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Abstract. We calculate the Shannon entropy rate of a binary Hidden Markov Process (HMP),
of given transition rate and noise ε (emission), as a series expansion in ε. The first two orders
are calculated exactly. We then evaluate, for finite histories, simple upper-bounds of Cover
and Thomas. Surprisingly, we find that for a fixed order k and history of n steps, the bounds
become independent of n for large enough n. This observation is the basis of a conjecture,
that the upper-bound obtained for n ≥ (k + 3)/2 gives the exact entropy rate for any desired
order k of ε.

1 Introduction and Statement of Results

Let X = {Xn}n≥1 be a first order stationary Markov process over a binary alphabet,
with a symmetric transition matrix P ≡ Pab given by P00 = P11 = p = 1 − P01 =
1− P10, where Pab = Pr(Xn = b|Xn−1 = a), ∀a, b ∈ {0, 1}. Consider also a Bernoulli
(binary i.i.d.) noise process E = {En}n≥1, independent of X, with Pr(En = 1) = ε =
1− Pr(En = 0). Finally, define the process Y = {Yn}n≥1 by :

Yn = Xn ⊕ En, ∀n ∈ N (1)

Where ⊕ denotes addition modulo 2 (exclusive-or). We denote a vector of variables
Zi, . . . Zj by Zj

i . Also, Zj
i (k) denotes the vector Zi, . . . , Zk, . . . , Zj where Z denotes

complement of Z. Uppercase denote r.v.s, and lower case denote their realizations.
When possible, we omit the latter. (For example, Pr(Zj

i ) means Pr(Zj
i = zj

i )).
The process Y can be viewed as a noisy observation of X, through a binary symmetric
channel. It is one of the simplest examples of a Hidden Markov Process (HMP),
and is determined completely by the choice of parameters p and ε. More generally,
HMP’s have a wide variety of applications, in various fields such as speech recognition,
machine learning, signal processing, bioinformatics etc. For comprehensive reviews of
the literature on HMP’s see [3] and [13].
Despite the simplicity of their definition, some very basic questions on the properties
of HMP’s are still unsolved. Typical examples are the filtering and denoising errors,
which are studied, for example, in [6] and [11]. In this paper we concentrate on the
Shannon entropy rate of the process, which is also not known to date ([3],[5]). The
entropy rate is defined by :

H(Y ) ≡ H(p, ε) = lim
n→∞

1

n
E[− log Pr(Y n

1 )] (2)



For simplicity, we use the natural logarithm here, thus the entropy is measured in
NATS. Though H(p, ε) has no known closed form, three recent papers ([5],[11],[12])
give the asymptotic behavior of H in several regimes, (for a general binary transition
matrix P ). This paper extends the work of [5], dealing with the small noise regime
(termed ’high SNR’) ε → 0. We wish to find the expansion of H in ε around zero,
when p is treated as a constant parameter (we assume p 6= 0, 1 1) . Thus, denoting :

Hk ≡ Hk(p) =
1

k!

∂kH(p, ε)

∂εk
|(p,0), ∀k ≥ 0 (3)

H is given by :

H(p, ε) =
∞∑

k=0

Hk(p)εk (4)

First, in Section 2, we give a method for exact computation of any order of the
entropy, and demonstrate it for computing H1, H2. Our method is based on low-
temperature/high-field expansion from statistical mechanics. Next, in Section 3, we
use the known bounds [1] on the entropy rate:

c(n) ≡ H(Yn|X1, Y
n−1
1 ) ≤ H(Y ) ≤ H(Yn|Y n−1

1 ) ≡ C(n), ∀n ≥ 1 (5)

which are known to converge to the entropy rate ([1]), i.e. :

lim
n→∞

c(n) = lim
n→∞

C(n) = H(Y )

Using the upper-bounds C(n), we can get an alternative method for computing Hk;
rather than computing H(Y n

1 ), we evaluate directly the conditional entropies C(n) =
H(Yn|Y n−1

1 ) up to some given order. We demonstrated this for the first order term
H1. We continue in Section 3 to study the upper-bounds C(n), by computing them
explicitly ([10]) for n ≤ 8, and expanding C(n) as a power series in ε,

C(n) =
∞∑

k=0

C
(n)
k εk (6)

This led to the discovery of rather surprising and interesting behavior of the coeffi-
cients C

(n)
k : they become independent of n for n ≥ k+3

2
. Since C(n) → H as n →∞, it

follows that C
(n)
k → Hk,∀k ∈ N. This behavior was tested to be true for k = 0, 1, ..., 11

and k+3
2
≤ n ≤ 8. Therefore we pose the following :

Conjecture 1
k ≤ 2n− 3 ⇒ C

(n)
k = Hk, ∀k, n ∈ N (7)

Note that we have computed C
(n)
k also for a non-symmetric transition matrix, for the

first few orders, up to k = 7 and n = 5 and C
(n)
k also becomes independent of n for

n ≥ k+3
2

. In particular, the first order C
(n)
1 becomes equal to the exact function of the

transition probabilities H1(p1, p2), which is computed in [5].This function diverges as

1 For p 6= 0, 1 the entropy is an analytic function of ε at ε = 0; See Sec. 2



one of the transition probabilities approaches 1, in agreement with [12].

Furthermore, we found that the C
(n)
k share some common properties as functions of p.

Assuming Conjecture 1 is valid, the Hk’s share the same properties (which we checked
for k ≤ 11 ); we express these as the following :
Conjecture 2 Let λ = 1−2p be the 2nd eigenvalue of the transition matrix P . Then,
for k ≥ 3 we have :

Hk =
24(k−1)

∑dk

j=0 aj,kλ
2j

k(k − 1)(1− λ2)2(k−1)
(8)

where dk ∈ N are constants and the aj,k ∈ Z satisfy the relation
∑dk

j=0 aj,k = (−1)k−1.
In Section 4 we discuss our results, and offer several future directions.

2 Exact Derivation of the First Orders

Here we show how to compute H(Y n
1 ) to any finite order in ε. We use the Markovian

property to write Pr(Y n
1 ) in the form :

Pr(Y n
1 ) =

∑
Xn

1

Pr(Xn
1 , Y n

1 ) =
∑
Xn

1

Pr(Xn
1 ) Pr(Y n

1 |Xn
1 ) =

∑
Xn

1

{Pr(X1)
n−1∏
i=1

Pr(Xi+1|Xi)
n∏

i=1

Pr(Yi|Xi)} (9)

We now use the following change of variables : τi = (−1)Xi , σi = (−1)Yi . Since the
process is stationary, we also have Pr(X1 = 1) = 1

2
. Thus, eq. 9 becomes ([9],[14]) :

Pr(Y n
1 ) = A0A1

∑
τn
1

eJ
Pn−1

i=1 τiτi+1+K
Pn

i=1 τiσi (10)

where J and K are related to p and ε, respectively, by :

e−2J =
p

1− p
, e−2K =

ε

1− ε
(11)

and A0, A1 are normalizing constants given by :

A0 =
(eJ + e−J)1−n

2
, A1 = (eK + e−K)−n (12)

In statistical mechanics the form of eq. (10) is referred to as the one-dimensional
Ising model [8], and the problem at hand is related to the Ising model in a quenched
random field. The leading orders of H(Y n

1 ) in ε are found by a low-temperature/high-
field expansion [2]. Non-analyticity of functions such as H(p, ε) can occur only at phase
transitions. In one dimensional systems with short range interactions, at equilibrium,
phase transitions can occur only at p = 0 or 1.



In order to compute the first and second orders in ε we take only realizations τn
1 ’s

which are different in at most two bits from σn
1 in the summation in eq. (10). Using

the low-temperature/high-field expansion, we obtain the following result :

H(Y n
1 ) = −

∑
Y n
1

Pr(Y n
1 ) log Pr(Y n

1 ) = n[H0 + H1ε + H2ε
2 + O(ε3)] + D (13)

The term D = O(1) (in n). The coefficients Hk are given by :

H0 = −p log p− (1− p) log(1− p)

H1 = 2(1− 2p) log

[
1− p

p

]

H2 = −2(1− 2p) log

[
1− p

p

]
− (1− 2p)2

2p2(1− p)2
(14)

Although quadratic terms in n appear in intermediate steps of the calculation, they
cancel out and we are left with a linear dependency of the entropy on n. This property
is true when expanding to any order of ε, resulting from the fact that the entropy
per-bit converges to a constant.
Any higher orders k can be calculated in a similar way, by allowing in the sum eq.
(13) realizations τn

1 that differ from the fixed σn
1 in k bits or less. The number of

terms to be calculated is, however, related to the number of partitions of k, which is
exponential in

√
k ([4]).

Notice that taking i.i.d. source for the X’s, with Pr(X = 1) = p, instead of a
Markovian source, gives the same zero-order term, but the first order becomes (1 −
2p) log 1−p

p
= H1

2
. Thus, for small noise, the noise effect on the entropy is roughly

doubled.

3 Derivation using Upper-Bound of Cover and Thomas

For a given value of n, the upper-bound C(n) can be explicitly written as a function
of p and ε, using the fact :

C(n) = H(Yn|Y n−1
1 ) = H(Y n

1 )−H(Y n−1
1 )

We can express H(Y n
1 ) as a function of p and ε by using eq. (9) to express Pr(Y n

1 ) in
terms of the original variables :

Pr(Y n
1 ) =

∑
Xn

1

(1− p)
Pn

i=1 1Xi=Xi+1pn−Pn
i=1 1Xi=Xi+1 (1− ε)

Pn
i=1 1Xi=Yi εn−Pn

i=1 1Xi=Yi (15)

Thus, Pr(Y n
1 ) is given explicitly as a polynomial in p and ε with maximal degree n.

Collecting its terms gives :

Pr(Y n
1 ) =

n∑
i=0

Qi(Y
n
1 )εi (16)



where Qi = Qi(Y ) are functions of p only.
Substituting this expansion in the definition eq. (2) of H, and expanding log Pr(Y n

1 )

according to the Taylor series log(a + x) = log(a)−∑∞
k=1

(−x)k

kak , we get

H(Y n
1 ) = −

∑
Y

[
n∑

i=0

Qi(Y
n
1 )εi)

][
log Q0(Y

n
1 )−

L∑

k=1

(−∑n
i=1 Qi(Y

n
1 )εi)k

kQ0(Y n
1 )k

]
+ O(εL+1)

(17)
For L = 2 we have

H(Y n
1 ) = −

∑
Y

{
Q0(Y

n
1 ) log Q0(Y

n
1 )+ [Q1(Y

n
1 )(1 + log Q0(Y

n
1 ))] ε+

[
Q1(Y

n
1 )2

2Q0(Y n
1 )

+ Q2(Y
n
1 )(1 + log Q0(Y

n
1 ))

]
ε2

}
+ O(ε3) (18)

When extended to terms of order εk, this equation gives us precisely the expansion of
the upper-bound C(n) up to the k − th order.
The zeroth and first order terms can be evaluated analytically; beyond first order,
we can compute the expansion of H(Y n

1 ) symbolically (using maple), for any finite n,
as a function of p and ε (the computation we have done is exponential in n, but the
complexity can be improved).

3.1 Derivation of First Order

We use now the upper-bound C
(n)
1 , as an alternative method for obtaining the first

order term in (18) :

∂H(Y n
1 )

∂ε
|(p,0) = −

∑
Y

Q1(Y
n
1 )[1 + log Q0(Y

n
1 )] (19)

But, using eq. (15) :

Pr(Y ) =
∑
X

Pr(X, Y ) = Pr(X = y, Y ) +
n∑

i=1

Pr(X = y(i), Y ) + O(ε2) =

(1− nε) Pr(X = y) + ε

n∑
i=1

Pr(X = y(i)) + O(ε2) =

Pr(X = y) +

[
−n Pr(X = y) +

n∑
i=1

Pr(X = y(i))

]
ε + O(ε2) (20)

So : ∑
y

Q1(y) =
∑

y

[−n Pr(X = y) +
n∑

i=1

Pr(X = y(i))] = −n + n = 0 (21)



Using (3) and (19) we get :

C
(n)
1 =

∑

Y n+1
1

Q1(Y
n+1
1 ) log Q0(Y

n+1
1 )−

∑
Y n
1

Q1(Y
n
1 ) log Q0(Y

n
1 ) (22)

In order to prove that C
(n)
1 is constant, independent of n, we need a finer definition

of the orders, which is given by :

Pr(Xn = yn, Y n
1 ) =

n∑
i=0

Q0
i (Y

n
1 )εi, Pr(Xn = yn, Y

n
1 ) =

n∑
i=0

Q1
i (Y

n
1 )εi (23)

Thus, Q0
i (Q1

i ) is the i-th order of the fraction of Pr(Y n
1 ) for which the last bit is

equal (different) to the source bit. Clearly, Q0
i + Q1

i = Qi, ∀i ∈ N. Using the above
definitions, and noting that Q1

0 ≡ 0 (thus Q0
0 = Q0), we get a relation between the

terms for n and n + 1 bits :

Pr(Y n
1 , Yn+1 = yn) = ((1− p)(1− ε) + pε)(Q0(Y

n
1 ) + εQ0

1(Y
n
1 )) + (p(1− ε)+

(1− p)ε)εQ1
1(Y

n
1 ) = (1− p)Q0(Y

n
1 ) + ε[(2p− 1)Q0(Y

n
1 ) + (1− p)Q0

1(Y
n
1 )+

pQ1
1(Y

n
1 )] + O(ε2) (24)

And similarly :

Pr(Y n
1 , Yn+1 = yn) = pP 0

0 (Y n
1 ) + ε[(1− 2p)Q0(Y

n
1 )+

pQ0
1(Y

n
1 ) + (1− p)Q1

1(Y
n
1 )] + O(ε2) (25)

By substituting in eq. (22), we can verify that :

C
(n)
1 =

∑
Y n
1

{
[(2p− 1)Q0(Y

n
1 ) + (1− p)Q0

1(Y
n
1 ) + pQ1

1(Y
n
1 )] log((1− p)Q0(Y

n
1 ))+

[(1− 2p)Q0(Y
n
1 ) + pQ0

1(Y
n
1 ) + (1− p)Q1

1(Y
n
1 )] log(pQ0(Y

n
1 ))

}

−
∑
Y n
1

(Q0
1(Y

n
1 ) + Q1

1(Y
n
1 )) log Q0(Y

n
1 ) =

∑
Y n
1

{
[(2p− 1)Q0

0(Y
n
1 ) + (1− p)Q0

1(Y
n
1 ) + pQ1

1(Y
n
1 )] log(1− p)+

[(1− 2p)Q0(Y
n
1 ) + pQ0

1(Y
n
1 ) + (1− p)Q1

1(Y
n
1 )] log p

}
=

((1− p) log p + p log(1− p))
∑
Y

Q1
1(Y

n
1 )+



(p log p + (1− p) log(1− p))
∑
Y

Q0
1(Y

n
1 )− (2p− 1) log

p

1− p

∑
Y

Q0(Y
n
1 ) (26)

Now, noting that :

1 =
∑
Y

Q0
0(Y ) =

∑
Y

Q1
1(Y ) = 1−

∑
Y

Q0
1(Y )

and substituting in 26, gives :

C
(n)
1 = 2(1− 2p) log

1− p

p
(27)

which is identical to H1 in eq (14).

3.2 Higher Order Terms

Symbolic computation of higher order terms yielded the same independence of n for
large enough n, as proved above for k = 1. For example, computing C

(n)
2 we found

that its value for n = 3, 4, ..., 11 is independent of n and given by the exact H2 of eq.
(14). Similarly, C

(n)
3 settles, for n ≥ 3, at the value denoted by H3 in the Appendix,

and so on.
The first orders up to H11 are given in the Appendix, as functions of λ = 1− 2p, for
better readability. The values of H0, H1 and H2 coincide with the results that were
derived rigorously from the low-temperature/high-field expansion, thus giving us a
clue for postulating Conjecture 1.
Interestingly, the nominators have a simpler expression when considering them as a
function of λ, which is the 2nd eigenvalue of the Markov transition matrix P . Note
that only even powers of λ appear. Another interesting observation is that the free

element in [p(1 − p)]2(k−1)Hk (when treated as a polynomial in p), is (−1)k

k(k−1)
, which

might suggest some role for the function log(1+ ε
[2p(1−p)]2

) in the first derivative of H.
All of the above observations are summarized in writing Conjecture 2.

4 Discussion

We have shown a method for calculating arbitrary orders of the expansion of the
entropy rate in the noise variable for binary HMPs. A practical issue concerns the
radius of convergence R(p) of the series (4). This topic is under current study; we have
shown that R(p) << 1 for small p and increases with p [15]. The validity of Conjecture

1 on the upper-bounds C
(n)
k settling to a fixed value for large enough n needs to be

better understood, as it might reveal new insights on the model. Another direction
for future research is looking for more general HMPs , with arbitrary transition and
omission matrices, for which even the first order in ε are not given by the upper-
bounds. Another interesting regime, not addressed in [5] and [11] is p → 0, with ε
fixed. This delicate limit is under consideration and differs from the situation (ε → 0)
discussed here, which gives further evidence for the non-symmetric character of the
function H with respect to the parameters p and ε. Needless to say, the ultimate goal



is to find a closed form expression for the function H(p, ε) (or to prove that such
expression does not exists.) Other subjects of interest are the index of coincidence for
two independent identical HMPs, and the Kullback-Leibler divergence-rate between
the Markov process X and its noisy observation Y ; both properties seem to relate to
the entropy rate. An analogue of Conjecture 1 holds (at least for small n and k) also
for higher order HMPs, and will be addressed in [15].
Note that Conjecture 1, if true, may be used for bounding the error in the approx-
imation using the upper-bounds. Since we can assume ε ≤ 1

2
, we get that the error

in the n − th term is no more that 2−2nC(p), where the constant can be viewed as
function of λ, which, not surprisingly, relates to the mixing time of the Markov chain.
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Appendix

Orders three to eleven, as function of λ = 1− 2p. (Orders 0− 2 are given in eq. 14) :

H3 =
−16(5λ4 − 10λ2 − 3)λ2

3(1− λ2)4

H4 =
8(109λ8 + 20λ6 − 114λ4 − 140λ2 − 3)λ2

3(1− λ2)6

H5 =
−128(95λ10 + 336λ8 + 762λ6 − 708λ4 − 769λ2 − 100)λ4

15(1− λ2)8

H6 = 128(125λ14 − 321λ12 + 9525λ10 + 16511λ8 − 7825λ6−
17995λ4 − 4001λ2 − 115)λ4/15(1− λ2)10

H7 = −256(280λ18 − 45941λ16 − 110888λ14 + 666580λ12 + 1628568λ10−

270014λ8 − 1470296λ6 − 524588λ4 − 37296λ2 − 245)λ4/105(1− λ2)12

H8 = 64(56λ22 − 169169λ20 − 2072958λ18 − 5222301λ16 + 12116328λ14+

35666574λ12 + 3658284λ10 − 29072946λ8 − 14556080λ6−
1872317λ4 − 48286λ2 − 49)λ4/21(1− λ2)14

H9 = 2048(37527λ22 + 968829λ20 + 8819501λ18 + 20135431λ16 − 23482698λ14−

97554574λ12 − 30319318λ10 + 67137630λ8 + 46641379λ6 + 8950625λ4+

495993λ2 + 4683)λ6/63(1− λ2)16

H10 = −2048(38757λ26 + 1394199λ24 + 31894966λ22 + 243826482λ20+

571835031λ18 − 326987427λ16 − 2068579420λ14 − 1054659252λ12+

1173787011λ10 + 1120170657λ8 + 296483526λ6 + 26886370λ4+



684129λ2 + 2187)λ6/45(1− λ2)18

H11 = 8192(98142λ30 − 1899975λ28 + 92425520λ26 + 3095961215λ24+

25070557898λ22 + 59810870313λ20 − 11635283900λ18 − 173686662185λ16−
120533821070λ14 + 74948247123λ12 + 102982107048λ10 + 35567469125λ8+

4673872550λ6 + 217466315λ4 + 2569380λ2 + 2277)λ6/495(1− λ2)20


