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Abstract

One often asks what is ”the great problem of turbulence” so one
can solve it and get a Nobel prize. These lecture notes for an 8-hour
course do just that adding as a bonus the formulation of a related
Milennium problem and one for Fields medal (for mathematically ori-
ented and deprived of the Nobel prize). No prior knowlwdge of fluids
is required.

1 Fluids and Flows

We deal with continuous media where matter may be treated as homogeneous
in structure. The term fluid means that resistance cannot prevent deforma-
tion from happening because the resisting force vanishes with the rate of
deformation. With patience, anything can be deformed. Therefore, whether
one treats the matter as a fluid or a solid depends on the time available for
observation. As the prophetess Deborah sang, ‘The mountains flowed before
the Lord’ (Judges 5:5). The ratio of the relaxation time to the observation
time is called the Deborah number. The smaller the number the more fluid
the material.

Fluid mechanics is the macroscopic study of two conservation laws, mass
and momentum. Mass conservation is expressed as a continuity equation

∂ρ

∂t
= −∂k (ρvk) . (1)

Here v is the fluid velocity, ρ is the density. Translation invariance brings
momentum conservation. The time derivative of the momentum density is
the divergence of the momentum flux:

∂ρvi
∂t

= −∂k [ρvivk − Pδik − νρ(∂kvi + ∂ivk)] . (2)

This is the Navier-Stokes equation named after the first and last persons who
derived it. The first term describes the momentum transport by the flow.
The two other terms in the right-hand side describe stresses. The pressure P
plays the role of the potential energy of interaction between fluid particles,
so its gradient is the normal force per unit area. The last term describes the
tangential force due to viscous friction; ν is the kinematic viscosity which is
the diffusivity of momentum (estimated for gases as the molecular velocity
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times the mean free path). The diffusive flux of momentum is not propor-
tional to the gradient of momentum (as the flux of any other substance) but
to the gradient of velocity only. In other words, density gradient does not
cause any friction and does not bring momentum diffusion in a uniform flow;
that is the medium is in thermal equilibrium (say, in a gravity field) absent
any velocity gradient.

Both (2) and (1) contain velocity gradients which are thus assumed finite. That

corresponds to a continuous flow where the trajectories of fluid particles do not

intersect. Indeed, the equation for the distance vector between two fluid particles,

dRi/dt = δvi(R) has a unique solution if the vector field is Lipshits, that is δvi(R)

goes to zero with R not slower than linearly. One of the Milennium problems in

Mathematics is to establish whether finite velocity gradient could turn infinite in a

finite time. As we shall see below, turbuence statistics looks like fluid trajectories

could stick and split and the velocity field is statistically non-Lipshits. That by

itself does not guarantee finite-time singularity, since the probability of ∇v could

go to zero when |∇v| → ∞, just too slow so that some moments are infinite.

In d dimensions, there are d+2 variables but only d+1 equations in (1,2).
One needs to supplement it by a medium-specific equation of state relating
P and ρ. We start from the simplest case of an incompressible fluid of a
uniform density and temperature. Does that mean that we need to consider
the pressure uniform too? That would be true only in thermal equilibrium
that is with no flow or uniform flow. Indeed, the continuity equation in this
case is reduced to div v = 0. Applying div to (2), we obtain div (v∇)v = ∆P .
Pressure inhomogeneity is due to deviations from thermal equilibrium caused
by the velocity gradients. The nonlocality of the inverse Laplace operator
means that the pressure in the whole space is instantenously adjusted to any
local velocity change. This is because incompressibility presumes that we
took the speed of sound (wave of density and pressure changes) to infinity
or assumed v ≪ c. Now we need to remember that this is a singular limit
which diminished the order of time derivative in our system from second to
first. This is also clear from writing the operator of the wave equation as
c−2∂2t −∆.

For incompressible fluid, we write

dv

dt
=
∂v

∂t
+ (v∇)v = −∇P

ρ
+ ν∆v + f . (3)

We use both Eulerian descriprion based on fields (like electromagnetic or
field theory) and Lagrangian description based on considering fluid particles.
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Apparently, d/dt is a Lagrangian derivative, while ∂/∂t is an Eulerian one.
Note that there is no energy conservation because the friction terms in

(2,3) break time reversibility and provide for energy dissipation. For example,
(3) gives

d

dt

∫
v2 dr = −ν

∫ (
∂vi
∂xk

+
∂vk
∂xi

)2

dr . (4)

Simplest flow. Let us see how well (3) describes reality. Taking for water
ν = 0.01 cm2/sec and the external force per unit mass to be gravity, f = g,
let us apply (3) to the simplest stationary flow of a fluid sliding along the
plane inclined with the angle α. Directing x-axis along the flow and the
plane, and z-axis perpendicular to them, we write two components of (3):

ν∂2zv = −g sinα , ∂zP = −g cosα .

Imposing zero velocity at the bottom z = 0 and zero friction at the surface
z = h we obtain

v = z(2h− z)
g sinα

2ν
. (5)

With g ≈ 103cm/sec2, this is expected to describe puddles, creeks and rivers,
as well as horizontal channel and pipe flows driven by a pressure gradient
(replacing g sinα by ∇P/ρ). Let’s see how well it does the job. Taking
for a puddle h = 0.1 cm and α = 10−2 we obtain on the surface reasonable
v = 5 cm/sec. Taking conservately for a river on a large plane (like Missisipi
or Volga) α ≃ 100m/1000 km ≃ 10−4 and h = 10m we obtain v = 5 ·
108cm/sec = 5 ·106m/sec. When we are wrong by a factor 106, it is a chance
to get one million times smarter. Another chance is the discrepancy between
human sensory data rate 107÷109 bits/sec and 10 bits/sec in the information
throughput of the behavior.

The huge diference between the case where we succeeded and the one
where we failed so miserably must be characterized by a dimensionless pa-
rameter. As always, it must be the ratio of the terms (and forces) in our
equation. Indeed, fluid mechanics is essentially a story of the struggle be-
tween the inertia that tries to keep the flow and the friction that tries to stop
it. The inertia is characterized by the nonlinear term (v∇)v ≃ v2/h and the
friction by ν∆v ≃ νv/h2. Their ratio is called the Reynolds number

Re =
vh

ν
. (6)
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Wait, but the nonlinear term is identically zero for our solution (5) because
v ⊥ ∇v. Why then the solution is realized for a puddle but is not realized
for a river? We suspect that in the second case it must be unstable, but
with respect to what type of perturbation? Let us step closer to the real
world and take into account that the bottom is not an ideal smooth plane.
Any misalignment by a small angle β makes Re = βvh/ν which is 50β for a
puddle and 5 ·1011β for a river. It is then clear that even microscopic bottom
inhomogeneities must change the river flow everywhere. Indeed, everyday
experience suggests that the river flow must be turbulent. But how it affects
the resistance which must balance gα drive?

2 Guessing the right resistance force

What mean flow velocity we expect for a turbulent river? We expect that
turbulence transports momentum to the bottom much faster than molecular
diffusion. Replacing (after Prandtl) ν by the ”turbulent viscosity” νT ≃ vh
we obtain a force balance gα ≃ v2/h which gives a reasonable estimate:

v ≃
√
gαh or v ≃

√
h∇P/ρ . (7)

For a river with the small incline α ≃ 10−4, it gives v ≃ 10 cm/sec. By a
similar argument Newton estimated the resistance (drag) force experienced
by a body of a size h moving with the velocity u. That force must be the
momentum impacted to the fluid per unit time. The volume of the fluid
we put in motion in one second is h2v and the momentum it gets per unit
volume is ρv so that the force is as follows:

F = Cρu2h2 . (8)

Newton assumed that the dimensionless (so-called friction) factor C is de-
termined solely by the body shape.

Viscosity enters neither (7) nor (8) even though it is clear that there is
no resistance without friction. Indeed, the resistance force is supposed to
change sign with u while our ”resistance” is proportional to u2. It is clear
that viscosity must dominate in the limit Re→ 0 when the force is F ≃ ρνhu
so that the friction factor must depend on Re, in particular, C(Re) ∝ 1/Re
at Re→ 0. What Newton expected us to believe is that C(Re) saturates to
a constant at Re→ ∞.
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From the engineering viewpoint, the resistance is the central problem
of turbulence. From the physics perspective, the most interesting part of
it is what we call anomaly: when the symmetry-breaking factor goes to
zero, the effect of symmetry-breaking has a finite limit. In this case (of
the so-called dissipative anomaly), the symmetry is time-reversibility, the
symmetry-breaking factor is viscosity and the effect is finite resistance in the
inviscid limit. How can we understand its mechanism? That was done by
Prandtl (1905) who discovered the phenomenon of separation and wake cre-
ation. Consider, for instance, the flow around a cylinder or sphere. The flow
must have up-down symmetry, so that the points on the axis (forward D and
backward C) are stagnation points. Denote A the point of the sphere far-
thest from the symmetry axis. On the upstream half DA, the fluid particles
accelerate and the pressure decreases. Indeed, the energy of a fluid particle
(that is the energy per unit mass), v2/2 + P/ρ, must be conserved without
friction. On the downstream part AC, the reverse happens, that is every
particle moves against the pressure gradient. A small viscosity changes pres-
sure only slightly across the boundary layer. Indeed, if the viscosity is small,
the boundary layer is thin and can be considered locally flat. Denote u the
velocity right outside the boundary layer. In the boundary layer, at z < ν/u,
no-slip condition prescribes vx ≃ u2z/ν and ∂vx/∂x ≃ u2z/νR ≃ ∂vz/∂z.
The normal velocity is then vz ≃ u2z2/νR, which gives the pressure gradient,
∂p/∂z = −ρ(v∇)v − η∆vz ≃ ρu2/R, so that the pressure change across the
layer is ρu2/Re that is small when Re is large. In other words, the pressure
inside the boundary layer is almost equal to that in the main stream, which
is the pressure of the ideal fluid flow. But the velocities of the fluid particles
that reach the point A are lower in a viscous fluid than in an ideal fluid
because of viscous friction in the boundary layer. Then those particles have

B

CD

C

A A

Figure 1: Symmetric streamlines for an ideal flow (left) and appearance of
separation and a recirculating vortex in a viscous fluid (right).
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insufficient energy to overcome the pressure gradient downstream. The par-
ticle motion in the boundary layer is stopped by the pressure gradient before
the point C is reached. The pressure gradient then becomes the force that
accelerates the particles from the point C upwards, producing separation.
See more in Section 1.5.2 in Fluid Mechanics by Falkovich.

2.1 Drag with a wake

We can now describe the way Nature resolves reversibility paradox. In the
reference frame of the body, far from it we have a uniform flow (with u, p0),
the body adds v, p′. Let us relate the momentum flux through a closed
distant surface to the force acting on the body assuming the existence of the
wake. The total momentum flux transported by the fluid through any closed
surface is equal to the rate of momentum change, which is equal to the force
acting on the body:

Fi =

∮
Πikdfk =

∮
(p0 + p′)δik + ρ(ui + vi)(uk + vk) dfk (9)

= (p0δik + ρuiuk)

∮
dfk + ρui

∮
vk dfk +

∮
[p′ + ρ(ukvi + vivk) dfk.

Here df is the vector normal to the surface and equal to an area element. In
the last line, the first integral vanishes because the surface is closed and the
second one because of mass conservation: ρ

∮
vk ∂fk = 0. Far from the body

v ≪ u and we neglect terms quadratic in v:

Fi ≈
(∫ ∫

X0

−
∫ ∫

X

)
(p′δix + ρuvi) ∂y∂z. (10)

Assuming that u is along x, the drag is the x component of (10):

Fx =

(∫ ∫
X0

−
∫ ∫

X

)
(p′ + ρuvx) ∂y∂z.

wake

X

Yu

X0

Figure 2: Scheme of the wake.
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Outside the wake we have potential flow where the Bernoulli relation, p +
ρ|u + v|2/2 = p0 + ρu2/2, gives p′ ≈ −ρuvx so that the integral outside the
wake vanishes. Inside the wake, the pressure is about the same (since it does
not change across the almost straight streamlines, as we argued above but
the velocity perturbation vx is much larger than outside, so that

Fx = −ρu
∫ ∫

wake

vx ∂y∂z. (11)

Force is positive (directed to the right) since vx is negative. The integral in
(11) is equal to the deficit of fluid flux Q through the wake area (i.e. the
difference between the flux with and without the body). The wake breaks the
fore-and-aft symmetry and thus resolves the paradoxes, providing for a non-
zero drag in the limit of vanishing viscosity. This justifies Newton’s intuition
about impacting momentum to the fluid. Indeed , the integral (which is
independent on the distance X) can be estimated closer to the body as uh2

which gives (8).

2.2 Resistance of a pipe flow

A straightforward application of the above logic to a mean unidirectional
flow of rivers and pipes is impossible because now we must describe the z-
dependence of the mean flow which must carry the momentum injected by
gravity or pressure gradient towards the bottom or walls to be absorbed
there. Let us write the momentum conservation without assuming the flow
unidirectional. Denote the velocity x-component as U(z) + u(z, y, z, t) and
z-component as v(x, y, z, t), where u, v describe turbulent fluctuations. Then
the continuity equation for the x-component of the mean momentum states
that the divergence of the momentum flux τ is equal to the force:

d

dz

(
ν
dU

dz
+ ⟨uv⟩

)
≡ dτ(z)

dz
= −αg. (12)

Integrating we get τ(z) = τ(0)−αgz. The flux is zero on the river surface or
at the center of a pipe, which gives τ(0) = αgh. Let us now consider the flow
close to the solid surface, that is at z ≪ h, where the momentum flux can
be considered independent of z, and denote v2∗ ≡ τ(0) = αgh. In this region
the mean velocity is independent of h and must depend only on ν, z, v∗. By
dimensional reasoning the dependence must have a form U = v∗f(zv∗/ν).
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The dimensionless parameter zv∗/ν is the Reynolds number with the scale
set by the distance to the solid boundary. Near the boundary, viscosity
absorbs the flux: νdU/dz = αgh and U(z) = αghz/ν. The width of that
viscous boundary layer can be estimated requiring the Reynolds number to
be of order unity: l = ν/v∗. Outside of this layer, for z ≫ l, one may
expect viscosity to be unimportant and the flux carried by turbulence. As
we cannot yet develop a consistent theory of such inhomogeneous turbulence
(see more in Section 7 below), let us use plausible arguments. Since there is
no momentum flux in a uniform flow, then it is natural to relate the mean
flux to the flow nonuniformity whose simplest characteristics is the mean
velocity gradient, dU/dz. We now assume that the flow must be determined
solely by v∗ and z at l ≪ z ≪ h. The only dimensionally possible relation
is dU/dz ≃ v∗/z, which gives a logarithmic velocity profile for turbulent
boundary layer (Karman 1930, Prandtl 1932):

U(z) ≃ v∗ log(z/l) =
√
αgh log[z(αgh)1/2/ν]. (13)

It is equivalent to the turbulent viscosity argument: τ = v2∗ = νTdU/dz
with νT (z) ≃ v∗z. We used l to make the argument of the logarithm di-
mensionless since for z ≃ l one must have U(l) ≃ v∗. One can further
illuminate the hypothesis underlying the log law (13) using so-called overlap
argument. The dimensionless quantity U(z)/v∗ must be a function of two
dimensionless arguments, ℓ = z/h and Re = v∗h/ν. Near the wall we expect
h to disappear: U(z)/v∗ → f(ℓRe). Near the center, we expect ν to disap-
pear from the law of the velocity change: U(h) − U(z) = v∗f1(ℓ). Denote
U(h)/v∗ = f2(Re). We now make an assumption that the two asymptotic re-
gions overlap. In this overlap region we have f(ℓRe) = f2(Re)− f1(ℓ), which
requires all the functions to be logarithmic. Logarithmic turbulent profile is
more flat than parabolic laminar profile, which is natural since turbulence
better mixes momentum. The overlap argument and claim that the momen-
tum flux completely determines the mean flow in a turbulent boundary layer
are curiously similar to assuming inertial interval with the energy flux de-
termining everything in the cascade picture of homogenous turbulence. We
shall see in the next Section that the cascade picture correctly describes only
the third moment of the velocity statistics, while other moments depend on
the large scale. It is not yet clear whether the Prandtl-Karman theory must
be modified in a similar way. Experiments support logarithmic mean flow
profile but show that turbulence statistics depends on h even at z ≪ h.
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We see that (13) corrects (7) by a viscosity-dependent logarithmic factor.
That makes velocity everywhere, even outside of the viscous layer, depen-
dent on viscosity. While this dependence is very slow and for most cases
negligible, conceptually it has dramatic consequences. It tells us that when
viscosity goes to zero, the width l of the viscous layer shrinks to zero but
U(l) ≃ v∗ i.e. stays finite. That means that we have an effective slip on the
solid boundary. At any finite z, the velocity U(z) goes to infinity, so that
the friction factor goes to zero at ν → 0 as log−2(hv∗/ν). All this is because
we consider the boundary straight and smooth, which explains the dramatic
difference from the flow past a body, where curved surface provides for sep-
aration of the boundary layer and resulting wake provides for a finite drag
coefficient. It is then reasonable to assume that if the logarithmic decrease
of the friction factor with the Reynolds number takes place, it stops when
l is getting comparable to the size r of the boundary inhomogeneities (ex-
periments support that). When ν < rv∗ one cannot assume the mean flow
to be parallel to the solid boundary. Every inhomogeneity then provides its
own wake with a finite drag so that U(r) ≃ v∗, the logarithms saturates at
log(h/r), and the friction factor is getting independent of Re.

We thus see that large-Re wake flow is insensitive while the pipe flow is
sensitive to the surface smoothness. The unsolved question is to what extend
the turbulence in the wake is similar to the turbulence in pipes and channels.

3 Energy Cascade

We can look at this anomaly not from the viewpoint of momentum loss but
from the viewpoint of energy dissipation. That will allow us to see fluxes in
Fourier space rather than in a real space. Consider a fan circulating air in
the room. The power per unit mass can be estimated as the force (8) times
velocity divided by the mass:

ϵ ≃ Fu

ρh3
≃ u3

h
. (14)

This power goes into heat with the rate independent of viscosity. This is
less bizarre than it looks since any shock wave does that. That can be
demonstrated using the poor relative of (3), one-dimensional Burgers equa-
tion which describes one-dimensional compressible flow w(x, t) in the refer-
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ence frame moving with the sound velocity,

dw

dt
=
∂w

∂t
+ wwx = νwxx + f(x, t) . (15)

This equation with f = 0 has a shock-wave solution

w(x, t) =
2u

1 + exp[u(x− ut)/ν]
.

At the front moving with velocity u, fluid particles moving from the left
with the velocity 2u hit standing particles, stick to them and continue with
half-speed due to momentum conservation. Assuming that such shocks are
spaced by the distance L, the mean energy dissipation rate (per unit mass) is
ϵ = L−1ν

∫
w2

x = 2u3/3L. As is often in anomalies, saving one conservation
law (momentum) means sacrificing another conservation law (energy).

But how such viscosity-independent dissipation could happen in an in-
compressible flow? One understand the nature of this anomaly using the
concept of cascade. This understanding came from an unexpected perspec-
tive: Releasing baloons in a turbulent air, Richardson (in 1926) discovered
that the squared distance between two trajectories, R2, grows with time not
linearly (as was expected back in those diffusion-dominated times) but as
t3. The ratio R2/t3 has the dimensionality of ϵ. If R(t) ≃ (ϵt3)1/2, then
dR/dt ≃ (ϵt)1/2 ≃ (ϵR)1/3. Since dR/dt = δv(R), one can make sense of the
Richardson data by assuming that the average velocity difference grows with
the distance by the law

δv(R) ≃ (ϵR)1/3 . (16)

That suggests that one can define the energy transfer rate through a given
scale R as squared energy per unit mass, [δv(R)]2, divided by the typical time
R/δv(R). Such a transfer rate is independent of R and equal to the energy
dissipation rate, which is equal to the input power (assuming a steady state):

ϵ ≃ (δv)3

R
. (17)

This corresponds to the energy cascade picture: all the kinetic energy we
generate at largest scale (of the moving body) is transferred without loss
through the intermediate scales until it is dissipated into heat by viscosity.
That makes the dissipative anomaly less mysterious: Cascade acts as a pipe
in the Fourier space; when viscosity goes down, the pipe is getting longer but
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it still carries the same energy flux. Proving that a steady state exists at the
limit ν → 0 is another nontrivial problem.

Similarly, we can compute the mean cube of the velocity difference per
unit length from the shock wave:

S3(x) = L−1

∫ L/2

−L/2

[w(x+ x′)− w(x)]3dx′ = −8
u3x

L
= −12ϵx . (18)

4 Velocity statistics and anomalous scaling

In our attempts to understand the resistance of fluids, we postulated some
form of the third moment of the velocity difference, (17) and (18), which
is related to the energy flux through scales. The latter was even derived
for a particular case of a single shock. Could we derive these in a more
general setting of force-generated turbulence? This can be done both for (3)
and (15). Let us derive (18) for a generic acoustic turbulence generated by
a large scale random force, whose variance ⟨f(x)f(0)⟩ decays with x on a
scale L, which is much larger than the viscous scale η ≡ ν3/4ϵ−1/4. Denote
ϵ = ⟨fw⟩, w1 = w(x1), f1 = f(x1), ∂1 = ∂/∂x1, w1xx = ∂21w1, etc. In a
steady state, all time derivatives must be zero including that of the second
moment:

∂

∂t
⟨w1w2⟩ =

〈
w1

(
f2 + νw2xx − w2w2x

)
+ w2

(
f1 + νw1xx − w1w1x

)〉
.

For |x1 − x2| ≪ L we can put ⟨f1w2⟩ = ⟨f2w1⟩ ≈ ⟨fw⟩ = ϵ. Since the
derivatives are large on the scale η, they are uncorrelated at the distances
|x1 − x2| ≫ η, so we can neglect ⟨w1w2xx⟩ = ∂2⟨w1w2x⟩ = −∂1⟨w1w2x⟩ =
−⟨w1xw2x⟩. We consider the force statistics to be uniform in space, then any
moment like ⟨w1w

2
2⟩ is a function of x1 − x2 so that ∂2⟨w1w

2
2⟩ = −∂1⟨w1w

2
2⟩.

Adding (zero) term ∂1⟨w3
1 − w3

2⟩ we derive 2ϵ = −∂1⟨(w1 − w2)
3⟩/6 which

gives (18) for η ≪ |x1 − x2| ≪ L.
Respective derivation for an incompressible d-dimensional turbulence gives

for the cube of the longitudinal velocity difference

S3(r) = − 12ϵr

d(d+ 2)
. (19)

Alternatively, both can be written for the time derivative of the squared
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velocity difference, δv = v1 − v2, along the flow (d/dt = ∂t + v · ∇):

⟨d|δv|2/dt⟩ = −2 ⟨(v1 · dv2/dt+ v2 · dv1/dt)⟩
= −2 ⟨(v1iv2j∇2jv2i + v2iv1j∇1jv1i)⟩ = ⟨δvδf + ν(δv ·∆δv)⟩ = −4ϵ .(20)

Nonzero third moment and time derivative of squared velocity difference both
mean that the statistics is time irreversible. If someone screens the movie of
turbulence backwards, we now can tell the difference.

Note that the velocity field giving (16) is non-Lipshits. Solving dR12/dt =
δv(R12) = (ϵR12)

1/3, we obtain

R
2/3
12 (t) = R

2/3
12 (0) + ϵt . (21)

Compare it with an exponential separation for a smooth (Lipshits) velocity
v1 − v2 = δv(R12) ≃ λR12, which gives R12(t) = R12(0) exp(λt). For the
smooth case (subject of the dynamical chaos theory) we have R12(t) → 0
when R12(0) → 0, which corresponds to uniqueness of trajectories. On the
contrary, (21) shows that the distance between trajectories R12(t) may stay
finite when the initial distance R12(0) → 0, which would mean splitting of
trajectories. Indeed, non-Lipshits equation dx/dt = x1−γ with the initial
condition x(0) = 0 has two solutions: x(t) ≡ 0 and x(t) = [γt]1/γ.

Onsager conjectured that the power of the velocity non-smoothness must
be at least 1/3 to provide an inviscid dissipation in incompressible flows,
which is now proved by the mathematicians. Non-smoothness of the ve-
locity field gives trajectories splitting or sticking which necessarily violates
conservation of any non-additive quantity.

We thus see two types of non-uniqueness: trajectories sticking for com-
pressible flows and splitting for incompressible ones. Yet the cube of the
velocity differences (the third structure function S3) scales the same with
the distance and the dissipation rate. That shows that the cascade idea
captures only the energetic side of turbulence and fixes the third moment
of the velocity difference. What about the whole probability distribution
of the velocity difference at a given scale, P (δv, r) and the other moments
Sn(r) = ⟨(δv)n⟩ =

∫
P (δv, r)(δv)ndδv? The cascade idea is of little help

here. Indeed, early proponents of the cascade assumed the distribution to
be self-similar, P (δv, r) = (δv)−1F (δv/

(
ϵr)1/3

)
, assuming that the cascade

determines at least the scaling of all the moments. Experimens show that
this is not the case: Sn(r) ∝ rζn , where ζn is some convex function of n
satisfying ζ0 = 0 and ζ3 = 1.
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Figure 3: Typical velocity profile in Burgers turbulence

4.1 Bi-fractality of Burgers turbulence

The simplest is to find this function for Burgers turbulence. That would be
wrong to assume Sn = ⟨[u(x) − u(0)]n⟩ ≃ (ϵx)n/3, since shocks give a much
larger contribution for n > 1: Sn ≃ wnx/L, here x/L is the probability
of finding a shock in the interval x. In terms of Fourier harmonics, every
shock contributes uk ∝ 1/k, which indeed gives S2(x) = ⟨[u(x) − u(0)]2⟩ =∫
|uk|2(1− eikx) dk ∝

∫ 1/x |uk|2 dk ∝ x.
Generally, Sn(x) ∼ Cn|x|n + C ′

n|x|, where the first term comes from the
smooth parts of the velocity while the second comes from O(x) probability
having a shock in the interval x. The scaling exponents, ξn = ∂ lnSn/∂ lnx,
thus behave as follows: ξn = n for 0 ≤ n ≤ 1 and ξn = 1 for n > 1. This
means that the probability distribution of the velocity difference P (δu, x)
is not scale-invariant in the inertial interval, that is one cannot find such
a that makes the function of the re-scaled velocity difference δu/xa scale-
independent. The simple bi-modal nature of Burgers turbulence (shocks
and smooth parts) means that the PDF is actually determined by two (non-
universal) functions, each depending on a single
argument: P (δu, x) = δu−1f1(δu/x)+(x/Lurms)f2(δu/urms). The breakdown
of scale invariance means that the low-order moments decrease faster than
the high-order ones as one goes to smaller scales. That means that the level
of fluctuations increases with the resolution: the smaller the scale the more
probable are large fluctuations. When the scaling exponents ξn do not lie on
a straight line, this is called an anomalous scaling since it is related again
to the symmetry (scale invariance) of the PDF broken by pumping and not
restored even when x/L→ 0.
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4.2 Multi-fractality of scalar and velocity statistics

Burgers bi-fractality is the consequence of only two possible flow configura-
tions in 1d, smooth profile and shock. Generally, Sn(r) ∝ rζn with the ex-
ponents lying on some smooth convex curve signalling multi-fractality. The
meaning of the numbers ζn has been quite remarkably understood in terms
of the geometric statistical conservation laws of Lagrangian evolution of n
trajectories of the fluid particles.

Such conservation laws exist already for the usual diffusion. Consider
particles with trajectories Ri(t) undergoing random walks. The squared dis-
tance between any two of them, R2

ij = |Ri − Rj|2, grows on average as
⟨R2

ij(t)⟩ = R2
ij(0) + 2κt. However, the combinations (called martingales) like

f2 = ⟨R2
ij(t) − R2

kl(t)⟩ and f4 = ⟨2(d + 2)R2
ijR

2
kl − d(R4

ij + R4
kl⟩ do not grow

at all - all powers of t cancel. The joint probability P (R1 . . .Rn) = Pn of n
random walkers in d-dimensional space satisfies the nd-dimensional diffusion
equation:

∂tPn = κ∆Pn = κ
n∑

i=1

∇2
iPn . (22)

For the above two pairs, one can write the respective part of the Laplacian
as follows: ∆ = R1−2d∂RR

2d−1∂R +∆θ, where R
2 = R2

ij + R2
kl and ∆θ is the

angular Laplacian on 2d− 1-dimensional unit sphere. Introducing the angle,
θ = arcsin(Rij/R), we see that the conservation of both f2 = ⟨R2 cos 2θ⟩
and f4 = ⟨R4[(d + 1) cos2 2θ − 1]⟩ can be described as due to cancellation
between the growth of the radial part (as powers of t) and the decay of
the angular part (as inverse powers of t). In other words, the above two
martingales are the harmonic polynomials, which are zero models of the
respective Laplacian in the 2d-dimensional space of Rij, Rkl: the radial part
is cancelled by an angular part, that is the growth of the distances between
particles is compensated by the decay of angular correlations. For n particles,
the polynomial that involves all distances is proportional to R2n (i.e. ζn = n)
and the respective shape fluctuations decay as t−n.

The scaling exponents of the martingales of the usual diffusion are integers
proportional to n. One can model turbulent (Richardson) dispersion (21),

by a diffusion with the scale-dependent diffusivity. Schematically, R
2/3
ij ≃ ϵt

can be written as R2
ij = κ(Rij)t = R

4/3
ij ϵt. We then replace (22) by

∂tPn =
∑
i,j

κab(Ri −Rj)∇a
i∇b

jPn . (23)
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This so-called Kraichnan model presumes fluid velocities δ-correlated in time
but preserve their power-law space correlations: κab(λRi−λRj) = λ4/3κab(Ri−
Rj). In this case, one can also build geometry-related martingales, but their
respective exponents depend nonlinearly on n because the relative diffusion
is now dependent on the distances to other particles. Moreover, how fast a
polygone made out of particles forgets its shape depends also on the velocity
non-smoothness and space dimensionality.

The scaling exponents of the martingales made out of interparticle dis-
tances determine the structure functions of a scalar field θ(r, t) mixed by a
turbulent flow. The scalar field is passive that is does not affect velocity.
The transport is described by the equation

dθ

dt
= [∂t + (v · ∇)]θ = φ(r, t) . (24)

Here the last term describes pumping, whose correlation function

⟨φ(r, t)φ(0, 0)⟩ = δ(t)χ(r)

is assumed nonzero for r < L. The scalar field at every point is given by
the integral of pumping integrated over the fluid trajectory that comes to
this point: θ(r, t) =

∫ t

−∞ dt′φ(R(t′), t′), where R(t) = r. The single-time
two-point moment is then proportional to the time it takes for two partices
to separate from r12 to L:

⟨θ(r1)θ2)⟩ =
∫
dt′χ (R12(t

′)) ≃ χ(0)t(r12 → L) . (25)

For the sake of an estimate, we assumed that χ(R) is step-like. For spatially
smooth (Lipshits) velocities, like those considered in dynamical chaos theory,
δv(R) ≃ λR, one has exponential separation of trajectories, R(t) = R(0)eλt,
so that the time is logarithmic:

⟨θ(r1)θ2)⟩ ≃
χ(0)

λ
ln

L

r12
. (26)

For the velocity field from the energy cascade where one has Richardson
diffusion, one substitutes the time from (21):

⟨θ(r1)θ2)⟩ =
∫
dt′χ (R12(t

′)) ≃ χ(0)

ϵ

(
L2/3 − r2/3

)
,

S2(r12) = ⟨[θ(r1)− θ(r2)]
2⟩ ≃ χ(0)r

2/3
12 /ϵ ∝ rσ2

12 . (27)
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Since χ(0) is the pumping rate of θ2 then (27) is the flux relation analogous
to (17) and (18):

d

dt

〈
(θ1 − θ2)

2〉 = ⟨(v1 · ∇1 + v2 · ∇2)θ1θ2⟩ = 4χ(0), . (28)

Applying the same consideration, we see that the third structure function,

S3 = ⟨(θ1 − θ2)
3⟩ = 3⟨(θ21θ2 − 3θ22θ1)⟩ ,

is proportional to the time during which one can distinguish two triangles
that started from two very different configurations with large aspect ratios:
one with two particles near 1, another with two particles near 2. With time,
triangles forget their inital shape evolving towards symmetrical configura-
tions with aspect ratios of order unity. That time grows with r12 (as it takes
longer to forget more elongated triangle) by the law S3(r12) ∝ rσ3

12 can be in-
ferred from the law of the decrease of the shape fluctuations of a triangle. For
usual diffusion, geometrical shapes decay as inverse integer powers of time
(equivalently, powers of R2) as determined by the Laplacian. For turbulent
diffusion, the powers σn are not equal to σ2n/2 but are determined by some
convex function of n dependent on the velocity scaling and space dimension-
ality. This function was computed in the limiting cases of very rough (almost
Brownian) velocity field and d→ ∞ (see Rev Mod Phys 73, 913, 2001). This
shows that the probability distribution P (δθ, r) is not self-similar function of
δθ/r1/3.

Let us see how the scaling of the Lagrangian conservation law could de-
termine the scaling of the velocity structure functions. It involves not only
the trajectories but also geometries of the velocity vectors. Let us consider
two fluid trajectories R1(t) and R2(t). Denote the time-dependent distance
between them R(t) = |R1 − R2| and the velocity difference δv (R(t)). Let
us assume that there exists a martingale, ⟨|δv(R)|2g

(
R(t)/R(0)

)
⟩, built out

of the squared velocity difference and some yet unknown function of the dis-
tance R(t) normalized by R(0) = r. Assuming without loss of generality that
g(1) = 1, the initial value ⟨|δv(r)|2⟩ ∝ rζ2 is just the Eulerian moment whose
scaling is given by ζ2. Let us now consider the limit t → ∞, when it is nat-
ural to assume that neither R(t) nor δv(R) remember their initial distance.
Since the martingale must still be proportional to rζ2 , that requires that the
function g(x) is asymptotically a power law: g(x) ∝ x−ζ2 . In other words,
the asymptotic large-time Lagrangian conservation law for squared velocity
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difference, ⟨
(
δv(R)

)2
R−ζ2⟩, determines the scaling exponent of the second

structure function. The exponent ζ2 quantifies how fast the directions of
two velocity vectors decorrelate with the distance and thus determines which
power of the distance to take for compensating the growth of the squared
velocity difference with time. Let us stress that g(x) is not a pure power
law for all x: Similarly to (20), it is straightforward to compute the time
derivatives at t = 0: d⟨|δv|2Rb⟩/dt = −4ϵrb−1(1 + b/d), so that g(x) → x−d

at x → 1 (see PRL 110, 214502, 2013). To conclude: while we can compute
neither g(x) nor its asymptotics exponent ζ2 for a real turbulent flow, we
can relate the existence of this Lagrangian conservation to the breakdown of
scale invariance of the Eulerian single-time statistics.

Intermittency of turbulence. Let us appreciate the dramatic conse-
quence of the breakdown of scale invariance in the energy cascades, expressed
in ζn ̸= n/3. Both for Burgers and Navier-Stokes, the exponents ζn > n/3
for n < 3 and ζn < n/3 for n > 3. Writing the structure functions as

Sn = Cn(ϵr)
n/3

(
L

r

)n/3−ζn

, (29)

we see that lower moments go to zero when we increase the forcing scale
keeping ϵ and r. This is true in particular for the second moment whose
Fourier transform is the energy spectral density E(k) =

∫
S2(r)e

ikrdr. If (as
Kolmogorov and Obukhov initially assumed) we had S2 ≃ (ϵr)2/3, then we
would have E(k) = ϵ2/3k−5/3 - this 5/3 is probably the best known incorrect
result of turbulence. Engineers still use 5/3 for estimates because the differ-
ence ζ2 − 2/3 ≃ 0.02 is small, but its positivity carries a remarkable message
for a physicist: when the number of cascade steps L/r increases unbounded,
one needs vanishingly small level of turbulent energy at a given flux. What
carries the flux then? The moments with n > 3 grow unbounded with L/r,
which means an increase of probability of very strong fluctuations. Most
of the energy dissipation takes place on rare strong fluctuations. Not only
turbulence does not forget about the pumping scale after many steps of the
cascade, turbulence statistics changes with every step. Maybe then the law
of change is scale invariant? Data support another Kolmogorov assumption:
that the statistics of the ratios (called Kolmogorov multipliers) δv(r)/δv(r/a)
is scale invariant, that is independent of r for fixed a, but it has not been
explicitly demonstrated.
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The dimensionless constants Cn in (29) are determined by the pumping
statistics. The existence of statistical conserved quantities breaks the scale
invariance of statistics in the inertial interval and explains why turbulence
in the inertial interval knows about pumping “more” than just the value of
the flux. Note that both symmetries, one broken by pumping (scale invari-
ance) and another by damping (time reversibility) are not restored even when
r/L→ 0 and η/r → 0.

4.3 Strongest fluctuation and instanton.

Could we also connect the incompressible velocity exponents ζn with some
flow configurations like we did for Burgers turbulence where ζn = 1 is equal
to the spatial codimension of shocks (which are the most singular objects of
compressible flows). Present-day experiments on incompressible turbulence
measure ζn up to n ≃ 10 − 12. For transverse structure functions, when
one take the difference of the velocity components perpendicular to the line
connecting the points, Sn⊥ = ⟨[v × r/r]n⟩ ∝ rζn⊥ , one starts to see signs
of saturation, ζn⊥ → 2 (see Phys. Rev. Fluids 5, 054605, 2020). If this
is indeed true, that would mean that the most singular flow configurations
in incompressible flows are lines, most likely the vortex lines. One may try
to show this theoretically using the so-called instanton formalism where one
considers n→ ∞ and uses the small parameter 1/n to justify the saddle-point
approximation in the path integral that determines the respective moment
(see Phys Rev E 54, 4896, 1996). This method works for any equation,
∂t + L(u) = f driven by a random force f with the Gaussian probability
distribution P (f) defined by the variance ⟨f(0, 0)f(r, t)⟩ = δ(t)D(r). The
averages are given by the path integral over different force histories:

⟨F{u(0, 0)}⟩ =
∫
DuDf F (u)δ

(
∂tu+ L − f

)
P (f) =

∫
DuDpF (u)eıI ,

I = ı

∫
dtdr p(r, t)

[
∂tu+ L(u)

]
− 1

2

∫
dtdrdr′D(r− r′)p(r, t)p(r′, t). (30)

We have presented the delta function as an integral over an extra field p and
explicitly made Gaussian integration over the force.

For the Navier–Stokes equation, the most natural is to consider the high
moment of the vorticity F = ωn = |∇ × v|n as a continuous limit of trans-
verse structure functions. The saddle-point approximation is based on the
assumption that the main contribution into the large-n moment is made by
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some optimal fluctuation; it then reduces computing the path integral to
finding this optimal flow history u(r, t) and p(r, t) by solving two nonlinear
partial differential equations which follow from the action extremum:

∂tu+ L(u) =
∫
dt′dr′D(r− r′)p(r′, t′) ,

∂tp =
δL
δu
p = δ(t)

δ lnF

δu
. (31)

The equations are solved at t < 0 since p(t) ≡ 0 for t > 0 due to causality.
The right-hand side of the second equation then provides the final condi-
tion on p, and one assumes that u(r, t) → 0 at t → −∞. Such (so-called
instanton) solutions were found for the field structure functions and spatial
derivatives for the passive scalar and Burgers equation, for the vorticity mo-
ments in 2d direct cascade (see below). For the vorticity instanton giving
⟨ωn

z ⟩, the second equation then has the right-hand side δ(t)n/ωz(0). The first
equation of (31) for the z-component takes the form

dωz

dt
= ωz

dvz
dz

+

∫
dt′dr′Dzk(r− r′)pk(r

′, t′) . (32)

The challenge is to find the global finite-action flow configuration that start-
ing from zero vorticity at the distant past first generates it by the last (force)
term and then amplifies it by stretching (the first term in the rhs).

5 Two-dimensional turbulence

The two-dimensional incompressible inviscid flow described by the Euler
equation dv/dt = −∇P/ρ is a special case. First, mathematicians proved
that there is no finite-time singularity, so that a smooth flow stays smooth
forever. Second, taking the curl we can write it for the vorticity ω = ∇× v:

dω

dt
=
∂ω

∂t
+ (v∇)ω =

∂ω

∂t
+ {ψ, ω} = 0 . (33)

Here we introduced the streamfunction such that ω = ∆ψ. It is clear from
(33) that ω is a Lagrangian invariant transported by the flow just like θ in
the unforced version of (24). That means that the integral over space of any
function of ω is conserved. Of particular importance for turbulence is the
qudratic invariant (called enstrophy) whose spectral density is ω2

k = |k×vk|2.
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Let us assume that an external force acts on some wavenumbers of order k and
generates per unit time (per unit mass) the energy ϵ and the enstrophy k2ϵ.
Let us assume that dissipation happens at k1 < k and k2 > k and denote the
respective energy dissipation rates ϵ1 and ϵ2. The enstrophy dissipation rates
are then k21ϵ1 and k22ϵ2. Let us show that such turbulence must contain two
cascades. Indeed, the two conservation laws, ϵ1+ϵ2 = ϵ and k21ϵ1+k

2
2ϵ2 = k2ϵ

give

ϵ1 = ϵ
k22 − k2

k22 − k21
, ϵ2 = ϵ

k2 − k1

k22 − k21
.

The dissipation at large k2 is usually provided by viscosity and at small k1 by
the bottom or wall friction. We see that when k2 ≫ k > k1 (large Reynolds
number), then ϵ1 ≈ ϵ, that is all the energy goes towards small k. This
phenomenon is called an inverse cascade and it is quite counter-intuitive: one
expects from a random turbulent flow fragmentation, not creation of large
entitites out of a small-scale noise. Yet Nature consistently demonstrates
such self-organization by inverse cascades both in creating large vortices and
system-size coherent flows out of small-scale quasi-2d turbulence in oceans
and atmospheres and in creating long waves out of storms on the ocean
surfaces. It is the enstrophy (i.e. vorticity) which goes via a direct cascade
to small scales: k22ϵ2 ≈ k2ϵ when k1 ≪ k < k2. One can guess the scaling of
vorticity correlation function from the flux relation similar to (28):

⟨(v1 · ∇1 + v2 · ∇2)ω1ω2⟩ = P2, . (34)

Here P2 is the pumping rate of squared vorticity. The power counting sug-
gests that the velocity scales as the first power and vorticity as the zeroth
power of the distance. Plausible arguments by analogy with the passive scalar
relation (26) suggest

⟨ω1ω2⟩ ≃
P2

λ(r12)
ln

L

r12
≃ [P ln(L/r12)]

2/3 . (35)

Here we estimated the scale-dependent stretching rate as the vorticity coarse-
grained on the scale: λ(r) ≃ ωr ≃ [P ln(L/r)]1/3. A consistent theory is still
ahead of us, see Problem 1 in Section 8. The 2d vorticity cascade is the only
direct cascade where we do not find an anomalous scaling, probably because
of its logarithmic nature.
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5.1 Difference between direct and inverse cascades

As we coarse-grain over larger and larger scales in the inverse cascade, it is
natural to expect that the properties of the pumping will be forgotten except
the energy flux. One way to interpret this profound difference between direct
and inverse cascades is to argue that fluid motions are slower when scales
are larger (because the velocity is non-Lipshits, the turnover time R/δv(R)
grows with R). As an inverse cascade proceeds upscale, it has ample time
to be effectively averaged over small-scale fluctuations including those of the
pumping, whose only memory left is the flux value it generates. On the
contrary, small-scale fast fluctuations in a direct cascade stay sensitive to the
statistics of slow fluctuations at large scales; nonlinearity enhances variability
down the cascade so that small-scale statistics is dominated by rare strong
fluctuations.

One can also explain the difference between direct and inverse cascades
using the Lagrangian language. Correlation functions are accumulated along
the trajectories. For example, (25) expresses a correlation function via the
backward-in-time integral of the pumping correlation function taken at the
distance between trajectories. Nonzero contribution appears only when tra-
jectories spent some in the past within the pumping correlation scale L. For
inverse cascades, we compute correlation functions at the (final) distances
much exceeding L, so that the contribution into the integral is given by tra-
jectories approaching each other back in time. That means that behavior of
any two particles effectively determines the evolution of the whole multipar-
ticle configuration, and the second moment determines the scaling of higher
moments. On the contrary, for direct cascades, the final distance is much less
than L so that the main contribution is given by the majority of trajectories
separating back in time (until leaving the pumping scale). One then relates
the breakdown of scale invariance to nonuniqueness of explosively separating
trajectories in a nonsmooth velocity field (at vanishing viscosity); exponents
of higher moments are then related to the laws of decay of the fluctuations of
the shapes of multiparticle configurations. These laws depend on the number
of particles so that an infinite number of forcing-related parameters is needed
to predict the whole statistics at small scale.

Another perspective can be learned from (20), where for the 2D inverse
energy cascade, there is no energy dissipative anomaly and the right-hand
side in the inertial range is determined by the injection term 4⟨fv⟩ = −4ϵ so
that the energy flux now must be considered negative (directed upscale).
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That means that the mean squared velocity difference has positive time
derivative already at t = 0 and grows monotonically. One must also put
ϵ < 0 om (19), so that S3 > 0. Trajectories predominantly separate forward
and approach backward in time in the inverse cascade. On the contrary, in
3d, S3 < 0 and the time derivative (20) is negative at the beginning. Of
course, any couple of Lagrangian trajectories eventually separates and their
velocity difference increases. That shows non-monotonic Lagrangian evolu-
tion of the mean squared velocity difference between two trajectories in 3d
energy cascade: the transverse contraction of a fluid element makes initially
decreases the difference, then eventually the stretching along the trajectories
takes over. That interplay between the two mechanisms is possibly related
to an anomalous scaling of the Lagrangian conservation laws.

Another crucial difference between direct and inverse cascades follows
from the equation for the separation

dδv

dt
=
d2R

dt2
= δf −∇δP/ρ . (36)

The corresponding forcing term δf = f(r+R)−f(r) has completely different
properties for an inverse energy cascade in 2D and for a direct energy cascade
in 3D. For the direct cascade the large-scale forcing corresponds in the inertial
range to δf ∝ R, which is negligible and even the scaling behavior comes from
the pressure term accounting for interaction between infinitely many fluid
trajectories. For 2d, R in the inertial range is much larger than the forcing
correlation length. The forcing can therefore be considered short-correlated
both in time and in space. That gives the diffusive growth of the squared
velocity and cubic growth of the squared distance like in the Richardson law.
Was the pressure term absent, one would get R2 = 4ϵt3/3. The experimental
data give a smaller numerical factor (0.5 instead of 4/3) which is natural since
the incompressibility constrains the motion. What is, however, important is
that already the forcing term prescribes the law of separation consistent with
the scaling of the energy cascade in 2d.

Despite all these hints, nobody has yet proved that the flow statistics
must be scale-invariant in 2d inverse cascade, see Problem 2 in Section 8.
Experiments indeed show scale-invariant statistics in the 2d inverse energy
cascade. Moreover, the data suggest that some part of the statistics has even
higher symmetry - conformal invariance (which can be thought of as local
scale invariance — conformal transformations can expand here and compress
there but go from here to there smoothly preserving the angles).
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6 Conformal invariance in turbulence

It is likely that the existence of the third moments (fluxes) prevents the
whole turbulence statistics to be ocnformally invariant, even though that
was not properly demonstrated. However, there is a subset of turbulent
statistics (present for different inverse cascades) which is empirically found
to be conformally invariant. This subset is related to the isolines of some
turbulent field. Let us first introduce the general notion of a conformally
invariant random curve.

6.1 Schramm-Löwner Evolution (SLE)

Non-self-intersecting curve growing from the domain boundary can be de-
scribed by a conformal map of the domain with the curve inside into a do-
main without the curve. For example, in the simplest case the curve γ(t)
starts at the real axis of the half-plane H. Here t parameterizes the curve, it
should not be confused with the time in hydrodynamic equations The map
gt : H\γ(t) → H is fixed by the asymptotics gt(z) ∼ z + 2t/z + O(1/z2) at
infinity. If the curve touches itself, one must define the domain K(t) as the
union of the curve and all points that cannot be reached from infinity and
consider gt : H\K(t) → H. The growing tip of the curve is mapped into a
real point ξ(t). Loewner found in 1923 that the conformal map gt(z) and the
curve γ(t) are fully parameterized by tip image ξ(t) called the driving func-
tion. For that one needs to solve the remarkably simple Loewner equation
dgt(z)/dt = 2[gt(z)− ξ(t)]−1. Almost eighty years later, Schramm considered
random curves in planar domains and showed (first, in a particular case) that
the measure on the curves is conformal invariant if and only if ξ(t) =

√
κBt,

where Bt is a standard one-dimensional Brownian walk. In addition, the
measure µH(γ; z1, z2) on the curves γ connecting z1 and z2 is Markovian: if
to divide γ into two pieces γ1 from the boundary z1 to z and γ2 from z to z2,
then the conditional measure is as follows: µH(γ2|γ1; z1, z2) = µH\γ1(γ2; z, z2).
Diffusivity κ allows one to calssify the classes of conformal invariance random
curves called SLEκ. Such curves have been encountered in physics before as
the boundaries of clusters of 2d critical phenomena described by conformal
field theories. The language and formalism of SLE is a new natural commu-
nication tool for physicists and mathematicians.

Let us list here few basic facts about SLE curves. When κ = 0, γ is a
vertical straight line. The larger the κ, the more curve wiggles. The curve
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is simple (i.e. with probability 1 does not touch nether itself nor real axis)
when 0 ≤ κ < 4. For SLEκ with 4 ≤ κ < 8, the curve touches itself but does
not fill the space. In this case, one can define an external perimeter (as a
part one can reach from infinity) which belongs to a dual class SLEκ∗ with
κ∗ = 16/κ. The fractal dimension of SLEκ curves is Dκ = 1+ κ/8 for κ < 8.

Among the dual pairs, κ and κ∗, one is special from the viewpoint of
locality. The curves from SLE6 do not feel the boundary until they touch it
(property called SLE locality).The dual curve SLE8/3 have the “restriction
property”: the statistics of the curves conditioned not to visit some region is
the same as in the domain without this region. Intuitively, one can appreciate
these properties by considering lattice (discrete) models which turn into the
respective SLE in the continuous limit. For example, consider a honeycomb
lattice. A random walk along the bonds starts from the boundary point
that has all black hexagons to the left and white to the right and keeps that
property as it moves turning right/left as it meets black/white hexagon. SLE6

is obtained from the classical model of critical percolation when hexagons get
their colors independently with the probability 1/2. SLE8/3 corresponds to
a self-avoiding random walk when every bond is visited only once. Also the
value κ = 4 is special because it is self-dual it corresponds to the so-called
harmonic navigator. In this case, the probability of the color for the hexagon
encountered is determined by the harmonic function defined in the domain
with the boundary that includes the hexagons colored before; in other words,
a new random walk starts from the hexagon and colors it by the color of the
boundary the walk hits. Both SLE6 and SLE4 appear as isolines of Gaussian
random fields. If one considers the surface of a random function of two
variables, a(x, y), as a landscape during a great flood then at some water
level the probability to sail across is equal to probability to walk. At this
level, the shoreline belongs to SLE6 (critical percolation) if the correlation
functions of a(x, y) decay sufficiently fast. In particular, non-rigorous but
plausible Harris criterium claims that if ⟨a(r)a(0)⟩ ∼ r−2h and h < 3/4, then
isolines of the Gaussian field a are not equivalent to critical percolation i.e.
do not belong to SLE6. As far as SLE4 is concerned, this class contain isolines
of Gaussian (free) fields with ⟨a(r)a(0)⟩ ∼ ln r. How all that is related to
turbulence where the only thing we are sure about its being non-Gaussian
(because the flux makes the third moment nonzero)?

25



6.2 Isolines in turbulence

Figure 4 shows a nodal line of vorticity obtained by a numerical solution of
(??) with m = 2 on a torus (that is 2d Navier-Stokes equation with periodic
boundary conditions and added external force and uniform friction). Force
scale is lf = 2π/kf = 0.05. The curve looks fractal at the scales exceeding
lf , i.e. in the interval of an inverse cascade. Indeed, the length P grows
nonlinearly with the end-to-end distance L. Power-law exponents of this
grows for the curve and its external perimeter are found to be close within
the resolution to the dimensionalities 7/4, 4/3 of the dual pair SLE6 and
SLE8/3. Let us briefly describe how we identified possible curves from an SLE
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Figure 4: A portion of a candidate SLE trace obtained from the vorticity
field.

class and determined the driving function ξ(t). We drew quite arbitrarily
a straight line to be a real axis and at the end checked that translations
and rotations of the axis did not change the results. We then start from
the intersection of a zero isoline and the axis and move along the curve or
along the axis (when return to it) preserving orientation i.e. keeping positive
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vorticity always to the right. Such a procedure faithfully reproduces the
statistics only in the local case, indeed we expected (and found!) κ ≈ 6.
We then divided our curve into small straight segments and approximated
the family of conformal maps gt(z) by a discrete set of standard conformal
maps absorbing one segment one by one). The resulting set of “times” ti and
values ξi defines the driving function ξ(t). The only thing left is to run the
Schramm test i.e. to check how well this function corresponds to a Brownian
walk. The data presented by upward oriented triangles in Figure 5 show
that the ensemble average ⟨ξ(t)2⟩ indeed grows linearly in time: the diffusion
coefficient κ is very close to the value 6, with an accuracy of 5% (lower
inset). The probability distribution functions of ξ(t)/

√
κt collapse onto a

standard Gaussian distribution at all times t (upper inset). Therefore, we
expect that in the limit of vanishingly small Lf the driving ξ(t) tends to
a true Brownian motion and zero-vorticity lines become SLEκ traces with
κ very close to 6. Note that the vorticity field has h = 2/3 < 3/4, that
is the Harris criterium is violated. However, our field is non-Gaussian -
while the probability distribution looks like Gaussian, the deviations are
measurable including the third moment. Triangles pointing down on the
lower are obtained for the isolines of a Gaussian field having the same Fourier
spectrum as vorticity but randomized phases. Apparently, our accuracy is
sufficient to make sure that it does not correspond to any SLE including SLE6.
Indeed, E[ξ2]/t ≡ ⟨ξ2⟩/t is not constant and approaches the limiting value
κ = 6 only at the scales exceeding 2π/kα where the power-law correlation is
already cut-off by friction and the field becomes truly uncorrelated.

6.3 Family of hydrodynamic models

The Euler equation is not unique in describing a 2d inverse cascade with
an emergent conformal invariance. There exists the whole family of reality-
based models, which describe the evolution of a scalar field θ transported by
an incompressible two-dimensional velocity u = (∂yψ,−∂xψ), expressed via
the stream function ψ. The scalar field θ is “active” because it is linearly
related to ψ and u. In Fourier space the relation reads: θ(k) = |k|mψ(k).
The system is thus governed by the equation

∂tθ + (u∇)θ = ∂tθ + {θ, ψ} = F +D , (37)

where {θ, ψ} = θxψy − θyψx, F and D are external forcing and dissipation
respectively. Different values of m give different well-known hydrodynamic
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Figure 5: Demonstration of conformal invariance of the isolines of vorticity
in the Euler equation. The driving function is an effective diffusion process
with diffusion coefficient κ = 6± 0.3. Right (lower) inset: triangles pointing
up correspond to the vorticity, triangles pointing down to the Gaussian field
with the same second moment. Left (upper) insets: the probability density
function of the re-scaled driving function ξ(t)/

√
κt at four different times

t = 0.0012, 0.003, 0.006, 0.009 (left) and t = 0.02, 0.04, 0.08 (right); the solid
lines are the Gaussian distribution g(x) = (2π)−1/2 exp(−x2/2).
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equations. For m = 2 one obtains two-dimensional Navier-Stokes (NS) equa-
tion, θ being the vorticity. For m = 1 the field θ represents the temperature
in the so-called Surface Quasi Geostrophic turbulence. Finally, for m = −2
the model corresponds to that derived by Charney and Oboukhov for waves
in rotating fluids and by Hasegawa and Mima for drift waves in magnetized
plasma in the limit of vanishing Rossby radius (ion Larmor radius for plasma
physics).

At all values of m equation (37) possesses two positive-definite invariants
for F = D = 0, namely Z =

∫
θ2dx and E =

∫
θψdx/2. When the system

is forced by an external source of scalar fluctuations F , with a correlation
length ℓf ∼ 1/kf , the existence of two conserved quantities causes double
turbulent cascade. The sign of m determines the direction of the cascades.
For m > 0 the “energy” E is transferred toward large scales ℓ > ℓf giving
rise to an inverse cascade, and the “enstrophy” Z flows toward small scales.
The cascades are reversed for m < 0.

For all the inverse cascades checked (m = 2, 1, 1/2,−2), one finds that
the zero isolines belong to SLE with κ varying from 6 to 4 (arXiv:1012.3868,
2010).

7 Turbulence-flow interaction

What happens when an inverse energy cascade reaches the box size? It cre-
ates a system-size flow. Because this flow create system-size correlations, it
is sometimes called condensate in analogy with the Bose-Einstein condensa-
tion. In a square box, such flow is a big vortex in the center (accompanied
by four recirculating vortices in the corners); on a torus, the flow is the vor-
tex dipole. One can derive analytically the radial profile of the vortex flow
and the turbulence feeding it. Let us assume that polar and radial velocities
are respectively U(r) + u(r, t) and v(r, t), that is u, v describe turbulence.
Viscosity is irrelevant for the inverse cascade. The mean radial component
of the Euler equation can be written as the continuity equation for the mean
angular momentum

r
∂U

∂t
= −1

r

∂

∂r
r2⟨uv⟩ . (38)

When the mean angular momentum flux r⟨uv⟩ is nonzero, the flow is ir-
reversible, i.e. the sign of ⟨uv⟩ does not change upon the transformation
t → −t while the sign of U does. Opposite signs of U and ⟨uv⟩ imply that
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the momentum flows towards the vortex center (turbulence feeds the vortex).
Let us write now the energy balance assuming that small-scale forcing

pumps ϵ:

1

2

∂

∂t

(
U2 + ⟨u2 + v2⟩

)
= ϵ− 1

r

∂

∂r
r
[
U⟨uv⟩+ ⟨v(p+ (u2 + v2)/2⟩

]
. (39)

In treating the vortex interior, we assume that the main contribution in the
energy density is given by the mean flow and neglect u2 + v2 on the left and
the last term on the right. We also neglect ⟨vp⟩ term assuming that it does
not participate in the energy fow from turbulence to the vortex. That gives
the energy balance,

U
∂U

∂t
= ϵ− 1

r

∂

∂r
rU⟨uv⟩, , (40)

which comprises a closed system together with (38). Solving it gives the
r-independent mean vortex flow with the energy growing as U2/2 = 3ϵt,
that is three times faster than without turbulence feeding it. Note that
the turbulent momentum flux is proportional not to the velocity gradient
(which is zero) but to the angular momentum gradient. Turbulent viscosity
notion has little value here, all the more that the angular momentum flow
is towards the center where the momentum density is higher. This is the
spatial counterpart (momentum flow up the gradient) to the spectral inverse
cascade in 2d.

Back to the pipe fow. Note that (38) is a direct analog of (12). Why
don’t we add the energy balance and describe at least the section of the
channel or pipe flow where the flow dominate turbulence? Of course, we can
do that writing for a statistically steady flow

ν
dU

dz
+ ⟨uv⟩ = αg(h− z) ,

dU

dz
⟨uv⟩+ d⟨vp⟩

dz
= −ϵ(z) . (41)

Note that now the momentum flux is down the gradient: U ′⟨uv⟩ < 0. Unfor-
tunately, even if we neglect again the pressure term, here ϵ(z) is an unknown
rate of the energy dissipation by an inhomogeneous turbulence inside the
z-dependent mean flow. To find how the energy dissipation rate depends
on the mean flow profile, one needs to develop a theory of the direct energy
cascade inside a mean flow. This is the great problem of turbulence worthy
of a Nobel prize. It might be solvable at the limit d→ ∞.
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8 The Seven Problems of Turbulence Theory

I list the problems according to my subjective feeling of ascending difficulty.
They are all related to incompressible turbulence with no waves. Simplest
problems are related to a single entity, turbulence. Moew complicated prob-
lem is two-entity: turbulence-flow interactions. Problems with three entities
(like vortices, waves and mean flow) are most important for geophysics, as-
trophysics and industry, and not described here.

Direct (vorticity) cascade in 2d. There are plausible arguments based
on the similarity to the passive scalar turbulence in an (almost) spatialy
smooth flow, as sketched in (35). These arguments go back to Kraichnan
(Phys Fluids 10, 1417, 1967) and were later developed by others. Yet nothing
was really computed by a consistent theory.

1. Compute the vorticity correlation functions in 2d direct cascade and
compare with the prediction (Phys Rev E 50, 3883, 1994):

⟨ωn(r1)ω
n(r2)⟩ ≃ [P2 ln(L/r12)]

2n/3 , (42)

where P2 is the input rate of the squared vorticity and L is the pumping
scale. This formula may be true only or n < ln(L/r).

2. For very large n, consider the moments of the coarse-grained vorticity ωr

(by a saddle-point instanton formalism or other methods). For the instanton,
the axial symmetry of the problem turns 2d nonlinearity term (v∇)ω into
zero, that is the stretching term in (32) is absent. There is neither stretch-
ing nor contraction for axially symmetric flows in 2d so that the force can
pump the vorticity forever. The optimal flow realizations that determine the
vorticity moments in 2d must have their axial symmetry broken. Since the
stretching in the 2d vorticity cascade is exponential, it was argued that the
angle-dependent part of the vorticity remains much smaller than the isotropic
part during most of the (slow) evolution, which allowed to integrate over the
angle-dependent degrees of freedom (in the Gaussian approximation) and
obtain a renormalized action for the angle-averaged vorticity. That would
be great to verify the prediction is that the asymptotic of the probability
density function (PDF) is exponential: lnP (ωr) ∝ −ωr/ωr where the rms
value is ωr ≃ (P2 ln(L/r)

1/3, and that the whole PDF is self-similar that is
depends on the single argument ωr/ωr (Phys Rev E83, 045301, 2011).

31



Inverse (energy) cascade in 2d. Here the first challenge is to establish
self-similarity of the whole velocity statistics (or find an anomalous scaling
as in 3d). Related or separate is the second challenge to prove conformal
invariance of isolines; particularly puzzling is where in the hydrodynamic
equations is encoded the central change of the conformal field theory which
describes the isolines.

3. Establish self-similarity of the probability distribution of the distance R(t)
between two fluid trajectories at large times and large distances:

lim
t→∞,R→∞

P (R, t) = R−1f(R2/3/ϵt) . (43)

One needs the large-time limit, since the initial stage of separation is expected
to proceed by a ballistic law R2 = r2 + S2(r)t

2. Using ⟨δ|v|2/dt⟩ = 4|ϵ| at
t = 0, one can estimate the transition time as τ(r) = S2(r)/4ϵ ≃ r2/3ϵ−4/3.
One way to proceed is to use (36). The difficulty is the pressure term, which
either can be treated perturbatively or one can impose some inequilities on its
contribution. I have a hunch that the function f may be close to exponential,
that is the statistics of R1/3 is close to Gaussian.

4. The velocity field is non-smooth (1/3-Holder continuous) so that all the
arguments from Section 4.2 about relative diffusion dependent on the number
of particles are valid. In particular, the statistics is not self-similar for the
passive scalar advected by the velocity field from 2d inverse cascade. Yet,
experimental and numerical data do not show any signs of an anomalous
scaling of the velocity and vorticity fields. One way to prove that is to use
the instanton formalism described in Section 4.3 to show that Sn(r) ≃ (ϵr)n/3

for n → ∞. The difference from the 3d case is that there is no vorticity
stretching term, which must have this moment much smaller in 2d. Together
with S3 = 3ϵr/2 and convexity, that would mean normal scaling for all n. If
self-similarity of the Eulerian velocity statistics is true, it must be related to
the small-scale random force which decorrelates velocities of different fluid
particles independently on each other. The normal scaling Sn ≃ (ϵr)n/3

means, in particular, that the Lagrangian velocity PDF is also-self-similar in
the long-time limit: P (δv, t) = (δv)−1g(δv/

√
ϵt). It must be possible to prove

that the velocity difference cannot grow slower than diffusively. Note that
in 3d, the anomalous scaling means that the velocities of two fluid particles
decorrelate faster than diffusively, and of more than three particles - slower
than diffusively. Apart from velocity diffusion, another possible factor to
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exploit is two-dimenisonality which severely restricts possible laws of velocity
decorrelation.

5. Consider the inverse cascades in the family of hydrodynamic equations
from Section 6.3. Show that the zero-level isolines correspond to SLE and
find the relation between κ and m.

6. Anomalous scaling in direct cascades. Derive the transversal ve-
locity structure function for large order using the vorticity instanton. Hunch:
instanton is a vortex line stretched by a large-scale velocity field (possibly
not axially symmetric).

7. Wall-bounded flow. Derive the profile of the mean flow U(z) along the
wall and the correlation functions of turbulence, starting from ⟨uv⟩ = τ(z).
Derive the resistance of the pipe at large Re.

to be continued...

Notations: v - velocity, R(t) - distance between two fluid particles, δv(R)
- velocity difference between two fluid particles, h - river depth, pipe radius,
body size, U - mean flow velocity, u - typical velocity or body velocity, w -
one-dimensional velocity in the Burgers equation.

I am very much grateful to Anton Kapustin for suggesting this course,
providing financial support, encouragement and penetrating questions. I’m
also indebted to Caltech faculty and students for their persistence in attend-
ing lectures, encouraging me to prepare these notes which benefitted from
many questions and informal discussions.
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