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Abstract

One often asks what is ”the great problem of turbulence” so one can solve it and get a Nobel

prize. These lecture notes for 8-hour course do just that adding as a bonus the formulation of a

related Milennium problem and one for Fields medal (for mathematically oriented and deprived of

the Nobel prize). No prior knowlwdge of fluids is required.

FLUIDS AND FLOWS

We deal with continuous media where matter may be treated as homogeneous in structure.

The term fluid means that resistance cannot prevent deformation from happening because

the resisting force vanishes with the rate of deformation. With patience, anything can be

deformed. Therefore, whether one treats the matter as a fluid or a solid depends on the time

available for observation. As the prophetess Deborah sang, ‘The mountains flowed before

the Lord’ (Judges 5:5). The ratio of the relaxation time to the observation time is called

the Deborah number. The smaller the number the more fluid the material.

Fluid mechanics is the macroscopic study of two conservation laws, mass and momentum.

Mass conservation is expressed as a continuity equation

∂ρ

∂t
= −∂k (ρvk) . (1)

Here v is the fluid velocity, ρ is density Translation invariance brings momentum conser-

vation. The time derivative of the momentum density is the divergence of the momentum

flux:
∂ρvi
∂t

= −∂k (ρvivk − Pδik − νρ∂kvi) . (2)

This is the Navier-Stokes equation named after the first and last persons who derived it.

The first term describes the momentum transport by the flow. The two other terms in the

right-hand side describe stresses. The pressure P plays the role of the potential energy of

interaction between fluid particles, so its gradient is the normal force per unit area. The

last term describes the tangential force due to viscous friction; ν is the kinematic viscosity

which is the diffusivity of momentum (estimated for gases as the molecular velocity times

the mean free path). The diffusive flux of momentum is not proportional to the gradient

of momentum (as the flux of any other substance) but to the gradient of velocity only. In

other words, density gradient does not cause any friction and does not bring momentum
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diffusion in a uniform flow; that is the medium is in thermal equilibrium (say, in a gravity

field) absent any velocity gradient.

Both (2) and (1) contain velocity gradients which are thus assumed finite. That corresponds to

a continuous flow where the trajectories of fluid particles fo not intersect. Indeed, the equation for

the distance vector between two fluid particles, dRi/dt = δvi(R) has a unique solution if the vector

field is Lipshits, that is δvi(R) goes to zero with R not slower than linearly. One of the Milennium

problems in Mathematics is to establish whether finite velocity gradient could turn infinite in a

finite time. As we shall see below, turbuence statistics looks like fluid trajectories could stick and

split and the velocity field is statistically non-Lipshits. That by itself does not guarantee finite-time

singularity, since the probability of ∇v could go to zero when |∇v| → ∞, just too slow so that

some moments are infinite.

In d dimensions, there are d + 2 variables but only d + 1 equations in (1,2). One needs

to supplement it by a medium-specific equation of state relating P and ρ. We start from

the simplest case of an incompressible fluid of a uniform density and temperature. Does

that mean that we need to consider the pressure uniform too? That would be true only in

thermal equilibrium that is with no flow or uniform flow. Indeed, the continuity equation

in this case is reduced to div v = 0. Applying div to (2), we obtain div (v∇)v = ∆P .

Pressure inhomogeneeity is due to deviations from thermal equilibrium caused by the ve-

locity gradients. The nonlocality of the inverse Laplace operator means that the pressure

in the whole space is instantenously adjusted to any local velocity change. This is because

incompressibility presumes that we took the speed of sound (wave of density and pressure

changes) to infinity or assumed v ≪ c. Now we need to remember that this is a singular

limit which diminished the order of time derivative in our system from second to first. This

is also clear from writing the operator of the wave equation as c−2∂2t −∆.

For incompressible fluid, we write

dv

dt
=
∂v

∂t
+ (v∇)v = −∇P

ρ
+ ν∆v + f . (3)

We use both Eulerian descriprion based on fields (like electromagnetic or field theory) and

Lagrangian description based on considering fluid particles. Apparently, d/dt is a Lagrangian

derivative, while ∂/∂t is an Eulerian one.

Note that there is no energy conservation because the friction terms in (2,3) break time
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reversibility and provide for energy dissipation. For example, (3) gives

d

dt

∫
v2 dr = −ν

∫ (
∂vi
∂xk

+
∂vk
∂xi

)2

dr . (4)

Simplest flow. Let us see how well (3) describes reality. Taking for water ν = 0.01 cm2/sec

and the external force per unit mass to be gravity, f = g, let us apply (3) to the simplest

stationary flow of a fluid sliding along the plane inclined with the angle α. Directing x-axis

along the flow and the plane, and z-axis perpendicular to them, we write two components

of (3):

ν∂2zv = −g sinα , ∂zP = −g cosα .

Imposing zero velocity at the bottom z = 0 and zero friction at the surface z = h we obtain

v = z(2h− z)
g sinα

2ν
. (5)

With g ≈ 103cm/sec2, this is expected to describe puddles, creeks and rivers, as well as

horizontal channel and pipe flows driven by a pressure gradient (replacing g sinα by ∇P/ρ).

Let’s see how well it does the job. Taking for a puddle h = 0.1 cm and α = 10−2 we obtain

on the surface reasonable v = 5 cm/sec. Taking conservately for a river on a large plane (like

Missisipi or Volga) α ≃ 100m/1000 km ≃ 10−4 and h = 10m we obtain v = 5 ·108cm/sec =

5 · 106m/sec. When we are wrong by a factor 106, it is a chance to get one million times

smarter.

The huge diference between the case where we succeeded and the one where we failed so

miserably must be characterized by a dimensionless parameter. As always, it must be the

ratio of the terms (and forces) in our equation. Indeed, fluid mechanics is essentially a story

of the struggle between the inertia that tries to keep the flow and the friction that tries to

stop it. The inertia is characterized by the nonlinear term (v∇)v ≃ v2/h and the friction

by ν∆v ≃ νv/h2. Their ratio is called the Reynolds number

Re =
vh

ν
. (6)

Wait, but the nonlinear term is identically zero for our solution (5) because v ⊥ ∇v. Why

then the solution is realized for a puddle but is not realized for a river? We suspect that in

the second case it must be unstable, but with respect to what type of perturbation? Let us

step closer to the real world and take into account that the bottom is not an ideal smooth
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plane. Any misalignment by a small angle β makes Re = βvh/ν which is 50β for a puddle

and 5 ·1011β for a river. It is then clear that even microscopic bottom inhomogeneities must

change the river flow everywhere. Indeed, everyday experience suggests that the river flow

must be turbulent. But how it affects the resistance which must balance gα drive?

GUESSING THE RIGHT RESISTANCE FORCE

What mean flow velocity we expect for a turbulent river? We expect that turbulence

transports momentum to the bottom much faster than molecular diffusion. Replacing (after

Prandtl) ν by the ”turbulent viscosity” νT ≃ vh we obtain a force balance gα ≃ v2/h which

gives a reasonable estimate:

v ≃
√
gαh or v ≃

√
h∇P/ρ . (7)

For a river it gives v ≃ 10 cm/sec. By a similar argument Newton estimated the resistance

(drag) force experienced by a body of a size h moving with the velocity u. That force must

be the momentum impacted to the fluid per unit time. The volume of the fluid we put in

motion in one second is h2v and the momentum it gets per unit volume is ρv so that the

force is as follows:

F = Cρu2h2 . (8)

Newton assumed that the dimensionless (so-called friction) factor C is determined solely by

the body shape.

Viscosity enters neither (7) nor (8) even though it is clear that there is no resistance

without friction. Indeed, the resistance force is supposed to change sign with v while our

”resistance” is proportional to v2. It is clear that viscosity must dominate in the limit

Re → 0 when the force is F ≃ ρνhu so that the friction factor must depend on Re, in

particular, C(Re) ∝ 1/Re at Re → 0. What Newton wants us to believe is that C(Re)

saturates to a constant at Re→ ∞.

From the engineering viewpoint, the resistance is the central problem of turbulence. From

the physics perspective, the most interesting part of it is what we call anomaly: when the

symmetry-breaking factor goes to zero, the effect of symmetry-breaking has a finite limit.

In this case (of the so-called dissipative anomaly), the symmetry is time-reversibility, the

symmetry-breaking factor is viscosity and the effect is finite resistance in the inviscid limit.
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How can we understand its mechanism? That was done by Prandtl (1905) who discovered

the phenomenon of separation and wake creation. Consider, for instance, the flow around a

cylinder or sphere. The flow must have up-down symmetry, so that the points on the axis

(forward D and backward C) are stagnation points. Denote A the point of the sphere farthest

from the symmetry axis. On the upstream half DA, the fluid particles accelerate and the

pressure decreases. Indeed, the energy of a fluid particle (that is per unit mass), v2/2+P/ρ

must be conserved without a friction. On the downstream part AC, the reverse happens,

that is every particle moves against the pressure gradient. A small viscosity changes pressure

only slightly across the boundary layer. Indeed, if the viscosity is small, the boundary layer

is thin and can be considered locally flat. Denote u the velocity right outside the boundary

layer. In the boundary layer, at z < ν/u, no-slip condition prescribes vx ≃ u2z/ν and

∂vx/∂x ≃ u2z/νR ≃ ∂vz/∂z. The normal velocity is then vz ≃ u2z2/νR, which gives the

pressure gradient, ∂p/∂z = −ρ(v∇)v − η∆vz ≃ ρu2/R, so that the pressure change across

the layer is ρu2/Re that is small when Re is large. In other words, the pressure inside the

boundary layer is almost equal to that in the main stream, which is the pressure of the ideal

fluid flow. But the velocities of the fluid particles that reach the point A are lower in a

viscous fluid than in an ideal fluid because of viscous friction in the boundary layer. Then

those particles have insufficient energy to overcome the pressure gradient downstream. The

particle motion in the boundary layer is stopped by the pressure gradient before the point C

is reached. The pressure gradient then becomes the force that accelerates the particles from

the point C upwards, producing separation. See more in Section 1.5.2 in Fluid Mechanics

by Falkovich.

B

CD

C

A A

FIG. 1. Symmetric streamlines for an ideal flow (left) and appearance of separation and a recircu-

lating vortex in a viscous fluid (right).
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Drag with a wake

We can now describe the way Nature resolves reversibility paradox. In the reference

frame of the body, far from it we have a uniform flow (with u, p0), the body adds v, p′. Let

us relate the momentum flux through a closed distant surface to the force acting on the

body assuming the existence of the wake. The total momentum flux transported by the

fluid through any closed surface is equal to the rate of momentum change, which is equal to

the force acting on the body:

Fi =

∮
Πikdfk =

∮
(p0 + p′)δik + ρ(ui + vi)(uk + vk) dfk (9)

= (p0δik + ρuiuk)

∮
dfk + ρui

∮
vk dfk +

∮
[p′ + ρ(ukvi + vivk) dfk.

Here df is the vector normal to the surface and equal to an area element. In the last line,

the first integral vanishes because the surface is closed and the second one because of mass

conservation: ρ
∮
vk ∂fk = 0. Far from the body v ≪ u and we neglect terms quadratic in v:

Fi ≈
(∫ ∫

X0

−
∫ ∫

X

)
(p′δix + ρuvi) ∂y∂z. (10)

Assuming that u is along x, the drag is the x component of (10):

Fx =

(∫ ∫
X0

−
∫ ∫

X

)
(p′ + ρuvx) ∂y∂z.

Outside the wake we have potential flow where the Bernoulli relation, p + ρ|u + v|2/2 =

p0 + ρu2/2, gives p′ ≈ −ρuvx so that the integral outside the wake vanishes. Inside the

wake, the pressure is about the same (since it does not change across the almost straight

streamlines, as we argued above but the velocity perturbation vx is much larger than outside,

so that

Fx = −ρu
∫ ∫

wake

vx ∂y∂z. (11)

wake

X

Yu

X0

FIG. 2. Scheme of the wake.
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Force is positive (directed to the right) since vx is negative. The integral in (11) is equal to

the deficit of fluid flux Q through the wake area (i.e. the difference between the flux with

and without the body). The wake breaks the fore-and-aft symmetry and thus resolves the

paradoxes, providing for a non-zero drag in the limit of vanishing viscosity. This justifies

Newton’s intuition about impacting momentum to the fluid.

Resistance of a pipe flow

A straightforward application of the above logic to a mean unidirectional flow of rivers and

pipes is impossible because now we must describe the z-dependence of the mean flow which

must carry the momentum injected by gravity or pressure gradient towards the bottom or

walls to be absorbed there. Let us write the momentum conservation without assuming the

flow unidirectional. Denote the velocity x-component as U(z)+u(z, y, z, t) and z-component

as v(x, y, z, t), where u, v describe turbulent fluctuations. Then the continuity equation for

the x-component of the mean momentum states that the divergence of the momentum flux

τ is equal to the force:

d

dz

(
ν
dU

dz
+ ⟨uv⟩

)
≡ dτ(z)

dz
= −αgh. (12)

Integrating we get τ(z) = τ(0)− αgz. The flux is zero on the river surface or at the center

of a pipe, which gives τ(0) = αgh. Let us now consider the flow close to the solid surface,

that is at z ≪ h, where the momentum flux can be considered independent of z, and denote

v2∗ ≡ τ(0) = αgh. In this region the mean velocity is independent of h and must depend only

on ν, z, v∗. By dimensional reasoning the dependence must have a form U = v∗f(zv∗/ν). The

dimensionless parameter zv∗/ν is the Reynolds number with the scale set by the distance

to the solid boundary. Near the boundary, viscosity absorbs the flux: νdU/dz = αg and

U(z) = αghz/ν. The width of that viscous boundary layer can be estimated requiring the

Reynolds number to be of order unity: l = ν/v∗. Outside of this layer, for z ≫ l, one may

expect viscosity to be unimportant and the flux carried by turbulence. As we cannot yet

develop a consistent theory of such inhomogeneous turbulence (see more in Section below),

let us use plausible arguments. Since there is no momentum flux in a uniform flow, then it

is natural to relate the mean flux to the flow nonuniformity whose simplest characteristics is

the mean velocity gradient, dU/dz. We now assume that the flow must be determined solely
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by v∗ and z at l ≪ z ≪ h. The only dimensionally possible relation is dU/dz ≃ v∗/z, which

gives a logarithmic velocity profile for turbulent boundary layer (Karman 1930, Prandtl

1932):

U(z) ≃ v∗ log(z/l) =
√
αgh log[z(αgh)1/2/ν]. (13)

It is equivalent to the turbulent viscosity argument: τ = v2∗ = νTdU/dz with νT (z) ≃ v∗z.

We used l to make the argument of the logarithm dimensionless since for z ≃ l one must

have U(l) ≃ v∗. One can further illuminate the hypothesis underlying the log law (13) using

so-called overlap argument. The dimensionless quantity U(z)/v∗ must be a function of two

dimensionless arguments, ℓ = z/h and Re = v∗h/ν. Near the wall we expect h to disappear:

U(z)/v∗ → f(ℓRe). Near the center, we expect ν to disappear from the law of the velocity

change: U(h)−U(z) = v∗f1(ℓ). Denote U(h)/v∗ = f2(Re). We now make an assumption that

the two asymptotic regions overlap. In this overlap region we have f(ℓRe) = f2(Re)− f1(ℓ),

which requires all the functions to be logarithmic. Logarithmic turbulent profile is more flat

than parabolic laminar profile, which is natural since turbulence better mixes momentum.

The overlap argument and claim that the momentum flux completely determines the mean

flow in a turbulent boundary layer are curiously similar to assuming inertial interval with

the energy flux determining everything in the cascade picture of homogenous turbulence.

We shall see in the next Section that the cascade picture correctly describes only the third

moment of the velocity statistics, while other moments depend on the large scale. It is not yet

clear whether the Prandtl-Karman theory must be modified in a similar way. Experiments

support logarithmic mean flow profile but show that turbulence statistics depends on h even

at z ≪ h.

We see that (13) corrects (7) by a viscosity-dependent logarithmic factor. That makes

velocity everywhere, even outside of the viscous layer, dependent on viscosity. While this

dependence is very slow and for most cases negligible, conceptually it has dramatic conse-

quences. It tells us that when viscosity goes to zero, the width l of the viscous layer shrinks

to zero but U(l) ≃ v∗ i.e. stays finite. That means that we have an effective slip on the solid

boundary. At any finite z, the velocity U(z) goes to infinity, so that the friction factor goes

to zero at ν → 0 as log−2(hv∗/ν). All this is because we consider the boundary straight and

smooth, which explains the dramatic difference from the flow past a body, where curved

surface provides for separation of the boundary layer and resulting wake provides for a fi-
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nite drag coefficient. It is then reasonable to assume that if the logarithmic decrease of the

friction factor with the Reynolds number takes place, it stops when l is getting comparable

to the size r of the boundary inhomogeneities (experiments support that). When ν < rv∗

one cannot assume the mean flow to be parallel to the solid boundary. Every inhomogeneity

then provides its own wake with a finite drag so that U(r) ≃ v∗, the logarithms saturates at

log(h/r), and the friction factor is getting independent of Re.

We thus see that large-Re wake flow is insensitive while the pipe flow is sensitive to the

surface smoothness. The unsolved question is to what extend the turbulence in the wake is

similar to the turbulence in pipes and channels.

ENERGY CASCADE

We can look at this anomaly not from the viewpoint of momentum loss but from the

viewpoint of energy dissipation. That will allow us to see fluxes in Fourier space rather than

in a real space. Consider a fan circulating air in the room. The power per unit mass can be

estimated as the force (8) times velocity divided by the mass:

ϵ ≃ Fu

ρh3
≃ u3

h
. (14)

This power goes into heat with the rate independent of viscosity. This is less bizarre than it

looks since any shock wave does that. That can be demonstrated using the poor relative of

(3), one-dimensional Burgers equation which describes compressible flows in the reference

frame moving with the sound velocity,

du

dt
=
∂u

∂t
+ uux = νuxx + f(x, t) . (15)

This equation with f = 0 has a shock-wave solution

u(x, t) =
2w

1 + exp[w(x− wt)/ν]
.

At the front moving with velocity w, fluid particles moving from the left with the velocity

2w hit standing particles, stick to them and continue with half-speed due to momentum

conservation. Assuming that such shocks are spaced by the distance L, the mean energy

dissipation rate (per unit mass) is ϵ = L−1ν
∫
u2x = 2w3/3L. As is often in anomalies, saving

one conservation law (momentum) means sacrificing another conservation law (energy).
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But how such viscosity-independent dissipation could happen in an incompressible flow?

One understand the nature of this anomaly using the concept of cascade. This understanding

came from an unexpected perspective: Releasing baloons in a turbulent air, Richardson (in

1926) discovered that the squared distance between two trajectories, R2, grows with time

not linearly (as was expected in that diffusion-dominated period)) but as t3. The ratio

R2/t3 has the dimensionality of ϵ. If R(t) ≃ (ϵt3)1/2, then dR/dt ≃ (ϵt)1/2 ≃ (ϵR)1/3. Since

dR/dt = δv(R), one can make sense of the Richardson data by assuming that the average

velocity difference grows with the distance by the law

δv(R) ≃ (ϵR)1/3 . (16)

That suggests that one can define the energy transfer rate through a given scale R as squared

energy per unit mass, [δv(R)]2, divided by the typical time R/δv(R). Such a transfer rate

is independent of R and equal to the energy dissipation rate, which is equal to the input

power (assuming a steady state):

ϵ ≃ (δv)3

R
. (17)

This corresponds to the energy cascade picture: all the kinetic energy we generate at largest

scale (of the moving body) is transferred without loss through the intermediate scales until

it is dissipated into heat by viscosity. That makes the dissipative anomaly less mysterious:

Cascade acts as a pipe in the Fourier space; when viscosity goes down, the pipe is getting

longer but it still carries the same energy flux. Proving that a steady state exists at the

limit ν → 0 is another nontrivial problem.

Similarly, we can compute the mean cube of the velocity difference per unit length from

the shock wave:

S3(x) = L−1

∫ L/2

−L/2

[u(x+ x′)− u(x)]3dx′ = −8
w3x

L
= −12ϵx . (18)

VELOCITY STATISTICS AND ANOMALOUS SCALING

In our attempts to understand the resistance of fluids, we postulated some form of the

third moment of the velocity difference, (17) and (18), which is related to the energy flux

through scales. The latter was even derived for a particular case of a single shock. Could

we derive these in a more general setting of force-generated turbulence? This can be done
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both for (3) and 15. Let us derive (18) for a generic acoustic turbulence generated by a

large scale random force, whose variance ⟨f(x)f(0)⟩ decays with x on a scale L, which is

much larger than the viscous scale η ≡ ν3/4ϵ−1/4. Denote ϵ = ⟨fu⟩, u1 = u(x1), f1 = f(x1),

∂1 = ∂/∂x1, u1xx = ∂21u1, etc. In a steady state, all time derivatives must be zero including

that of the second moment:

∂

∂t
⟨u1u2⟩ =

〈
u1
(
f2 + νu2xx − u2u2x

)
+ u2

(
f1 + νu1xx − u1u1x

)〉
.

For |x1 − x2| ≪ L we can put ⟨f1u2⟩ = ⟨f2u1⟩ ≈ ⟨fu⟩ = ϵ. Since the derivatives are large

on the scale η, they are uncorrelated at the distances |x1 − x2| ≫ η, so we can neglect

⟨u1u2xx⟩ = ∂2⟨u1u2x⟩ = −∂1⟨u1u2x⟩ = −⟨u1xu2x⟩. We consider the force statistics to be

uniform in space, then any moment like ⟨u1u22⟩ is a function of x1 − x2 so that ∂2⟨u1u22⟩ =

−∂1⟨u1u22⟩. Adding (zero) term ∂1⟨u31 − u32⟩ we derive 2ϵ = −∂1⟨(u1 − u2)
3⟩/6 which gives

(18) for η ≪ |x1 − x2| ≪ L.

Respective derivation for an incompressible d-dimensional turbulence gives for the cube

of the longitudinal velocity difference

S3(r) = − 12ϵr

d(d+ 2)
. (19)

Alternative, both can be written for the time derivative of the squared velocity difference,

δv = v1 − v2, along the flow (d/dt = ∂t + v · ∇):

⟨d|δv|2/dt⟩ = −2 ⟨(v1 · dv2/dt+ v2 · dv1/dt)⟩ = −2 ⟨(v1iv2j∇2jv2i + v2iv1j∇1jv1i)⟩

= ⟨δvδf + ν(δv ·∆δv)⟩ = −4ϵ . (20)

Nonzero third moment means that the statistics is time irreversible. If someone screens

the movie of turbulence backwards, we now can tell the difference.

Note that the velocity field giving (16) is non-Lipshits. Solving dR/dt = δv(R) = (ϵR)1/3,

we obtain

R2/3(t) = R2/3(0) + ϵt . (21)

Compare it with an exponential separation for a smooth (Lipshits) velocity δv(R) ≃ λR,

which gives R(t) = R(0) exp(λt). For the smooth case (subject of the dynamical chaos the-

ory) we have R(t) → 0 when R(0) → 0, which corresponds to uniqueness of trajectories. On

the contrary, (21) shows that R(t) may stay finite when R(0) → 0, which would mean split-

ting of trajectories. Indeed, non-Lipshits equation dx/dt = x1−γ with the initial condition

x(0) = 0 has two solutions: x(t) ≡ 0 and x(t) = [γt]1/γ.
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Onsager conjectured that the power of the velocity non-smoothness must be at least

1/3 to provide an inviscid dissipation in incompressible flows, which is now proved by the

mathematicians. Non-smoothness of the velocity field gives trajectories splitting or sticking

which necessarily violates conservation of any non-additive quantity.

We thus see two types of non-uniqueness: trajectories sticking for compressible flows and

splitting for incompressible ones. Yet the cube of the velocity differences (the third structure

function S3) scales the same with the distance and the dissipation rate. That shows that the

cascade idea captures only the energetic side of turbulence and fixes the third moment of the

velocity difference. What about the whole probability distribution of the velocity difference

at a given scale, P (δv, r) and the other moments Sn(r) = ⟨(δv)n⟩ =
∫
P (δv, r)(δv)ndδv?

The cascade idea is of little help here. Indeed, early proponents of the cascade assumed

the distribution to be self-similar, P (δv, r) = (δv)−1F (δv/(ϵr)1/3, assuming that the cascade

determines at least the scaling of all the moments. Experimens show that this is not the

case: Sn(r) ∝ rζn , where ζn is some convex function of n satisfying ζ0 = 0 and ζ3 = 1.

Bi-fractality of Burgers turbulence

The simplest is to find this function for Burgers turbulence. it would be wrong to assume

Sn = ⟨[u(x) − u(0)]n⟩ ≃ (ϵx)n/3, since shocks give a much larger contribution for n > 1:

Sn ≃ wnx/L, here x/L is the probability of finding a shock in the interval x. In terms of

Fourier harmonics, every shock contributes uk ∝ 1/k, which indeed gives S2(x) = ⟨[u(x) −

u(0)]2⟩ =
∫
|uk|2(1− eikx) dk ∝

∫ 1/x |uk|2 dk ∝ x.

Generally, Sn(x) ∼ Cn|x|n + C ′
n|x|, where the first term comes from the smooth parts of

the velocity while the second comes from O(x) probability having a shock in the interval x.

The scaling exponents, ξn = ∂ lnSn/∂ lnx, thus behave as follows: ξn = n for 0 ≤ n ≤ 1

and ξn = 1 for n > 1. This means that the probability distribution of the velocity differ-

ence P (δu, x) is not scale-invariant in the inertial interval, that is one cannot find such a

that makes the function of the re-scaled velocity difference δu/xa scale-independent. The

simple bi-modal nature of Burgers turbulence (shocks and smooth parts) means that the

PDF is actually determined by two (non-universal) functions, each depending on a single

argument: P (δu, x) = δu−1f1(δu/x)+(x/Lurms)f2(δu/urms). The breakdown of scale invari-

ance means that the low-order moments decrease faster than the high-order ones as one goes
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FIG. 3. Typical velocity profile in Burgers turbulence

to smaller scales. That means that the level of fluctuations increases with the resolution:

the smaller the scale the more probable are large fluctuations. When the scaling exponents

ξn do not lie on a straight line, this is called an anomalous scaling since it is related again

to the symmetry (scale invariance) of the PDF broken by pumping and not restored even

when x/L→ 0.

Multi-fractality of scalar and velocity statistics

Burgers bi-fractality is the consequence of only two possible flow configurations in 1d,

smooth profile and shock. Generally, Sn(r) ∝ rζn with the exponents lying on some smooth

convex curve signalling multi-fractality. The meaning of the numbers ζn has been quite

remarkably understood in terms of the geometric statistical conservation laws of Lagrangian

evolution of n trajectories of the fluid particles.

Such conservation laws exist already for the usual diffusion, where the mean squared dis-

tance between any two particles (labeled i and j) grows as ⟨R2
ij(t)⟩ = R2

ij(0) + κt. However,

the combinations (called martingales) like ⟨R2
ij(t)−R2

kl(t)⟩ and ⟨2(d+2)R2
ijR

2
kl−d(R4

ij+R
4
kl⟩

do not grow at all - all powers of t cancel. One could generally describe the joint statistics

of n random walkers in d-dimensional space by the nd-dimensional diffusion equation. One

recognizes in the above two martingales the zero models of the respective Laplacian: the ra-

dial part is cancelled by an angular part, that is growth of the distances between particles is

compensated by the decay of angular correlations. The scaling exponents of the martingales

of the usual diffusion are integers proportional to n. One can model turbulent (Richardson)

dispersion (21) by a diffusion with the scale-dependent diffusivity. This so-called Kraichnan

model presumes fluid velocities delta-correlated in time but preserve their power-law space
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correlations. In this case, one can also build geometry-related martingales, but their respec-

tive exponents depend nonlinearly on n because the relative diffusion is now dependent on

the distances to other particles. Moreover, how fast a polygone made out of particles forgets

its shape depends also on the the velocity non-smoothness and space dimensionality.

The scaling exponents of the martingales made out of interparticle distances determine

the structure functions of a scalar field θ(r, t) mixed by a turbulent flow. The scalar field is

passive that is does not affect velocity. The transport is described by the equation

dθ

dt
= [∂t + (v · ∇)]θ = φ(r, t) . (22)

Here the last term describes pumping, whose correlation function ⟨φ(r, t)φ(0, 0)⟩ = δ(t)χ(r)

is nonzero for r < L. The scalar field at every point is given by the integral of pumping

integrated over the fluid trajectory that comes to this point: θ(r, t) =
∫ t

−∞ dt′φ(R(t′), t′),

where R(t) = r. The single-time two-point moment is then proportional to the time it takes

for two partices to separate from r12 to L:

⟨θ(r1)θ2)⟩ =
∫
dt′χ (R12(t

′)) ≃ χ(0)
(
L2/3 − r2/3

)
/ϵ ,

S2(r12) = ⟨[θ(r1)− θ(r2)]
2⟩ ≃ χ(0)r

2/3
12 /ϵ ∝ rσ2

12 . (23)

Here we substituted the time from (21). Note that χ(0) is the pumping rate of θ2 so that

(23) is the flux relation analogous to (17) and (18):

d

dt

〈
(θ1 − θ2)

2〉 = ⟨(v1 · ∇1 + v2 · ∇2)θ1θ2⟩ = 4χ(0), . (24)

Applying the same consideration, we see that the third structure function,

S3 = ⟨(θ1 − θ2)
3⟩ = 3⟨(θ21θ2 − 3θ22θ1)⟩ ,

is proportional to the time during which one can distinguish two triangles that started from

two very different configurations with large aspect ratios: one with two particles near 1,

another with two particles near 2. With time, triangles forget their inital shape evolv-

ing towards symmetrical configurations with aspect ratios of order unity. The dependence

S3(r12) ∝ rσ3
12 is thus determined by how fast the trangle forgets its shape. For usual dif-

fusion, geometrical shapes decay as inverse integer powers of time (equivalently, powers of

R2) as determined by the Laplacian. For turbulent diffusion, the powers σn are not equal to

σ2n/2 but are determined by some convex function of n dependent on the velocity scaling
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and space dimensionality. This function was computed in the limiting cases of very rough

(almost Brownian) velocity field and d→ ∞ (see Rev Mod Phys 73, 913, 2001). This shows

that the probability distribution P (δθ, r) is not self-similar function of δθ/r1/3.

Let us see how the scaling of the Lagrangian conservation law could determine the scaling

of the velocity structure functions. It involves not only the trajectories but also geometries

of the velocity vectors. Let us consider a two-particle martingale, ⟨|δv(R)|2g
(
R(t)/r

)
⟩, built

out of the squared velocity difference and some yet unknown function of the distance R(t).

Assuming R(0) = r and g(1) = 1, the initial value ⟨
(
δv(r)

)2⟩ ∝ rζ2 is just the Eulerian

moment whose scaling is assumed to be given by ζ2. Let us now consider the limit t → ∞,

when it is natural to assume that neither δv(R) nor R(t) remember their initial distance.

Since the martingale must still be proportional to rζ2 , that requires that the function g(x)

is asymptotically a power law: g(x) ∝ x−ζ2 . In other words, the asymptotic large-time

Lagrangian conservation law for squared belocity difference determines the scaling exponent

of the second structure function: ⟨
(
δv(R)

)2
R−ζ2⟩. The exponent ζ2 shows which power of the

distance to take for compensating the growth of the squared velocity difference with time.

Let us stress that g(x) is not a pure power law for all x; it is straightforward to compute the

time derivatives at t = 0: d⟨|δv|2Rb⟩/dt = −4ϵrb−1(1 + b/d), so that g(x) → x−d at x → 1

(see PRL 110, 214502, 2013).

Intermittency of turbulence. Let us appreciate the dramatic consequence of the break-

down of scale invariance in the energy cascades, expressed in ζn ̸= n/3. Both for Burgers

and Navier-Stokes, the exponents ζn > n/3 for n < 3 and ζn < n/3 for n > 3. Writing the

structure functions as

Sn ≃ (ϵr)n/3
(
L

r

)n/3−ζn

, (25)

we see that lower moments go to zero when we increase the forcing scale keeping ϵ and r.

This is true in particular for the second moment whose Fourier transform is the energy spec-

tral density E(k) =
∫
S2(r)e

ikrdr. If (as Kolmogorov and Obukhov initially assumed) we

had S2 ≃ (ϵr)2/3, then we would have E(k) = ϵ2/3k−5/3 - this 5/3 is probably the best known

incorrect result of turbulence. Engineers still use 5/3 for estimates because the difference

ζ2 − 2/3 ≃ 0.02 is small, but its positivity carries a remarkable message for a physicist:

when the number of cascade steps L/r increases unbounded, one needs vanishingly small

level of turbulent energy at a given flux. What carries the flux then? The moments with

n > 3 grow unbounded with L/r, which means an increase of probability of very strong
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fluctuations. Most of the energy dissipation takes place on rare strong fluctuations. Not

only turbulence does not forget about the pumping scale after many steps of the cascade,

turbulence statistics changes with every step. Maybe then the law of change is scale invari-

ant? Data support another Kolmogorov assumption: that the statistics of the ratios (called

Kolmogorov multipliers) δv(r)/δv(r/a) is scale invariant, that is independent of r for fixed

a, but it has not been explicitly demonstrated.

INVERSE ENERGY CASCADE

The two-dimensional incompressible inviscid flow described by the Euler equation dv/dt =

−∇P/ρ is a special case. First, mathematicians proved that there is no finite-time singu-

larity, so that a smooth flow stays smooth forever. Second, taking the curl we can write it

for the vorticity ω = ∇× v:

dω

dt
=
∂ω

∂t
+ (v∇)ω =

∂ω

∂t
+ {ψ, ω} = 0 . (26)

Here we introduced the streamfunction such that ω = ∆ψ. It is clear from (26) that ω is

a Lagrangian invariant transported by the flow just like θ in the unforced version of (22).

That means that the integral over space of any function of ω is conserved. Of particular

importance for turbulence is the qudratic invariant (called enstrophy) whose spectral density

is ω2
k = |k× vk|2. Let us assume that an external force acts on some wavenumbers of order

k and generates per unit time (per unit mass) the energy ϵ and the enstrophy k2ϵ. Let us

assume that dissipation happens at k1 < k and k2 > k and denote the respective energy

dissipation rates ϵ1 and ϵ2. The enstrophy dissipation rates are then k21ϵ1 and k22ϵ2. Let us

show that such turbulence must contain two cascades. Indeed, the two conservation laws,

ϵ1 + ϵ2 = ϵ and k21ϵ1 + k22ϵ2 = k2ϵ give

ϵ1 = ϵ
k22 − k2

k22 − k21
, ϵ2 = ϵ

k2 − k1

k22 − k21
.

The dissipation at large k2 is usually provided by viscosity and at small k1 by the bottom

or wall friction. We see that when k2 ≫ k > k1 (large Reynolds number), then ϵ1 ≈ ϵ, that

is all the energy goes towards small k. This phenomenon is called an inverse cascade and

it is quite counter-intuitive: one expects from a random turbulent flow fragmentation, not

creation of large entitites out of a small-scale noise. Yet Nature consistently demonstrates

17



such self-organization by inverse cascades both in creating large vortices and system-size

coherent flows out of small-scale quasi-2d turbulence in oceans and atmospheres and in

creating long waves out of storms on the ocean surfaces. It is the enstrophy (i.e. vorticity)

which goes via a direct cascade to small scales: k22ϵ2 ≈ k2ϵ when k1 ≪ k < k2. One can

guess the scaling of vorticity correlation function from the flux relation similar to (24):

⟨(v1 · ∇1 + v2 · ∇2)ω1ω2⟩ = const, . (27)

The power counting suggests that the velocity scales as the first power and vorticity as the

zeroth power of the distance. Plausible arguments by analogy with the passive scalar suggest

⟨ω1ω2⟩ ∝ ln2/3(r12) but a consistent theory is still ahead of us.

Scale invariance and conformal invariance of inverse cascades

As we coarse-grain over larger and larger scales in the inverse cascade, it is natural to

expect that the properties of the pumping will be forgotten except the energy flux. Ex-

periments indeed show scale-invariant statistics in the inverse cascade. Another perspective

gives (20), where for the 2D inverse energy cascade, there is no energy dissipative anomaly

and the right-hand side in the inertial range is determined by the injection term 4fv = −4ϵ

so that the energy flux now must be considered negative (directed upscale). That means

that the mean squared velocity difference has positive time derivative already at t = 0

and grows monotonically. On the contrary, in 3d the time derivative is negative at the

beginning. Of course, any couple of Lagrangian trajectories eventually separates and their

velocity difference increases. That shows nontrivial Lagrangian evolution in 3d energy cas-

cade (possibly related to an anomalous scaling of the Lagrangian conservation laws): squared

velocity difference between two trajectories generally behaves in a nonmonotonic way in 3d:

the transverse contraction of a fluid element makes initially the difference between the two

velocities decrease, while eventually the stretching along the trajectories takes over.

Another crucial difference between 2d and 3d follows from the equation for the separation

d2R/dt2 = δf−∇δP/ρ. The corresponding forcing term δf = f(r+R)−f(r) has completely

different properties for an inverse energy cascade in 2D and for a direct energy cascade in

3D. For the direct cascade the large-scale forcing corresponds in the inertial range to δf ∝ R,

which is negligible and even the scaling behavior comes from the pressure term accounting
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for interaction between infinitely many fluid trajectories. For 2d, R in the inertial range

is much larger than the forcing correlation length. The forcing can therefore be considered

short-correlated both in time and in space. That gives the diffusive growth of the squared

velocity and cubic growth of the squared distance like in the Richardson law. Was the

pressure term absent, one would get R2 = 4ϵt3/3. The experimental data give a smaller

numerical factor (0.5 instead of 4/3) which is natural since the incompressibility constrains

the motion. What is, however, important is that already the forcing term prescribes the law

of separation consistent with the scaling of the energy cascade.

Despite all these hints, nobody has yet proved that the flow statistics must be scale-

invariant in 2d inverse cascade. Meanwhile, data suggest that some part of the statistics

has even higher symmetry - conformal invariance (which can be thought of as local scale

invariance — conformal transformations can expand here and compress there but go from

here to there smoothly preserving the angles).

Turbulent self-organization

What happens when an inverse energy cascade reaches the box size? It creates a system-

size flow. Because this flow create system-size correlations, it is sometimes called condensate

in analogy with the Bose-Einstein condensation. In a square box, such flow is a big vortex

in the center (accompanied by four recirculating vortices in the corners); on a torus, the flow

is the vortex dipople. One can derive analytically the radial profile of the vortex flow and

the turbulence feeding it. Let us assume that polar and radial velocities are respectively

U(r) + u(r, t) and v(r, t), that is u, v describe turbulence. Viscosity is irrelevant for the

inverse cascade. The mean radial component of the Euler equation can be written as the

continuity equation for the mean angular momentum

r
∂U

∂t
= −1

r

∂

∂r
r2⟨uv⟩ . (28)

When the mean angular momentum flux r⟨uv⟩ is nonzero, the flow is irreversible, i.e. the

sign of ⟨uv⟩ does not change upon the transformation t → −t while the sign of U does.

Opposite signs of U and ⟨uv⟩ imply that the momentum flows towards the vortex center

(turbulence feeds the vortex).
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Let us write now the energy balance assuming that small-scale forcing pumps ϵ:

1

2

∂

∂t

(
U2 + ⟨u2 + v2⟩

)
= ϵ− 1

r

∂

∂r
r
[
U⟨uv⟩+ ⟨v(p+ (u2 + v2)/2⟩

]
. (29)

In treating the vortex interior, we assume that it contains the main energy and neglect

u2 + v2 on the left and the last term on the right. That gives

U
∂U

∂t
= ϵ− 1

r

∂

∂r
rU⟨uv⟩, . (30)

which comprise a closed system together with (28). Solving it gives the r-independent mean

vortex flow with the energy growing as U2/2 = 3ϵt, that is three times faster than without

turbulence feeding it. Note that the turbulent momentum flux is proportional not to the

velocity gradient (which is zero) but to the agnular momentum gradient. Turbulent viscosity

notion has little value here.

Back to the pipe fow. Note that (28) is a direct analog of (12). Why don’t we add the

energy balance and describe at least the section of the channel or pipe flow where the flow

dominate turbulence? Of course, we can do that writing

ν
dU

dz
+ ⟨uv⟩ = αg(h− z) ,

dU

dz
⟨uv⟩ = −ϵ(z) . (31)

Unfortunately, here ϵ(z) is an unknown rate of the energy dissipation by an inhomogeneous

turbulence inside the z-dependent mean flow. To find how the energy dissipation rate

depends on the mean flow profile, one needs to develop a theory of the direct energy cascade

inside a mean flow. This is the great problem of turbulence worthy of a Nobel prize.

to be continued...
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