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This paper deals with the stability of water waves in a shear flow. Both temporal
and spatial growth rates are derived. A carefully designed numerical solver enables
us to extend the range of previous calculations, and to obtain results for larger
wavelengths (up to 20 cm) and stronger winds (up to a friction-velocity of 1 m s−1).
The main finding is the appearance of a second unstable mode which often turns
out to be the dominant one. A comparison between results from the viscous model
(Orr–Sommerfeld equations) and those of the inviscid model (Rayleigh equations),
for 18 cm long waves, reveals some similarity in the structure of the eigenfunctions,
but a significant difference in the imaginary part of the eigenvalues (i.e. the growth
rate). It is found that the growth rate for the viscous model is 10 fold larger than that
of the inviscid one.

1. Introduction
1.1. Background and motivation

The discussion of wave generation in modern science is almost 150 years old, since
the days of Kelvin, Stokes, Rayleigh and others. The history of scientific publications
on the subject in the 20th century began when Jeffreys (1925) published his sheltering
theory. Major progress was made with the publication of two groundbreaking studies
by Miles (1957a) and by Phillips (1957). These two studies suggest two different
mechanisms for wave generation. Phillips argued that waves can be generated by a
resonance mechanism between the air turbulent eddies and the water. He assumed
that the water is an inviscid fluid and the initial water state is rest. Miles proposed
that the growth of waves is caused by interaction of the surface waves with a parallel
shear flow. He assumed that the fluids are inviscid and presented Rayleigh’s equation
as the governing equation of the problem. In recent years, it has become clear that
the shorter waves (with a wavelength less than say 20 cm), which contain only a small
fraction of the total energy-density, play a significant role in the overall dynamics. For
these waves we must include surface tension as well as viscous effects in the analysis.
The growth of these shorter waves, under the influence of rather strong winds, is the
focus of this paper.

1.2. Theoretical and numerical references

Valenzuela (1976) provides a comprehensive numerical study of the growth of gravity–
capillary waves. He adopts Miles’ approach and solves the coupled air–water stability
problem for two viscous fluids with a shear flow. Valenzuela uses finite-difference
methods in order to transform the problem into an algebraic eigenvalue problem.
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Valenzuela uses the lin–log profile in both media as the base flow and shows
that the shear flow in the water cannot be ignored. Kawai (1979) investigates the
generation of initial wavelets, and combines experimental and theoretical studies.
Kawai’s main interest is in the most unstable wave which can grow under a specific
friction velocity. Kawai uses a lin–log wind profile and an error-function-like current
profile in his calculations. The numerical solution that Kawai uses is based on an
integration of the Orr–Sommerfeld equation using a Runge–Kutta method with a
filtering procedure, in order to keep the solution stable. He argues that the linear
instability mechanism controls the process of wave generation from the beginning. Van
Gastel, Janssen & Komen (1985) study the effect of wind on gravity–capillary waves
using asymptotic methods. They too solve a pair of Orr–Sommerfeld equations. They
argue that the growth rate of the initial wavelets (i.e the first waves to be generated)
is proportional to u3

∗. Van Gastel et al. (1985) also study the effect of the wind and
current profile shape, and find that the growth rate is very sensitive to the wind
profile shape; the influence of the current shape is much smaller, but the drift current
and the shear of the current at the interface have a significant influence on the
phase velocity. Wheless & Csanady (1993) use compound matrix methods in order to
integrate the Orr–Sommerfeld equation and investigate the stability of short waves.
In their calculations, they use an error-function-like wind profile and an exponential
current profile. They also study the effects of wind profile on the growth rate, and
argue that the surface tension has a small influence; the growth rate increases when
the surface tension decreases. Wheless & Csanady try to study the meaning of the
eigenfunction’s vertical structure and argue that the perturbation vorticity is rather
high; the streamwise surface velocity perturbation in typical cases can be five times
the orbital velocity of free waves on an undisturbed water surface. Hence, they suggest
that unstable waves should be thought of as a fundamentally different flow structure
from free waves. Boomkamp et al. (1997) solve the problem of waves on a thin film
of liquid sheared by gas, which is a very similar problem. Boomkamp et al. (1997) use
the Chebyshev collocation method for solving the stability problem. They introduce a
robust method which converges easily for many cases and that is easy to apply. Tsai,
Grass & Simons (2005) study the spatial growth of gravity-capillary waves sheared
by laminar air flow, using experimental and theoretical tools. They use a fourth-order
Runge–Kutta method to integrate the Orr–Sommerfeld equation and some kind of
filtering scheme in order to remove parasitic errors. They use a Lock-like profile for
both the wind and the current. Zhang (2005) studies the effects of shear flow on
the stability of short surface waves. He uses an inviscid model, and as a result uses
Rayleigh’s equation as the governing equation. Zhang proposes a simplified method
in order to obtain an approximate solution. The method which he calls piecewise
linear approximation (PLA), approximates the wind and current profile as linear in
a specific segment, and thus the curvature is zero and the equation has a very simple
form. A segment of particular interest is the one that contains the critical point, where
the base flow is equal to the phase velocity, and Zhang gives this segment special
treatment. Stiassnie, Agnon & Janssen (2007) also study the instability of water waves
where the fluids are assumed to be inviscid. They use the so-called regular approach
in order to avoid the critical point when integrating Rayleigh’s equation. The results
of their calculation are similar to those of previous calculations for friction velocity
to phase velocity ratio smaller than 2, (u∗/c0 < 2); however, for friction velocity
to phase velocity ratio larger than 2, they obtain a maximum in the growth rate,
which does not appear in previous studies. They study both temporal and spatial
growths.
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1.3. Experimental references

Larson & Wright (1974) provide a comprehensive experimental study of the temporal
growth of gravity–capillary waves. They use microwave backscatter as a measurement
technique. Larson & Wright find that the growth rate is independent of the fetch,
dependent on the wavenumber and varies with u∗ like a power law. Caulliez, Ricci
& Dupont (1998) study experimentally the first visible ripples that appear on the
water surface. They argue that the laminar–turbulent transition of the near-surface
water flow causes an explosive growth of the wind-generated ripples. As previously
mentioned, Tsai et al. (2005), also perform experimental studies of the spatial growth
of gravity–capillary waves. They measure a laminar wind profile at varying fetches
and emphasize the development of the boundary layer with fetch. In all these papers,
the subject of the wind velocity profile is a dominant issue and a variety of profiles
is used.

1.4. Wind profile studies

Charnock (1955) measures the air mean velocity profile above a large reservoir. He
finds that the air flow fits a logarithmic law. Miles (1957b) suggests an approximation
to the solution of the boundary-layer equation which has a linear zone and a
logarithmic-like profile. Many authors find this profile useful because of its smooth
first derivative for all values of u∗ and matching height between the linear and the
logarithmic regions. Most of the field measurements were conducted at low wind
speeds. As evidence of the nature of air flow above water at high-speed wind, we
can cite Powell, Vickery & Rienhold (2003) who made field measurements in tropical
cyclones. They found that the wind profile correlates very well with the logarithmic
shape in the first 200 m.

2. Mathematical formulation
2.1. Linear stability model

The starting point is the governing equations for an incompressible viscous fluid flow,
which are the Navier–Stokes and continuity equations.

ρ̂

(
∂V
∂t

+ V · ∇V
)

= −∇P + µ∇2V + gρ̂, (2.1)

∇ · V = 0. (2.2)

We write the velocity and the pressure fields as:

V = (U (z) + u(x, z, t), v(x, z, t)), (2.3)

P = p0 − ρ̂gz + p(x, z, t). (2.4)

Where U (z) is the mean flow profile, u, v and p are harmonic perturbations of the
horizontal velocity, vertical velocity, and pressure, respectively; in the above equations
x and z are the horizontal and vertical coordinates, respectively, and t is the time;
g, µ̂, ρ̂ are the acceleration due to gravity, dynamic viscosity and density, respectively.
We can separate the equations into harmonic terms and steady terms, and apply the
assumption that the perturbations are infinitesimal, in order to linearize them. Since
we are looking for a solution which has a harmonic part and a vertical dependent
part, we write:

u = ũ(z)ei(kx−ωt), v = ṽ(z)ei(kx−ωt), p = p̃(z)ei(kx−ωt), η = η0e
i(kx−ωt). (2.5)
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Where ω, k, η are the wave frequency, wavenumber and interface elevation,
respectively. We can define a perturbation streamfunction which has the form:

ψ = f (z)ei(kx−ωt), (2.6)

where f (z) is the auxiliary function, and the relations between the streamfunction
and the velocity components give:

ṽ = −ikf (z), ũ = f ′(z). (2.7)

The prime denotes vertical differentiation. After a simple elimination process, we find
that the governing ODE for f (z) is the Orr–Sommerfeld equation:

iν(f (4) − 2k2f ′′ + k4f ) + k
[
(U − c)(f ′′ − k2f ) − U ′′f

]
= 0, (2.8)

where ν and c are the kinematic viscosity and the phase velocity, respectively. The
domains of the air and water are assumed to be semi-infinite, and we have boundary
conditions at positive or negative infinity and at the interface between the fluids. At
infinity, the perturbations are assumed to decay exponentially. At the interface, we
impose the kinematic boundary condition, horizontal velocity continuity, shear stress
continuity and the dynamic boundary condition (continuity of normal stress). All of
the boundary conditions are imposed at z = 0, after the linearization procedure. For
the full formulation of the boundary conditions see Valenzuela (1976). We choose
the reference problem of linear water waves without wind and current, neglecting the
influence of the air, for which the wavenumber and the wave frequency are related
by:

ω2
0 = gk0 +

σk3
0

ρw

, (2.9)

where σ is the surface tension. Transforming to dimensionless quantities (note that
the circumflex in (2.10) denotes a dimensional quantity):

ω =
ω̂

ω0

, k =
k̂

k0

, c =
ĉ

c0

,

z = ẑk0, U =
Û

c0

, f =
f̂ k0

η0ω0

.

(2.10)

Defining the dimensionless numbers of the problem:

Rw,a =
c0

νw,ak0

, F =
1

F 2
r

=
gk0

ω2
0

, W =
1

We

=
σk3

0

ρwω2
0

, ρ =
ρa

ρw

, µ =
µa

µw

, (2.11)

where R is the Reynolds number, F is the inverse square Froude number, W is the
inverse Weber number, ρ is the density ratio and µ is the dynamic viscosity ratio.
The subscripts w and a refer to water and air, respectively. The complete eigenvalue
problem must satisfy the following system:
Two ODEs:

iR−1
w

(
f (4)

w − 2k2f ′′
w + k4fw

)︸ ︷︷ ︸
Viscous terms

+k
[
(Uw − c)

(
f ′′

w − k2fw

)
− U ′′

wfw

]
= 0, z ∈ (−∞, 0],

(2.12)

iR−1
a

(
f (4)

a − 2k2f ′′
a + k4fa

)︸ ︷︷ ︸
Viscous terms

+k
[
(Ua − c)

(
f ′′

a − k2fa

)
− U ′′

a fa

]
= 0, z ∈ [0, ∞). (2.13)
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Nine boundary conditions:

fa(0) = c − U (0), fw(0) = c − U (0), (2.14)

f ′
w + U ′

w = f ′
a + U ′

a at z = 0, (2.15)

µ(f ′′
a + k2fa + U ′′

a ) = (f ′′
w + k2fw + U ′′

w) at z = 0, (2.16)

kf ′
w(c − U0) + kfwU ′

w + iR−1
w

(
3k2f ′

w − f ′′′
w

)︸ ︷︷ ︸
Viscous terms

−kF

= ρ

⎡
⎢⎣kf ′

a(c − U0) + kfaU
′
a + iR−1

a

(
3k2f ′

a − f ′′′
a

)︸ ︷︷ ︸
Viscous terms

−kF

⎤
⎥⎦ + Wk3 at z = 0, (2.17)

fw(z) → 0, f ′
w(z) → 0, z → −∞, (2.18)

fa(z) → 0, f ′
a(z) → 0, z → ∞. (2.19)

When formulating the inviscid model, we neglect the viscous terms in (2.12) and (2.13)
and obtain two Rayleigh equations. The boundary conditions will be the kinematic
boundary condition in the same form (2.14), and the dynamic boundary condition
without the viscous terms (2.17). Conditions (2.15) and (2.16) do not apply when
formulating the inviscid case. Both the viscous and inviscid models are classified as
eigenvalue problems. The calculations will focus on the temporal and spatial cases,
meaning that the growth can be only either in space, or in time. For the temporal
case we specify k and search for ω, and for the spatial case we specify ω and search
for k.

2.2. Mean flow profile

In (2.12) to (2.19), U (z) represents the mean flow profile. It is already well known
(Kawai 1979; Van Gastel et al. 1985; Wheless & Csanady 1993), that the results are
sensitive to the profile shape. The exact mean flow profile above water waves is still
uncertain. Miles (1957b) suggests a profile which fits well the mean flow profile above
a flat plate. This profile was used in previous studies Valenzuela 1976; Kawai 1979;
Van Gastel et al. 1985), and was named the ‘lin–log’ profile. We use this profile for
the air, and an exponential profile for the current in the water.
In the air (wind profile):

Ua =

⎧⎪⎨
⎪⎩

U0 +
u2

∗
νa

z, z � z1,

U0 + mu∗ +
u∗

κ

[
α − tanh

(α

2

)]
, z � z1,

(2.20)

and in the water (current profile):

Uw = U0 exp

(
ρau

2
∗

U0µw

z

)
(2.21)

where,

α = sinh−1(β), β =
2κu∗

νa

(z − z1), z1 =
mνa

u∗
, U0 = Bu∗, m = 5, B = 0.5, (2.22)

where u∗ is the friction velocity. The wind profile has a linear segment with a possible
offset (drift current) and a segment that is asymptotically logarithmic. The parameter
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Figure 1. The base flow and its first two derivatives for the linear–logarithmic profile and
various values of u∗ (m= 5). (a) The velocity profile, (b) the first derivative, (c) the second
derivative.

m in (2.22) defines the thickness of the viscous sublayer (the linear segment), and
thus influences the derivative at the interface. This profile enables continuity of the
function and its first two derivatives at the matching point z = z1 for all values of the
parameters m and U0. The value of m is set to 5 (usually m =5−8), whereas the value
of B is chosen to be B = 0.5 according to Kawai (1979), this value can sometimes be
taken as B = 0.3 as found by Zhang & Harrison (2004), but qualitatively it would not
change the results. The value of B controls the drift current, but also influences the
derivatives of the current. This profile, in (2.20) and (2.21), maintains the continuity
of the shear stress between the air and the water, µaU

′
a =µwU ′

w .
As can be seen in figure 1, the friction velocity u∗ defines the wind intensity as

well as the current profile. The first and second derivatives have discontinuities at
the interface, but are continuous in the air. The first two derivatives have increasing
absolute values as u∗ increases.

2.3. Alternative wind profile

As an alternative wind profile, we present a wind profile which will enable us to
compare the inviscid and viscous solutions under strong winds. This profile is based
on the numerical solution of the turbulent boundary-layer equation, which is:

µa

dU

dz︸ ︷︷ ︸
Laminar stress

+ ρaκ
2z2

(
dU

dz

)2

︸ ︷︷ ︸
Turbulent stress

= τ0 = ρau
2
∗. (2.23)

The equation is based on Prandtl’s mixing-length theory. The numerical solution
produces a profile which is very similar to the lin–log profile, but with a much thinner
viscous sublayer. This profile has zero curvature only at z = 0. The current (water
flow) used is exactly the same as in (2.21). Note that the parameter m is not needed,
and the parameter B = 0.5. The meanings of the other parameters are the same as in
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Figure 2. The base flow and its first two derivatives from the numerical integration of the
boundary-layer equation for various values of u∗. (a) The velocity profile, (b) the first derivative,
(c) the second derivative.

§ 2.2. The benefit from this kind of profile is that it enables to compare the viscous
and inviscid solutions at any wind intensity. We named this profile the ‘numerical’
profile. The profile and its derivatives are described in figure 2; it is very similar to
the lin–log profile, but with a much thinner viscous sublayer.

3. Numerical procedure and its validation
3.1. Numerical procedure

The numerical procedure which we used to solve the eigenvalue problem of the viscous
model is based on the Chebyshev collocation method. We chose this method because
of the difficulties in the integration of the Orr–Sommerfeld equation, which forced
some of the previous authors to use filters in order to remove parasitic errors. Another
reason for this choice is the nature of the Chebyshev grid which is characterized by
a high density of grid points near the boundaries. The Chebyshev grid is:

xj = cos

(
jπ

N

)
∀j = 0, 1, . . . , N. (3.1)

The method approximates an unknown function by a finite series of Chebyshev
polynomials see (Trefethen 2000).

φ(x) =

N∑
n=0

anTn(x). (3.2)

Chebyshev expansions are done in the interval [−1, 1], where the Chebyshev
polynomials are orthogonal. In the numerical solution, the computational domain
was divided into three finite subintervals. This subdivision is similar to that of
Boomkamp et al. (1997). The size of the finite interval is set to be z∞ =10, which
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z = z∞
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z = 0

Figure 3. Computational domain of the problem.

means that zdimensional,±∞ ≈ ± 1.6λ, where λ=2π/k0 is the reference wavelength. The
lower interval is for the water, the upper layer (air2) is for the logarithmic air region,
and the intermediate interval (air1) is for the viscous sublayer region (see figure 3).
Linear transformations are used to transform each interval into [−1, 1], which is
where the Chebyshev polynomials are orthogonal.

Since the problem at hand is an eigenvalue problem, we search for a pair ω, k which
causes the solution to obey all 9 boundary conditions. An iterative process to find this
eigenvalue was built. This process begins with an initial guess for the eigenvalue; the
next stage is to solve the coupled BVP (boundary value problem) and finally to use a
standard secant method to produce an improved guess. The process is stopped when
a convergence condition, requiring four significant digits in the imaginary part of the
eigenvalue, is satisfied. The Chebyshev collocation method is used for the solution
of the BVP. This search process provides only one eigenvalue at a time; the specific
eigenvalue which the process converges to depends on the initial guess. This approach
is different from the one of solving the generalized eigenvalue problem and finding
all of the eigenvalues, see Boomkamp et al. (1997).

In practice, we reduce the order of the Orr–Sommerfeld equation by defining
V � f ′′ and replacing the Orr–Sommerfeld equation with the system:

V − f ′′ = 0, (3.3a)

iR−1(V ′′ − 2k2V + k4fa) + k
[
(Ua − c)(V − k2fa) − U ′′

a fa

]
= 0. (3.3b)

The next step is to transform the differential equations into an algebraic form with
the help of the Chebyshev differentiation matrices. We solved the BVP with all of the
boundary conditions, except for the dynamic boundary condition (2.17). In practice
we, add an artificial interface between the air1 domain and the air2 domain, and
actually solve three coupled Orr–Sommerfeld equations. The boundary conditions
between air1 and air2 are similar to the boundary conditions between the water and
air in their physical meaning; but since the density, viscosity and the base flow are
continuous, they are written as:

fa2(z1) = fa1(z1), f ′
a2(z1) = f ′

a1(z1), f ′′
a2(z1) = f ′′

a1(z1), f ′′′
a2(z1) = f ′′′

a1(z1). (3.4)

The iterative process is built for the function G(ω, k), which is defined as:

G(k, ω) = kf ′
w(c − U0) + kfwU ′

w + iR−1
w (3k2f ′

w − f ′′′
w ) − kF

− ρ
[
kf ′

a(c − U0) + kfaU
′
a + iR−1

a (3k2f ′
a − f ′′′

a ) − kF
]

− Wk3 at z = 0. (3.5)

G =0 is the dynamic boundary condition, see (2.17). Using the function G, we can
define the dynamic boundary condition plot. A dynamic boundary condition plot is
a plot of the isolines of ‖G‖2 in the complex ω (or k) plane. The function G is a
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u ∗ = 0.3m s−1 , λ= 0.01m temporal case lin log wind profile exponential current

Na1 M = 2.2 M = 1

30 1.35384 + 0.017398i 1.35748+ 0.014870i
50 1.35360 + 0.017512i 1.35344+ 0.017645i
70 1.35360 + 0.017512i 1.35358+ 0.017526i
90 1.35360 + 0.017512i 1.35360+ 0.017509i

110 1.35360 + 0.017512i 1.35360+ 0.017512i
130 1.35360 + 0.017512i 1.35360+ 0.017512i

ual = 1m s−1, λ= 0.2m temporal case lin log–wind profile exponential current

Na1 M = 2.2 M = 1.5

120 0.79809 + 0.59893i 2.20140+ 0.12182i
140 0.51149 + 1.01276i 1.74337+ 0.22800i
160 0.48421 + 1.12226i 1.19489+ 0.39902i
180 0.48430 + 1.12786i 0.71359+ 0.66407i
200 0.48834 + 1.11202i 0.52574+ 0.96493i
220 0.49267 + 1.09481i 0.49011+ 1.09063i
240 0.49585 + 1.08125i 0.48329+ 1.12708i
260 0.49821 + 1.07237i 0.48389+ 1.12925i

Table 1. Convergence of the Chebyshev collocation method for two wind intensities and
wavelengths, temporal case. Where Na1 = Nw, Na2 = MNa1. (Values of ω.)

property of the BVP, and, to a certain extent, it defines the distance between a chosen
solution of the BVP and that of the eigenvalue problem. Note that all the results in
this paper were calculated using the following numerical values:

κ = 0.41, µw = 10−3pa s, µa = 1.83 10−5pa s,

ρa = 1.225kgm−3, ρw = 1000kg m−3, g = 9.81ms−2, σ = 0.075Nm−1

}
(3.6)

3.2. Validation of the numerical results

In this section we will show the convergence of the Chebyshev collocation method,
test the sensitivity of the model to the interval size and compare the results with a
test case and previous studies. An analytical solution for the viscous problem with a
linear wind profile and a constant current is given in the Appendix, and serves as the
test case.

3.2.1. Convergence of the Chebyshev collocation method

As mentioned above, the computational domain is divided into three sub intervals:
the water [−z∞, 0], the air1 [0, z1] and the air2 interval [z1, z∞]. In each of these
intervals we can control the number of collocation points (the grid). If the method
converges, the change in the results should be minor when changing the number of
collocation points. From numerical experiments, we learn that the interval air1 is
the most important interval and therefore requires a high resolution grid. We show
convergence, for the case where the number of collocation points in the interval air1
Na1 is equal to those in the water Nw , and the number of collocation points in air2
will be Na2 = MNa1, where M is a parameter (see table 1). As we can see from the
data in the table, the process converges up to at least two significant digits. Of course,
the case of longer wavelength and high wind intensities required more grid points.
Note that differences between M = 1, 1.5 to M = 2.2 are of the order of 1%.
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u∗ = 0.3 m s−1 λ= 0.01 m u∗ = 0.8 m s−1 λ= 0.01 m

z∞ = 5 1.35357+ 0.017523i 1.55164 + 0.22261i
z∞ = 10 1.35360+ 0.017512i 1.55166 + 0.22260i
z∞ = 15 1.35360+ 0.017512i 1.55166 + 0.22260i
z∞ = 20 1.35360+ 0.017512i 1.55166 + 0.22260i

Table 2. The sensitivity of ω to different z∞, temporal case, lin–log wind profile, exponential
current.

Temporal case

λ= 0.001m λ= 0.1m λ= 0.2m

u∗ = 0.001 m s−1 Numerical 1.0705 − 0.017431i 1.1246+ 0.0071116i 1.0908 + 0.0091061i
Analytical 1.0705 − 0.017431i 1.1246+ 0.0071115i 1.0908 + 0.0091070i

u∗ = 0.005 m s−1 Numerical 1.3628 − 0.016102i 1.7260+ 2.2254i 1.7684 + 2.5485i
Analytical 1.3628 − 0.016102i 1.7262+ 2.2254i 1.7680 + 2.5489i

u∗ =1ms−1 Numerical 1.7132 − 0.000028672i 0.47194 − 7.6548i 5.3226 + 8.4767i
Analytical 1.7132 − 0.000029147i 0.46973 − 7.6153i 5.3219 + 8.4752i

Table 3. Comparison with test case, temporal case for various wind intensities and
wavelength. (Values of ω.)

3.2.2. Sensitivity to z∞

Since, in practice, we need to use a finite interval for the numerical calculations,
we must show that our choice does not have a major effect on the results. The z

coordinate is normalized by k0 in the form z = zdimensionalk0. From a physical aspect,
the value of z∞ should be related to the wavelength. From linear theory of water
waves, it is known that at depths below half a wavelength, the influence of the waves
on the flow field is minor. The value which we use for most of our calculations is
z∞ = 10, which means that z∞,dimensional = 10λ/(2π) = 1.591λ. In order to justify this
value, we made a few runs with different values of z∞. Note that in this method, when
we change the interval size we need to change the number of collocation points in
order to keep a fine grid in the critical region. From table 2 we can state that if there
is an error it is in the fourth digit.

3.2.3. Comparison with the test case

In order to validate the numerical results, we want to compare them with an
analytical solution. The case which we compare them with is the one mentioned at
the beginning of § 3.2. The analytical solution of this case is based on a combination
of Airy and exponential functions, thus the numerical solution is not so trivial,
for details see Appendix. Such a comparison has significant meaning, because the
methods which were used to obtain the results are completely different from each
other. The comparison was made for the spatial case, as well as for the temporal case.
The current was constant with the value of Uw = 0.5u∗ and the velocity slope of the
wind was u∗/νa . These conditions are similar to those which were used in the lin-log
profile. The results are described in table 3. The maximum error in this comparison
is 2%, whereas in most of the cases the error is smaller than 1%.

3.2.4. Comparison with previous studies

The last stage in the validation process will be a comparison with previous
calculations of Kawai (1979), Van Gastel et al. (1985) and Tsai & Lin (2004).
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Figure 4. Energy growth rate vs. wavenumber, temporal case. Comparison with previous
studies. Solid line, our study; five point star, results from Tsai & Lin (2004), (analogous to
figure 2 in Tsai & Lin 2004).

They all compute similar values for the temporal growth rate, but for a rather small
domain in the (λ, u∗)-plane. Figure 4 is analogous to figure 2 in Tsai & Lin (2004).

In figure 4, there are symbols of our calculations and symbols of Tsai & Lin’s
calculations taken from figure 2 in Tsai & Lin (2004). We can see that the results
of Tsai & Lin (2004) are similar to our results; the difference is up to 5%, but is
typically of the order of 1%. For the spatial case, we are not familiar with previous
studies to which it may be compared. Finally, it seems safe to say that for the range
of λ ∈ (0.001, 0.2) m, u∗ ∈ (0, 1) m s−1, our numerical results are reliable. In most
cases, accuracy is to the first four digits, whereas in the more difficult cases it is only
to the first two significant digits.

4. A second eigenvalue at high wind intensities
4.1. Results for the temporal case

A number of studies concerning the surface wave stability problem have been
conducted (e.g. Valenzuela 1976; Tsai et al. 2005 and references therein). All of
the results that we found were limited in wind intensity and in wavelength/wave
period. Most of the theoretical studies focus on the temporal case, except for Tsai
et al. (2005) which deals with spatial evolution for a laminar base flow. The domain
of previous calculations in the range of approximately, wavelength 0 < λ< 7 cm, and
friction velocities 0 <u∗ < 0.5m s−1, is plotted in figure 5. As described in § 3.2, our
solver for the viscous problem is valid in the domain 0 < λ< 20cm, 0 <u∗ < 1m/sec

(the entire region of figure 5). The calculations were done using several types of
profiles for the temporal case as well as for the spatial case. From previous studies, we
learn that for each scenario there can be only one unstable mode. This unstable mode
was calculated by several authors and has been confirmed by our calculations (see
figure 4). Since the problem is an eigenvalue problem, it is reasonable to search for
more eigenvalues. However, we are dealing with a physical problem, and the physical
meaning is also important. When we began to expand the domain of calculations, we
discovered the presence of a second unstable mode. In certain cases, this can mean
that for a given wavelength and wind intensity, there are two kinds of unstable waves
with different growth rates and different phase velocities. As described in figure 5, the
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Figure 5. Instability domains of the solution over the (λ, u∗)-plane. solid line, boundary of
the region where there are two unstable modes; solid thin line- neutral line (zero growth rate);
dash-dot line, the domain of previous studies; dashed line, the region where the inviscid model
produces growth. Temporal case, the profile is according to (2.20)–(2.22).
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Figure 6. Normalized imaginary part of the frequency vs. friction velocity for various
wavelengths, two modes are shown in the region of interest, temporal case, the profile is
according to (2.20)–(2.22). (a) λ= 0.04 m, (b) λ= 0.12m, (c) λ= 0.18 m. The solid line and the
dashed line are two distinct solutions for the specific scenario.

plane (λ, u∗) can be divided into three different regions. The first region is the region
without growth, in this region the growth due to the wind is smaller than the decay
due to viscosity. The second region is the region with one unstable mode, and the
third region is the one with two unstable modes. The calculations were done along
cross-sections of the (λ, u∗)-plane, where λ or u∗ remain constant. For example, we
start with one solution at u∗ = 1 m s−1 and try to progress along the same branch of
the solution by slowly decreasing the friction velocity. In figures 6 and 7 we present
typical cross-sections. For a short wave λ∼ 4 cm, a typical cross-section shows that at
low wind intensities there is only one unstable mode, while at u∗ ∼ 0.5 m s−1 another
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Figure 7. Normalized real part of the frequency vs. friction velocity for various wavelengths,
two modes are shown in the region of interest, temporal case, the profile is according to
(2.20)–(2.22). (a) λ= 0.04 m, (b) λ= 0.12 m, (c) λ= 0.18 m. The solid line and the dashed line
are two distinct solutions for the specific scenario.
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Figure 8. Normalized imaginary part of the frequency vs. wavelength for various friction
velocities, two modes are shown in the region of interest, temporal case, the profile is according
to (2.20)–(2.22). (a) u∗ = 0.8m s−1, (b) u∗ = 0.6 m s−1, (c) u∗ = 0.3m s−1. The solid line and the
dashed line are two distinct solutions for the specific scenario.

mode becomes unstable. We can see that the lines cross each other in the imaginary
part, but in the real part these two lines never intersect. At longer wavelengths, the
line of the second unstable mode passes the zero growth level at a stronger wind, and
then turns back and becomes stable; at even longer wavelengths the second mode is
always stable. When looking at the real part of the same results, figure 7, we can see
that, for the short waves, the lines of the separate modes never cross each other, while
in longer waves the lines intersect. The meaning of these intersection points is that
there are two waves with the same wavelength and wave frequency, but with different
growth rates. When looking at the cross-sections along λ (see figures 8 and 9), we
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Figure 9. Normalized real part of the frequency vs. wavelength for various friction velocities,
two modes are shown in the region of interest, profile is according to (2.20)–(2.22). (a)
u∗ = 0.8m s−1, (b) u∗ = 0.6 m s−1, (c) u∗ = 0.3 m s−1. The solid line and the dashed line are two
distinct solutions for the specific scenario.

0.04 0.08 0.12 0.16 0.20
0

40

80

120

160

λ (m)

Im
 (
ω

) 
(s

–1
)

Figure 10. Temporal growth rate vs. wavelength, u∗ = 1 m s−1, the profile is according to
(2.20)–(2.22). The solid line and the dashed line are two distinct solutions for the specific
scenario.

can distinguish a few characteristics of the solution. First, at low wind intensities,
there is only one unstable mode for every wavelength, while at stronger winds, above
a critical value, there are two unstable modes in a range of wavelengths. For example,
see the lines of u∗ = 0.6 m s−1, 0.8 m s−1 in figure 8. All of the lines in the figure of
the imaginary part are characterized by one maximum point. These maximum points
describe the most unstable wave, but since figure 8 presents the normalized quantity
it is simpler to look at the dimensional figure (see figure 10). When there are two
lines, it is typical that the maximum point of the second unstable mode occurs at a
longer wavelength. Another point that may be of some interest is the point of zero
growth (neutral point) on the left-hand side, which indicates the shortest wave that
can be generated. In this aspect, again, the lines of the second unstable mode start to
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Figure 11. Comparison of the vertical structure of the eigenfunction and the kinetic energy
density between the two modes for λ= 0.04 m, u∗ = 0.7 m s−1, temporal case, profile is according
to (2.20)–(2.22). (a) absolute value of the eigenfunction, (b) argument of the eigenfunction, (c)
kinetic energy density.

produce growth for longer wavelengths. The results for both, the point of maximum
growth and the neutral point, are very intuitive and show that: when increasing the
wind intensity, the value of maximum growth becomes larger and the wavelengths of
maximum growth and zero growth become shorter. The real part of the eigenvalue,
described in figure 9, shows a major difference between these two branches of the
solution. While one of the branches has a phase velocity which is often higher than
the reference case, (Re(ω)/ω0 > 1), the second branch has a phase velocity which is
lower than the reference case, (Re(ω)/ω0 < 1). The result that the phase velocity of
the wave usually decreases when the friction velocity increases is not very intuitive.
This result was also obtained by Valenzuela (1976).

In figure 10 the temporal growth rate is presented in dimensional form. As we can
see, the values of the growth rate are very large, especially for waves in the gravity–
capillary range. These ‘explosive’ growth rates which can exist in very strong winds
(u∗ = 1 m s−1, i.e. U10 = 37 m s−1), indicate that these ripples attain their maximum
steepness almost immediately, and break continuously.
While comparing the eigenfunctions of both modes in figure 11, we can see a
significant similarity in the air region, but a profound difference in the water region.
The horizontal dashed line in this figure indicates the edge of the laminar layer, and
it is clear that most of the energy transfer from the mean flow to the disturbance
happens within this layer. The square and circle symbols indicate the location of the
so-called critical point, where the mean flow velocity is equal to the actual phase
velocity. We can see that the critical-points, for both modes, are in the water and that
they do not play any significant role in the case at hand.

After finding the second unstable mode, we try to characterize the conditions for
the existence of this mode. We cannot formulate a complete condition yet, but we
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can state that the second unstable mode appears only when the mean flow profile
includes a shear current. Another condition is that the wind intensity will be above a
critical value. The results in the figures were calculated for a specific lin–log profile
(m =5, B = 0.5 see (2.22)), the parameter B which controls the drift current has a
major influence on the critical conditions for the appearance of the second mode. In
order to identify the conditions that influence the appearance of the second unstable
mode, we have tried many combinations of wind profiles/intensities and current
profile/intensities. In figure 12, we present six dynamic boundary condition plots,
(see definition in § 3.1) that demonstrate the behaviour of the problem for different
scenarios. The left-hand column is for a relatively low wind intensity (u∗ = 0.3 m s−1),
and the right-hand column is for a high wind intensity (u∗ = 0.8 m s−1), whereas
the three different rows are for current only (no wind), wind with constant current
(no shear in the water), and wind with exponential current; from top to bottom,
respectively. From figures 12(a) and 12(d), we can see that the exponential current by
itself can cause instability, but does not cause two unstable modes. From figures 12(b)
and 12(e), we can conclude that a current without shear can not cause two unstable
modes. In figures 12(c) and 12(f), we can see that for the combination of the wind
and current the picture looks very different, particularly at strong winds, where the
two unstable modes appear.

As already mentioned, the physical reason for the appearance of the second growing
eigenvalue is not entirely clear. However, the fact that its phase velocity is smaller
than c0 (sometimes much smaller), and that it appears only above a threshold of u∗,
which corresponds to a threshold in the drift-current, provides some indication that
the second eigenvalue originates from a left moving wave which evolved into a right
moving wave under the influence of the current. To check if this assumption makes
sense, we refer to figure 13 where we compare the solid-line separating the domains
of one and two solutions with two approximated theoretical lines. An approximation
for the lower boundary of the solid line can be obtained by a simple equation (dashed
line) which states the equality of the drift velocity and the unperturbed phase velocity:

1
2
u∗ = c0. (4.1)

Note that (4.1) is motivated by the case of a constant (i.e. a z independent) current.
To attain an approximation for the upper boundary, which separates the domains
of one and two solutions, we have to consider the fact that the current varies with
depth, and compare its vertical decay rate with that of the disturbance. From (2.21),
we see that the decay rate of the current is (2ρau∗)/µw , whereas the vertical decay
rate of the wave is given by k0; comparing the two yields:

2ρau∗

µw

= αk0, (4.2)

where α is a somewhat free dimensionless constant. Note that the dash-dot line in
figure 13 is plotted with α = 30, this value was chosen to obtain a fit at u∗ = 1 m s−1.

4.2. Results for the spatial case

Similar calculations were made for the spatial case. Computationally, the process
of finding the eigenvalues and eigenfunctions is similar to the process previously
mentioned. Note that in the spatial, case the eigenvalue problem is nonlinear, since
the wavenumber k is the eigenvalue. The iterative search process in this case is more
complicated in practice, since the eigenvalue can pass through regions where the
solver is not valid during the search; despite this, similar phenomena were detected.
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Figure 12. Isolines of ‖G‖2 for various wind and current conditions and λ= 5 cm. (a)-
u∗ =0.3 m s−1, no wind, exponential current, the eigenvalue is ω/ω0 = 1.14 − 0.005i, (b)
u∗ =0.3 m s−1, numeric wind profile, constant current, the eigenvalue is ω/ω0 = 1.448+0.0351i,
(c) u∗ = 0.3 m s−1, numeric wind profile, exponential current, the eigenvalue is
ω/ω0 = 1.084 + 0.0411i, (d) u∗ = 0.8m s−1, no wind, exponential current, the eigenvalue is
ω/ω0 = 0.865+0.0508i, (e)- u∗ =0.8 m s−1, numeric wind profile, constant current, the eigenvalue
is ω/ω0 = 1.845 + 0.996i, (f)- u∗ = 0.8 m s−1, numeric wind profile, exponential current, the
eigenvalues are at ω/ω0 = 0.5472 + 0.834i, ω/ω0 = 1.132 + 0.128i. The numeric wind profile
is according to the numerical solution of (2.23), and the exponential current is according to
(2.21), with B = 0.5.

An example for the existence of two unstable modes is presented in figure 14. In
figure 14(a), the negative sign is due to the harmonic term ei(kx−ωt), hence −Im(k)
represents the spatial growth rate. In figure 14(b), we show the normalized real
wavenumber reciprocal, which is exactly equal to the ratio c/c0.
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Figure 13. Boundary between zones with one and two solutions; numerical computation
(solid line), dashed line (4.1) , dash-dotted line (4.2).
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Figure 14. Normalized imaginary and real parts of the wavenumber vs. friction velocity, two
modes are shown in the region of interest, T = 0.146 s, (λ0 = 0.04 m), spatial case, profile is
according to (2.20)–(2.22). (a) minus the imaginary part, (b)- real part reciprocal.

When comparing figure 14 with figures 6(a) and 7(a), we can see similar behaviour
of these two cases. However, a more detailed investigation is warranted in this case,
as well as in the more complicated spatio-temporal case.

4.3. Is there experimental evidence for the second mode?

Most of the experimental measurements were mode at relatively weak winds. The
only experimental study which conducted measurements at strong winds is Larson &
Wright (1974), which measured temporal growth rates under friction velocities up to
1.24m s−1. If the scenario of two unstable modes is real, we expect that at low wind
intensities, as well as at high wind intensities, there should be only one governing
mode. For intermediate winds both modes may be relevant. In figure 15, we compare
the present results with the experimental results from Larson & Wright (1974), while
there are two lines which result from our calculations, there is only one line that
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Figure 15. Energy growth rate vs. friction velocity, comparison with experimental results of
Larson & Wright (1974). Profile is according to the numerical solution of (2.23) and (2.21)
B = 0.5, similar to figure 6(a) in Larson & Wright (1974).

approximates the experimental results. As we can see in figure 15, the numerical
results and the experimental results do not fit well, the differences are up to a
factor of four at the range of u∗ < 0.6 m s−1. Despite the poor fit, the evidence that
the unstable mode which appears in weak winds decreases and another unstable
mode increases while the experimental line increases monotonically, can be taken as
support to the very existence of such a second unstable mode. The missing pieces of
information in the measurements of Larson & Wright (1974) are the phase velocities
and the actual current profile. Information about the phase velocity can be crucial in
order to identify the mode, since there are significant differences between the phase
velocities of the two modes.

5. Comparison between the viscous and inviscid solutions
5.1. Comparison for relatively weak winds

Two questions form the basis of this section. The first deals with the significance of
viscosity for such a problem, and the second question is whether Rayleigh’s equation
are asymptotically (for Re → ∞) an approximation of the Orr–Sommerfeld equations.
It is commonly assumed that the inviscid solution is a good approximation of the
viscous solution for large Reynolds numbers. The inviscid solution is very practical
for many problems, for example, the estimation of lift on an airfoil. In the problem
of wave forecasting it is also common to use the inviscid approximation. In wave
forecasting, the dominant waves are usually long gravity waves. In our calculation, as
already mentioned, we can produce results for the viscous model up to a wavelength of
λ= 20 cm. The inviscid solution for the stability problem is very sensitive to the profile
and its curvature. The growth rate is proportional to the curvature at the critical point
U ′′

a (zcr ), where the critical point satisfies U (zcr ) = Re(c). Another important quality of
the inviscid solution is that the complex conjugate of a specific eigenvalue is also an
eigenvalue. Hence, the inviscid solution predicts no growth for a wind profile with
U ′′(zcr ) = 0 (linear segment) and none for the case of wave travelling against the wind,
where Re(c) < 0 (no critical point). When attempting to compare between the inviscid
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Figure 16. Normalized frequency components vs. wavelength, for u∗ = 0.06 m s−1, comparison
between the viscous and inviscid solutions, the profile is according to (2.20)–(2.22). (a)
Imaginary part, (b) real part.

solution and the viscous solution, using the lin–log profile (see (2.20)), we found
that the critical point is often inside the linear segment and thus the inviscid model
produces no growth. The dashed line in figure 5 is the boundary between the region
where the inviscid solution can produce growth and the region where it produces
zero growth, for this particular profile. In figure 16, the results of these two models
are compared along a cross-section where the inviscid model produces growth. Note
that the effect of dissipation due to viscosity does not exist in the inviscid results. The
comparison shows very good agreement in the real part of the eigenvalues, which
means that they predict waves with almost the same phase velocity. In figure 16(a),
we can see that the resulting growth rate by these two models is of the same order,
but we can state that for most wavelengths the growth predicted by the viscous model
is approximately three times larger than that predicted by the inviscid model.

A more detailed comparison tool is to test the dynamic boundary condition plot.
The dynamic boundary condition plot is the plot of the isolines of the squared norm
of G(ω, k), see (3.5) and § 3.1. Such a comparison enables us to compare the patterns
of these two solutions as well. In figure 17, the dynamic boundary condition plot
of these two solutions is presented. As we can see, the pattern of the surface of the
solution is almost the same. The arrowhead points to the minimum point of this
surface (where G =0), this point is the eigenvalue of the solution. In figure 18, we can
see that the structure of the eigenfunctions for the viscous and inviscid solutions is
similar in nature, however, the eigenfunctions are somewhat different in their actual
values, corresponding to what we have seen in figure 17. Another point which is made
clear by figure 18 is the dominance of the critical layer, compared to its insignificance
in the case of figure 11. The apparent difference between the two scenarios could
be related to the fact that in figure 18 the critical point is in the air and above the
laminar viscous layer.

5.2. Comparison for strong winds

The comparison between viscous and inviscid solutions using the lin–log profile is
limited because of the linear segment which results in zero growth in the inviscid
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model. In order to compare these two models more comprehensively we looked for
a wind profile that is similar to the profile of a turbulent boundary layer and which
has non-zero curvature in a layer close to the interface. A good candidate for such a
profile is the numerical solution for the mean velocity of the boundary-layer equation,
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viscous and inviscid solutions, profile is according to the numerical solution of (2.23) and
(2.21) B =0.5. (a) Viscous solution, (b) inviscid solution.

which is (2.23). The results of the viscous model, when using this profile with the
same exponential current, are very similar to those of the lin–log profile, including the
second unstable mode. The use of this profile provides the opportunity to compare
between the viscous and inviscid models at stronger winds.

In order to examine the differences between the solutions, we present two
comparisons of the dynamic boundary condition plots. In figure 19, the comparison
is for λ= 0.05 m, u∗ = 0.3 m s−1. As can be seen, the behaviour is similar to figure 17;
the real part is almost the same, whereas the imaginary part of the viscous solution is
1.5 times larger than that in the inviscid solution. The pattern of the isolines is very
similar.

In figure 20, we present the same comparison, but for a much stronger wind. As
can be seen, in this figure the picture is completely different. There is no connection
between the solutions, neither in the real part nor in the imaginary part, and even the
number of unstable eigenvalues is different.

The comparison at strong winds shows a more dramatic disagreement between the
viscous and inviscid models, where not only can the growth rate of the viscous model
be a hundred times larger than the growth rate of the inviscid model, but also the real
part and the number of unstable modes indicate a disagreement between the models.
Within the range of our calculations, the results indicate that the inviscid solution
cannot be taken as a sensible approximation to the viscous one.

6. Summary and conclusions
After formulating the linear stability problem of surface waves for a viscous/inviscid

fluid, we built a robust solver in order to solve these eigenvalue problems for the
spatial and temporal case and a range of mean flow profiles. The results of the solver
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Figure 20. Isolines of ‖G‖2 in the ω-plane, u∗ = 0.8 m s−1, λ= 0.05m, comparison between
viscous and inviscid solutions, profile is according to the numerical solution of (2.23) and
(2.21) B = 0.5. (a) Viscous solution, (b) inviscid solution.

were validated for the range 0< λ< 20 cm, 0 <u∗ < 1 m s−1, and hence expand the
computational domain in the (λ, u∗)-plane, relative to previous studies.

This expansion leads to the discovery of a new unstable mode. The main conditions
for the appearance of this mode are the simultaneous existence of a shear flow in the
water and a wind intensity above a critical value. A non-vanishing viscosity is also
a prerequisite for the appearance of two modes. From the results of the strong wind
scenarios, we can say that the nature of the generated waves is significantly different
from the nature of waves without the influence of air.

The comparison between the viscous model and the inviscid model at low wind
intensities shows very good agreement in the real part of the eigenvalue; however,
the comparison of the imaginary part is less agreeable in this case. A comparison for
stronger winds shows total disagreement between the two models. All these results
lead to the conclusion that the use of the inviscid approximation is problematic at this
range of wavelengths, and it will be interesting to see the comparison at wavelengths
of the order of ∼ 1 m.

This research is part of an MSc thesis submitted by A. Z. to the Graduate School
at the Technion – Israel Institute of Technology. The research was supported by
The Israel Science Foundation (Grant 695/04) and by the Fund for Promotion of
Research at the Technion.

Appendix. The test case
In this section we present the analytical solution for the case of linear wind profile

and constant current. The profile has the form:

Ua = U0 + az, Uw = U0. (A 1)

The Orr–Sommerfeld equation is:

iε(f (4) − 2k2f ′′ + k4f ) + k
[
(U − c)(f ′′ − k2f ) − U ′′f

]
= 0, (A 2)
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where εw,a = 1/Rew,a = νw,a/k2
0ω0 is the inverse Reynolds number. Substituting (A 1)

into (A 2) gives:

f (4) − kf ′′
(

2k +
i

ε
(U − c)

)
+ k3f

(
k +

i

ε
(U − c)

)
= 0. (A 3)

Now we can define F � f ′′ − k2f . Hence (A 3) becomes:

F ′′ − k

(
k +

i

ε
(U − c)

)
F = 0, (A 4)

By a transformation of variables, (A 4) is transformed into Airy’s equation.

F ′′(u) − uF (u) = 0, (A 5)

where:

u =

(
iε

ka

)2/3

k

(
k +

i

ε
(U − c)

)
=

k

2
(1 + i

√
3)
( ε

ka

)2/3
(

k +
i

ε
(U − c)

)
. (A 6)

Thus, F (u(z)) is a solution of Airy’s equation. Since it is a second-order equation,
it has two independent solutions. There are a few common pairs of independent
solutions, see Abramowitz & Stegun (1972), Vallee & Soares (2004).

Ai(u), Bi(u)
Ai(u), Ai(ue2πi/3)
Ai(u), Ai(ue−2πi/3)

⎫⎬
⎭ (A 7)

Since the solution and its derivative must vanish at infinity, We choose the pair
Ai(u), Ai(ue−2πi/3), so that:

F = f ′′ − k2f = c1Ai(u) + c2Ai(ue−2πi/3) (A 8)

At this stage, we must look at the asymptotic behaviour of the independent solutions
for large values of |z| in order to be sure that we satisfy the boundary condition at
infinity. As mentioned in Vallee & Soares (2004), the Airy function Ai blows up for
large |u| outside the section | arg(u)| < π/3. Hence, we should look at the behaviour
of arg(u) at infinity z → ±∞.

arg(u) =

⎧⎪⎨
⎪⎩

5π

6
+

arg(k)

3
, z → ∞,

−π

6
+

arg(k)

3
, z → −∞,

(A 9)

arg(ue−2πi/3) =

⎧⎪⎨
⎪⎩

π

6
+

arg(k)

3
, z → ∞,

−5π

6
+

arg(k)

3
, z → −∞,

(A 10)

If we take Re(k) > 0 ⇒ | arg(k)| < π/2 we can be sure that:

| arg(u)| < π
3
, z → −∞, (A 11)

| arg(ue−2πi/3)| < π
3
, z → ∞, (A 12)

Thus in the air:

Fa = f ′′
a − k2fa = c1Ai(ue−2πi/3). (A 13)
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Solving the above second-order equation:

fa = c1

[
ekz

2k

∫ z

0

e−ktAi(ue−2πi/3)dt − e−kz

2k

∫ z

0

ektAi(ue−2πi/3)dt

]
+ c2e

−kz + c3e
kz. (A 14)

Since we require decay at infinity:

c1

2k

∫ ∞

0

e−ktAi(ue−2πi/3)dt + c3 �
c1

2k
p1(k, c, a, U0) + c3 = 0, (A 15)

c3 = − c1

2k
p1. (A 16)

For the case of constant current in the water Uw ≡ U0, the solution for the water will
be:

fw = b1exp(kz) + b2exp(±

√
k

(
k +

i

ε
(U0 − c)

)
z) � b1exp(kz) + b2exp(Bz). (A 17)

If Re(B) < 0, we must choose e−Bz as the second independent solution; and if
Re(k) < 0, we must choose e−kz instead of ekz.
And the derivatives are:

f ′
w = kb1e

kz + Bb2e
Bz, (A 18)

f ′′
w = k2b1e

kz + B2b2e
Bz, (A 19)

f ′′′
w = k3b1e

kz + B3b2e
Bz. (A 20)

At the interface it reduces to:

fw(0) = b1 + b2, f ′
w(0) = kb1 + Bb2,

f ′′
w(0) = k2b1 + B2b2, f ′′′

w (0) = k3b1 + B3b2.

}
(A 21)

In order to find the unknown coefficients, we must apply the boundary conditions
at the interface. In these boundary conditions the derivatives of f play a main role.
Thus, we must calculate fw,a(0), f ′

w,a(0), f ′′
w,a(0), f ′′′

w,a(0). This must be done carefully,
using Leibniz’s rule for differentiation of integrals.

d

dz

∫ f2(z)

f1(z)

g(t)dt = g(f2(z))f
′
2(z) − g(f1(z))f

′
1(z). (A 22)

Hence:

f ′
a = c1

[
ekz

2

∫ z

0

e−ktAi(ue−2πi/3)dt +
e−kz

2

∫ z

0

ektAi(ue−2πi/3)dt

]
− kc2e

−kz + kc3e
kz,

(A 23)

f ′′
a = c1

[
kekz

2

∫ z

0

e−ktAi(ue−2πi/3)dt − ke−kz

2

∫ z

0

ektAi(ue−2πi/3)dt

+ Ai(ue−2πi/3)

]
+ k2c2e

−kz + k2c3e
kz (A 24)

f ′′′
a = c1

[
k2ekz

2

∫ z

0

e−ktAi(ue−2πi/3)dt +
k2e−kz

2

∫ z

0

ektAi(ue−2πi/3)dt

+ Ai′(ue−2πi/3)eπi/6

(
ka

ε

)1/3 ]
− k3c2e

−kz + k3c3e
kz (A 25)
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It will be helpful to use the following notation:

u(0) = u0 =

(
iε

ka

)2/3

k

(
k +

i

ε
(U0 − c)

)
, (A 26)

Ai(u(0)e−2πi/3) = Ãi0 = Ai(u0e
−2πi/3), (A 27)

Ai(u(0)) = Ai0 = Ai(u0). (A 28)

Now we can present the derivatives at the interface:

fa(0) = c2 + c3, f ′
a(0) = k(c3 − c2), f ′′

a (0) = c1Ãi0 + k2(c2 + c3),

f ′′′
a (0) = c1Ãi

′
0e

πi/6
(

ka
ε

)1/3
+ k3(c3 − c2),

}
(A 29)

fw(0) = b1 + b2, f ′
w(0) = kb1 + Bb2,

f ′′
w(0) = k2b1 + B2b2, f ′′′

w (0) = k3b1 + B3b2.

}
(A 30)

Writing the boundary condition at the interface:

fa(0) = fw(0) = c − U0 ⇒ c2 + c3 = b1 + b2 = c − U0, (A 31)

f ′
w(0) + U ′

w(0) = f ′
a(0) + U ′

a(0) ⇒ k(c3 − c2) = kb1 + Bb2 − aa, (A 32)

µ(f ′′
a (0) + k2fa(0) + U ′′

a (0)) = (f ′′
w(0) + k2fw(0) + U ′′

w(0))

⇒ µ(c1Ãi0 + k2(c2 + c3) + k2(c2 + c3)) = k2b1 + B2b2 + k2(b1 + b2)

⇒ µc1Ãi0 − k2b1 − B2b2 = k2(c − U0)(1 − 2µ). (A 33)

We obtain a system of five linear equations with five unknowns c1, c2, c3, b1, b2. After
solving the system we have the value of the functions fa, fw and their derivatives at
the interface. Note that all of these constants are functions of the specific case which
is defined by (Ra, Rw, a, U0) and the value of ω, k. After we obtain these values, we
can substitute them into the dynamic boundary condition and solve it, in order to
find ω, k.

kf ′
w(c − U0) + kfwU ′

w + iR−1
w (3k2f ′

w − f ′′′
w ) − F

= ρ
[
kf ′

a(c − U0) + kfaU
′
a + iR−1

a (3k2f ′
a − f ′′′

a ) − F
]
+ Wk3 at z = 0 (A 34)

In practice, we are unable to obtain a simple dispersion relation for this case, thus
in order to calculate it we must do it numerically. The value of the constant p1 (see
equation (A 15)) can be calculated numerically and then the dispersion equation will
be solved by a numeric solver for a nonlinear equation.
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