability drag coefficient, they found that the surface momentum flux levels off as the

wind speed increases above hurricane force.
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CHAPTER 1.

INTRODUCTION




Chapter 2

Mathematical Formulation of the

Problem

2.1 Orr-Sommerfeld equation

The starting point is the governing equations of an incompressible viscous fluid flow

neglecting thermal effects, which are the Navier-Stokes and the continuity equations.

P (8—‘: +17-617> = —VP+uV2V +gp (2.1.1)

V-V=0 (2.1.2)
Define the velocity field and the pressure field as:

V = (U(2) +ulz, z,t), vz, z,t)) (2.1.3)

P =po — pgz +p(z,2,t) (2.1.4)

Where U(z) is the base flow, u, v and p are harmonic perturbations of the horizontal
velocity, vertical velocity and pressure, respectively. We can separate the equations
into harmonic terms and steady terms. Under the assumption that the perturbations
are infinitesimal, we can linearize the equations and receive the following system.

Horizontal momentum:

ou ou N Op u 0%u

13
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Vertical momentum:

Ov ov\  Op v 0%
p(EJFU%) "&*’“‘(@*@) (2.1.6)
Continuity:
ou  Ov
i i (217

Since we are looking for a solution that has a harmonic part and a height dependent

part, it has the form:
w=u(z)e’ Rty = p(2)etFrTml o = pz)etRrmel) g = poeikrmel) (21.8)
We can define the stream function which has the form:
Y = f(z)elke—wt) (2.1.9)
Where w, k are complex humbers, and @, 9, p are of course complex functions. Hence:
0= —ikf(z), u= f'(2) (2.1.10)
Substitute into (2.1.5):
p(—iwf +ikUf —ikU'f) = —ikp+ p (—k>f' + ") (2.1.11)

The expression for the pressure is:

P=pU'f + (ikp = p(U = &) = 1" (2.1.12)
Finding the derivative of p:
1
B = [ = K2 f") = pliwf” + ik(Uf" = FU")| = (2.1.13)

Substituting it into (2.1.6) finally yields the Orr-Sommerfeld equation (2.1.14):
iv(fW =2k + K )+ R [(U = o) (f" = k*f) - U"f] =0 (2.1.14)

Until this point we did not discuss the specific problem of wave generation; this formu-
lation is valid for all incompressible viscous fluids with infinitesimal harmonic pertur-
bations. In the specific problem of wave generation we have two fluids; in most cases
one is liquid (water) and the other is a gas (air). Both the water and the air should sat-
isfy the Orr-Sommerfeld equation. We denote the different media by subindex X,, X,

for air and water, respectively.
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Boundary conditions: The domain of the problem is z € [—o0, 0] for the water, and
z € [0,00] for the air. There are two kinds of boundary conditions: The first is the
boundary condition at infinity and the second is the interface boundary conditions. At
infinity we want the perturbations’ amplitude to vanish. Asymptotically, the equation
has four independent exponential solutions; we choose only the decayed solutions. The
dominant asymptotic solution in the water or in the air is e**#, respectively; hence the

boundary conditions at infinity are:
fuw(2)e ™ = const, z — —o0 (2.1.15)

fa(2)e** = const, z — (2.1.16)

On the interface we need to satisfy the following conditions: kinematic boundary con-
dition, continuity of vertical and horizontal velocity, continuity of shear stress and the
dynamic boundary condition (continuity of normal stress). In the boundary condition
we also refer to the harmonic terms only. Most of the boundary conditions are nonlin-
ear because the interface curve z = n(z,t) is also unknown. We use the assumption
of infinitesimal perturbation in order to linearize the boundary conditions and we use
Taylor expansion about z = 0, which is the unperturbed interface and uses only the
linear terms under the assumption that 7 is infinitesimal. Note that the right sequence
of the linearized process is to write the Taylor expansion and then to linearize the con-
dition.

The kinematic boundary condition is:

%—i—‘_fl-ﬁj_v:u at z=mn (2.1.17)

This condition is true for both media-water and air. Hence after linearization:

on on B
E + w,a% = Vp,a Gt z = 0 (2.1.18)
Jwa=mn0(c—Up) at z=0 (2.1.19)

Since the problem is linear in terms of the auxiliary functions f,, , and we can see that
fuw.a(0) and ng are proportional, it is comfortable to take 770 = 1 and to remember that if
we want to get f,, , values we need to multiply it by 7, [m]. This choice is arbitrary and

it can not influence the resulting eigenvalues. Thus from this point on:

fuw,a(0) = (¢ — V) (2.1.20)
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Continuity of vertical velocity is trivial as a result of the kinematic boundary condition

and has the form:
V(0) = v4(0) = fu(0) = fu(0)
Continuity of horizontal velocity:
Uy + Uy =ug + Uy at z=1
After linearization:
Uy +77Uw = Uq + 77Ua at z=10
fo+U,=fi+U,atz=0

Continuity of shear stress at the interface:

Tw,xz = Ta,xz at z = n

3uw ’ a’l]w 8uw / a,Uw
w _— _— = a _— _— t =
M(@z +Uw+8x> M(@z +Ua+6a¢>az K
After linearization:

Oy o Ovy B au_w " % _
/J"LU<6Z +nUw+ax>_lU’a<aZ +7]Ua+ax at z=0

ta(f2 4+ K fo +UY) = po (fl + K2 f + UL) at 2 =0

The dynamic boundary condition (continuity of normal stress) is:

2
Tw,zz = Ta,zz + O'VLT] at z=mn

Ovy,
—Pw—|—2,uw5 = —Pa—l—Q,ua

Ov, N 0%n .
c—= at z =1
0z 0x? 7

After linearization:

5 Oy, 9 Ov, 0%n ; 0
- - —— =Da — — g —— — O~ al z =
Pw — Pwd? Haw 92 Pa — PagN Ha 92 02

And after substitute of the expression for p:

Pw [kf:u(c - UO) + kwa:u + iyw(3k2f1/1) - 1/17) - gk] =

= po [kfl(c— Up) + kfoU, +iva(3K> i — f)') — gk] + ok® at 2 =0

(2.1.21)

(2.1.22)

(2.1.23)

(2.1.24)

(2.1.25)

(2.1.26)

(2.1.27)

(2.1.28)

(2.1.29)

(2.1.30)

(2.1.31)

(2.1.32)

The next stage is to normalize the whole formulation. We need to choose characteristic

magnitudes. The reference problem is the problem of a linear harmonic wavetrain in

infinite depth sea. Hence we will use the values of wg, kg as normalizing factors. The
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subindex zero will be a symbol for the reference problem. The relation between the

frequency and the wavenumber of the reference problem will be:

3
wi = gko + ky (2.1.33)

Pw
Where g is the acceleration of gravity and o is the surface tension. In the normalizing
factor of f we will use 7y as a perturbation characteristic length.

Define the normalizing procedure (hat symbol=normalizing value):

. ow -~ k¢
w=—, k=—, ¢=—,
wo ko Co
- p k
2 = 2k, U:g, f= IFo (2.1.34)
Co TloWo

Before we present the normalized form of the problem we need to define a few dimen-
sionless numbers.

The Reynolds number:

R=-2 (2.1.35)

P % _ % (2.1.36)
The inverse Weber number:
Note that:
W+ F= % (gk:o + U—kg) =1 (2.1.38)
0 w

The ratio of densities and ratio of viscosities (where u = vp):

p="Lo p=te (2.1.39)
Puw o

The whole mathematical problem after normalization is given by: (All of the quantities
are now normalized and the hat symbols are removed).

The ODEs:

Z'Ril( () — 22 1/11+k4fw)+k [(Uw - C)( 1/11 - szw) - gfw] =0 z¢€ [—O0,0} (2.1.40)

iR N(fY = 2K f) + K o) + ke [(Ua — o) (f) — k*fa) — Ul fa] =0 2z € [0,00] (2.1.41)
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Boundary conditions:

fa(0) = fu(0) =c = U (2.1.42)
flo+ U =fi+U,at z=0 (2.1.43)
w(f! 4+ k2 fa + UY) = (f2 4+ k2 fo + UL) at 2 =0 (2.1.44)

qu/u(c - UO) + kwaq/u + ZR;1(3]€2 - ///) —kF =

w w

=p[kfi(c—Uo) + kfuU, + iR, (3k*f, — f') —kF] + Wk at z=0  (2.1.45)

fw(2)e " = const, z — —0 (2.1.46)

fa(2)ek* = const, z — oo (2.1.47)

2.2 Rayleigh’s equation

Rayleigh’s equation is the governing equation for the inviscid case. We can formulate
this case as a special case of the previous one if we set © = 0, R — oo. This of course
will cause changes in the boundary conditions as well. The governing equations of this

case are the Euler equation and the continuity equation.
p (%—‘tf +V- 6?) =_VP+gp (2.2.1)

-

V-

<

) (2.2.2)

The definition of the velocity and pressure fields is the same as in (2.1.3),(2.1.4). Under
the assumption of infinitesimal perturbations we can linearize the equations. Define
u, v, p,n,¥ same as in(2.1.9),( 2.1.8). Now we repeat the process of elimination of the
pressure from the horizontal momentum equation, find the derivative ' and substi-
tute it into the vertical momentum equation and finally obtain the so-called Rayleigh’s
equation.

U—-o)(f"=Kf)-U"f=0 (2.2.3)

Boundary conditions: As in the Orr-Sommerfeld formulation, we have boundary
conditions at infinity and the interface boundary conditions. At infinity the boundary
conditions are the same as in the viscous problem; the asymptotic solution is e*** as
well. Hence it is the same as in (2.1.15),(2.1.16). In the interface the solution should

satisfy only the kinematic and dynamic boundary conditions. The boundary conditions
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are nonlinear because 7(x, t) is unknown. We use the same procedure as in the viscous
case in order to linearize the equation and the boundary conditions. The kinematic
boundary condition is exactly the same as (2.1.19). We choose again ny = 1 in order to
get (2.1.20). The dynamic boundary condition is similar to the viscous case, but without

the viscous terms.

Tw,zz = Ta,zz T Uv%_'l? at z =1 (224)
2
Py =—P, + a% at 2 =1 (2.2.5)
T
After linearization:
32
Pw — PwdN— = Pa — Pagl] — U—Z at z =0 (2.2.6)
or

And after substitution of the expression for p:
pw [kfL(c — Up) + kU, — gk] = pa [kf.(c — Uo) + kf U. — gk] + ok3at 2 =0 (2.2.7)

We normalize the problem with the same procedure and get the following system:
ODEs:

(Uw - C)( {é - szw) - Uzlzjfw =0ze€ [_0070] (228)
(Ua —)(f) —k%f2) —U"fa =0 2 €0, 00] (2.2.9)

Boundary conditions:
fa(0) = fu(0) =c—Up (2.2.10)
Efl (¢ —Uy) + kfoUl, —kF = p[kfi(c —Uo) + kf U, — kF| + WEk® at z =0 (2.2.11)
fu(2)e " = const, z — —oc (2.2.12)

fa(2)eF* = const, z — oo (2.2.13)

2.3 The temporal case and the spatial case

The problem of wind wave generation describes the evolution of surface waves in time
and space. When we being to deal with this problem we can ask questions such as:
when does the wind start to blow? where does it blow from? how long is the fetch? is
the wind time dependent? when does turbulence become dominant? and many more
qguestions. Our model simplifies reality. The flow is two dimensional(2D), hence we

do not discuss wind direction. The water depth and the air layer thickness are infinite.
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We assume that the problem is steady. The flow in the model is time dependent but
has a constant frequency, thus it is a quasi-steady state flow. In the problem we look
for a combination of w, k that will cause the solution of the ODEs to satisfy all of the
boundary conditions. There are many combinations that we can find, but what is the
meaning of every combination and which ones are important? First we should note
that w defines the frequency and growth rate in time and & defines the wavelength and
growth rate in space. Of course, from the physical aspect we are interested in the most
unstable modes, because modes with large decay do not exist. In the open sea or even
in the laboratory, waves will grow in time and space in a combination that is very hard
to obtain. It should be more simple to think about waves that grow either in time only
or in space only. These cases are possible in such a theoretical problem. The temporal
case refers to growth in time only, as the spatial case refers to growth in space only. We
can think of two scenarios which describe such cases. The first scenario is when the
wind started to blow at a specific time ¢t = ¢, in all of the space —oo < x < oo; in such
a case there is no reason for waves to grow in space, and the = dependence is fixed by
the wave length only and all waves will grow in time only (temporal case). The second
scenario is when the wind stared to blow from a specific location x = x, for all time
values —co < t < oo; in this case the waves start to develop in =y and they can grow
only in space (spatial case). These two scenarios are theoretical scenarios, but when
trying to measure wave growth in the laboratory these two cases are the most practical
ones. When measuring temporal growth we measure the growth in the very initial
time - since the moment when the wind started to blow. Since we want the amplitude
to be small, this measuring will be at a fixed point z = z( for different time values
and should be far from the edge. When measuring spatial growth, we measure the
growth in a short length from the position that the wind started to blow. Since we want
the amplitude to be small, this measuring will be at a fixed time ¢t = ty for different

positions. These two cases will be at the focus of this study.

2.4 Base flow profile

In the formulation, U(z) represents the base flow. The base flow is sometimes called
”background velocity” or "mean velocity profile”. The base flow usually originates

from the problem of flow without perturbations. For example, if the problem is on a
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two-dimensional channel, the natural choice would be a parabolic profile which satis-
fies the laminar problem. In the problem of wave generation it is not so clear what the
right choice is. If we look at the problem without waves - just air flow above water, we
need to define the mean flow in each medium. The model as we write it is laminar; the
idea is to insert the turbulence via the base flow. In the air medium, it is common to
use the problem of turbulent air flow above a rough plate, which is sometimes called
turbulent boundary layer. The solution of the turbulent problem contains fluctuating
components and mean velocity. We will use the mean velocity profile as the base flow.
The mean velocity profile has a logarithmic shape if we look far enough from the inter-

face. The mean velocity profile is a solution of the boundary layer equation.

= =\ 2
,u@ + pr22? @ =170 (2.4.1)
dz dz
~—_——
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Figure 2.1: The base flow and its first two derivatives for the numerical solution of the
boundary layer equation with U, (0) = %- for various values of u..
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Uy 9V 0V 0y 1y Uy(0) = % qwnd

This equation is based on Prandtl’s mixing length theory under the main assump-
tion in which the maximum length of an eddy depends on its distance from the wall.

On the right side of the equation we write 7y = p,u? - which is a constant, thus we
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assume that the overall stress is constant with the vertical coordinate. This assump-
tion can be problematic in the case of air water interface and transport of momentum
between the air, the water and the waves. We will use an approximation for the bound-
ary layer equation. The solution of the boundary layer equation is commonly divided
into three regions: the first is around z = 0 where the dominant term is the laminar
stress, and the solution is approximately a linear velocity profile (laminar sub-layer).
The third region z > 1 where the dominant term is the turbulent stress, and the solu-
tion is approximately logarithmic. Between the first and third region there is a buffer
region; in this region we can not present an approximate analytic solution, but we can

solve it numerically.

There are two main approximate profiles which were commonly used in previous

studies. For Rayleigh’s equation the common profile is:

Upy=0 (2.4.2)
U = % log (1 + i) (2.4.3)
KR Z0
achu2
20 = X aep 2 0.014; k=041 (2.4.4)

This profile is only an approximation and is characterized by a logarithmic shape for all
values of z. The purpose of the ”1” in the log argument is to make sure that U, (0) = 0.
The relation for the roughness z, is Charnock’s formula [7] and it is based on measure-
ments, where wu, is the friction velocity. This form of presentation is very convenient
because there is only one parameter which defines the entire profile. In that case the

first and second derivatives have the form:

« 1
Ul = (2.4.5)
K Z+ 2o
.1
Ul =t - (2.4.6)
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Figure 2.2: The base flow and its first two derivatives of the logarithmic one” profile
for various values of u..
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As we can see from (2.4.5),(2.4.6) and Fig.2.2, higher «, means higher wind intensity,

but when we look at the derivatives we see that a smaller value of u, causes larger

derivatives at the interface.
For the viscous problem we will use the following base flow profile:

In the air (Wlnd pI’OIile):
U + —UE z z2<z
0 Va 1 ( 4. )

Uy + mus + “7 [a — tanh (%)] z> 2

And in the water (current profile):

2
Uy, = Up exp ( Pathe z) (2.4.8)
UOUU;
Where:
2K Uy a *
a=sinh (B), 8= e (z—21), 1= TZV , Ug= u?’ m=>5—38 (2.4.9)

Vg
This profile is also an approximation of the boundary layer equation. The profile has a
linear segment with a possible offset and a segment that is asymptotically logarithmic.

The parameter ”m” defines the thickness of the laminar sub layer (the linear segment)
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and thus influences the derivative at the interface as well. This profile enables continu-
ity of the function and its first derivative at the matching point z = z; for all value of
the parameters "m” and Uy. The value of ”m” is commonly set to 5, see [11]. This base

flow also has the quality of continuity of the shear stress between the air and the water.

The first two derivatives are:

o= e | 1 i (2.4.10)
var/B32+1 o 2003h2(%) rZA

0 z <2z

" o_
Ua - 4ud Kk B 1 1)+ sinh %) S (2411)
5 - =T z z
v2(p2+1) \/B2+1 2cosh2(%) 2003h3(%) = %1
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Figure 2.3: The base flow and its first two derivatives of the linear-logarithmic profile
for various values of u,(m = 5).
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As can be seen from (2.4.10),(2.4.11) and Fig.2.3, the parameter u ., defines the wind

intensity and also defines the current-profile. The first derivative has a discontinuity
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at the interface, but is continues in the air and has a greater value when u, is larger.
The second derivative also has discontinuity at the interface, and has a greater absolute
value when u, is larger. The difference between the “one” profile and the lin-log profile
is: in the lin-log profile we can set the drift current, while in the “one” profile there is no
current at all; in the lin-log profile the second derivative at the interface is zero, while in
the ”one” profile it is very big; in the lin-log profile the first derivative at the interface
becomes higher when increasing ., while in the ”one” profile it becomes higher when
u, decreases. Note that . is the friction velocity and it is an indicator for the wind
intensity, but for the same u.. we can get different values of U, for different profiles, see
Fig.2.4. As we can see from Fig.2.1,2.3,2.2 and 2.4, the behavior of the lin-log profile is
much more similar to the numerical solution of the boundary layer equation; for most
values of u, and z the wind speed of the numerical solution gets in between the ”one”
and the lin-log profile, where commonly the lin-log is overestimated and the ”one” is

underestimated.
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Figure 2.4: Comparison of wind intensity at z = 10[m] and z = 0.1[m)] for the
numerical solution,”one” and lin-log profiles.
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Chapter 3

Numerical Methods

3.1 Numerical methods for the inviscid model, Rayleigh’s
eguation

Rayleigh’s equation is a second order differential equation. The problem is an eigen-

value problem which is defined as:

(Uw — C)(fq/é - szﬂ)) - U//fw =0 z € [-00,0] (3.1.1)

(Ua —)(f! —k%f2) —U"fa =0 2 €0, 00] (3.1.2)

Boundary conditions:

fa(0) = fu(0) = ¢ = Uy 3.13)

kf! (c—Uo) + kfuU., — F=plkfi(c—U) + kf U, —F|+ Wk at =0 (3.1.4)

fuw(2)e ™ = const, z — —o0 (3.1.5)
fa(2)eF* = const, z — oo (3.1.6)

Since the problem is linear, we can take (3.1.3) as one condition f,(0) = f.,(0) and hence
have four homogenous boundary conditions for the two coupled equations. We chose
a different method of solution which produces only one eigenvalue in each search pro-
cess. The reasons for this choice are: first we are interested in a very narrow range
in the eigenvalue plane, where the eigenvalues have an interesting physical meaning.
Secondly, due to numerical aspects, searching for all of the eigenvalues for such a prob-

lem would be a very expensive calculation. The process which is used is such, in which
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we have coupled second order equations with five boundary conditions. The process
of searching the eigenvalue is: choosing an initial guess for the eigenvalue, solving
the boundary value problem with four boundary conditions, two at = — +oo and two
at the interface z = 0, then using the extra condition (dynamic boundary condition)
in order to get an improved guess. This iterative process uses the dynamic boundary
condition (3.1.4) as the extra condition. Since the differential equations are linear, we
can simply apply a shooting method in order to solve them. The shooting method is a
method which is used to solve a boundary value problem with the use of the solution
of an initial value problem. Initial value problems are much simpler to solve because
the solution at every point depends on the previous point only. Hence, it is possible to
use high order schemes without the need of solving large systems of equations. The ad-
vancement in the solution is sometimes called integration. Another benefit is that one
can integrate the equation in every direction. Generally, these linear equations have
two independent solutions. Asymptotically, for z — +oco when U” —_. .., 0 we can
obtain that the independent solutions for both equations are ¢#, e~*#. Hence, it is clear
that there is a pair of independent solutions, one of them having an exponential decay
and the other an exponential blow-up. The blowing-up solution, for example ¢** in the
air, has a relation between the function and its derivative of f/(co) = kf,(cc), whereas
the decaying solution has the relation of f/(c0) = —kf,(c0). Since we are interested
in a decaying solution in both media, it will be clever to start the integration from +co
with the following initial conditions:

fa:]-vf(;:_kv Z— X
(3.2.7)

fo=1f =k, Z — —00
These initial conditions have the same meaning as conditions (3.1.5),(3.1.6). After inte-
grating both equations, in the water from negative infinity to zero and in the air from
infinity to zero, we simply have to normalize the solution with the right factor so that
it will fit condition (3.1.3). After obtaining the solution, we can calculate the two un-
known values for the dynamic boundary condition f/(0), f/ (0), and then calculate the
improved guess. For the integration of the equations we use a MATLARB initial value
solver ode45. The ode45 solver is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver - in computing, y(¢,), it needs only the

solution at the immediate preceding time point, y(¢,,—1), and it is a variable step solver.
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In the calculation infinity will be regarded as a finite value z.,. This value needs to
be relative to the wave length, since long waves are influenced by a thicker air/water
layer. Since the z coordinate is normalized by the wave-number, we set z., and can test

the sensitivity to this value.

3.2 Numerical methods for the viscous model, Orr-Sommerfeld

eguation

In the viscous model, the governing equation is the Orr-Sommerfeld equation. This
problem is also an eigenvalue problem. Since the governing equation is of fourth order,
there are more boundary conditions than in the previous problem. Applying a shooting
method to this problem is not so simple, because the initial value solver has stability
problems. Hence, we try to look for another numerical method which will fit this kind
of problem. There are a few options we can choose from, for instance: adding filtering
to the integration process, using finite differences, or using collocation methods. After
applying a finite- differences method which evidently produced disappointing results,

we chose the Chebyshev collocation method.

3.2.1 About the Chebyshev collocation method

In order to present the numerical solution by the Chebyshev collocation method, we
first have to explain the idea behind it, which is based on spectral methods. The mathe-
matical idea is to use a series expansion to represent the unknown function. In such an
expansion, we need to define the basis functions; these functions need to be orthogonal
and usually orthonormal, for example sin, cos. These functions are the eigenfunctions
of specific Sturm-Liouville problems. Since these functions are eigenfunctions, we can
present every function as an infinite series expansion. In our case we will use Cheby-
shev polynomials as the eigenfunctions. These polynomials are defined on the interval
x € [—1,1] and their values are also within 7,,(z) € [—1, 1]. The explicit expression for

the nth Chebyshev polynomial is:

(n —m- 1)' (21,)7172771 (321)
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Figure 3.1: First ten Chebyshev polynomials
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There are many recursion relations for the Chebyshev polynomials and their deriva-
tives. We first calculate the first and second polynomials and then obtain the others by

recursion relations. For example we can use:
Tot1(x) = 22T, (x) — Th—1 () (3.2.2)
And then the first 4 polynomials are:
To=1,T) =x,Tp = 22> — 1,T3 = 423 — 3z (3.2.3)

As already mentioned, we shall represent the unknown function using the series of
Chebyshev polynomials.
oo
fl@) =) anTu(x) (3.2.4)
n=0
Since we are interested in a numerical approximation, we will use a finite Series. The
essence of finding the solution is to find the coefficients of the series a,,. For example:
for a given function f(x) and given grid points (z1, 22, ,, z,), We can obtain the coeffi-
cients by a simple algebraic operation. For every grid point the following equation can

be written:

aoTo([L’i) + alTl([L’i) + CLQTQ([L’Z‘) + ..+ G,NTN([L'Z‘) = f([L’Z)V’L =1,2,,,N (325)
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Now we can define the matrix T to be:

[ Ty@) Tu@) . . Tn(a) |
To(xz)

T= _ ) (3.2.6)
_Tg(l‘N) Tl(xN) . . TN(.IN)_

Thus the linear system for the coefficients is (where @ = (a1, as, ,,an)):
Ti=f=a=T""f (3.2.7)

When using this method to solve differential equations, f will play the role of the un-

known function. In order to represent the derivatives of f we can write:
fM) =g = g = P17 p F (3.2.8)

As we can understand from the above equation, it is easier and more practical to use f
than to use @, because @ is unknown. From the above equation we define the differen-
tiation matrix D,, to be:

D, =TM7"! (3.2.9)

These matrices depend on the grid points. The grid which we will use for the Cheby-
shev polynomials is:

zj = cos (%) Vj=0,1,,N (3.2.10)

If we want to use it to solve a linear ODE, we simply need to transfer the differential
equation into a linear system by substituting the above relation. For example: in order

to solve the simple BVP(boundary value problem):
y' +y=0;y(0) =1, y(1) =2 (3211)
We transfer the equation to:

Dof + f=(Do+I)f

0 (3.2.12)

In order to satisfy the boundary condition, we exchange the first and last rows with the
first and last rows of the identity matrix, respectively; and the first and last elements
in the right hand side vector to be 1 and 2, respectively. Then we need only solve the

linear system to get the solution.
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3.2.2 Applying the method to the problem

The mathematical problem:
Governing equation;

The ODEs:
iR =202 fl+ K fu) +k [(Uw — ) (fl — K fu) = Ul fu] =0 2 € (—00,0] (3.2.13)

iR = 262 L+ K o)+ [(Ua = )(f) = K2 fa) = Ul fa] =0 z € [0,00) (32.14)

Boundary conditions:

fa(0) = fu(0) =c— Uy (3.2.15)
fLoUL=f +U atz=0 (3.2.16)
w(f! + k2 fa+UY) = (f + K2 fu +U) at 2 =0 (3.2.17)

Ef! (¢ —Uy) + kfoUL + iR, N 3K fl — f/) — F =

w w

= plkfi(c—Up) + kfU, +iR,'(3K°f, — f/') = F] + Wk® at =0  (3.2.18)

fw(2)e " = const, z — —0 (3.2.19)
fa(2)eF* = const, z — oo (3.2.20)

In this problem we need to find the complex frequency, or the complex wavenumber,
which causes the ODE to satisfy the boundary conditions. Since we can rearrange the
problem as a homogeneous system, it is an eigenvalue problem. It can be divided
into two special cases: the case of temporal growth and the case of spatial growth.
For the case of temporal growth it is a linear eigenvalue problem, but for the case of
spatial growth it is a nonlinear eigenvalue problem. For numerical reasons, we prefer
to reduce the problem in each medium into two dependent second order equations, in
the following manner. Instead of the governing equation we have the set:

V—f"=0

(3.2.21)

iR V" = 2KV + k' o) + k [(Us — )(V = K2 fa) = Ul fa] =0
Where V £ . The ODE system includes equations for the water and the air media,
and it is linear in the unknown function f(z). It was solved in two ways: the first is
to build a linear algebraic generalized eigenvalue problem (Av = ABwv) and to find all

of the eigenvalues and eigenfunctions using a MATLAB solver (only for the temporal
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case); the second way is to build the solution by an iterative process which converges to
a specific frequency/wavenumber which satisfies the system. In this text we will focus
on the iterative process. The iterative process contains the following stages: 1.Guess-
ing a value for w, k. 2.Solving the boundary value problem, which is inhomogeneous
due to the kinematic boundary condition. 3.Substituting the solution into the dynamic
boundary condition. 4.Calculating an improved guess for w, k, using a standard root
search method. The process converges to a specific value of w, k which is one solution
of the problem. The value which the process converges to depends on the initial guess.
Different initial guesses can lead to a different eigenvalues. In order to achieve good
accuracy it is imperative to work with large matrices. Since using a generic eigenvalue
MATLAB solver causes significant errors in such large matrices its use is found to be
inefficient. Another reason not to use the eigenvalue solver, is that we are not inter-
ested in all of the eigenvalues, we are interested only in those which have an important
physical interpretation. Another improvement to the regular method is to divide the
air domain into two different domains. This trick (based on [3]) can help improve the
calculation efficiency in problems with sharp boundary layer - which have a great influ-
ence on the solution. The first region will be very close to the interface and as a result
it requires a very fine grid. The thickness of the first region is the same as the linear
segment in the lin-log profile. The second and major segment will be from that point
and on. This division divides the air medium into two artificial layers. Between these
two layers we also need to satisfy the boundary conditions which are similar to those
in the air-water interface.

When solving the problem numerically, we need to approximate the infinity by a
finite value. Choosing that value is naturally related to the wave length. The value
which we commonly use is z,, = 10 which means that z.cgimensionai = 1.6, the sen-
sitivity for that value is tested in the chapter about validation of the numerical results.
Since the natural domain of Chebyshev’s polynomials is [—1, 1] and we use different
domains, we need to use transformations. We will use linear transformations which

are the most simple way and do not change the equations. The transformations are:

—1)zeo 1 1 oo
fy= O e et la @ DEe ) G2

Where z € [—1, 1] is the Chebyshev coordinate and z,,, zq1, 242 are the z coordinate in

each part of the physical domain. When using these transformations we need to use
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Figure 3.2: Computational domain of the problem
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the chain rule; since the transformation is linear it is simply - = (42)
applying the method, we build a linear system for the collocation points. In order to do

that, we need to define the order of the unknown points vector as:
ﬁ = [‘7;2’]6_227‘_/31’ 31,‘7£aﬁtu]t (3-2-23)

Where each one of these vectors is a column vector and the upper term in each vector
is corresponding to the upper point in the physical grid. For example, the first term in
Vo corresponds to the point z = z,, and the last term in f;l corresponds to the point
z = 0. Each pair of these vectors can be in a different length because we can control
the number of grid points in each medium. The next stage is to transfer the differential
equations into an algebraic equation with the use of the Chebyshev differentiation ma-

trices in the form (where D,, = (2—;‘)" D,, and D is the original differentiation matrix).

IV —Dyf =0
(3.2.24)
(Dy — diag(2k? — ikR(c — U)))V — diag(ikR(k*(c — U) — U")) f =0
This set represents the equations for each fluid layer and it is a block matrix.
I -D 1%
1] D] Y

[Ds — diag (2k2 — ikR (c — U))] [~diag (ikR (k* (c — U) — U"))] f

(3.2.25)
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After building this block matrix for each layer, we build one big block matrix for the

whole problem.
A2 ‘7—

2Ng2X2Ng2 fa72

Ay
—0 (3.2.26)

2Na1 ><2Na1
w Vi

- 2Ny X2Ny = 7 -

As it seems in the above equation, the system is homogenous but it is not the whole set,
because we did not apply the boundary conditions yet. Applying the boundary con-
ditions in this collocation method is similar to the application in the finite-differences
method; we simply replace several equations in the system with the approximation of
the boundary condition. It can be very important which equation will be replaced and

how to do so. First we will approximate the boundary conditions at infinity by:
fa(ZOO) = 07 ‘/(J(ZOO) = 07 fw(_zoo) - 07 VU)(_ZOO) == 0 (3227)

These boundary conditions can be applied by simply erasing the appropriate row and
column before solving the system, which are with the following indices: 1, N,» +
1,2N49 4+ 2N41 + Ny, 2N4o + 2N, + 2N,,,. Now, applying the interface boundary con-
ditions. We have two interfaces: the first is the real interface between the A; layer and
the water, and the second is the artificial interface between A5 and A;. At the air-water
interface we need to apply (3.2.15), which is two conditions: (3.2.16), and (3.2.17). Each
one of these four conditions replaces the equation in one of the collocation points. The

equations are:

—

Hzeros]lXQN,lz—i—NalaIal,(last row)s [Zer05]1><2Nu,}F =C— UO (3228)
Hzeros]1><2Na2+2Na1+vaIw,(first row)]ﬁ =c—Uy (3229)

[[26T03}1X2NQQ+NQ1 5 Dal,(last rmu),[Z@’l"OS]lwa,

’ _Dw,(first row)]ﬁ = Uq/u(o) - U(/L(O)

(3.2.30)

2
HZ@’I"OS]ngNaz 7/~LIa1,(l(Lst row)s /~Lk Ial,(last row)»

’ _Iw,(first row)s _kzlw,(first row)]ﬁ = UqZ (O) - ,UU(/L/(O)

(3.2.31)
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The rows in the matrix which will be replaced have the following indices: 2Na2 +
Ng1,2Na2 + 2Ng1,2Na2 + 2N, + 1,2Na2 + 2N, + N,,. It does not matter which
condition replaces which collocation point. In the airl-air2 interface the boundary
conditions are similar to the air-water interface, except that the condition (3.2.15) now
gives only one condition and therefore we have to use the dynamic boundary condi-
tion (3.2.18). The conditions get a much simpler form because the density and viscosity
ratio are equal 1. Another simplification is the air profile used which has a contin-
ues first derivative. Hence, the first two conditions will be a continuity of the func-
tion and its first derivative, and the dynamic boundary condition has the meaning of
continuity of the third derivative. The collocation points which will be replaced are:

Na2,2N42,2N42 + 1,2N,40 + N,1. And the equations take the form:

Ja2(h) = fa1(h) (3.2.32)

faa(h) = fo1(h) (3.2.33)

fao +Usy = foi + Ugy at z=h (3.2.34)

fos = fai at z=h (3.2.35)

Hzerosthazvjal(last row)s Ial,(first row)s [26T08}1XNG1+2N,w]ﬁ =0 (3236)

HzeTOS]IXNum Da2,(last row)s _Dal,(first row)s [26T08}1XNG1+2N,w]ﬁ =0 (3237)
[IaQ,(last row)» [zerosthaz, _Ial,(first row)s [ZeTOS]IXNm«FZNw}F: = (/1/1 (h) - (/1/2 (h)

(3.2.38)

[DaQ,(last row)s [ZGTOS]IXNam _Dal,(first row)» [ZGTOS}IXNQ1+2NUJ]F' =0 (3239)

After applying all of the boundary conditions, first the interface boundary conditions
by replacing the right equation with the right boundary condition equation and then
the infinity boundary conditions by erasing the right rows and columns, we solve the
linear system by using a standard MATLAB solver. This stage is called the BVP solver
and the output is simply the functions f(z),V(z). The only condition which is not

used yet is the dynamic boundary condition at the air-water interface. We will use this
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condition in order to build an iterative process which converges to the eigenvalue. We

can define:

G(k,w) = kfl (c —Uy) + kfoU., + iR (3K*f., — f/)) — F —

w w w w

a

—p [kfi(c—Uo) + kfU, + iR, (3K f, — f)') = F] —=Wk*=0at z=0 (3.2.40)

This is simply another form for writing the dynamic boundary condition. Note that af-
ter we solve the boundary value problem we know all of the quantities in the equation.
It is clear that we want such w, k¥ which causes G(k,w) = 0. The iterative process we
use is based on a secant method for the problem G(k,w) = 0. Note that we only look
for one of the quantities w, k because we deal with either the temporal or the spatial

case. The secant method is simply:

G(an kn)(wna kn — Wn—1, kn—l)
G(wna kn) - G(wnfly knfl)

Wn+1, k71,+1 = Wn, kn + (3241)

The choice of the secant method is because of its simplicity and the fact that there is
no need to calculate the derivative or any other additional calculation. Note that G is a

complex function in complex variable w, .
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Figure 3.3: Orr-Sommerfeld solver flow chart
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Chapter 4

Validation of the Numerical

Results

In this chapter we will try to prove that the numerical results are in fact close to the
true results of the problem. Another target is to show that the approximations which
we had made are valid. The tools which we will use are: first to show that the results are
not sensitive to the numerical parameters (convergence), second to compare the results
with analytical calculations (test case)and third to compare the results with previous

studies.

4.1 Validation of the inviscid case

As described in the previous chapter, we use MATLAB initial value solver in order to
integrate Rayleigh’s equation. Since it is a varying step solver it adapts the step size to

its location.

4.1.1 Sensitivity to z,

Since we practically need to use a finite interval for the numerical calculations, we have
to show that our choice does not have a major effect on the results. The z coordinate is
normalized by kg in the form z = zgumensionatko. From the physical aspect, the value
of z., should be related to the wave length. From the linear theory of water waves, it

is known that after half of a wavelength the influence of the waves on the flow field is
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A=0.1m, u, =0.3m/sec A=0.1m, u, =1m/sec
z, = 0.98175865311762+0.008070194807281 1.02387462484237 +0.05182653075216i
z, =10 0.98176172076009 + 0.008066653424001 1.02386080291654 + 0.05184138532963i
z, =100 0.98176172076010 + 0.00806665342398i 1.02386080291647 + 0.05184138532970i

Table 4.1: Sensitivity to z,, (values of w), temporal case, ”one” profile
(w Y) 20072 MVYN)

minor. The value which we use for most of our calculations is z., = 10, which means

that zoo dimensional = %)\ = 1.591\. In order to justify this value, we made a few runs

with different values for z... See Table (4.1).

4.1.2 Comparison with previous studies

The next level of validation is to compare the numerical results with those who made
similar calculations before. In Stiassnie et al. [21] Fig. 3 they compare their results
with Komen et al. [12] and some experimental data. Their model neglects the surface

tension and they use the “one” wind profile. See Fig. (4.1).

T T TTT T T T TIT T T T T
—— This study uchZO.OlA
10 F Staissnie at el. o, =0.0144

- = - Komen et al.

05 1 15 2 3

-4

10

u/c

Figure 4.1: Normalized growth rate vs. normalized friction velocity temporal case.
Comparison with previous studies. (similar to Fig.3 in [21]).
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4.2 Validation of the viscous case

In this section we will show the convergence of the Chebyshev collocation method, test
the sensitivity of the model to the interval size and compare the results with the test

case and previous studies.

4.2.1 Analytical solution of the viscous problem for linear wind pro-

file and constant current

In this section we present the analytical solution for the case of linear wind profile and

constant current. The profile has the form:
U,=Up+az, U, = Uy (4.2.1)

The Orr-Sommerfeld equation is:

ie(fW =262 f" + K )+ K [(U =) (f' =K f)-U"f] =0 (4.2.2)
Where €, = ﬁ = "w—“okg is the inverse Reynolds number. Since we deal with linear

wind profile which has the form U = Uy + az. Where Uy is the drift velocity and ”a”
is the velocity slope. In such a profile U” = 0. After substituting it into the equation it
has the form:

ie(fD —2B2 " + K f) + k(U — ) (f" = k*f) =0 (4.2.3)

Or:
fA —kf"(2k + E(U —c) + K f(k+ E(U —¢) =0 (4.2.4)

Now we can define FF £ " — k2 f. Hence the equation becomes:
F" — k(k + E(U —¢)F=0 (4.2.5)
By the transformation of variables, we can transform the equation into Airy’s equation.
F"(u) — uF(u) =0 (4.2.6)

In order to find such a transformation, we look at a transformation of the form
u= Hk(k+ (U — ¢)) (where H is a constant) and substitute it into the equation using
the chain rule.

2 . %
- (Hk—a) F' —k <k+3(U—c)) Fogopr_ REHU-9) ?(U;C))F:O (4.2.7)
€ € _(Hk_a)

€
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Hence:

N

CH—H-— <_> ’ (4.2.8)
Where:
w= <%> : k <k + E(U . c)) - g(l +iV3) (k—ea)_ <k + E(U - c)> (4.2.9)

Thus, F'(u(z)) is a solution of Airy’s equation. Since it is a second order equation, it has
two independent solutions. There are a few common pairs of independent solutions,

see [1],[25].

Ai(u), Bi(u)

Ai(u), Ai(ues) (4.2.10)

27

Ai(u), Ai(ue™3")

Since the solution and its derivative must vanish at infinity, We choose the pair Ai(u), Ai(ue=2/37),

Hence, the solution is:

27

) (4.2.11)

F=f"—kf=cAi(u)+ coAi(ue”

At this stage, we need to look at the asymptotic behavior of the independent solutions
for large values of |z| in order to be sure that we satisfy the boundary condition at
infinity. As mentioned in [25], the Airy function Ai blows up for large |u| outside the
section |arg(u)| < %. Hence, we should look at the behavior of arg(u) at infinity z —

+o0.

57 arg(k)
T

arg(u) = (4.2.12)
_% + %Uc) 2 — —00
—2mi % + %(k) z — Q0
arg(ue 3 ) = (4.2.13)
_%r + %(k) 2 — —00
If we take (k) > 0 = |arg(k)| < § we can be sure that:
|arg(u)| < g z — —00 (4.2.14)
|arg(ue$) < % z — 00 (4.2.15)
Thus in the air:
Fo = f — k*fo = c1Ai(ue™ ") (4.2.16)
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The general solution of (4.2.11) is:

kz )
f=cse" + e+ Z—k /e_kz[clAi(u) + coAi(ue™ 5 )]dz
% . (4.2.17)
_€2k /ekZ[C1Ai(U)+62Ai(u€_2§1)}d2
Or in another form:
= ekz/ k2 4i(u)d —e_kz/ K Ai(u)dz| +
a5 | i(u)dz ok e Ai(u)dz
M ai 2w Ll PR (4.2.18)
+ co [Qk /e Ai(ue™ "3 )dz — % /e Ai(ue™ 3 )dz] -

+ 0361“ + 6467’%

In the general solution there are pure exponential terms. Hence, the solution has the

form:

kz z . —kz z .
fa=a [e / e M Ai(ue” 5 )dt — ¢ / ektAi(ue_%:z )dt| 4 coe™F* + c3e/8.2.19)
2k 0 2k 0

Since we want decay at infinity:

;—]1{ e M Ai(ue™ 5 )dt + c3 = ;—Zpl(k, c,a,Up) +c3=0 (4.2.20)
0
¢
es =~ 5D (4.2.21)

For the case of constant current in the water U,, = U,, the solution for the water will
be:
fu = breh 4 by VEGH 0=z 2 ke g B2 (4.2.22)

If R(B) < 0, we need to choose e~ as the second independent Solution; and if R(k) <
0, we need to choose e~** instead of e*=.

And the derivatives are:

1 = kbiek* + BbyeB? (4.2.23)
I = k2biek? 4 B?bye (4.2.24)
= k3bieh® 4 BibyeP? (4.2.25)

While at the interface it reduce to:

f?z)(o):b1+b27 f{u(o):kjbl—FBbz
(4.2.26)

f2(0) = k%b1 + B%by,  f(0) = k*b1 + B3by

In order to find the unknown coefficients, we need to apply the boundary conditions at

the interface. In these boundary conditions the derivatives of f play a main role. Thus,
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we need to calculate f,, ,(0), £, ,(0), f// ,(0), £/’ (0). This must be done carefully, using

Leibbniz’s rule for derivative under the integral operator.

d 2 / /

%/f - g@t)dt = g(f2(2))f2(2) — g(f1(2)) f1(2) (4.2.27)
Hence:

27

k kz z i kz ;
1 zcl[ c /0 e_ktAi(ue_23 )dt + e—e_kZAi(ue_ 5)

2k 2k
+ke_kz ’ ektAi(ue_Qgi )dt — ﬂekZAi(ue_%gi )] — kege % 4 kezeh =
2k Jo 2k
e’“ z 27 esz # 2mi
=0 [ 5 / e M Ai(ue™ 3" )dt + T/ et Ai(ue 3 )dt] — keoe % 4 kegel®
0 0
(4.2.28)
kz pz ) —kz pz o
fr=c [k:eZ / e Ai(ue 5 )dt — 1%2 / ekt Ai(ue™ 5 )dt
0 0 (4.2.29)
+ Ai(ue™ 5 )} + k?cae ™™ + k?czeh”
2 kz z ) 2, —kz z omi
= {k ; / e=F Ai(ue— 5"t + & 62 / ekt Ai(ue™ 35" )dt+
’ L (4.2.30)
-/ —27i ;i ka3 3 —kz 3 kz
+Ai'(ue™73 )es | — — kcoe™" 4+ Kk c3e
€
It will be helpful to mark a few values:
ie\ i
Ai(u(0)e™5") = Aig = Ai(uge™ ") (4.2.32)
Ai(u(0)) = Aip = Ai(ug) (4.2.33)
Now we can present the derivatives at the interface:
fa(0) = c2 + c3, f4(0) = k(cs — c2), f2/(0) = c1Aig + k*(c2 + c3)
1 (4.2.34)
" i mi (ka\*® 3
f(0) = c1Aige’s <?) + k%(c3 — ¢2)
f?z)(o):b1+b27 f{u(o):kbl—FBbz
(4.2.35)

f2(0) = k*by + B?by, 20) = k3by + B®by

Writing the boundary condition at the interface:

fa(0) = fu(0) = c—Up = c2 +c3 = b1 + b2 (4.2.36)
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f1(0) + U, (0) = f5(0) + Ua(0) = k(cs — c2) = kby + Bbz — aq (4.2.37)

p(f2 (0) + k2 fa(0) + UL (0)) = (£15(0) + k* £ (0) + UL(0)) =
,u(clfiig + k‘2(82 +c3) + /4}2(02 +e3)) = /4}2b1 + 321)2 + k‘2(b1 + b)) = (4.2.38)

,UClAZIO — k‘zbl — szz = /4}2(0 — Uo)(l — 2/,6)

We get a system of five linear equations with five unknowns ¢y, ¢, ¢3, b1, bo. After solv-
ing the system we have the value of the functions f,, f,, and its derivatives at the inter-
face. Note that all of these constants are functions of the specific case which is defined
by (R., Rw, aq, Up) and the value of w, k. After we get these values, we can substitute
them into the dynamic boundary condition and solve it, in order to find w, .
kfu(c—Uo) + kfuUy, + iRy (3K f), — fi) = F =
(4.2.39)
=p [kfi(c—Uo) + kf.U, +4iR; VB2 f! — 1) — F] + Wk at z=0
Practically, we are unable to get a simple dispersion relation for this case, thus in order
to calculate it we need to do it numerically. The value of the constant p; (see equation
(4.2.20)) can be calculated numerically and then the dispersion equation will be solved
by a numeric solver for a nonlinear equation. The important thing is that the method
of solution is very different from the numerical one. Thus, we can conclude that if the

results will be similar it will validate the numerical model.

4.2.2 Convergence of the Chebyshev collocation method

As mentioned above, the computational domain is divided into three sub intervals:
the water [—z.., 0], the airl [0, z1] and the air2 interval [z1, zo]. In every one of these
intervals we can control the number of collocation points (the grid). If the method
converges, the change in the results should be minor when changing the number of
collocation points. From numerical experiments, we learn that the interval airl is the
most important interval and therefore it requires a high resolution grid. We will show
convergence when the number of collocation points in interval airl N,; equals those in
the water N,,, and the number of collocation points in air2 will be N,o = mN,; where
m is a parameter. See Table (4.2). As we can understand from the date in the table the
process converge up to four significant digits for all the cases. Of course that the case

of longer wavelength and high wind intensities required more grid points. Although
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we can obtain differences between m = 1 to m = 2.2, this differences are in the order of

1%.

4.2.3 Sensitivity to z

Since we practically need to use a finite interval for the numerical calculations, we have
to show that our choice does not have a major effect on the results. The z coordinate is
normalized by kg in the form z = zgimensionatko. From the physical aspect, the value
of z., should be related to the wave length. From the linear theory of water waves, it
is known that after half of a wavelength the influence of the waves on the flow field is
minor. The value which we use for most of our calculations is z,, = 10, which means
that 2o dimensional = %A = 1.591\. In order to justify this value, we made a few runs
with different values for z.,. Note that in this method, when we change the interval
size we need to change the number of collocation points in order to keep on the fine
grid in the critical region. See Table (4.3). From this table we can say that if there is an

error it is in the fourth digit.

u, =0.3m/sec 1=0.01lm u, =0.8m/sec A =0.01m

z, =5 1.36983130463987+ 0.012780034250231

1.68757278248872 + 0.27390650413015i1

z =10 | 1.36986422621405 +0.01276983682512i

1.68758325820986 + 0.273897673165481

z_ =15 | 1.36986417697524 +0.012769818972761

1.68758030230838 + 0.27390093383573i

z_ =20 | 1.36986415990567 +0.012769848336731

1.68757615130409 + 0.273905510970031

Table 4.3: Sensitivity to z.,, temporal case, numerical” wind profile, exponential

current. (values of w)

(w >27Y) SIRONIMNPVDPN DTN MINNY N D99 0TI MNNONN 2e0™9 MW

4.2.4 Comparison with test case

In order to validate the numerical results, we want to compare them with an analytic
solution. The case which we will compare them with is the case which was mentioned

above. This case has a nontrivial solution, and thus the numerical solution is also not
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u, =0.3m/sec, A=0.0lm temporal case numeric wind profile exponential current

N, m=2.2 m=1

30 1.37010402587656+0.01263499596077i 1.37019990579133 + 0.01261269160402i
50 1.36986782416071+0.01277582929256i1 1.36986779786926 + 0.01277589534320i
70 1.36986601469235+0.012776111042671 1.36986601478272 + 0.012776111066611
90 1.36986601371911+0.012776111917031 1.36986601371134 + 0.01277611202308i
110 1.36986601240586+0.01277611222968i1 1.36986601277103 + 0.012776111857871
130 1.36986601187163 + 0.01277611317040i

u, =0.5m/sec, A=0.lm temporal case numeric wind

profile exponential current

N, m=22 =1
120 0.87483141062881 + 0.174809833411751 | 0.87493320709386 + 0.17478722072537i
140 0.87483171720101 + 0.174807764935651 | 0.87486612961292 + 0.17480001977824i
160 0.87483188719137 + 0.174807743706731 | 0.87484264656896 + 0.17480538277516i
180 0.87483279917512 + 0.17480688132684i | 0.87483464528386 + 0.17480712587869i
200 0.87483175839842 + 0.174807241617451 | 0.87483427921663 + 0.17480516926405i

u, =1m/sec, A =0.2m temporal case numeric wind profile exponential current

N, m=22 m=1

120 0.47142417036677 + 1.12889159237943i | 0.47349531861018 + 1.22330241493232i
140 0.46563247157728 + 1.13326078539474i | 0.47852328385567 +1.12123661924386i
160 0.46506653333590 + 1.130876588930751 | 0.47825231439927 + 1.10088627966011i
180 0.46531992042561 + 1.12935842506008i | 0.47431190399082 + 1.10397392317904i
200 0.46526678569868 + 1.12910983900462i | 0.46777840741684 + 1.12542290998380i
220 0.46554496634933 + 1.12828921832640i | 0.46349077942169 + 1.14126307853594i
240 0.46517456226768 + 1.129304463596431 | 0.46306242326445 + 1.14140291289982i
u, =0.5m/sec, A=0.lm spatial case numeric wind profile exponential current

N, m=22 m=1

120 1.73821643904331 - 0.54907567574767i 1.73816601034713 - 0.54929404443106i
140 1.73820819328841 - 0.54905128308376i 1.73818431297562 - 0.54913186335472i
160 1.73820756864928 - 0.54905212376898i 1.73819902935100 - 0.54908010735431i
180 1.73820751242298 - 0.54905337641793i 1.73820423621426 - 0.54906078085848i
200 1.73820621846891 - 0.54905233666072i 1.73820455823729 - 0.54905742974889i

u, =1m/sec, A =0.2m spatial case numeric wind profile exponential current

N, m=2.2 m=1

120 1.45509895054817 + 0.17847430498794i 1.44599590306100 + 0.18412258134930i
140 1.46114514767122 + 0.17957479792305i 1.46201412747482 + 0.17714187966656i
160 1.46133041441920 + 0.17871796801299i 1.46531718279471 + 0.176533904234031
180 1.46144308755361 + 0.178677894546681 1.46458249190827 + 0.177041524858291
200 1.46147219135630 + 0.178670638418871 1.46205719912314 + 0.17841340733186i
220 1.46154738497208 + 0.17863415163699i 1.46017536775865 + 0.17935843070790i1
240 1.46145750594983 + 0.178689154880611 1.46010173867998 + 0.17936518635012i

Table 4.2: Convergence of the Chebyshev collocation method for various wind
intensity and wavelength, temporal/spatial case. Where N,1 = Ny, Ngo = mN,;.

(values of w, k)

MNNANN MN2Y DMNMY D) PININY M MNXYD 2N DY NPNPINPN NVOY NMDIdNN
(w, k 9Y) Ng1 = Ny, Ngo =mNg 7URD AN102/73012
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so trivial. As mentioned above, if we want to calculate the eigenvalues by the ana-
lytic solution we need to use numerical methods in order to calculate the integral of p;
and solve the dynamic boundary condition equation. Thus, the solution is not purely
analytical. Such a comparison has strong meaning, because the methods which were
used to obtain the results are completely different. The comparison was done for the
spatial case, as well as for the temporal case. The current was constant with the value
of U, = 0.5u. and the velocity slope of the wind was a, = 7=. These conditions are
similar to those which were used in the lin-log profile. The results are described in the
Table (4.4). The maximum error in this comparison is 2% while in most of the cases the

error is smaller than 1%.

Temporal case
A=0.001m A=0.1m A=02m
. =0.1m/sec Numerical | 1.0705-1.7431e-002i 1.1246+7.1116e-003 1.0908 +9.1061e-003i
Analytical | 1 0705 1.74310.002 1.1246+7.11156-003i 1.0908 +9.1070e-003i
u. =0.5m/sec | Numerical | 1.3628 -1.6102¢-002i 1.7260 +2.2254i 1.7684 +2.5485¢i
Analytical | 1.3628 -1.6102e-002i 1.7262+2.2254i 1.7680 +2.5489i
u. =1m/sec Numerical | 1.7132 -2.8672e-005i 4.7194e-001 -7.6548i 5.3226 +8.4767i
Analytical | 1.7132 -2.9147e-005i 4.6973e-001 -7.6153i 5.3219 +8.4752i
Spatial case
T =0.00145sec T =0.249sec T =0.356sec
2 =0.1m/ sec Numerical | 9-5422e-01 + 1.0392e-02i 2.8359¢-01 - 2.76261
Analytical | g.54196-001 +1.04508.002i 2.8359¢-001 -2.7626i 1.2187e-002 +7.8251e-003i
. =0.5m/sec | Numerical | 7.9595e-01 + 55140e-03i 1.7019e+01 - 2.7862i 3.5163e+01 - 5.3232i
Analytical 7.9592e-001 +5.5216e-003i 1.7018e+001 -2.7872i 3.5162e+001 -5.3248i
w. = 1m/sec Numerical | 6-6253e-01 - 8.6724-03i 6.3738e+01 - 6.9994i 1.2819¢+02 - 1.3851e+01i
Analytical 6.6255e-001 -8.6253e-003i 6.3738e+001 -6.9966i 1.2815e+002 -1.3909e+001i

Table 4.4: Comparison with test case, temporal and spatial case for various wind
intensity and wavelength/waveperiod. (values of w, k)

(w, k 799Y) DMY AINN MINT/YY I7INT NI MNNY N2Y JMN2AN NIPN DY INNYD

4.2.5 Comparison with previous studies

The last stage in the validation process will be a comparison with previous calculations
done by Kawai [11], Van-Gastel [26] and Tsai [22]. They all compute similar values
for the temporal growth rate, but for a very small domain in the u,,w space. A figure

which is similar to Fig.2 in [22] is presented in Fig. (4.2).
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u,=0.248m/sec

u,=0.214m/sec

2 B [1/sec]

u,=0.17m/sec

0.57 i
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01 2 3 4 8 9
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Figure 4.2: Energy growth rate vs. wavenumber temporal case. Comparison with
previous studies. (similar to Fig.2 in Tsai and Lin [22]).

MINTIP MITIAY OY ARNYD NI INNOND 2N 19002 MOND NMIND DY 1N A8p

In Fig. (4.2) there are symbols of our calculations and symbols of Tsai and Lin’s
calculations taken From Fig.2 in [22]. We can see that the results of Tsai and Lin [22] are
similar to our results, the differences are up to 5% but usually it is in the order of 1%.
For the spatial case, we are not familiar with previous studies which we could compare
it with. Finally, we can say that for the range of A € (0.001,0.2)m, u. € (0,1)m/sec it
seems that the numerical results are valid. In most of the cases the accuracy is in the

first four digits while in the difficult cases it is only in the first two significant digits.
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Chapter 5

Results and Discussion

In this chapter we present the results of our calculations. The results are the calculated
eigenvalues for each scenario. A scenario is defined by: wind and current profiles, fric-
tion velocity and wavelength/waveperiod for the temporal/spatial case respectively.
We calculated the eigenvalues in the range 0.001m < Ay < 0.2m, 0.1m/sec < u, <
1m/sec for the following cases: the inviscid model using the ”one” and the "numeri-
cal” profiles for both temporal and spatial cases, the viscous model with the lin-log and
“numerical” profiles for both temporal and spatial cases. From the imaginary part of
the eigenvalue we can obtain the growth rate, and from the real part we can obtain the

phase velocity. The results are presented graphically.

5.1 Results for the inviscid model, Rayleigh’s Equation

Generally there is a very large difference between the results when using the “one”
profile and those when using the "numerical” profile. These differences come from the
different behavior of the mean flow derivatives. In Rayleigh’s equation the resulting
growth rate is proportional to the mean flow curvature —U"(z.). The curvature of

these two profiles ("one”,”numerical”) is completely different. The critical point z,
when U(z) = ¢, plays a main role in this model. The reason for the importance of this
point is that the equation is close to singular near this point; since the coefficient of
the dominant derivative is close to zero. Another interesting quality of the solution is
the symmetry relative to the real axis, which means that if w is an eigenvalue then &

is also an eigenvalue. When using the ~one” profile the drift velocity is zero, hence

51
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there is always a critical point. When using the "numerical” profile the drift velocity
is Uy = 0.5ux*, hence theoretically it is possible that such a critical point does not exist
in the air because Uy > c¢q. Practically, we never obtained such a case, because the
calculated phase velocity c is always larger than the drift current. In the case of the
”one” profile there is no current, thus the results are governed by the wind. In this
case it is easier to understand the results. One can see that the curves of the growth
rate see Fig. (5.1) have one maximum point. The value of the wavelength X at this
maximum point increases when the wind intensity increases, but the maximum growth
rate does not increase monotonically when increasing the wind intensity, see also Figs.
(A.5),(A.6). This behavior is similar in the temporal case and in the spatial case see
Fig.(5.3). The resulting phase velocity does not deviate much from the phase velocity
of the reference problem, see Figs. (A.1),(A.3) or Fig.(5.2),(5.4). In Fig. (A.4),(A.2) it is
shown that the curves of constant u.. at the space of the normalized complex eigenvalue
generate a spiral shape for both the spatial and the temporal case.

When using the “numerical” profile the results are very different. The curves of the
growth rate have a much more complex shape see Fig.(5.6),(5.8). The reason for this
complex shape is mainly because the curvature of that profile has a maximum near the
interface. The presence of the exponential current makes this scenario very complicated
regarding the phase velocity. This is because the behavior of waves on such a shear
current is not that trivial. We can see that the short waves are strongly influenced
by the current and this causes large deviation from the reference phase velocity, see
Fig.(5.7),(5.9) or (A.11),(A.14). These deviations are very similar in the spatial and in the
temporal case, see Fig.(A.18). The eigenvalue picture in that case (see Fig.(A.16),(A.13))
is again very complicated, but we can obtain patterns which are similar to the patterns
in the results with the ”one” profile.

When solving the problem of finding the eigenvalue, we also find the eigenfunction
which corresponding to this eigenvalue. The eigenfunction f(z) is a complex function
which defines the whole flow field (velocity, pressure). Hence it is interesting to observe
its behavior. Since the governing equation is close to singularity near the critical point,
we expect to get a boundary layer at that zone. When looking at the absolute value
of the eigenfunction, see Fig.(5.11), we can see that sometimes it has two extremum

points and sometimes only one. These extremum points do not have a special physical
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meaning because they are very close to the interface, and since the interface is the mean
water surface, the fluid near this interface can be either water or air. In the same figure
we can see that there are very large derivatives near the interface, and then ask how the
viscosity will influence such large derivatives.

Another interesting point is how the surface tension influences the growth rate. As we
can see in Fig.(5.5) which shows the growth rate for a wide range of wavelengths and
wind intensities, the surface tension starts to play a significant role only for waves with

wavelength shorter then 3cm.

—u,=0.1m/sec
—u,=0.2m/sec
—u,=0.3m/sec
—u,=0.4m/sec
—u,=0.5m/sec
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—u,=0.7m/sec
| | —— u,=0.8m/sec
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Figure 5.1: Temporal growth rate vs. wavelength for various values of u.., inviscid
model, "one” profile
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Figure 5.2: Phase velocity vs. wavelength for various values of w., inviscid model,
”one” profile, temporal case
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Figure 5.3: Spatial growth rate vs. waveperiod for various values of ., inviscid
model, ”one” profile
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Figure 5.4: Phase velocity vs. waveperiod for various values of u., inviscid model,
”one” profile, spatial case
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Figure 5.6: Temporal growth rate vs. wavelength for various values of u., inviscid
model, “numerical” profile
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5.2 Results for the viscous model, Orr-Sommerfeld Equa-

tion

For the viscous model the results were calculated with the ”’lin-log” and the “numer-
ical” profiles. The results for these two profiles are qualitatively very similar. The
mechanism of growth in this case is more complex than the mechanism for the inviscid
case. The critical point does not play a main role anymore. The curves of constant wind
intensity at the 3, A space have one maximum point which is usually at the range of a
few centimeters, see Figs.(5.12),(5.16) or Figs.(5.14),(5.18). Note that in the viscous case
the dissipation due to viscosity is included, which is very dominant in short waves.
During the calculations we discovered a second unstable mode. As already mentioned,
we talk about an eigenvalue problem. For such problems there are many eigenvalues,
but we are interested only in the unstable modes. For all of the cases which we solved
until now and in all of the articles which were mentioned, there is only one growing
wave for a specific scenario u., A. The presence of the second mode (we call it branch?2)
starts at a specific wind intensity «.; for the case of Uy = 0.5u, it appears at approxi-
mately ~ u, = 0.55m/sec. The values of the growth rates are very similar to those of
branchl, but the maximum points refer to a larger wavelength with respect to branchl,
see Figs.(A.23),(A.39) or similar figures. When looking at the phase velocity the val-
ues of the second branch are very different, they have a much lower phase velocities,
see Figs.(5.13),(5.15) or Figs.(5.17),(5.19). It seems that the curves of the phase velocity
approach a constant value when increasing the wavelength/waveperiod. This behav-
ior is expected, but the resulting values of the phase velocities at large wavelength are
significantly slower than the reference problem. These results are very unexpected be-
cause of the presence of the wind and the current. In the spatial case we only present
branchl, which is the regular mode. The reason for this is numerical difficulties in the
searching process of the algorithm. The origin of these difficulties is at the limitation
of the method to deal with large wavelength, but as part of the searching process the
temporary guess can jump to the illegal zone at the & space. We believe that there is a
second unstable mode in the spatial case as well, see Fig.(5.24). There are two interest-
ing points in the growth curves for both the spatial and the temporal case. The first is

the point of maximum growth, which is interesting because we expect that it will play
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a dominant role. The second is the point of zero growth, which has the meaning of
the shortest wave that can exist. We can see the behavior of these important points for
each case, see for example Fig.(A.23),(A.24). For the temporal case we obtain that the
ratio of .= at the point of maximum growth and the point of the neutral wave is almost
constant at the second branch.

When looking in the vertical structure of the eigenfunction see Fig.(5.20) we obtain
structure which is very similar to the one in the inviscid case. The major difference is at
high wind intensities where the critical point is usually in the water see Fig.(5.21). As
already mention there are two unstable modes at high wind intensities, although the
significant differences in the phase velocity and in the growth rate the structure of the

eigenfunction is very similar see Fig.(5.22),(5.23).
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Figure 5.13: Phase velocity vs. wavelength for various values of u., viscous model,
lin-log profile, temporal case
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Figure 5.17: Phase velocity vs. wavelength for various values of u., viscous model,
“numerical” profile, temporal case
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5.3 Comparison between Rayleigh and Orr-Sommerfeld

Two questions form the basis of this section. The first deals with the significance of
viscosity for such a problem, and the second question is whether Rayleigh’s equations
are asymptotically an approximation for Re — oo of the Orr-Sommerfeld equations.
The possibilities of comparing between these two models in the range of wavelength
0.001m < A < 0.2m were opened when we started to use the "numerical” profile, since
the comparison using the other profile was very problematic. We compare the results

of these two models using the following definition:

G =kf! (c—Uo) + kf U, +iR,*(3K*f, — f') — kF —

w w w w

—pkfi(c—Uo) + kf UL +iR;'BK*fl — f)) —kF| + Wk at 2 =0 (5.3.1)

Where G(w, k) is the dynamic boundary condition. Since it is a complex function and
w, k are also complex numbers, we can plot the square norm of G(w, k) at the space
of one of these two variables for the temporal and spatial case, respectively. Where
of course, ||G||> = GG. This tool enables us to compare not only the eigenvalue or
the eigenfunction but also the patterns of these surfaces. In order to simplify the anal-
ysis, we try to separate the effect of each component - the wind or the current. In
Figs.(5.25),(5.26), we can find a set of six figures which compare the models for various
cases, where the right column is the viscous case and the left one is the inviscid case.
The first row is when there is only exponential current (no wind); the second row is
when the current is constant and the wind is given by the "numerical” profile; the third
row is with both ”numerical” wind and exponential current. Both sets of figures are for
the same wavelength A = 5¢m, but with different wind intensities w. = 0.3,0.8m/sec.
In the first set, when u, = 0.3m/sec we can see that the real part in all of the figures
is approximately the same. On the other hand, at the imaginary part there are differ-
ences of about ~ 100% where the viscous case estimates larger growth, except for the
case of no wind. However, we can obtain a similar pattern. In the second set, when
ux = 0.8m/sec there are more differences between the models. In the case of no wind,
we obtain that the viscous model can produce an unstable mode, this instability is due
to the current only. On the other hand, the inviscid model can not produce growth but
it is affected by the current; note that the second point is not a solution but only a local

minimum. In the case of constant current, the inviscid model has two solutions, but



68 CHAPTER 5. RESULTS AND DISCUSSION

only one indicating growth. The second solution has a slower phase velocity, where
the viscous model produces one growing mode with almost twice as much growth. In
the last case, where the current and the wind are both affecting the problem, the dif-
ferences become very large and it seems that there is no connection between the plots.
After comparing the dynamic boundary condition plots we also compare the resulting
eigenfunctions, see Figs.(5.27),(5.28). In these figures, we observe similar patterns in
the eigenfunctions structure, but larger differences in the values of the functions. Fi-
nally, we can say that for this specific problem we find significant differences between
these two models. These differences are due to two main reasons. The first is the math-
ematical reason: the viscous model leads to a fourth order equation while the inviscid
one leads to a second order equation, which means that the viscous solution satisfies
two boundary conditions which the inviscid solution can not satisfy, and one more
boundary condition (dynamic) which can be significantly different than the one of the
inviscid model. The second reason is that it is an interface problem and there are a few
more forces which play a main roles. We can also say that these differences become
larger when increasing the wind intensity. For these reasons, the inviscid model can
produce results which seem problematic from the physical aspect. For example, the
inviscid model can not produce growth for two cases in which the viscous model pre-
dicts growth or decay. The first is for the linear wind profile, where the solution for
Rayleigh’s equation is trivial - since U = 0. The second is for a wave traveling against

the wind, where the inviscid model predicts no decay - because U” > 0.
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Figure 5.27: Comparison of the resulted eigenfunctions from the inviscid/viscous

model for A = 2¢m, temporal case. (a)-u,. = 0.3m/sec, (b)-u, = 0.8m/sec
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5.4 Comparison with experiments

When trying to compare with past experiments, we find that there are not so many
experimental studies which publish data in a form that we can compare with. One
of the comprehensive experimental studies is Larson and Wright [13]. They study
temporal growth of gravity-capillary waves. Larson and Wright publish all of their
results, including the air profile measurement in a form that enables comparison. In
Figs.(5.29),(5.30) we plot our results in figures which are similar to those of Larson and
Wright at two wavelengths. In these figures there are six lines: the two blue lines repre-
sent the results of the viscous model using “numerical” profile at the air and exponen-
tial current, the red line represents the results of the viscous model using "numerical”
profile at the air and no current, the magenta line represents the results of the invis-
cid model using ”"numerical” profile at the air and exponential current, the green line
represents the results of Valenzuela [24] and the black line represents the experimental
results of Larson and Wright. We can state that the calculated results are far from being
close to the experimental measurements. There are a lot of possible reasons why the
results turn out to be so different. For example, we can say that the wind and current
profile may be very different in reality and maybe we should have coupled the problem
of the base flow with the waves problem. Another reason can be the effect of turbulence

on the growth mechanism.
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Figure 5.29: Comparison of calculations with experimental result of [13] for
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5.5 Summary and conclusions

A full formulation of the linear stability problem of water waves in the presence

of a shear flow is presented for both an inviscid and viscid fluids.

Robust solvers for both models were develop. For the viscous model we expand
the domain of calculations (in A, u. space) by factor of six, compared with previ-

ous studies.

The calculations were done with a range of wind profiles. The sensitivity of the
results to the chosen profile were confirmed. We also propose a new profile that

is based on the Prandtl’s mixing length theory.

The current affect strongly on the calculated phase velocity but has a minor effect

on the growth rate.

The effect of surface tension on the growth rate (in the inviscid case) were found

to be important for waveslength that is shorter than 3cm.

The presence of a second unstable mode was obtained for the viscous model at

high wind intensities, for profiles with shear current.

A comparison between the inviscid and the viscous model was done. Significant

differences between these two models were obtained.



Chapter 6

Future research

6.1 Experimental aspects

The disagreement between the theoretical results of this study and the experimental
results of Larson and Wright calls for a comprehensive experimental study. A coop-
eration with the experimental group of Prof. Lev Shemer in Tel-Aviv university has
already begun. A close cooperation can lead to a better agreement between calculated
and measured results. The first issue to be dealt with is the mean wind and current
profiles. If we will know the values of the drift current, the current and the wind close
to the interface, we can build a profile and use it to make calculations. Another subject
is the development of boundary layer along the tank, here we can build a quasi steady
model that, for example, calculates the growth at every cross section and integrates it

along the tank.

6.2 Linear theoretical aspects

e Imposing all of the interface boundary conditions at the real interface z = .
Imposing a more accurate boundary condition can be important since the linear
interface z = 0 is either water or air and the interface plays a main role in the
problem. It can also provide a better physical meaning to the values of the auxil-

iary function. This can be done using coordinate transformation.

e The mean flow profile is a main issue in this model. The results of this study call
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6.3

for a better understanding of the mean flow profile above the surface waves. Cur-
rently, the assumption is that the flow above waves is similar to the flow above
a flat plate; this assumption does not fit to the results of Larson and Wright’s
measurements. Another aspect is the dominance of the very thin layer near the
surface, a region in which it is almost impossible to make measurements. The
task will be to build a profile for the air as well as for the water which will fit the

observations and will be based on a physical theory.

The calculations were done using standard computational tools. There is a possi-
bility to expand the domain of numerical calculations. Such expanding is impor-
tant if we are interested in seeing the results of the viscous case for large wave-
lengths. A more robust numerical model can be built. We can improve the pre-
cision for each number, as well as the specific method of applying the numerical
method. Such an improved model can be more accurate and with a shorter run-

time.

Turbulence is a main issue and there are many studies that calculate the growth
rate using a full turbulent approach. The task can be to introduce the turbulent
fluctuations into the linear model of Miles’, using one of the simple eddy viscosity

formulation.

Nonlinear theoretical aspects

Study the effect of wind when there are two or more wavelengths. This aspect

can be important when trying to predict the wave growth in the experiment.

Study the effect of wind on left-right asymmetry of the wave shape. It is known
from observations that there is such asymmetry in wind waves. Such asymmetry
can cause a better description of the wave shape and thus more accurate values

when calculating the growth rates.

Couple the problem of mean flow profile to the problem of wave generation. Such
coupling can be the answer to the sensitivity of the models to the mean flow

profile.

Taking the full energy and momentum balance between the atmosphere and ocean
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into account and trying to predict how much momentum is transferred to the cur-

rent and to the waves.
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Appendix A

Additional Results
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Figure A.1: Normalized phase velocity vs. wavelength for various values of u,,
inviscid model, “one” profile, temporal case
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Figure A.6: Wavelength/waveperiod at max growth vs. friction velocity u., inviscid
model, ”one” profile
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Figure A.8: Ratio between spatial and temporal growth vs. wavelength of the
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Uy IITIY NAY OINOD NMYA DY DIN TR NIVND NI ANIN DTN dANP O

TNN 999779 NN ONda YT oMY

—u,=0.1m/sec
—u,=0.2m/sec
—u,=0.3m/sec
—u,=0.4m/sec
—u,=0.5m/sec
u,=0.6m/sec
—u,=0.7m/sec
—u,=0.8m/sec
—u,=0.9m/sec
—u,=1m/sec

I I I I I I I I I
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

holm]

0.6
0

Figure A.9: Ratio between spatial and temporal normalized growth vs. wavelength of
the reference problem for various values of u.., inviscid model, “one” profile
92y OIND NMYI YW YN TIIND MYND JNII) 2NN DNINNN DITNN dANP O

PTANY 99179 NN ONYA YT DMV U, DY



84 APPENDIX A. ADDITIONAL RESULTS

1.03
1.02
—u,=0.1Im/sec
—u,=0.2m/sec
101 —u,=0.3m/sec
T ~u,=0.4m/sec
g
£ —u,=0.5m/sec
< ! u,=0.6m/sec
EL —u,=0.7m/sec
o
—u,=0.8m/sec
0.99
—u,=0.9m/sec
—u,=1m/sec

0.98

L L L L L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
A [m]

0
Figure A.10: Ratio between spatial and temporal phase velocity vs. wavelength of the
reference problem for various values of u., inviscid model, ”one” profile
Uy ODIY Y OINN NMYI OV 53N TIINRI MYNI 1N ANINI 9N NMIdNIN ONd

TTANRY 99179 PNY NV HTIN DMV

—u,=0.1m/sec
—u,=0.2m/sec
—u,=0.3m/sec
—u,=0.4m/sec
—u,=0.5m/sec

u,=0.6m/sec
—u,=0.7m/sec
—u,=0.8m/sec
—u,=0.9m/sec
| ——u,=1m/sec

L L L L L
0.02 0.04 0.06 0.08 0.1
A[m]
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“numerical” profile, spatial case
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reference problem for various values of ., inviscid model, ”numerical” profile
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Figure A.19: Normalized phase velocity vs. wavelength for various values of u.,
viscous model, lin-log profile, temporal case
9391791 NN TN MAY 73N TIHIINRI MOND NONINKD NN MIIN

I MINNANT , MDNINDIINRNDD



89

1
—u,=1m/sec
0.91 —u,=0.9m/sec
o8k —u,=0.8m/sec
—u,=0.7m/sec
07- —u,=0.6m/sec
u,=0.5m/sec
0.6 —u,=0.4m/sec
=y —u,=0.3m/sec
8,05 -
2 ——u,=0.2m/sec
0.4 —u,=0.1m/sec
- - —u,=1b2m/sec
0.3F — - -u,=0.9b2m/sec
- - -u,=0.8b2m/sec
0.2 — — -u,=0.7b2m/sec
ol - — -u,=0.6b2m/sec
- _T0

O L L L L L L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Alm]

Figure A.20: Waveperiod vs. wavelength for various values of w., viscous model,
lin-log profile, temporal case
L, ONTINDTIND D919 NN DTIND NIAY DN TR NMIOND ANNND DT

9312 NINNONN

1.7 T T
ig L /// ) % || —— u,=1m/sec
1.4+ /// : \\ | —— u,=0.9m/sec
1.3F ,/7’ L \‘ E | —— u,=0.8m/sec
12 / Vo 7 u,=0.7m/sec
11r /L N i | ) u,=0.6m/sec
0;: : :, ’: ™ | : :’ : : : ] u*iO.Sm/sec
_ 08 | o | —— u,=0.4m/sec
g_ 0.7 : \‘\ “ ’1 ,/ : : : oo d| ——u,=0.3m/sec
0.6 R Ty : : : S 4| ——u,=0.2misec
0.51 it 7| — u,=0.1m/sec
041 vy I - - ~u,=1b2m/sec
gz: R N 1| - - - u,=0.9b2m/sec
01l . || - - -u,=0.8b2m/sec
ok - u,=0.7b2m/sec
-0.1r - . u,=0.6b2m/sec
—0.2- 4
-0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
02 03 04 05 06 07 08 09 1 mlj(j;; 12 13 14 15 16 17 18 19 2
r0

Figure A.21: Eigenvalue path for various values of u,, viscous model, lin-log profile,
temporal case
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Figure A.22: Maximum growth rate vs. friction velocity u., viscous model, lin-log
profile, temporal case
29379 PNXN DTN NIAY Uy TIND NN MOND MOMOPN DTN ISP

I MINNANT |, MDNINDIINRNID

0.05 T
—— barnchl
0.045 —— branch2| |

0.04

0.035

0.03

£ 0025
<

0.02

0.015

0.01

0.005

1 1
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
u,[m/sec]

Figure A.23: Wavelength at maximum growth rate vs. friction velocity u., viscous
model, lin-log profile, temporal case
VHNN DTN MY ue TINND MPNNI MYND MOMOPN DTN Dapnn 12 YN TIWN

A2 MINNOND PHNINTIIINODY 91917 )



91

0.025 T

——barnchl
—— branch2

0.02

0.015

7‘min[m]

0.01

0.005

1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
u,[m/sec]

Figure A.24: Neutral wavelength vs. friction velocity w.., viscous model, lin-log
profile, temporal case
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Figure A.25: Calculated phase velocity over friction velocity at maximum growth rate
vs. friction velocity u., viscous model, lin-log profile, temporal case
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Figure A.26: Calculated phase velocity over friction velocity at the neutral wave vs.
friction velocity u., viscous model, lin-log profile, temporal case
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Figure A.27: Normalized phase velocity vs. wavelength for various values of u.,
viscous model, ”’lin-log” profile, spatial case
, DTN OIND DY919Y VNN DTIND NAY INNNN I NONINHND NN NIVNN

anNana MNNanNn



93

0.25

—u,=0.1m/sec
—u,=0.2m/sec
| —u,=0.3m/sec
—u,=0.4m/sec
—u,=0.5m/sec

u,=0.6m/sec

Alm]

—u,=0.7m/sec
—u,=0.8m/sec
—u,=0.9m/sec
—u,=1m/sec
1-=-n

Il Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure A.28: wavelength vs. Waveperiod for various values of u., viscous model,
”lin-log” profile, spatial case
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Figure A.29: Eigenvalue path for various values of u., viscous model, ’lin-log” profile,
spatial case
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Figure A.30: Maximum growth rate vs. friction velocity u., viscous model, "’lin-log”
profile, spatial case
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Figure A.31: Waveperiod at maximum growth rate vs. friction velocity w.., viscous
model, ’lin-log” profile, spatial case
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Figure A.32: Neutral waveperiod vs. friction velocity ., viscous model, ”’lin-log”
profile, spatial case
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Figure A.33: Calculated phase velocity over friction velocity at maximum growth rate
vs. friction velocity .., viscous model, ”lin-log” profile, spatial case
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Figure A.34: Calculated phase velocity over friction velocity at the neutral wave vs.
friction velocity u., viscous model, ”’lin-log” profile, spatial case
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Figure A.35: Normalized phase velocity vs. wavelength for various values of u.,
viscous model, "numerical” profile, temporal case
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Figure A.36: Waveperiod vs. wavelength for various values of w., viscous model,

“numerical” profile, temporal case
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Figure A.38: Maximum growth rate vs. friction velocity u., viscous model,
“numerical” profile, temporal case
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Figure A.39: Wavelength at maximum growth rate vs. friction velocity u., viscous
model, ”numerical” profile, temporal case
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Figure A.40: Neutral wavelength vs. friction velocity w., viscous model, ’numerical”
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Figure A.41: Calculated phase velocity over friction velocity at maximum growth rate
vs. friction velocity ., viscous model, ”numerical” profile, temporal case
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Figure A.42: Calculated phase velocity over friction velocity at the neutral wave vs.
friction velocity wu., viscous model, ”numerical” profile, temporal case
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Figure A.43: Temporal growth rate vs. friction velocity u., viscous model, ”numerical”
profile, temporal case
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Figure A.44: Phase velocity vs. friction velocity u., viscous model, ”numerical”
profile, temporal case
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Figure A.45: Normalized phase velocity vs. friction velocity u., viscous model,
”numerical” profile, temporal case
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Figure A.46: Normalized phase velocity vs. wavelength for various values of u.,
viscous model, “numerical” profile, spatial case
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Figure A.47: Wavelength vs. waveperiod for various values of w., viscous model,
“numerical” profile, spatial case
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Figure A.48: Eigenvalue path for various values of u., viscous model, ”numerical”

profile, spatial case
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Figure A.49: Maximum growth rate vs. friction velocity u., viscous model,

“numerical” profile, spatial case
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Figure A.50: Waveperiod at maximum growth rate vs. friction velocity ., viscous
model, “numerical” profile, spatial case
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Figure A.51: Neutral waveperiod vs. friction velocity ., viscous model, “numerical”
profile, spatial case
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Figure A.52: Calculated phase velocity over friction velocity at maximum growth rate
vs. friction velocity u., viscous model, "numerical’” profile, spatial case
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Figure A.53: Calculated phase velocity over friction velocity at the neutral wave vs.
friction velocity u., viscous model, “numerical” profile, spatial case
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Figure A.54: Ratio between spatial and temporal phase velocity vs. wavelength of the
reference problem for various values of u., viscous model, ”numerical” profile
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Figure A.55: Waveperiod vs. wavelength comparison between spatial and temporal
cases for various values of w.,, viscous model, "numerical” profile
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