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Simulation of quantum systems is notoriously challenging for classical computers, while quantum
hardware is naturally well-suited for this task. However, the imperfections of contemporary quantum
systems pose a considerable challenge in carrying out accurate simulations over long evolution times. Here,
we experimentally demonstrate a method for quantum simulations on a small-scale trapped-ion–based
quantum simulator. Our method enables quantum simulations of programmable spin-Hamiltonians, using
only simple global fields, driving all qubits homogeneously and simultaneously. We measure the evolution
of a quantum Ising ring and accurately reconstruct the Hamiltonian parameters, showcasing an accurate and
high-fidelity simulation. Our method enables a significant reduction in the required control and depth of
quantum simulations, thus generating longer evolution times with higher accuracy.
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Quantum simulators are controllable quantum systems
that enable the study of phases, dynamics, and properties of
complex quantum systems for which an analytical or
numerical treatment is challenging [1]. Quantum simula-
tions are considered a suitable task for noisy intermediate
scale quantum (NISQ) computers [2], which are currently
available. Recent years have seen numerous implementa-
tions of quantum simulations on several platforms [3–5],
which are performed with an ever-increasing quality,
approaching an advantage over classical methods. An
apparent challenge to NISQ-era quantum hardware is to
perform large-scale quantum simulations, with a relatively
shallow circuit depth, i.e., with few operations, in order to
avoid the deterioration of the simulation’s fidelity due
to noise.
Ion crystals trapped in radio frequency traps are an

especially prolific tool for quantum simulations [6–19] due
to their long coherence times [20,21], high-fidelity control
[22–25], and rich connectivity [26–29]. By exploiting the
long-range coupling between all ions in the ion crystal, it is
possible to perform parallel and long-range entanglement,
potentially increasing the efficacy of the simulation.
Analog quantum simulation in trapped-ion platforms are
typically either limited to simple models that are con-
strained by the one-dimensional (1D) structure of the
underlying ion crystal [15] or require local control [18].
Here, we experimentally implement quantum simula-

tions of the Ising-spin model on a small-scale trapped-ion
quantum system [30]. We evolve our system using
global pulses, which drive the ions homogeneously and

nevertheless generate a desired inhomogeneous program-
mable interaction in each pulse, which is unconstrained by
the 1D linear geometry of the ion chain. This is enabled by
coherently and simultaneously coupling to all modes of
motion of the trapped-ion crystal in a controllable manner.
We are able to simulate spin-Hamiltonians of the form

H ¼
XN
n;m¼1

Jn;mσ
ðnÞ
x σðmÞ

x ; ð1Þ

with σðnÞx a Pauli-x operator acting on the nth spin of a N
site spin system, and Jn;m an experimentally controllable
coupling matrix. This implements an Ising-spin model.
With global methods that are straightforward in trapped-

ion systems, we extend this interaction to accommodate for
a transverse field, δ

P
N
n¼1 σ

ðnÞ
z . Similarly, we can add

σðnÞy σðmÞ
y terms that may differ in their coupling matrix

compared to the coupling in Eq. (1).
Our method takes into account and mitigates unwanted

inhomogeneous aberrations due to, e.g., a finite driving
beam waist. Furthermore, while all modes of motion of the
ion crystal may be used, here we explicitly decouple from
the center-of-mass mode as it is more prone to heating and
decoherence, without affecting our method’s programm-
ability, thus improving the simulation’s fidelity.
We simulate a four-ion Ising-spin quantum ring and

observe dynamics under its Hamiltonian. We supplement
this model with a transverse field, such that the resulting
evolution is purely quantum mechanical, and observe the
dynamics as a function of the transverse field magnitude.*These authors contributed equally to this work.
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Below we analyze these results in full and are able to
accurately reconstruct both the Ising coupling terms, Jn;m,
as well as the various transverse fields, δ, showcasing an
accurate realization of quantum simulations using our
method.
The theoretical proposal underpinning our Letter has

been proposed in Refs. [26,27]. We provide the relevant
physical picture and method details. In trapped-ion–based
quantum systems, entanglement between qubits is typically
generated by spin-dependent forces, which mediate spin-
spin interactions through the collective phonon modes
of motion of the ion crystal. Conventionally only two ions
are driven and coupled to a single phonon mode, such as in
the Mølmer-Sørensen (MS) gate [31,32], generating an

evolution of the form UMS ¼ expðiΦσðnÞx σðmÞ
x Þ, with n and

m the indices of the two entangled ions andΦ a controllable
entanglement phase.
This method is generalized by homogeneously driving

all of the N ions in the ion crystal. We purposefully couple
toN modes of motion along the axial axis of the ion crystal.
As shown in Ref. [26], at a fixed pulse duration, such a
drive yields the evolution

U ¼ exp

�
i
XN
j¼1

Φj

XN
n;m¼1

OðnÞ
j OðmÞ

j σðnÞx σðmÞ
x

�
; ð2Þ

with the fΦjgNj¼1
completely controllable mode-dependent

entanglement phase, and O an orthonormal mode matrix,

i.e.,OðnÞ
j is the normalized participation of the nth ion in the

jth mode of motion [33].
We drive the ions in the adiabatic regime, i.e., the pulse

duration implementing U is slower than the characteristic
oscillation periods of the modes of motions. In this regime
the mapping between the set of desired phases, fΦjgNj¼1

,
and the details of the drive is straightforward, as described
below. Faster realizations of U are discussed in Ref. [27].
Our drive is composed of four tones per motional mode:

ωj;1;� ¼ ω0 � ðνj þ ξÞ and ωj;3;� ¼ ω0 � ðνj þ 3ξÞ, with
νj the frequency of the jth mode of motion and ω0 the
single-qubit transition frequency. ξ is an additional detun-
ing from the mode transition frequencies such that U in
Eq. (2) is achieved at t ¼ 2π=ξ.
The phases of the tones of ωj;1;� are set to 0 (for all j’s)

and the phases of the tones ωj;3;� are set to π. With these
choices the resulting evolution is made robust to unwanted
coupling to the carrier transition and pulse-timing
errors [26,34,35].
The amplitudes of ωj;n;�, driving the jth mode of motion

are set to rj. With these generalizations of the MS gate we
make use of consecutive implementations of U in Eq. (2),
such that the ion’s evolution, at integer multiples of 2π=ξ,
evolves stroboscopically according to the Hamiltonian in

Eq. (1), and Jn;m ∝
P

N
j¼1ðη2jr2j=ξÞOðnÞ

j OðmÞ
j , with ηj the

Lamb-Dicke parameter of the jth mode of motion. The
proportionality constant accommodates for the laser’s total
Rabi frequency, Ω0, and additional (mode and ion inde-
pendent) numerical factors.
Because of the orthonormality ofO, shifting allΦj’s by a

constant, i.e., Φj ↦ Φj þ ϕ, amounts to modifying U in
Eq. (2) by a global phase, i.e., U ↦ eiNϕU [36]. Here, we
exploit this property in order to set Φj¼1 ¼ 0, and adjust all
the other Φj’s appropriately. This is helpful as the j ¼ 1

mode is an axial center-of-mass mode, which typically
exhibits the fastest heating and decoherence rate. Thus, we
decouple from this mode, yielding longer coherence times
and higher simulation fidelity.
Furthermore, inhomogeneities in the field driving the

ions, e.g., due to a finite beam waist of an optical drive, can
be taken into account by adjusting O accordingly [36],
enabling mitigation of such effects.
The Pauli-x rotations, i.e., σðnÞx , in Eq. (2) can be trivially

generalized to σðnÞϕ ¼ cosðϕÞσðnÞx þ sinðϕÞσðnÞy , with ϕ fully
controllable, by equally shifting the phases of the drive’s
tones. The choice of ϕ, as well as all other drive parameters
such as the different Φj’s, can be changed at each
consecutive implementation of U. Combined with the
well-known Suzuki-Trotter decomposition [37,38], this
accommodates for various spin-Hamiltonians, e.g.,

H ¼
XN
n;m¼1

�
JðxÞn;mσ

ðnÞ
x σðmÞ

x þ JðyÞn;mσ
ðnÞ
y σðmÞ

y
�þ δ

XN
n¼1

σðnÞz ; ð3Þ

with JðxÞn;m and JðyÞn;m controllable couplings and δ a control-

lable transverse field. The σðnÞy terms are generated by a π=2

jump in ϕ, while the transverse σðnÞz terms are generated by
a gradual linear ramp of ϕ in each consecutive Suzuki-
Trotter block.
The general Hamiltonian in Eq. (3), as well as

more elaborate time-dependent Hamiltonians, are all made
possible while still using a global driving field. We
remark that H commutes with the parity operator P ¼
expðiπPN

n¼1 σ
ðnÞ
z Þ, thus states with well-defined parity,

e.g., superpositions of states with an even number of spin
excitations, will remain with the same parity throughout
their evolution.
We experimentally implement quantum simulations on a

small-scale trapped-ion quantum simulator [30], in which
the j5S1

2
;1
2
i (j4D5

2
;3
2
i) states of 88Srþ ions are mapped to j0i

(j1i) qubit levels. These levels are coupled, using a
quadrupole transition, by a 674 nm narrow linewidth
laser [39], illuminating the ions approximately homo-
geneously with a wide global beam. We modulate the
674 nm beam appropriately such that it has a rich spectrum,
containingM frequency pairs, fω0 � ωmgMm¼1, with appro-
priate amplitudes and phases, as prescribed above.
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We first investigate dynamics under a four-site spin ring,
with antiperiodic boundary conditions, i.e., the nearest-
neighbor (NN) Hamiltonian,

Hring;ap ¼ Ω
�
σð1Þx σð2Þx þ σð2Þx σð3Þx þ σð3Þx σð4Þx − σð4Þx σð1Þx

�

þ δ
X4
n¼1

σðnÞz ; ð4Þ

with “antiperiodicity” (ap) manifested as the negative sign

of the σð4Þx σð1Þx coupling term.
This Hamiltonian is analytically solvable, and thus we

use it as a proof of concept for highlighting key compo-
nents of our method—namely, freely generating positive
and negative coupling terms, long-range terms that are not
restricted by the 1D underlying ion crystal, and correction
of aberrations due to finite beam width. Furthermore, it is
physically motivated, since with a Jordan-Wigner [40]
transformation the system is mapped to an even number
of fermions hopping on a periodic ring (with no negative
couplings) [41,42].
Hring;ap can be well-approximated by the axial modes of

motion of our harmonic ion trap. The method for choosing
the appropriate entanglement phases is detailed in [26,36],
yielding, ΦðoptimalÞ ¼ ð0; 0.3867;−0.7071;−1.0939Þ, with
an ideal implementation fidelity of Hring;ap of 0.989
(defined precisely below). We note that Ref. [43] provides
a systematic analysis of the possible couplings schemes
enabled by global modes and that Refs. [44,45] further
expand these possibilities by directly shaping the global
mode structure.
We first benchmark our simulation with δ ¼ 0. To do so

we initialize the system to the ground state, j0000i, evolve
it underHring;ap, and measure the population at the different
spin states. Figure 1 shows the state occupations after such
an evolution, with the spin populations grouped in terms of
their respective excitation subspaces (ESs), i.e., the number
of excitations in each state. The evolution is sampled
stroboscopically, at integer multiples of U, yielding data
(points) with error bars that reflect �2σ statistical errors
due to quantum projection noise. Here and in the mea-
surements below we use ξ ¼ 5 kHz. Since the initial state is
the ground state we expect the evolution to remain in even
subspaces 0ES (green), 2ES (orange), and 4ES (blue). Thus
we postselect and normalize to the population in even
subspaces.
The data are shown together with the ideal theoretical

prediction of the evolution under Hring;ap (dashed lines). As
previously analyzed in Ref. [7], discrepancies between the
data and theoretical prediction are attributed to qubit
dephasing (T2 ≈ 5 ms). We account for it, as well as
inaccuracies of the Jn;m’s, using a Lindblad master equa-
tion, and use it to fit the six independent parameters of Jn;m
and T2. The fit matches the populations measured over all

eight even-excitation states, with an average population
error of < 0.0155 per state per data point, which is
consistent with shot-noise errors under 500 experimental
repetitions per point, and a characteristic coupling rate of
Ω̃ ≈ 1.13 kHz (further details in [36]).
Furthermore, this analysis predicts population “leakage”

from the even excitation subspaces (inset of Fig. 1), as well
as deviations between the ideal and measured evolution, all
of which are accounted for by qubit dephasing. Thus
improving T2 will enable longer simulations with greater
fidelity.
Various methods exist to validate the performance of our

simulation [46–48]. Here, we directly benchmark our
simulation by performing parity measurements. Such a
method has been recently employed in Ref. [49]. We do so
by evolving the system for a short time, tcor ¼ 400 μs
(vertical dashed gray in Fig. 1), corresponding to two
consecutive implementations of U, and then applying a
global “analysis” π=2 pulse with phase ϕ. That is, the
system evolves according to

Ucor ¼ e
i
2
π
2

P
N
n¼1

σðnÞϕ eiΩtcor
P

n;m
Jn;mσ

ðnÞ
x σðmÞ

x ; ð5Þ

after which we measure state occupations and evaluate the

bipartite correlations, hσðnÞz σðmÞ
z i. This process constitutes a

measurement of Cn;mðϕÞ¼hψðtÞjσðnÞϕ0 σ
ðmÞ
ϕ0 jψðtÞi, with ϕ0 ¼

ϕ − π=2 and jψðtÞi ¼ UðtÞj0000i. For short evolution

FIG. 1. Excitation subspace dynamics of the antiperiodic Ising-
spin ring. Populations are measured at consecutive implementa-
tions of U (points), and grouped into excitation subspaces
(colors). The theoretical prediction (dashed) shows a good
agreement with the data. A more involved model that includes
dephasing (solid) is fitted to the data yielding a mean fit error of
< 0.0155. Populations in the even excitation subspaces (green,
orange, and blue) exhibit coherent oscillations. The inset shows
the total (unnormalized) population in the even subspaces
(points), which slowly decreases due to decoherence and is well
fitted by our full model (dashed).
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times, ΩtcorJn;m ≪ 1, we get Cn;m ¼ −2ΩtcorJn;m sinð2ϕÞ
with corrections that are cubic in Ωtcor [36].
The results of these measurements, for various rotation

phases ϕ, are shown in Fig. 2 (top). We observe that
correlations that are NN on the spin-ring (cyan, orange,
olive, and purple) exhibit high-contrast fringes, while next-
to-nearest-neighbor (NNN) sites (red and brown) do not.
Because of the antiperiodic boundary conditions, C1;4

(purple) exhibits an oscillation phase that is opposite to
all other pairs. Variations of the global drive on the ions
may reduce the fidelity of the analysis pulse and bias our
data. However, this effect is quadratic in the field inho-
mogeneity [36], and may be further mitigated with well-
known amplitude-robust composite pulses. Here, we sim-
ply rescale the fringe contrasts, using the relative local Rabi
frequencies in the ion crystal, constituting a < 1% effect to
the data.
We fit each correlation fringe to a sine function with

frequency 2ϕ (dashed), yielding a mean fitting error of
0.018, well within error bars. The resulting fitted ampli-
tudes, Jreconstructedn;m , are presented in Fig. 2 (bottom, right),
along with the ideal values of Jidealn;m (bottom, left), which are

directly read off the model’s Hamiltonian in Eq. (4), as well
as the expected values of the implemented model, Joptimal

n;m

(bottom, middle), originating from our choice ΦðoptimalÞ,
and the system’s modes of motion [33,36] (middle).
To quantify our reconstruction, we consider the Cartesian

overlap of the nontrivial values of thevarious J’s. Specifically
we define FðJ1; J2Þ≡ J1 · J2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ1 · J1ÞðJ2 · J2Þ
p

, with J1,
J2 being six-element real vectors constructed from the upper
triangular entries of the coupling matrices J1 and J2 (exclud-
ing the trivial diagonal). This metric corresponds to the
Hilbert-Schmidt (HS) fidelity between Hamiltonians,
FHSðH1; H2Þ ¼ jTrðH1H2Þj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðH2

1ÞTrðH2
2Þ

p
, when con-

sidering Hamiltonians constructed by σðnÞx σðmÞ
x -type inter-

actions,which is natural in our setup. The denominatormakes
the comparison relative, i.e., up to a rate factor, Ω.
The three reconstructed coupling matrices are in good

agreement. Indeed the overlap yields FðJideal; JoptimalÞ ¼
0.989 and FðJoptimal; JreconstructedÞ ¼ 0.993−0.042þ0.007, indeed
verifying a high-quality implementation of the intended
ring model. These high-fidelity results may seem contra-
dictory to measured dynamics in Fig. 1, where the ideal
(dashed) values deviate significantly from the data (points)
or fit (solid). However, this is simply a manifestation of the
well-known robustness of correlation measurements to
uncorrelated noise [50–52].
We now turn to study the effects of the transverse field, δ,

in the ring Hamiltonian in Eq. (4). This term generates a
global σz coupling that does not commute with the
Ising NN interaction. At high transverse field value, i.e.,
δ=Ω̃ ≫ 1 the initial state, j0000i becomes an eigenstate.
Thus, approaching this limit, we expect an effective slow-
ing down of the observed dynamics.

FIG. 2. Top: the correlation Cn;m ¼ hσðnÞϕ σðmÞ
ϕ i is evaluated for

pair of sites, at various values of ϕ, after a small evolution time
tparity ¼ 4πξ−1. We observe high-contrast oscillations between

sites that are NN. The antiperiodic coupling of σð1Þx σð4Þx in Eq. (4)
is manifested as an opposite-phase fringe of C1;4 (purple). Error
bars reflect �2σ statistical errors due to quantum projection
noise. Data (points) are fitted to a single oscillating sine (dashed)
showing a good fit. Bottom: coupling matrices, Jn;m, of the
antiperiodic Ising-spin ring. Showing ideal values (left) read off
the model’s Hamiltonian in Eq. (4), optimal values (middle) due
to a global drive implementation, and reconstructed values
(right), using the parity fits (top). The matrices are normalized
such that the largest entry in each of them is 1 (arbitrary units).

FIG. 3. Dynamics of an antiperiodic Ising-spin ring, with a
transverse field. We evolve the state j0000i under the system’s
Hamiltonian. Populations (points) are grouped according to their
ES (legend), and postselected to even subspaces. We repeat this
measurement for various magnitudes of transverse fields, δ=Ω̃
(color bars). For δ ≫ Ω̃ the initial state becomes an eigenstate,
leading to a suppression of dynamics. Error bars reflect 2σ errors
due to quantum projection noise. Inset: measured ground state
population (blue) after a short evolution time, t ¼ 4πξ−1 (vertical,
gray), compared to an exact simulation (gray), showing good
agreement.
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Figure 3 shows the postselected populations in even
excitation subspaces (points connected by lines) for various
choices of δ=Ω̃ (color bars). Indeed, the ground state (green
lines) remains more populated throughout the observed
dynamics for larger values (brighter) of δ=Ω̃, while two
excitations (orange) and four excitations (blue) become less
frequent.
To analyze the data further, and benchmark our simu-

lation, we consider the population in the ground state,
Pr (0000), after two consecutive applications ofU in Eq. (2)
and the transverse field term (dashed gray line). Since δ acts
to detune the NN interaction, similar to off-resonance Rabi
oscillations, we expect a quadratic suppression of dynam-
ics. Indeed, the inset of Fig. 3 shows the measured ground
state population (blue), which exhibits a quadratic increase
as a function of δ. We also plot the theoretical prediction by
directly simulating the Hamiltonian in Eq. (4) (gray)
showing a qualitative correspondence. We remark that
for large values of δ the Trotter approximation becomes
less accurate, which may account for the discrepancy
between data and theory at δ=Ω̃ ≈ 5.
In conclusion, we have demonstrated a method for

programmable quantum simulations of spin-Hamiltonians
on trapped-ion chains. The method, based on the proposal
in Ref. [26], can be used to generate a variety of models and
coupling geometries, which are unconstrained by the
physical realization of the 1D linear ion crystal. Here,
we employ it to generate a four-site antiperiodic Ising-spin
ring. We use population and correlation data in order to
benchmark our simulation. Indeed we reconstruct the
applied couplings and transverse field, showing a faithful
generation of the intended model. This method is well-
suited for NISQ-era quantum systems as it can be used to
leverage typical shallow circuits yet still generate long
evolution times of relevant quantum systems.

Note added—We recently became aware of similar
works by Wu et al. [16] and Lu et al. [17], which use
similar techniques in order to implement similar Ising
models.
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