Statphys Exam. Feb 22, 2007

1. A lattice in one dimension has N cites and is at temperature 7. At each cite there is an atom
which can be in either of two energy states: E; = +e. When L consecutive atoms are in the +¢
state, we say that they form a cluster of length L (provided that the atoms adjacent to the ends of
the cluster are in the state —e). In the limit N — oo,

a) Compute the probability Pp that a given cite belongs to a cluster of length L (don’t forget to
check that >72Pr =1);

b) Calculate the mean length of a cluster (L) and determine its low- and high-temperature limits.

2. A cavity containing a gas of electrons has a small hole of area A through which electrons can
escape. External electrodes are so arranged that voltage is V between inside and outside of the
cavity. Assume that
i) a constant number density of electrons is maintained inside (for example, by thermionic emission);
ii) electrons are in thermal equilibrium with temperature T and chemical potential g such that
KT <V —

ili) electrons moving towards the hole escape if they have an energy greater than V.
Estimate the total current carried by escaping electrons.

3. A d-dimensional container is divided into two regions A and B by a fixed wall. The two regions
contain identical Fermi gases of spin 1/2 particles which have a magnetic moment 7. In region A
there is a magnetic field of strength H, but there is no field in region B. Initially, the entire system
is at zero temperature, and the numbers of particles per unit volume are the same in both regions.
If the wall is now removed, particles may flow from one region to the other. Determine the direction
in which particles begin to flow, and how the answer depends on the space dimensionality d.

4. Consider the spin-1 Ising model on a cubic lattice in d dimensions, given by the Hamiltonian

H=-J) S5 —A) 52— hySi,
{i.3) ‘ :
where 5; = 0, %1, 37, denote a sum over z nearest neighbor sites and J, A > 0.
(a) Write down the equation for the magnetization m = (S;) in the mean-field approximation.

(b) Calculate the transition line in the (7', A) plane (take h = 0) which separates the paramagnetic
and the ferromagnetic phases. Here T' is the temperature.

(¢) Calculate the magnetization (for A = 0) in the ferromagnetic phase near the transition line,
and show that to leading order m ~ +/1, — 1, where T, is the transition temperature.

(d) Show that the zero-field (h = 0) susceptibility y in the paramagnetic phase is given by
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where 3 = 1/kgT.



Answers
Problem 1.
a) Probabilities of any cite to have energies +e are

p:l: — e:l:_:’je(e_ﬁe + e—_."je)—l

The probability for a given cite to belong to an L-cluster is Py = LT—’&?—’E for L > 1 since cites are
independent and we also need two adjacent cites to have —e. The cluster of zero length corresponds
to a cite having —e so that Pr, = P_ for L = 0. We ignore the possibility that a given cite is within
L of the ends of the lattice, it is legitimate at N — oc.
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At T' = 0 all cites are in the lower level and (L} = 0. As T' — oo, the probabilities P, and P_ are
equal and the mean length approaches its maximum (L) = 3/2.

Problem 4.
a) Hers(S) = —JmzS — AS* — hS, S =0, £1.
e,-".?(.f:m+h} _ e—,-".?(.f:m+h)

m = e??
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b) h=0
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mcnregich the chermical potential 1s highé';, and we do this by considering
the grand ‘canonical expression for the-number of particles per unit volume. In
the presence of a magnetic field, the single-particle energy is & + TH, where ¢
is the kinetic energy, depending on whether the magnetic moment is parallel or

antiparallel to the field. The total number of particles is then given by -
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For non-relativistic particles in a d-dimensional volume V, the density of states
is g(g) = yVe¥*"1, where y is a constant. At T =0, the Fermi distribution
function is

lim (———1——> =0(uFtH—¢)
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where 6(:) is the step function, so the integrals are easily evaluated with the
result N

2
o= T+t + @ = TP,

At the moment that the wall is removed, N /V is the same in regions A and B;
so (with H = 0 in region B) we have

(a + TH? + (s — THY? = 2.

For small fields, we can make use of the Taylor expansion

d d{d
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We see that, for d = 2, the chemical potentials are equal, so there is no
flow of particles. For d > 2, we have up > pa and so particles flow
towards the magnetic field in region A while, for d < 2, the opposite is
true. “We can prove that the same result holds for any magnetic field strength
as follows. For compactness, we write A = 7H. Since our basic equation
(s + V2 + (s — M = 2u/* is unchanged if we change A to —A, we
can take A > O without loss of generality. Bearing in mind that up is fixed, we
calculate djuy /dA as

to obtain

dua _ (ua =M — (ua + 1727
A (ua =D+ (ua 0
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. m—— - Gince [La + A > s — A, WE have (ua + DY > (ua — MY if d > 2 and
vice versa. Therefore, if d > 2, then dus/dA is negative and, as the field is

increased, pa decreases from its zero-field value up and is always smaller than

ug. Conversely, if d < 2, then u, is alwa
, /s <2 ys greater than pg. F =
have pa = up independent of the field. ko EXE=2 e






