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Qubits based on ions trapped in linear radio-frequency traps form a successful platform for quantum
computing, due to their high fidelity of operations, all-to-all connectivity, and degree of local control. In
principle, there is no fundamental limit to the number of ion-based qubits that can be confined in a single
1D register. However, in practice, there are two main issues associated with long trapped-ion crystals, that
stem from the “softening” of their modes of motion, upon scaling up: high heating rates of the ions’motion
and a dense motional spectrum; both impede the performance of high-fidelity qubit operations. Here, we
propose a holistic, scalable architecture for quantum computing with large ion crystals that overcomes these
issues. Our method relies on dynamically operated optical potentials that instantaneously segment the ion
crystal into cells of a manageable size. We show that these cells behave as nearly independent quantum
registers, allowing for parallel entangling gates on all cells. The ability to reconfigure the optical potentials
guarantees connectivity across the full ion crystal and also enables efficient midcircuit measurements. We
study the implementation of large-scale parallel multiqubit entangling gates that operate simultaneously on
all cells and present a protocol to compensate for crosstalk errors, enabling full-scale usage of an
extensively large register. We illustrate that this architecture is advantageous both for fault-tolerant digital
quantum computation and for analog quantum simulations.
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I. INTRODUCTION

Trapped ions have ideal properties to be used as qubits
for quantum computing (QC); they feature long coherence
times, efficient state preparation and detection techniques,
and a high degree of connectivity [1–5]. A quantum register
of thousands of qubits, or more, can be formed, for
example, by utilizing an equally spaced crystal of ions
in a linear rf Paul trap. Indeed, recent years have seen many
experimental attempts to work with increasingly larger
trapped-ion registers [6–10].
However, there are two practical issues associated with

large ion crystals that impede progress in this direction. The
first is heating rates; as the number of ions in the crystal, N,
increases, heating of the ions’motional modes due to electric
field noise drastically increases. Of particular concern is the

axial center-of-mass (c.m.) mode, whose frequency typically
decreases as 1=N. This mode is especially vulnerable, as
electric field noise tends to be spatially uniform and to target
low-frequency modes [11,12]. The resulting significant
heating rates prohibit the implementation of high-fidelity
qubit operations and might destabilize the ion crystal.
The second issue with large ion crystals is spectral

crowding. As the size of the crystal increases, the frequency
of adjacent motional modes becomes tightly spaced. For
large ion crystals with a dense mode spectrum, resolving
individual modes becomes challenging; this complicates
the implementation of entangling gates between two or
more ions, which involves exciting their common motion.
Granted, spectral control methods [13–15] allow for
simultaneously targeting multiple modes to achieve desired
qubit couplings with high fidelity. While such methods are
promising for a moderate number of ions (up to hundreds),
they do not generally provide a scalable solution for
arbitrarily large ion crystals. First, the optimal control
problems that must be solved to implement these methods
becomes intractable for large N. Moreover, there is strong
evidence that the minimum achievable gate time is set by
the smallest frequency spacing among the motional
modes [15]. This implies that gate times scale at least
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as N2, making large ion crystals prohibitively slow for
quantum computations.
One active direction for scaling ion traps is the quantum

charge-coupled device (QCCD) architecture [16,17]. This
setup involves many spatially separated trapping sites, each
containing a small number of ions, where communication
between sites is done by shuttling individual ions. Inevitably,
this comes at the expense of high overhead in hardware and
long circuit duration dominated by ion-shuttling and ion-
cooling times. An alternative scale-up approach is using
photonic interconnects in order to link small-scale ion
crystals [18–20]. This method likewise involves a high
overhead, due to the currently low entanglement rate via
the interconnect, leading to slow operations.
Here, we propose a scalable architecture for QC based on

trapped-ion qubits that maintains the advantages of a long
ion crystal while circumventing its challenges. In our
proposal, an arbitrarily long ion crystal is segmented into
reconfigurable cells by means of dynamically operated
optical potentials, e.g., optical tweezers. In this way, the
crystal’s motional mode structure is modified such that
heating rates reflect only the cell size and not N.
Furthermore, programmable high-fidelity multiqubit entan-
gling gates can be implemented independently within each
cell simultaneously. In addition, we show that midcircuit
measurements, a cornerstone of quantum error correction
(QEC) techniques, as well as other central quantum
computational tools, are straightforward to implement in
an optically segmented ion crystal.
In this work, we generalize the method presented in

Ref. [15] and employ qubit-local driving fields that imple-
ment programmable multiqubit entangling gates. The
method in Ref. [15] provides a clear physical intuition,
an efficient procedure for designing gate drive parameters,
and a thorough scaling analysis—all of which are relevant
to this proposal.
The integration of optical tweezers into ion traps is an

active area of research [21–26]. Specifically, Refs. [23–26]
make use of optical tweezers in order to generate target
entanglement operations. In Ref. [21], the authors use
tweezers for parallel two-qubit entangling gates, and the
system’s scalability is discussed; however, there is no
treatment of large ion segments or ion-crystal heating rates.
In Ref. [22], the authors consider segmenting an ion crystal
using tweezers; however, they do not analyze generating
large-scale entanglement or connectivity between the seg-
ments. Midcircuit measurements are not discussed in any of
the above works. Unlike previous studies, here we detail
how to achieve a holistic architecture, incorporating parallel
and large-scale entangling operations and midcircuit mea-
surements, that are needed for large-scale QC.
The remainder of this paper is organized as follows. In

Sec. II, we present an overview of the proposed architecture.
In Sec. III, we sketch two examples of applications of
quantum information processing tasks that are amenable

to our architecture: quantum simulation and quantum error
correction. An in-depth analysis of our proposed architecture
follows. Namely, in Sec. IV, we derive the spectral properties
of optically segmented traps. In Sec. V, we analyze the
implication of optical segmentation on the ion crystal’s
heating rate. In Sec. VI, we present our method for designing
high-fidelity multiqubit logical operations that are not
hindered by unwanted crosstalk. Lastly, in Sec. VII, we
present a protocol for performing midcircuit measurements.

II. PROPOSED ARCHITECTURE

There are well-established techniques for preparation,
control, and measurement of trapped-ion-based qubits for
small-scale registers [27,28]. We, therefore, focus mostly
on unique aspects of our architecture. We propose a QC
architecture in which a long trapped-ion crystal, made of N
ions, is segmented into S cells, with each cell containing C
computational qubits available for quantum computation
and simulation, generating a C · S qubit register. The
segments are formed by placing BA barrier ions between
adjacent cells, that are illuminated by an optical trapping
potential, i.e., optical tweezers, made of tightly focused
laser beams [29,30], that provide an additional local
confinement for the barrier ions.
The key point enabling scalability is that due to the optical

segmentation the cells behave as nearly independent quan-
tum registers. Indeed, we show below that both challenges of
scaling up trapped-ion-based QCs, i.e., ion-crystal stability
and the performance of logical operations, both scalewith the
cell size C and not the total number of cells, S. Thus, the
dynamically reconfigurable segmentation removes the fun-
damental limits on the number of cells and on the number of
qubits in the ion crystal and, accordingly, on quantum circuit
and simulation size.
A general overview of our scalable architecture is

presented schematically in Fig. 1. In favor of a simple
presentation, we focus on a section of the entire ion crystal
and a section of the operations used. We explicitly highlight
C ¼ 8 computational qubits (white circles) per cell. In
practice, tens of qubits may be placed in each cell, and the
number of cells is theoretically unlimited (vertical dots),
forming a large ion crystal. The cells are separated by BA
barrier ions (purple filled circles), with the schematic
showing BA ¼ 2. BB additional ions (red circles) are placed
in the center of each cell and are used for segment
reconfiguration and midcircuit measurements, with the
schematic showing BB ¼ 2. Thus, the ion crystal contains
N ¼ ðCþ BA þ BBÞSþ BA trapped ions.
The figure shows a general mode of operation of the QC,

with parallel operations along the vertical axis and sequen-
tial operations, ordered from left to right, that form
computational steps. Specifically, barrier ions are strongly
confined with optical trapping potentials (purple filled
circles), generating the S ¼ 2 segments in this example
(configuration A). At the nth computational step, local and
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global driving fields simultaneously implement unitary

operations UðAÞ
s;n , with s ¼ 1; 2;…; S. These unitary oper-

ators implement components of the overall quantum
algorithm and may involve all C computational qubits
(white circles) and BB auxiliary ions (red circles) which are
not optically confined in this configuration.

Next, all BA and BB barrier ions are optically confined,
enabling midcircuit measurement of the auxiliary ions as
well as preparation of ions to be used as auxiliary ions
(detailed below). Classical feedback (red lines), based on
the midcircuit measurement results, may be implemented at
this step in order to influence the next layer of unitary
evolution.
Next, the segmentation is reconfigured by removing the

confinement of the BA barrier ions. This dynamically and
quickly generates a different configuration of the segments

(configuration B). Unitary operators UðBÞ
s;n can now be

implemented and connect previously uncoupled qubits.
Additional measurement and reconfiguration steps can be
applied as required. We remark that here we have shown
only two basic ion-crystal configurations (A and B) and
have further considered here and below BA ¼ BB; however,
various additional segmentation configurations, with differ-
ent parameters (e.g., segment and barrier sizes), can be
flexibly generated provided relevant ions are allocated as
barrier ions.
In addition to the configurable optical trapping poten-

tials, we make use of local independently applied fields for
driving programmable multiqubit gates [15] (UðAÞ’s and
UðBÞ’s in Fig. 1), as well as for midcircuit measurements
and state preparation.

III. APPLICATION DEMONSTRATIONS

We sketch examples of applications that showcase the
utility of our architecture. These examples rely on various
features of our proposal, e.g., implementing large-scale
multiqubit entangling operations, register reconfiguration,
and performing midcircuit measurements. The methods
underlying these features are thoroughly discussed and
analyzed in the sections below.
We start by considering analog quantum simulations on

our system, specifically a three-dimensional (3D) quantum-
spin model. In general, quantum simulations are considered
a well-suited task for noisy intermediate-scale quantum
(NISQ) era QCs [31], as simulation of quantum systems is a
notoriously challenging task for classical computers, while
quantum computers are considered naturally suited for
it [32]. Indeed, numerous quantum systems have recently
implemented impressive demonstrations of quantum
simulations [33–35].
Quantum simulations using trapped-ion-based qubits

have also been recently demonstrated [36–44], many of
which take advantage of the unique all-to-all coupling
present in these systems. In these works, Ising-type
interactions, that are inherent to trapped-ion systems, can
be straightforwardly iterated and combined with single-
qubit rotations in order to generate arbitrary XYZ-type spin
models [45,46].
Our architecture is well suited for quantum simulations,

as our ability to design programmable multiqubit

(A)
s,nU

(A)
s+1,nU

(A)
s,n+1U

(A)
s+1,n+1U

(B)
 s+1,nU

(B)
s+2,nU

FIG. 1. Architecture for scalable trapped-ion quantum comput-
ing using rf traps and dynamic optical potentials. The ion crystal
(vertical direction) is segmented into cells by dynamically
applying optical trapping potentials. Sequential applications of
parallel quantum operations and reconfiguration of the optical
trapping implements a large-scale quantum circuit on the entire
ion crystal. We highlight a section of the quantum circuit and the
sequence used. As shown, optical trapping generates S segments,
each containing C computational qubits (white circles) that are
separated by BA consecutive optically confined “barrier ions”
(purple filled circles). Additional BB ions in each cell (red circles)
are used to support additional segmentation configurations of the
ion crystal and midcircuit measurements that enable classical
feedback (red lines) for the implementation of, e.g., quantum
error correction. The horizontal direction shows a typical mode of
operation of the QC, namely, logical operations, involving

multiqubit and single-qubit logical gates, UðAÞ
s;n , are performed

in each cell, s, at the nth computational step. The optical
potentials are then switched to a different segmentation configu-
ration, allowing for large-scale connectivity between cells of the

previous configuration, UðBÞ
s;n . An intermediate segmentation

configuration, in which all BA and BB ions are optically confined,
is used to accommodate for midcircuit measurement and state
reinitialization. Additional computational steps (nþ 1, etc.) can
be performed as required, thus ultimately guaranteeing connec-
tivity between all computational qubits.
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entanglement manifests as the dimensionality and geom-
etry of the simulated model [47], and the optical segmen-
tation and reconfiguration provide a straightforward
approach to simulating 3D systems. Such 3D systems
are challenging to simulate on linear or planar quantum
processors with short-range interactions, due to a large gate
overhead required for embedding the 3D geometry.
For simplicity, we focus here on a 3D rectangular lattice of

spins, though many other geometries can be realized, e.g.,
hexagonal. Figure 2 shows an implementation of such a
d × d × 2S rectangular Ising model. Specifically, Fig. 2(a)
shows a single cell of the ion crystal that contains 2d2

computational qubits (white circles) and encodes a pair
of two-dimensional planes of the simulated system.
Programmable entanglement gates implement the required
couplings that generate themodel’s geometry, i.e., interplane
couplings (dark blue and bright blue) and intraplane cou-
plings (red). The model is made three dimensional, as shown
in Fig. 2(b), by interlacing the vertical couplings between

adjacent layers (solid red and dashed red lines), using the two
segmentation configurations (purple brackets).
As an example, we consider a specific realization of our

architecture, namely, qubits implemented on the 4S1=2
Zeeman ground-state manifold of trapped 40Caþ ions,
coupled by Raman transitions mediated by the 4P mani-
folds. We utilize this realization for a 4 × 4 × 10 nearest-
neighbor Ising model, i.e., d ¼ 4 and S ¼ 5 (see further
system details in Appendixes A–F [48]). We design the
control pulses that drive the computational qubits and
generate the required entanglement operations for simulta-
neous XX coupling of the qubits, in the entire ion crystal,
similarly to the couplings shown in Fig. 2(a). For simplic-
ity, we use a uniform, unity coupling between all nearest-
neighbor qubits. Our design protocol is presented and
discussed below.
We calculate the coupling terms that result from the

control pulses that we designed and plot them in Fig. 2(c),
with each point on the plot representing a qubit-qubit
coupling between qubits of the corresponding indices
(horizontal and vertical axes). The block-diagonal structure
that is seen reflects the underlying segmented structure of the
ion crystal. The relative difference between the ideal and the
resulting qubit-qubit couplings is shown in Fig. 2(d) in log
scale exhibiting a low coupling error that indicates a high-
fidelity and accurate simulation. Indeed, the overall perfor-
mance of our implementation, simultaneously coupling 160
computational qubits, is evaluated with an infidelity that is
better (lower) than 10−4 per cell.
We note that with this encoding a time step of an XX

nearest-neighbor 3D rectangular Ising model can be imple-
mented with only two sequential multiqubit entanglement
gates, such as that shown in Fig. 2(c), which, for d ¼ 4 and
S ¼ 5, would otherwise require the application of 384
sequential two-qubit gates between arbitrary pairs in the
quantum register [in general, Oðd2SÞ two-qubit gates]. By
considering more elaborate models, e.g., next-nearest-
neighbor interactions within the two-dimensional planes,
nonuniform couplings between the planes, or larger sys-
tems, the two-qubit gate count will increase, while with our
method two multiqubit gates still suffice.
The second example showcases a path toward fault-

tolerant quantum computation [49–51]. As shown in
Fig. 3(a), each segment (purple brackets, A) is utilized to
encode a single logical error-corrected qubit using a distance-
five surface code. The code uses 25 computational qubits to
store the logical state and 12 auxiliary (ancilla) qubits to read
out the values of both X and Z stabilizer measurements. The
entire set of X stabilizer measurements can be implemented
in one step, using a single multiqubit entanglement gate and
midcircuit measurements. Then, the auxiliary qubits are
reinitialized, after which the entire set of Z stabilizers is
similarly performed. Clearly, cell segmentation does not
require 12 barrier ions; thus, here most of the 12 auxiliary
qubits are implemented by computational qubits in the cell.

FIG. 2. Quantum simulation of a 3D rectangular Ising spin
model on an optically segmented ion crystal. Computational
qubits (white circles) are coupled in cells (purple brackets) such
that each cell holds two planes of the rectangular spin model and
implements interplane (dark blue and bright blue links) and
intraplane (red links) couplings. (a) Couplings of a single cell,
holding two planes of the model, with d ¼ 4, used for both
segmentation configurations. (b) Multiple cells form the 3D Ising
model. The two optical configurations (A, B, and purple brackets)
enable interlaced coupling of the planes (solid red and dashed red
lines, respectively), such that two entanglement operations
implement the model’s Hamiltonian. (c) We design the control
pulses that implement the nearest-neighbor couplings required for
the Ising model, here for d ¼ 4 and S ¼ 5. The resulting coupling
between all qubit pairs (horizontal and vertical axes) is shown
(color), exhibiting a block-diagonal structure that implements the
links shown in (a), for each cell. (d) Deviation of the qubit-qubit
coupling from the ideal structure (log scale), showing a low error,
that is not limited by crosstalk between adjacent cells, and
enables scaling up. The implementation’s infidelity scales as
the deviations squared and is here evaluated to 10−4 per cell.
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Naturally, these stabilizer measurements can be per-
formed across all logical qubits in parallel. Note that not all
segments must implement the same operation at any given
time; some may, for example, implement X stabilizer
measurements while others implement Z stabilizer mea-
surements. Figure 3(b) shows a specific example involving
five logical qubits and multiqubit entanglement gates,
designed to perform simultaneous X and Z stabilizer
couplings, in different cells, throughout the entire ion
crystal. The relative difference between the ideal and the
resulting qubit-qubit couplings is shown in Fig. 3(c) in log

scale, exhibiting a low error that indicates a low infidelity
that is better (lower) than 10−4 per cell.
Entanglement between two logical qubits, implemented

on independent surface codes, can be achieved, for exam-
ple, using “lattice surgery” [52,53]. In this method, stabi-
lizers formed along the border between two surface codes
are measured, projecting the joint state of the logical qubits
to an entangled basis. In our case, this is naturally enabled
by reconfiguring the optical segmentation (purple brackets,
B) such that ions from neighboring cells can interact, as
shown schematically in Fig. 3 (blue lines and red plaquettes
in the center of the B configuration). Following this
operation, the segmentation reverts to its original configu-
ration, and additional stabilizers are measured. The overall
result of this procedure is an entangling logical XX
operation between the adjacent surface codes.
We emphasize that, even though five cells are used in this

example, our architecture’s scalability enables using con-
siderably more cells in order to implement many logical
qubits. This example shows one potential route to fault
tolerance using our architecture; however, many different
variants could be considered. First, the distance of the code,
and, thus, the number of physical qubits required, should be
determined by the demands on the overall logical error rate.
Moreover, it is possible to encode two (or more) logical
qubits per segment; this would then enable performing
logical entanglement operations transversally, as an alter-
native to lattice surgery. Finally, the choice of the surface
code itself, while motivated by its high fault tolerance
threshold, is not the only possible choice. In fact, there are
other high-threshold codes, with potentially better encod-
ing rates, that may be suitable as well [54]. Constructing an
optimal protocol for fault-tolerant QC within our archi-
tecture, including a prescription for performing logical non-
Clifford operations, is a subject for further study.
An in-depth numerical analysis of the QEC circuit can be

found in Appendixes A–F [48]. The analysis focuses on
technical aspects of the circuit implementation; it accounts
for various heating and cooling mechanisms, provides an
estimated resource cost associated with each step in the
circuit, and shows that our architecture is experimentally
feasible with current state-of-the-art hardware. Furthermore,
in our analysis, we contrast our architecture with QCCD
and photonic-interconnect architectures, showing that our
proposal offers up to 2 orders of magnitude of speed up in
implementation of QEC rounds, in terms of overall circuit
duration.

IV. SPECTRAL PROPERTIES OF OPTICALLY
SEGMENTED ION CRYSTALS

In general, similar to alternative scale-up methods,
segmentation decouples cells from each other, reshaping
the well-known all-to-all coupling of trapped-ion crystals to
local all-to-all couplings within cells of manageable sizes
of tens of ions. As we show below, this segmentation

FIG. 3. Quantum error correction code on an optically seg-
mented ion crystal. (a) We implement several distance-five
logical qubits, shown pictorially as grids of 5 × 5 qubits (white
circles). Each cell in configuration A (purple brackets, A) houses
a single logical qubit (labeled 0–12 and 25–36) and 12 auxiliary
qubits (labeled 13–24). Programmable multiqubit gates generate
the required entanglement structure for stabilizer measurements
on each logical qubit in parallel. Here, we show an implementa-
tion that generates X stabilizers (light green plaquettes and blue
lines). Z stabilizers may be implemented with an additional gate
(light red plaquettes). Connectivity across the entire register is
enabled by configuration B (purple brackets, B) such that each
cell in this configuration holds data qubits of two adjacent logical
qubits. This enables logical entangling operations between any
neighboring encoded qubits via stabilizer measurements formed
on the border between the two surface codes (red plaquettes and
blue lines), using the auxiliary ions in this configuration (labeled
170–190). (b) Example of programmable multiqubit gate generat-
ing X and Z stabilizers on five logical qubits, implemented on a
segmented ion crystal with S ¼ 5, C ¼ 37, and B ¼ 3. We design
the control pulses that implement the entanglement gates required
for the various stabilizers. The resulting qubit-qubit couplings
between corresponding qubit pairs (horizontal and vertical axes)
are shown (color), exhibiting a block-diagonal structure that
reflects the formation of five logical qubits. (c) Deviation of the
qubit-qubit coupling from the ideal structure (log scale), showing
a low error, that is not limited by crosstalk between adjacent
cells, and enables scaling up. The gate’s infidelity scales as the
deviations squared and is here evaluated to 10−4 per cell.
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preserves the ion-crystal’s stability and enables program-
mable multiqubit quantum gates that act simultaneously
and independently within the different cells. Another
unique feature of our scale-up strategy, compared to other
segmentation approaches, stems from the ability to dynami-
cally and quickly reconfigure the applied segmentation,
generating new cells that combine and couple previously
decoupled qubits, thus enabling fast and large-scale con-
nectivity within the whole ion crystal.
We analyze the effect of optical segmentation on the ion

crystal, specifically on collective modes of motion of the
ion crystal in the axial and transverse directions. To this
end, we assume that the barrier ions are illuminated by
beams that generate an optical trapping potential (otp),
inducing the trapping frequency [55],

ωotp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Re½αðλÞ�

m

r
jEj; ð1Þ

where αðλÞ is the wavelength-dependent polarizability of
an illuminated ion,m is its mass, and E is the field strength.
The impact of this potential is best quantified by comparing
it to another important parameter in the system, namely, the
characteristic frequency scale associated with the Coulomb
interaction between adjacent ions [21]:

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2

4πϵ0md3

s
; ð2Þ

with e the elementary electron charge, ϵ0 the vacuum
permittivity, and d the interion distance of an equidistant
ion crystal. As we show below, a strong optical potential,
ωotp > ν, drastically changes the motional mode structure
of the chain. By incorporating the optical trapping potential
with common methods to analyze ion-crystal motion [56],
we obtain the normal-mode frequencies and structure in
the axial and transverse directions (for further details, see
the Appendixes [48]). In the following, we assume that the
optical trapping potential is equally strong in the axial and a
single transverse direction and zero in the other transverse
direction. In general, the relative strength of the potential in
each direction can be modified by changing the k vector of
the optical trapping beams.
We first consider the effect of the optical trapping on the

axial modes of motion of the ion crystal that lie at the lower
parts of the motional spectrum and are typically more prone
to heating. When considering the joint motional mode
structure of two identical ion crystals, in two completely
separate traps, we observe a degenerate mode structure,
with each motional frequency appearing twice and each
motional mode being localized at one of the ion crystals.
Thus, we intuitively expect that the motional spectrum of a
well-decoupled optically segmented ion crystal will form
approximately degenerate bands.

Figure 4 demonstrates this by showing the axial motional
spectrum of a N ¼ 231 long ion crystal for a varying
optical trapping potential that segments the ion crystal into
S ¼ 6 cells, separated by BA ¼ 3 barrier ions, such that
each cell contains 35 ions (out of which C ¼ 32 are
computational qubits and BB ¼ 3 acts as barrier ions for
segmentation configuration B). As the optical trapping
potential increases, the axial spectrum (blue) forms 35
bands of S modes each.
Indeed, the formation of bands heralds the decoupling of

the motion of cells from each other, such that band
frequencies resemble those of an independent, unseg-
mented, ion crystal containing Cþ BB ions (orange), with
each mode in the band being a superposition of local
excitations of the corresponding mode of the independent
cell. Thus, the width of each band marks the relevant rate in
which a motional excitation traverses from one cell to
another. That is, an excitation of a local mode in a single
cell is composed of a superposition of all modes of the
band, which then disperse at a timescale that is inversely
proportional to the bandwidth.
Figure 4 further shows BA high-frequency bands, con-

taining Sþ 1 modes, associated with the motion of
ðSþ 1ÞBA barrier ions. Crucially, these bands are separated
from the “bulk” ions such that their motion is essentially
decoupled from the bulk. We exploit this fact below in

FIG. 4. Axial spectrum of an ion crystal with N ¼ 231 ions,
segmented into S ¼ 6 cells. Cells are separated by BA ¼ 3 barrier
ions and include Cþ BB ¼ 35 ions each. The axial frequencies
(blue) are shown for various trapping optical potentials ωotp and
are normalized by the characteristic Coulomb scale ν. For
comparison, an additional axial spectrum of an independent
ion crystal with 35 ions is shown (dashed orange). For ωotp > ν,
the axial spectrum of the optically segmented trap forms bands
which are located at the frequencies of the independent cell. As
ωotp increases, high-frequency bands form, which are due to the
BA barrier ions. We highlight ωotp=ν ≈ 2.1 (vertical line), used
throughout the text. The inset is an enlargement of the center-of-
mass band (vertical axis in log scale), showing that at ωotp ¼ 2ν
the segmented crystal’s modes resemble the independent cell,
implying that heating is dictated by the properties of a single cell
rather than the whole (multicell) crystal.
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order to implement midcircuit measurements and cooling
of the barrier ions.
Figure 5 shows the transverse (radial) band structure of

the same N ¼ 231 ion system with ωotp ≈ 2.1ν (dashed
vertical line in Fig. 4). Similarly to the axial direction,
optical segmentation results in the formation of Cþ BB
bulk bands as well as additional BA bands associated with
the motion of barrier ions (blue). The average frequencies
of the bands resemble those of an independent cell
(orange), also shown in the inset (bottom right) that
presents an enlargement of the last four computational
qubit bands, showing narrow and well-separated bands. For
transverse modes of motion, the band index b (horizontal
axis), ordered according to the band’s frequency, is oppo-
site to the mode’s wave vector; i.e., large b’s represent long-
wavelength modes of motion.
Transverse modes of motion are used in order to generate

entanglement between computational qubits, by mediating
qubit-qubit interaction via spin-dependent motion [57].
Typically, the entanglement operation duration is inversely
related to the frequency difference between adjacent modes
of motion [15].
In our case, the frequency gap between bands, Δωb ¼

ωb − ωb−1, with ωb the mean frequency of the modes
of bulk bands, b ¼ 1;…; Cþ BB, marks the typical

interaction rate between ions within the same cell. By
contrast, the coupling rate between different cells is
determined by the bandwidth BWb, which is defined as
the difference between the highest- and lowest-frequency
modes in band b. Thus, a simple estimation of unwanted
crosstalk between cells during parallel entanglement
operations is the ratio of these two rates—given by
εBW;b ¼ ðBWb=2ΔωbÞ. The resulting estimate is presented
in the inset (top left) in Fig. 5 (orange), showing that high b
bands, associated with long-wavelength motion across
cells, result in a higher crosstalk, at the few percent level.
A more precise estimate of the crosstalk is also shown (blue
line and green points) and discussed below.
Optically confined ions are not used as computational

qubits, since optical confinement significantly degrades
their coherence due to spontaneous photon scattering and
uncontrolled light shifts. For example, we consider 40Caþ
ions that are illuminated by a confining optical field at
400 nm with a beam that has a diameter of 1 μm, off-
resonant with the S ↔ P transition. In this setup, a harmonic
confinement frequency of ωotp ≈ 2.1ν ¼ ð2πÞ � 1.75 MHz,
used throughout our analysis, requires an optical power of
20 mW illuminating each barrier ion. The resulting sponta-
neous photon scattering rate is approximately 3 kHz.
This scattering rate, however, does not pose any funda-

mental challenges. Photons scattered from barrier ions are
significantly detuned (by tens of terahertz) with respect to
the S ↔ P transition in neighboring computational qubits,
which thus acquire only a negligible decoherence rate due
to this process. Moreover, because the barrier ions partici-
pate only weakly in bulk modes, the heating rate of these
modes due to photon scattering is small, approximately
10−2 quanta per second (see the Appendixes [48]). It should
be noted that the barrier ions themselves do heat as a result
of this process; thus, barrier ions are required to be ground
state cooled during each reconfiguration step, i.e., before
they are released into the bulk. This point is further
discussed in Sec. VII.
We remark that it is possible to use different ion species

for data qubits and barrier ions. This would allow to easily
realize a high optical trapping frequency, by using a closer
to resonance trapping field, that scatters many photons,
without affecting data qubits. Cooling of such barrier ions
is still required yet becomes simpler as well.

V. HEATING RATES OF OPTICALLY
SEGMENTED ION CRYSTALS

Acrucial criteria for successfully scaling up ion crystals is
maintaining crystal stability. In the standard approach to
trapped-ion crystals, this challenge comes about as a heating
rate of the crystal that scales unfavorably with N.
Specifically, in unsegmented ion crystals, as N increases,
the frequencies of low-lying long-wavelength modes of
motion decrease and become more susceptible to electrical
noise, leading to degradation of coherent operations,

FIG. 5. Radial modes spectrum of an optically segmented ion
crystal containing N ¼ 231 ions and the resulting cell crosstalk.
Because of the segmentation, the mode frequencies (blue) form
Cþ BB bands, which imitate the structure of an unsegmented
independent cell (orange). Additional BA high-frequency bands
associated with the barrier ions are formed as well. The bottom-
right inset shows an enlargement of the last four bulk bands. The
bands are well separated and narrow in frequency. The top-left
inset presents estimations of unwanted crosstalk between cells
during simultaneous multiqubit operations, mediated by the
various bulk bands. These estimations are calculated by consid-
ering the system’s spectrum εBW;b (orange) or mode-structure
considerations εJ;b making use of the modes of the entire ion
crystal (blue lines) or only neighboring segments (green stars).
Both predict approximately 2.5% crosstalk due to mainly long-
wavelength motion of ions in the cells, associated with high
bands. Mitigation of the crosstalk is presented in Sec. IV in the
main text.
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destabilization of the ion crystal, and its eventual melting.
Utilizing optical trapping potentials generates cell-local
heating rates, which depend on only the cell size C, and
not on the total number of ionsN (or S), potentially allowing
for arbitrarily long ion crystals.
This is shown graphically in Fig. 4, since for ωotp ≥ 2ν

the low-lying c.m. band is lifted and its frequency con-
verges to the c.m. mode of an independent cell (inset),
implying cell-dependent (and not N-dependent) heating
rates. The c.m. modes remain gapped regardless of N.
We directly quantify the phonon excitation rate of the

optically segmented architecture. For a given motional
mode, the phonon excitation due to the presence of some
electric field noise, δEðt; rÞ, can be evaluated by Fermi’s
golden rule [12], yielding

ΓðkÞ ¼ e2

4mℏωk
SðkÞE ðωkÞ; ð3Þ

with ωk the frequency of mode k and SðkÞE ðωkÞ the spectral
density of the electric field noise. The mode’s heating rate
is ℏωkΓðkÞ.
The precise form of the spectral density function is

a subject of much theoretical and experimental
study [11,12,58–62] and is system dependent, and its
theoretical limits remains somewhat inconclusive. Yet, it
is generally agreed that it scales as SEðωÞ ∝ ω−αD−βTγ ,
with mode frequency ω, ion-electrode distance D, and
temperature T, and α, β, and γ are scaling exponents.
Motivated by many experimental results, here we assume
that the noisy electric field is spatially uniform along the
ion crystal and that α ¼ 1.
Using these considerations, we obtain the system’s

excitation rate (see details in the Appendixes [48]):

Γ ¼
X
k

ΓðkÞ ∝
X
k

e2

4mℏω1þα
k

X
i;j

AðiÞ
k AðjÞ

k ; ð4Þ

with ΓðkÞ the excitation rate of the kth mode and A an

orthogonal axial mode matrix, such that AðiÞ
k is the

participation of the ith ion in the kth axial mode of motion,
obtained by analyzing the axial mode structure [48,56].
Because of the summation over k, our formulation of Γ in

Eq. (4) is extensive; e.g., for two identical and independent
copies of an ion crystal, Γ will be evaluated as twice the
value of a single copy of the ion crystal. Thus, ideal
decoupling between cells in the optically segmented ion
crystal is expected to show up as proportionality of Γ to S.
Figure 6 shows the predicted excitation rate of the

optically segmented ion crystal, due to Eq. (4), for various
values of the cell size C (horizontal axis) and number of
segments S (colors). The barrier size is set to BA ¼ 3, and
each cell contains Cþ BB ions, with BB ¼ 3. Excitation
rates are calculated for ion crystals reaching N > 1300

ions. The figure shows Γ=ðΓindSÞ (vertical axis), such that
the excitation rates are normalized by the number of
segments S and by the excitation rate of an independent
unsegmented ion crystal containing Cþ BB ions, Γind. We
observe that the normalized excitation rates are all of the
order of unity and converge toward 1 as C increases, with a
negligible dependence on the number of segments. Thus,
we conclude that the cell’s stabilization is dominated by
cell properties and is specifically independent from other
cells in the ion crystal.
The main contribution to Γ is given by the lowest-

frequency band, which is a c.m. motional band. This is
intuitive, as c.m. modes have the lowest motional frequen-
cies as well as a high overlap with the uniform electric field
noise considered here, as compared to other modes which
have negligible contributions. This is seen in the dashed
lines in Fig. 6, in which we calculate Γ using exclusively
this single band (while Γind is still calculated in full).

VI. PARALLEL MULTIQUBIT LOGIC
AND CROSSTALK MITIGATION

In trapped-ion-based quantum computers, entanglement
gates are typically facilitated by spin-dependent forces acting
on normal modes of motion of the ion crystal [57,63]. Thus,
adequate control of the normal-mode structure is crucial
for scaling up the trapped-ion quantum register size.
Specifically, utilizingmanymodes ofmotion simultaneously
enables programmable long-range interactions [13–15],

FIG. 6. Axial excitation rate of optically segmented ion
crystals. The excitation rates (vertical axis) Γ are shown for
various values of cell sizes C (horizontal axis) and number of
segments S (colors). We normalize Γ by the excitation rate of an
independent single cell Γind and by the number of segments S. All
resulting normalized rates are of the order of unity, showing that
the stability of the optically segmented ion crystal is dictated by C
and is largely independent of S. We repeat this process but with
considering only the lowest band of motional modes in the
expression for Γ (dashed line), without varying Γind. The
resemblance between this result and the full expression of Γ
(solid line) shows that the lowest-lying band is the dominant
contributor to the heating. This result is intuitive, as this band is a
c.m. motional band, having a high overlap with a uniform
electric field.
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which are significant for efficient implementation of vari-
ous quantum computational tasks [14,43,54,64–68].
However, utilizing multiple modes of motion becomes
increasingly challenging in large ion crystals due to the
overwhelming complexity of the required qubit drive, which
comes about as a challenging optimization problem [13], as
well as an apparent slowdown of the feasible gate
duration [15] which, in the absence of segmentation, scales
asN2. Thus, segmentation plays here a crucial role as well in
generating independent large, yet manageable, computa-
tional qubit cells.
The heuristic estimation for crosstalk error, provided by

εBW;b above, can be improved by a detailed consideration
of the transverse mode structure. Specifically, based on the
quadratic form of qubit-qubit entanglement discussed
thoroughly in Ref. [15], the coupling term between ions
c (c0) in cells s (s0), mediated by band b, is scaled by the
factor

Jðc;sÞ;ðc
0;s0Þ

b ¼
XS
m¼1

Rðc;sÞ
ðb;mÞR

ðc0;s0Þ
ðb;mÞ ; ð5Þ

with R an orthogonal radial mode matrix (similar to A

above) such that Rðc;sÞ
ðb;mÞ is the participation of ion c of cell s

in mode m of band b (specific examples of Jðc;sÞ;ðc
0;s0Þ

b are
shown in the Appendixes [48]). Using Jb above, we form a
more detailed crosstalk estimation, namely,

εJ;b ¼
maxc≠c0;s≠s0 jJðc;sÞ;ðc

0;s0Þ
b j

maxc≠c0;sjJðc;sÞ;ðc
0;sÞ

b j
; ð6Þ

with s, s0 maximized over all S cells in the segmented ion
crystal and c, c0 maximized over all C computational qubits
in each of the cells. In essence, the estimation in Eq. (6)
compares the coupling between ions in the same cell
(s ¼ s0) to coupling between ions in difference cells
(s ≠ s0). This estimation is also shown in the inset (top
left) in Fig. 5 (blue), exhibiting a similar behavior to that of
εBW;b, i.e., approximately 2.5% crosstalk mainly due to
long-wavelength motional excitations of the cells. We also
evaluate separately the contribution of nearest-neighbor
cells, εnnJ;b, which follows the same definition as εJ;b in
Eq. (6) but with s0 ¼ s� 1 in the numerator. This estima-
tion is shown as well in the inset (top left) in Fig. 5 (green
stars), showing an almost exact agreement with εJ;b. Thus,
we conclude that the approximately 2.5% crosstalk is
mainly due to unwanted coupling between adjacent seg-
mented cells. Further analysis shows that, in general, 2–3
barrier ions, each confined with an optical trapping
frequency of ωotp ≈ ωrad, are sufficient for maintaining
low crosstalk levels (see the Appendixes [48]).
A few percent crosstalk level, reflected by both εBW;b

and εJ;b, marks an efficient decoupling between cells.

Nevertheless, the remaining coupling is too high for
high-fidelity quantum operations and restricts performing
simultaneous logical gates on distinct cells. However, this
crosstalk level is low enough such that it can be mitigated
perturbatively in a scalable manner. Here, we do so by
relying on the large-scale fast (LSF) method, presented
in Ref. [15].
In essence, LSF makes use of a multitone drive in order

to generate programmable multiqubit gates, which naively
involves solving a quadratically constrained optimization
problem of dimension N2 and generates unitary gates of the

form U ¼ exp ðiPN
n;m¼1 φn;mσ

ðnÞ
x σðmÞ

x Þ, with σðnÞx a Pauli-x
operator acting on the nth qubit and φn;m a target multiqubit
coupling matrix. This gate, together with arbitrary single-
qubit rotations, realizes a universal gate set.
The operational approach of LSF is naturally adopted to

our architecture, making the design of multiqubit entangle-
ment, simultaneously in all cells, fast and scalable. In
particular, we use LSF for a “typical” cell of the bulk of the
ion crystal (see the Appendixes for details [48]) to obtain
drive spectra corresponding to different target unitaries.
These solutions could then, in principle, be applied to each
cell within the ion crystal. Up to minor differences between
the typical and actual cells (to be corrected below), this
would yield high-fidelity multiqubit gates if applied on
each cell separately.
However, these operations are meant to run in parallel,

and, as discussed above, the unwanted coupling between
cells incurs an approximately 2.5% crosstalk error—which
is dominated by nearest-neighbor cells. Therefore, we make
use of an additional mitigation layer on top of LSF.
Crucially, the nearest-neighbor structure of the crosstalk
enables our mitigation technique to scale favorably, in
terms of classical computation resources, and does not
impose constraints on the ion-crystal size.
Specifically, we perform an iterative optimization by

linearizing the quadratic constraints associated with the
target unitary around the current solution, with the initial
solution given by LSF as discussed above. The resulting
linear equations provide conditions that resolve crosstalk as
well as inaccuracies of the LSF solution that originate from
the assumption of a typical cell. We do so locally; i.e., the
linear conditions are formed for only two adjacent cells at a
time, generating CðC − 1Þ linear constraints that improve
the LSF results and mitigate deviations of the cells from the
typical cell and 3C2 linear constraints that mitigate cross-
talk between cells. The iterative optimization is stopped
when a target infidelity is reached. Crucially, since the
linear equations are local, relating only four adjacent cells
at a time, they involve only OðC2Þ linear constraints,
allowing parallel optimization of the next four adjacent
cells [48].
An additional condition for a high-fidelity process is

decoupling of the qubits from the modes of motion at the
end of the entanglement operation. This is typically
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satisfied by forming constraints for each of the N modes of
motion independently. Here, however, such an approach
will be a hurdle to scalability, since it will be infeasible to
satisfy a large N number of constraints. Instead, we make
use of only Cþ BA;B linear constraints of the typical cell
and supplement these with additional robustness properties
that make the decoupling insensitive to the mode frequency
inaccuracies, described in Ref. [69], such that each con-
straint enforces the decoupling of an entire band at once.
The error in our gates is, therefore, expected to have a
contribution from imperfect disentanglement of motion
from qubits.
We study the efficacy of our crosstalk mitigation method

by considering a segmented ion-crystal system used for a
3D Ising model simulation, as that shown in Fig. 2 above,
with S ¼ 5, d ¼ 4, and BA ¼ BB ¼ 3. We design the
control pulses that implement the required qubit-qubit
couplings, for various optical trapping frequencies. The
resulting operation infidelity I is evaluated, to leading order
in the qubit-qubit coupling deviations and in residual ion
displacements, as

I ¼ Ishort þ Ilong þ Imotion ð7Þ

such that Ishort approximates the infidelity due an erroneous
qubit-qubit coupling within each cell and crosstalk to
nearest-neighbor cells, Ilong is the infidelity due to qubit-
qubit coupling between cells that are not nearest neighbors,
and Imotion approximates the infidelity due to residual
coupling between the qubits and the phonon modes of
motion.
Figure 7(top) presents the infidelity of the initial LSF

solution, based on the typical cell (orange) and the crosstalk-
corrected solution (dark blue). It exhibits an apparent
crossover between two regimes at ωotp ¼ 2ν, at which point
the transverse mode band structure is manifested. At
low optical confinement, the performance of uncorrected,
typical-cell solutions (orange) is low, such that our leading-
order estimation breaks down. At strong optical confine-
ment, this solution generates an infidelity of approximately
10−2, as expected from our analysis above. However, the
crosstalk-corrected solution (dark blue) successfully gen-
erates solutions that have an infidelity that is better (lower)
than 10−4 for the entire multiqubit operation, throughout the
strong optical confinement regime.
We account for the different contributions to the infidelity

of the crosstalk-corrected solution, given byEq. (7).We note
that Ishort (dashed pink) has a negligible contribution,
regardless of optical confinement, while Ilong (dashed
purple) reaches a low value only at the strong confinement
regime. This behavior is expected, as our optimization
actively corrects for on-site and nearest-neighbor terms
and ignores other terms. We note that Ilong reaches a
minimum at ωotp ¼ 2ν and is slightly increased at higher
optical trapping frequencies. This behavior is accounted by

an effective screening of barrier ions that occurs when
barrier bands are close to resonancewith the bulk bands (see
the Appendixes [48]). Nevertheless, our analysis implies
that strong optical confinement successfully decouples next
nearest-neighbor (and further) cells, removing the need to
take the entire ion crystal into account and enabling
scalability. Similarly, due to a well-formed band structure,
the motional infidelity Imotion (dashed light blue) becomes
small at strong optical confinement and, in general, domi-
nates the overall infidelity.
Figure 7(bottom) shows the total drive coupling, i.e.,

Rabi frequency, required to drive the initial LSF solution
(orange) and the crosstalk-corrected solution (dark blue),
given in terms of the frequency of the lowest radial mode,
ν1, as a characteristic scale. The compensated solution
incurs a small overhead of approximately 10% on the initial
solution.
We remark that elements of our architecture and cross-

talk compensation method can also be implemented by
global driving of entire cells using similar techniques to
those in Refs. [13,15]. Moreover, by employing the

FIG. 7. Performance of the crosstalk mitigation method as a
function of optical trapping potential ωotp, evaluated on the
entanglement used to implement a simulation of the 3D rec-
tangular Ising model in Fig. 2. Top: error per cell, using Eq. (7),
as a proxy for the infidelity of the entire multiqubit operation. For
ωotp ≳ 2ν, the crosstalk compensated solution (dark blue) shows a
low, <10−4, infidelity. As expected, the initial LSF solution,
based on the effective typical cell (orange) shows an approx-
imately 10−2 infidelity. The mitigation degrades in the weak
optical confinement regime, due to long-range coupling between
cells that is not considered in the crosstalk mitigation method.
Indeed, this degradation appears when considering long-range
cells (dashed purple) and not seen when considering only nearest-
neighbor and on-site coupling (dashed pink). Additional infidel-
ity due to residual coupling to motional modes (dashed light blue)
exhibits a similar behavior. Bottom: the required total drive
coupling, given in units of the lowest transverse mode frequency
(bottom). The crosstalk compensated solution (dark blue) incurs
only a small, approximately 10%, overhead on the initial LSF
solution (orange).
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established methods in Refs. [70–76], we can impose
additional robustness constraints on each gate drive in
order to reduce the sensitivity of the gate and the crosstalk
compensation, to fluctuations in trap parameters as well as
other sources of noise.

VII. MIDCIRCUIT MEASUREMENTS

The ability to perform midcircuit projective measure-
ments and apply coherent feedback based on the measured
results is at the heart of QEC, as well as additional central
quantum computational tools [77–79]. In trapped-ion-
based systems, projective state detection is typically per-
formed by state-dependent florescence. This poses a
technical challenge, as the scattered photons usually heat
up the ion crystal due to photon recoil. Furthermore, the
photon may be resonant with neighboring ions and scat-
tered by them, resulting in decoherence of the quantum
state of the entire system. Thus, so far, midcircuit mea-
surements have been implemented in trapped ions either in
small ion crystals, which are well separated from other parts
of the quantum register, by “shelving” all computational
qubits to nonresonant atomic states, or by using two
different atomic species spectrally separating logical and
incoherent operations [80–83].
Here, however, optically confined ions are well suited for

midcircuit measurements, as their motion is separated to
independent bands (top part of the spectra in Figs. 4 and 5);
thus, photon scattering heating remains local and does not
heat the other crystal modes. Furthermore, the optical
trapping also substantially light shifts the atomic transition
lines of the ions, specifically the photon emission lines,
such that secondary photon scattering from neighboring
computational qubit ions is largely suppressed. Thus, no
physical shuttling of the ions into dedicated measurement
regions is required nor the use of multiple ion species.
Nevertheless, measured ions may heat substantially;

thus, each measurement step is followed by midcircuit
cooling. Only the modes of optically confined ions must be
cooled this way, leaving the information encoded in
computational qubit ions unaffected. Midcircuit cooling
can be done on all optically confined ions in parallel and is
expected to occupy a minor part of the overall circuit
duration (see the Appendixes for further detail [48]).
We present midcircuit measurements in conjunction

with the ion crystal’s segmentation reconfiguration, as
the two processes naturally combine, though each of
these can also be performed independently. The protocol
consists of measuring the qubit states of some target ions,
without incurring decoherence on computational qubits or
heating of bulk modes, after which we cool, reinitialize
the measured ions, and reconfigure the ion crystal’s
segmentation.
Figure 8(top) illustrates these general steps involved in

performing midcircuit measurements. For simplicity, we
consider the required operations on three types of ions in

the ion crystal, i.e., computational qubit ions (top, white
circles), barrier ions to be measured (middle, white circle),
and optically confined barrier ions (bottom, purple filled
circles). The measurement method can be performed in
parallel throughout the entire ion crystal on all required
ions according to these roles. In our architecture, ions may
be optically confined specifically for the purpose of
midcircuit measurements, without necessarily having an
essential role in segmentation of the ion crystal, as
showcased in the application of a QEC surface code, above.
For concreteness, we consider a specific realization, in

trapped 40Caþ ions. Furthermore, we consider local control
over a wavelength of approximately 400 nm, which couples
the two qubit states defined in the 4S1=2 ground-state
manifold via Raman transitions mediated by the short-lived
4Pmanifolds. This local control, acting independently on all
ions, is primarily used for generating single-qubit rotations
and multiqubit programmable gates; however, here it is
utilized as a means to “localize” global control fields using
light shifts, detailed below.

1/24S

5/24D

1/24P

Prepare

Prepare

(A)
s,nU

FIG. 8. Top: schematic of midcircuit measurement protocol,
showing three types of involved ions—computational qubit ions
(top, white circle), barrier ions (BB) to be measured (middle,
white circle), and barrier ions (BA) that are currently optically
confined (bottom, purple filled circle). Operations are ordered
from left to right. Data are encoded on the computational qubit

(e.g., UðAÞ
s;n ), and one of the qubit states of the ion is shelved to a

nonfluorescing state using local control. Next, an intermediate
optical segmentation configuration is used, confining both A and
B barrier ions and separating their motion from the computational
qubits. The state of the barrier ions is measured and then reset
(“prepare”). Lastly, the optical segmentation configuration is
switched. Bottom: relevant atomic levels of 40Caþ ions, showing
4S1=2 the ground-state manifold, the metastable 4D5=2 manifold,
and the short-lived 4P1=2 manifold. The S ↔ P transition varies
between the no-optical confinement (left) and optically confined
(right) cases, allowing to separate the two cases spectrally (see the
main text). The main optical fields used in the protocol are shown,
namely, at 729 nm (red), coupling the S ↔ D levels, at 400 nm
(light blue), generating Raman transition between qubit states as
well as additional local light shifts, and at 397 nm (purple)
coupling the S ↔ P levels.
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The main atomic levels used for standard qubit operation
are presented in Fig. 8 (bottom) in the case of no optical
confinement (left, red lines) and with optical confinement
(right, blue lines). The ground-state manifold is coupled to
the narrow metastable 4D5=2 manifold via a 729 nm field
(red arrow). In the case of no optical confinement, this
transition can be addressed on specific individual ions by
light shifting the 4S1=2 manifold of a target ion by using the
locally controlled 400 nm field (blue arrow). For these
purposes a small, e.g., a few megahertz, light shift suffices
for individual ion addressing while maintaining a low
decoherence rate. On the other hand, optical confinement
strongly light shifts the 4S1=2 ↔ 4P1=2 level (right), mak-
ing the 729 nm coupling off resonant. In principle, this
strong shift can be taken into account; however, since the
S ↔ D transition is narrow, it imposes stringent require-
ments on the intensity stabilization of the optical confine-
ment. Here, we simply do not make use of the S ↔ D
transition for optically confined ions, relaxing the require-
ments for intensity stabilization. Raman transitions within
the qubits subspace, mediated by the 400 nm field, are
negligibly affected by optical confinement and exclusively
in terms of their Rabi frequency.
An additional locally applied field resonant with the

light-shifted S ↔ P transition at 397 nm is used (purple
arrow). Since the P level is broad, the required stability of
the optically confining fields in order to maintain resonance
is attainable. The combination of local 400 and 397 nm
fields, together with standard repump fields (not shown),
accommodates for all the necessary steps—i.e., state
detection, various cooling techniques, and state prepara-
tion. We note that the technical requirements for the 397 nm
field are less demanding than those of the optical confine-
ment and gate drive fields at 400 nm; the necessary power
per ion is far lower, independent spectral control is not
required, and the focal spot can generally be larger (by
illuminating adjacent ions within the same beam).
The midcircuit measurement protocol shown in Fig. 8 is

carried out by first encoding some information on ion to be
measured (middle) via the entanglement operations
detailed above (UðAÞ

s;n ), e.g., parity information of a plaquette
shown in Fig. 3. Then, one of the qubit states of the ion to
be measured is shelved to theDmanifold via a combination
of 400 nm light shift and 729 nm coupling, making this
operation local on the ion.
Next, the segmentation configuration is changed to an

intermediate setting where all barrier ions are illuminated.
This separates the motion of measured ions from the
computational qubits’ motion and light shifts their S↔P
transition. At this step, some ions may fully populate the D
level, in which case they are not optically confined; thus,
existing confinement of other ions (bottom) cannot be
relaxed.
State detection is then performed using the light-shifted

397 nm field, followed by qubit reset and preparation using

a combination of the 397 and 400 nm fields. During the
detection and preparation steps, the optically confined ions
scatter 397 nm photons. The scattered photons are sub-
stantially detuned, by approximately 0.8 GHz, from the
absorption lines of the computational qubit ions, having a
linewidth of few tens of megahertz, thus negligibly influ-
encing their state. Nevertheless, the state of neighboring
computational qubits, located several micrometers apart,
may be further protected by shelving both of their qubit
states to the D level (at the shelving step).
The measured ions are required to be ground state cooled

in the “prepare” step, which can be done on all optically
confined ions in parallel. Incidentally, this cooling step also
dissipates the heat that accumulates on barrier ions during
the circuit due to off-resonant photon scattering and due to
measurements.
During exposure to 397 nm light, the measured ions

inevitably spend some portion of time in the excited P state,
in which the optical potential is antitrapping. Moreover,
transitions to the P state may introduce heating due to the
fluctuating dipole force [84,85]. The heat induced by these
processes yields an excitation of approximately fivemotional
quanta of their localized mode, keeping them in a manage-
able regime, from which they can be recooled back to their
motional ground state, detailed in the Appendixes [48].
Lastly, the segmentation configuration can be changed,

switching the roles of computational and barrier ions.
Although the barrier ions are cooled before returning to
the bulk, care must be taken to reconfigure the optical
potentials slowly enough so as not to excite any motion of
the bulk modes. As detailed in the Appendixes [48], this
condition is satisfied as long as the reconfiguration time is
large compared to an oscillation period of the ion trap; in
practice, a reconfiguration time of approximately 30 μs
easily meets this requirement. Overall, the duration of the
midcircuit measurement, preparation, and reconfiguration
steps combined is generally small compared to the multi-
qubit gate time.

VIII. SUMMARY

Here, we propose a scalable architecture for quantum
computing; it is based on a large register of trapped-ion
qubits together with dynamically operated optical poten-
tials. Our proposed architecture circumvents the two most
prominent challenges in working with ever-larger ion
crystals—prohibitively high heating rates and spectral
crowding of the ions’ motional modes. It does so by
effectively segmenting an arbitrarily large trapped-ion
crystal into several independent segments of a manageable
size. Connectivity across the full trapped-ion crystal is
enabled by rapidly reconfiguring the optical potentials. The
optical potentials further enable midcircuit measurements
of the confined ions, followed by classical feedback.
The utility of this architecture is emphasized when

combined with a method for programmable multiqubit
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entangling gates, such as that proposed in Ref. [15]. We
have used this method to numerically study the application
of independent multiqubit unitaries on each cell in parallel
and in a scalable manner. Moreover, we have extended this
method to enable arbitrarily good compensation of cross-
talk errors that arise between adjacent segments.
Our architecture requires modest hardware resources and

makes use of well-established experimental techniques; it
is, thus, an ideal platform for quantum simulation and near-
term quantum computation, as well as ultimately for fault-
tolerant quantum computing.
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APPENDIX A: MODE STRUCTURE
AND COUPLING CALCULATIONS

Mode structure, i.e., motional mode frequencies, and
mode participation matrices are generated by diagonalizing
a classical Hamiltonian. Specifically, we consider an
isospaced rf trapped-ion crystal, of ions with mass m
and charge e. Optical trapping potentials are taken into
account by incorporating an additional on-site potential
term for illuminated ions. In all of our examples in the main
text and below, we consider equally spaced trapped 40Caþ
ions, with an interion distance of 5 μm and a 400 nm
optical field that generates the additional confinement and
segmentation.
We assume the ion crystal forms a stable linear chain,

such that axial and transverse modes can be considered
independently. Thus, following Ref. [56], for axial modes
we write the secular matrix

Vaxial
n;m ¼

(
−2 eEnn

djn−mj3 n ≠ m;

4ζð3Þ eEnn
d þmω2

otpbn n ¼ m
ðA1Þ

with bn ¼ 1 (bn ¼ 0) if ion n is (not) illuminated by an
optical potential, d is the distance between ions, ζð3Þ ≈
1.202 is Apéry’s constant, Enn ¼ ðe=4πϵ0d2Þ is the electric
field strength created by nearest-neighbor ions, and ϵ0 is the
vacuum permittivity. The eigenvalues of Vaxial are 1

2
mω2

a ,
with ωa the axial motional mode frequencies. The eigen-
vectors are normal modes of motion associated with the
corresponding frequency, designated in the main text as the
mode matrix A.
Similarly, transverse (radial) modes are calculated by

diagonalizing the matrix:

Vradial
n;m ¼

( eEnn
djn−mj3 n≠m;

−2ζð3ÞeEnn
d þmðω2

radþω2
otpbnÞ n¼m

ðA2Þ

with 1
2
mω2

rad the radial trapping potential generated by the rf
trap, which in the analysis presented here is fixed at
ωrad ¼ ð2πÞ × 3.5 MHz. Figures 4 and 5 in the main text
are generated by computing and diagonalizing the matrices
in Eqs. (A1) and (A2).
The resulting transverse mode matrix R is the orthogonal

matrix that diagonalizes the secular matrix in Eq. (A2) and is
used in themain text to estimate crosstalk between segments.
This is realized by considering the mode-dependent qubit-
qubit coupling [Eq. (5) in the main text]:

Jðc;sÞ;ðc
0;s0Þ

b ¼
XS
m¼1

Rðc;sÞ
ðb;mÞR

ðc0;s0Þ
ðb;mÞ : ðA3Þ

Figure 9 highlights the resulting structure of the Jb’s
for several bands, with the horizontal and vertical axes

FIG. 9. Band-dependent qubit-qubit coupling Jb. Horizontal and vertical axes are indices of qubits within the entire ion crystal
(excluding BA barrier ions). Couplings are shown in a symlog scale (colors represent a logarithmic scale in both the positive and negative
directions from the origin, with an interval between �10−6 that is linearly scaled). The optical segmentation generates a block-diagonal
structure, that signifies strong coupling within each cell and negligible coupling between qubits in different cells. Couplings due to three
bands are shown; the zigzag b ¼ 0 band (left), the c.m. b ¼ 34 band (right), and an intermediate band (center). Clearly, crosstalk, seen as
coupling outside of the diagonal blocks, is more relevant for high-b, long-wavelength modes.
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representing ion indices within the ion crystal (excluding
BA barrier ions)—specifically the “zigzag,” b ¼ 0, band
(left), the c.m., b ¼ 34, band (right), and an intermediate,
b ¼ 17, band (middle). Couplings are shown in a symlog
scale (colors represent a logarithmic scale in both the
positive and negative directions from the origin, with an
interval between �10−6 that is linearly scaled). All of the
presented coupling maps show considerable intercell cou-
pling and negligible crosstalk, i.e., coupling between ions
in different segments, with nearest-neighbor segments
constituting the most relevant correction. Furthermore,
long-wavelength, i.e., high b, modes generate more cross-
talk, as is also shown in Fig. 5 in the main text.

APPENDIX B: MOTIONAL EXCITATION
RATE CALCULATIONS

In order to evaluate the excitation rate of a given axial
mode of motion, we recall Eq. (3) in the main text; i.e., in
the presence of some electric field noise δEðt; rÞ, the
excitation rate for a given motional mode is [12]

ΓðkÞ ¼ e2

4mℏωk
SðkÞE ðωkÞ; ðB1Þ

with ωk the frequency of mode k and SðkÞE ðωkÞ the spectral
density of the electric field noise, given by

SðkÞE ðωkÞ ¼ 2
X
i;j

Z
dτhδEi

kðτÞδEj
kð0Þie−iωkτ: ðB2Þ

Here, δEi
kðτÞ is the projection of δE on the kth mode of

motion at the position of ion i, i.e., δEi
kðtÞ ¼ δEðt; riÞAðiÞ

k ,
and ri is the position of the ith ion.
We assume that the leading-order contribution to δE is

spatially uniform and neglect all other contributions.
Furthermore, motivated by theoretical and experimental

results, we assume that SðkÞE ∝ ω−α
k , with α here set to 1.

This considerably simplifies ΓðkÞ and enables us to obtain
the total axial excitation rate shown in Eq. (4) in the main
text, up to a proportionality factor:

Γ ∝
X
k

ΓðkÞ ∝
X
k

e2

4mℏω2
k

X
i;j

AðiÞ
k AðjÞ

k : ðB3Þ

Crucially, the effect of optical segmentation comes about
spectrally in the formation of bands, such that the summa-
tion on k in Eq. (B3) can be decomposed as

Γ ≈
XBþC

b¼1

e2

4mℏωb

XS
s¼1

X
i;j

AðiÞ
b;sA

ðjÞ
b;s þO

�
BWb

Δωb

�
; ðB4Þ

with AðiÞ
b;s a rearrangement of A according to the band

structure and the error term due to the bandwidth of the
bands, BWb, and the gap between bands, Δωb, which is
assumed to be small. From a mode-structure point of view,
the optical segmentation comes about as an independent
motion between adjacent cells (shown in Fig. 9); thus, the
sum on s restricts i and j to the same cell, leading to a linear
scaling with S.

APPENDIX C: CROSSTALK
MITIGATION METHOD

We provide further details on our approach to mitigating
crosstalk between cells in the optically segmented ion
crystal. In order to do so, we recall some basic facts about
the operation of the LSF method, which is discussed in
detail in Ref. [15]. We assume the ions are driven by local
fields that, in the spectral domain, all have the sameM tone
pairs but can vary in the amplitude of each pair. Thus, the
drive is described by a set of vectors rn such that ðrnÞm is
the amplitude of the mth tone pair that drives the nth ion.
This choice of degrees of freedom allows one to generate a
bipartite multiqubit entanglement operation of the form

U ¼ exp

� XN
n;m¼1

φn;mσ
ðnÞ
x σðmÞ

x

�
; ðC1Þ

with φn;m a completely controlled target operation and σðnÞx

a Pauli-x operator acting on the nth ion.
Indeed, generating U can be mapped to finding solutions

(of the rn’s) to the quadratic constraints:

rTnAn;mrm ¼ φn;m; 1 ≤ n < m ≤ N; ðC2Þ

with An;m a set of real-valued M ×M symmetric matrices
that quantify the coupling between ions n and m due to the
drive’s spectral components. Specifically, these coupling
matrices are given by

An;m ¼
XN
j¼1

RðnÞ
j RðmÞ

j Aj; ðC3Þ

with Aj a set of real-valuedM ×M symmetric matrices that
quantify the coupling between the drive’s spectral compo-
nents and mode j [13]. Typically, we are interested in
solutions to small norm rn’s that satisfy Eq. (C2), which
constitutes an NP-hard optimization problem.
In LSF, we make use of a given nontrivial solution,

rn¼z for all n¼1;…;N, that generates the target φð0Þ
n;m ¼ 0

for all n andm, coined the zero-phase solution (ZPS). Then,
solutions to other “full” arbitrary targets can be efficiently
converted from z. Crucially, the ZPS does not depend on
the ion index n and, thus, can be found directly by
considering the Aj’s (instead of the An;m’s), reducing the
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number of quadratic constraints that are required to be
satisfied.
We utilize these concepts and apply them to the optically

segmented ion crystal. Generally, we consider a “typical”
effective cell as an independent ion crystal and find a ZPS
for it. We then convert the ZPS to solutions of the full
targets, which reflect the required operations on the differ-
ent cells, i.e., UðA;BÞ

s;n in Fig. 1 in the main text. By simply
setting these solutions as the drive of the optically seg-
mented ion crystal, we obtain entanglement gates of the
form of Eq. (C1), up to approximately 10−2 infidelity,
which arises mainly due to crosstalk between adjacent
cells, but also due to using a typical cell system (e.g., cells
at the edge of the ion crystal are slightly different than in
the bulk).
To construct a typical cell system of the ion crystal, we

consider a fictitious system that has Cþ BB equally spaced
ions with corresponding transverse motional modes. The
mode frequencies are constructed from the average fre-
quency of each band in the motional spectrum band
structure of the segmented ion crystal. The mode partici-
pation matrix is constructed by similarly averaging the
participation of each ion in each mode, partitioned to cells.
The segmented ion crystal has S modes per band (and not a
single mode), which needs to be taken into account by the
typical cell system. Indeed, we do so by writing our drive
degrees of freedom in a way that is resilient to small
inaccuracies in the motional frequency [69–71].
This construction, along with other fixed system param-

eters such as the entanglement gate time, ion type, etc., is
sufficient in order to construct Aj’s and An;m’s of a typical
cell and to generate ZPS of it. We remark that we do not
make use of tones that lie within bands, since these will
generate a differential coupling between the different
modes within a band and are not well approximated by
the typical cell system.
We use LSF to convert the typical cell ZPS to different

target cell solutions for the various cells and obtain a set of
amplitudes rð0Þs;c corresponding to the drive of qubit c in cell
s. The qubit-qubit coupling between ions c (c0) in cell s (s0),
“inherited” from the typical LSF solution, can be evaluated

as φðiÞ
ðs;cÞ;ðs0;c0Þ ¼ ðrðiÞs;cÞTAðs;cÞ;ðs0;c0Þr

ðiÞ
s0;c0 , with designating the

LSF solution as i ¼ 0.
The resulting couplings are compared to the intended

target, ΔφðiÞ
ðs;cÞ;ðs0;c0Þ ¼ φðiÞ

ðs;cÞ;ðs0;c0Þ − φt
ðs;cÞ;ðs0;c0Þ, with the t

inscription referring to the required ideal target dictated
by the intended unitary operator, such that φt

ðs;cÞ;ðs0≠s;c0Þ ¼0.

Nearest-neighbor cell crosstalk errors are given by

ΔφðiÞ
ðs;cÞ;ðs�1;c0Þ, and target inaccuracies are given by

ΔφðiÞ
ðs;cÞ;ðs;c0Þ.
Since the total infidelity is small, crosstalk and target

inaccuracies can be mitigated by linearizing the quadratic
constraints in Eq. (C2) and iteratively improving the

resulting fidelity. Specifically, we consider an iteration

of the form rðiþ1Þ
s;c ¼ rðiÞs;c þ δðiþ1Þ

s;c , starting from i ¼ 0. We
construct a set of linear equations for the correction δðiþ1Þ.
In order to make this technique scalable, we want to avoid
considering all N ions in the ion crystal in the same set of
linear equations. This is made possible by the fact that
crosstalk is dominated by coupling to nearest-neighbor
cells (see Fig. 5 in the main text and Fig. 9).
Specifically, we focus on two adjacent target cells, s and

sþ 1, and derive linear equations for them. These are

ðδðiþ1Þ
s;c ÞTAðs;cÞ;ðs;c0Þr

ðiÞ
s;c0 þ ðδðiþ1Þ

s;c0 ÞTAðs;cÞ;ðs;c0Þr
ðiÞ
s;c

¼ ΔφðiÞ
ðs;cÞ;ðs;c0Þ; ðC4Þ

ðδðiþ1Þ
sþ1;cÞTAðsþ1;cÞ;ðsþ1;c0Þr

ðiÞ
sþ1;c0

þ ðδðiþ1Þ
sþ1;c0 Þ

TAðsþ1;cÞ;ðsþ1;c0Þr
ðiÞ
sþ1;c

¼ ΔφðiÞ
ðsþ1;cÞ;ðsþ1;c0Þ; ðC5Þ

ðδðiþ1Þ
s;c ÞTAðs;cÞ;ðsþ1;c0Þr

ðiÞ
sþ1;c0 þ ðδðiþ1Þ

sþ1;c0 Þ
TAðs;cÞ;ðsþ1;c0Þr

ðiÞ
s;c

¼ ΔφðiÞ
ðs;cÞ;ðsþ1;c0Þ; ðC6Þ

ðδðiþ1Þ
s;c ÞTAðs;cÞ;ðs−1;c0Þr

ðiÞ
s−1;c0 ¼ ΔφðiÞ

ðs;cÞ;ðs−1;c0Þ; ðC7Þ

ðδðiþ1Þ
sþ1;cÞTAðsþ1;cÞ;ðsþ2;c0Þr

ðiÞ
sþ2;c0 ¼ ΔφðiÞ

ðsþ1;cÞ;ðsþ2;c0Þ ðC8Þ

with c; c0 ¼ 1;…; C. The first (second) row accounts for
inaccuracies of the target implemented on cell s (sþ 1), the
third row accounts for crosstalk between cells s and sþ 1,
and the fourth (fifth) row accounts for crosstalk between
cell s (sþ 1) and cell s − 1 (sþ 2). The choice to correct
the drive of two adjacent cells simultaneously is since this
construction allows crosstalk between cells s and sþ 1 to
be mitigated simultaneously by both δs;c and δsþ1;c0 , which
has been found to be more efficient than the correction of
the crosstalk with control over a single qubit drive, e.g., the
terms in the fourth and fifth rows.
Crucially, all of these terms result in CðC − 1Þ þ 3C2

linear constraints and are independent of the total number
of segments. Moreover, iterative optimizations can be
performed by considering independent blocks of four
adjacent cells, that can be efficiently parallelized and
interlaced. We remark that an additional linear constraint
can be added in order to minimize the amplitude of
the rn’s [15].
We perform f optimization iterations, until convergence

of the solution or until meeting a fidelity criteria. We use the
resulting solutions and benchmark the expected fidelity of
the corresponding entanglement operations. The resulting
infidelity is evaluated, in leading order, as
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I ¼ Ishort þ Ilong þ Imotion; ðC9Þ

Ishort ¼ 2
XS
s¼1

XCþBB

c;c0¼1

ðjΔφðfÞ
ðs;cÞ;ðs;c0Þj2 þ jΔφðfÞ

ðs;cÞ;ðsþ1;c0Þj2

þ jΔφðfÞ
ðs;cÞ;ðs−1;c0Þj2Þ; ðC10Þ

Ilong ¼ 2
XS
s¼1

XS
s0≠s;s�1

XCþBB

c;c0¼1

jΔφðfÞ
ðs;cÞ;ðs0;c0Þj

2; ðC11Þ

Imotion ¼
XN
j¼1

XN
n¼1

jαðnÞj j; ðC12Þ

with Ishort representing the residual unwanted coupling
between qubits that is accounted for by our mitigation
iterations, Ilong representing the residual unwanted coupling
between qubits that is not accounted for by our mitigation,
and Imotion accounting for unwanted residual displacement

of the j ¼ 1;…; N motional modes. Here, αðnÞj is the
displacement of mode j due to ion n and is, thus, linearly
related to the rn’s and can be easily evaluated [13,15].While
we are not directly controlling andminimizing the latter term
in our optimization iterations, the resilience to motional
frequency errors of the typical cell, discussed above, ensures
that it remains small.

APPENDIX D: CROSSTALK
AND POWER ANALYSIS

We analyze the dependence of the crosstalk, in its mode-
structure-dependent formulation, εJ;b in Eq. (6) in the main

text, on the choice of the number of barrier ions per cell,
BA, and on the optical confining power used per barrier
ion, ωotp=ν.
Figure 10(left) shows the mean crosstalk averaged over

all bulk bands, hεJ;bib (color), for a segmented ion crystal
made of S ¼ 4 segments, each containing C ¼ 32 compu-
tational qubits and B (horizontal axis) barrier ions, such that
each barrier ion is illuminated by an optical confining
potential with a trapping frequency ωotp (vertical axis).
Clearly, as the optical trapping frequency decreases, the
mean crosstalk increases and passes the perturbative limit,
set here to 0.1 (white dashed line). We also present constant
lines of the expression P ¼ Bω2

otp=ν2, as it is proportional
to the total required optical power per cell (colored lines;
see the value of P in the legend).
Figure 10(right) shows εJ;b for C ¼ 32, S ¼ 4, and

various values of BA, between 1 and 14 (color), such that
for all BA barrier ions ωotp ≈ 2.1ν. The curves show
expected crosstalk due to b ¼ 1;…; Cþ BB bands, with
BB ¼ BA, similarly to the inset in Fig. 5. The high-index
cell bands are typically the main contributors to the
crosstalk, as they correspond to long-wavelength excita-
tions of the cells, analogs to low-order oscillating multi-
poles, thus having a stronger coupling to adjacent cells.
Clearly, a larger barrier reduces the overall crosstalk.
Nevertheless, the curves do not show a monotonic behav-
ior, which is especially obvious with BA ¼ 1 (blue) and
BA ¼ 2 (orange), which exhibit resonantlike features.
These resonances are likely due to the modes of motion
in which the barrier ions only weakly participate and,
therefore, cannot isolate the motion of ions within a single
cell. For BA ≥ 3, this effect is generally suppressed, leading
to only a residual distance-dependent Coulomb interaction

FIG. 10. Crosstalk dependence on ωotp and B. Left: mean crosstalk (colored regions) for varying number of barrier ions (horizontal
axis) and varying optical confinement, ωotp, per barrier ions, given in units of the rf radial trapping ωrad (vertical axis). We observe that a
perturbative crosstalk, set for values below 0.1 (area above the white dashed line), is generated by setting ωotp ≥ 2ν, almost regardless
of B. Nevertheless, increasing B is helpful in reducing the crosstalk. The total optical power per cell is proportional to P ¼ Bω2

otp=ν2

(colored lines, with the values of P in the legend). Right: estimation of band-dependent crosstalk, εJ;b, based on mode structure analysis
in an ion crystal with cell size of C ¼ 32 qubits and S ¼ 4 segments and a varying number of barrier ions BA ¼ BB (color). In general,
the addition of barrier ions decreases the overall crosstalk in the system. Limiting cases are found for BA ¼ 1, 2 in which some of the
collective modes do not involve the barrier ions, resulting in a nontypical crosstalk structure. Clearly, for BA ≥ 3 this behavior is
suppressed. The mean crosstalk of the curves with B ¼ 2, 4, 6, 8, 10 at ωotp ≈ 2.1ν are correspondingly shown in the left.
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between the cells. Furthermore, since our crosstalk miti-
gation technique relies on linearization, we have to work in
the perturbative crosstalk regime, which is already shown
to apply at BA ≥ 2, motivating our choices in the main text.
As shown in Fig. 7 in the main text, the optimal gate

performance occurs at ωotp ¼ 2ν and not at arbitrarily large
optical trapping frequencies. This counterintuitive effect
occurs due to a narrowing of the bulk bands when they are
close to the frequency of the barrier bands. Indeed. Fig. 11
(left) highlights this effect in the transverse modes of the
system considered for the 3D Ising simulation, i.e., S ¼ 5,
BA ¼ BB ¼ 3, and C ¼ 32. The bandwidth (top) of the
C ¼ 32 bulk bands (color), defined as the frequency
difference between the highest and lowest modes in the
band, is shown as a function of optical trapping frequency.
At the weak optical trapping regime, 0 ≤ ωotp ≤ 2ν,
increasing the optical frequency is shown to largely reduce
the bandwidths, which directly contributes to a reduced
crosstalk level between the segments. Already at this
regime, it is shown that the bandwidths have a nonmono-
tonic behavior. The bandwidths reach a minima at
ωotp ¼ 2ν and then slightly increase. The inset shows an
enlargement of the bandwidths of the top four bands
(vertical axis in log scale).
This behavior is explained by considering the frequency

of the bulk and barrier modes, shown for the same system in
Fig. 11(right). Indeed, it is seen that the nonmonotonic
behavior of the bandwidth of a given band is exactly
correlated with its crossing of a barrier band. The inset
shows an enlargement of the final barrier band crossing the
top center-of-mass bulk band. Specifically, it is seen that,
after the bands cross, at ωotp ≈ 1.9ν the width of the band is
minimal and is slightly increased as optically confinement
becomes stronger, leading to an increase of frequency of the
barrier band.

APPENDIX E: RECONFIGURATION RATE
OF OPTICAL POTENTIALS

Reconfiguration of the optical potentials may inadvert-
ently excite the motion of computational qubit ions. We
would like to determine the probability of exciting motion
and ensure that it is small. We note that this problem
was already addressed in Ref. [21] based on results in
adiabatic theory [86]; we, therefore, highlight only the main
conclusion. In particular, the part of the ion-crystal
Hamiltonian that is affected by the optical potentials is
given by

HotpðtÞ ¼
X

i∈ fx;y;zg

X
n

1

2
mω2

otpb
ðAÞ
n r2n;i þ

t
τR

1

2
mω2

otpb
ðBÞ
n r2n;i;

ðE1Þ

where τR is the reconfiguration time, bðfA;BgÞÞn ¼ 1 (0) if ion
n is (not) illuminated by an optical potential for each
configuration, and the subscript i denotes the trapping
direction. Here, we assume that optical potentials on the
barrier ions of configuration B are ramped on, while the
barrier ions of configuration A remain illuminated (as
prescribed by the midcircuit measurement protocol).
Furthermore, we assume that all motional modes of the
ion crystal start in the ground state. The probability of
exciting N > 0 phonons in a given motional mode m is
given by [21,86]

PðmÞ
N ∼ ℏ2

� hNðtÞj∂tHotpj0ðtÞi2
½EN;mðtÞ − E0;mðtÞ�4

����
t¼0

þ hNðtÞj∂tHotpj0ðtÞi2
½EN;mðtÞ − E0;mðtÞ�4

����
t¼τR

�
; ðE2Þ

FIG. 11. Bandwidth and mode structure of the transverse mode of an optically segmented ion crystal with S ¼ 5, C ¼ 32, and
BA ¼ BB ¼ 3. Left: bandwidths of the C ¼ 32 bulk modes as a function of optical confinement. The bandwidths display a
nonmonotonic behavior stemming from a decrease of the bandwidth of a band as a barrier band crosses it. The inset shows an
enlargement of the bandwidth of the four top bulk bands (vertical in log scale), showing the global minimum of the bandwidth at
ωotp ¼ 2ν. Right: mode structure of the same system. Indeed, the nonmonotonic behavior of the bandwidths (left) is in correspondence
with barrier bands crossing bulk bands. The inset shows an enlargement of the vicinity of the minimal bandwidth of the center-of-mass
band, showing indeed that this minimum is formed after crossing with the bulk band.
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where jNðtÞi are instantaneous eigenstates of the
Hamiltonian with energy EN;mðtÞ ¼ ðN þ 1

2
ÞℏωmðtÞ, cor-

responding to N excitations of motional mode m. We
will simplify ωmðt ¼ 0Þ ∼ ωmðt ¼ τRÞ≡ ωm, as the mode

frequency will not change drastically during the ramp.
Focusing only on axial modes (as this will yield the highest
probability of phonon excitation), we have

PðmÞ
N ∼

ℏ2

τ2R
m2

ω4
otp

ðNℏωmÞ4
�
hNðt ¼ 0Þj

X
n

r2n;axialb
ðBÞ
n j0ðt ¼ 0Þi2 þ hNðt ¼ τRÞj

X
n

r2n;axialb
ðBÞ
n j0ðt ¼ τRÞi2

�
: ðE3Þ

At any given time, in the instantaneous eigenbasis, the local position operator can be expanded as rn;axial ¼P
m An;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏ=2mωmÞ
p ða†m þ amÞ, where An;m is participation of ion n in axial mode m. The dominant contribution to

the phonon excitation probability comes from the excitation of N ¼ 1 phonon:

PðmÞ
N¼1 ∼

1

τ2R

ω4
otp

ω6
m

��X
n

An;mðt ¼ 0Þ2bðBÞn

�
2

þ
�X

n

An;mðt ¼ τRÞ2bðBÞn

�
2
�
∼

1

τ2R

ω4
otp

ω6
m

�
BB

C

�
2

: ðE4Þ

For bulk modes, the second sum will be small, as at time
t ¼ τR the barrier ions of configuration B will be illumi-
nated and, thus, have a weak participation in the mode. The
first sum conveys the participation of these ions while they

are still nonilluminated; generally,
P

n An;mðt ¼ 0Þ2bðBÞn ∼
ðBB=CÞ. For typical configurations, ðBB=CÞ ∼ 1

10
. In our

case, the lowest axial frequencies correspond to ωc:m: ≈
200 kHz, while ωotp ≈ 1.5 MHz; thus, Pc:m:

N¼1 < ð10−9=τ2RÞ.
We conclude that using a reconfiguration time of τR ¼
100 μs is sufficient to ensure a low probability of exciting
undesired motion.
Even faster reconfiguration times can be used if employ-

ing a nonconstant ramping profile. For example, we may
consider a piecewise linear profile consisting of two parts:
In the first part, the optical potential is ramped (relatively
slowly) to some intermediate value ωint (where ideally the
ion participation in bulk modes is already weak) at a time
τint; then in the second part it is ramped to ωotp in time
τR − τint. Choosing ωint and τint appropriately gives an
order of magnitude improvement in the excitation proba-
bility and would, therefore, enable reconfiguration times of
τR ∼ 30 μs. Certainly, optimizing over different ramping
profiles may yield further improvement.

APPENDIX F: EXAMPLE
CIRCUIT BREAKDOWN

Here, we illustrate an example circuit within our archi-
tecture; we emphasize relevant heating mechanisms and
cooling methodologies and provide an estimate of the
duration of each step within the circuit. Specifically, we
focus on the QEC circuit mentioned in the main text and
pictured in Fig. 3. We highlight this specific example as it
involves many of the important features of our architecture:
high-connectivity multiqubit entanglement gates, reconfig-
uration of optical potentials, and midcircuit measurements.
A generic mode of operation within this framework is that

in configuration A multiqubit gates encode parity informa-
tion of the code’s plaquettes onto auxiliary ions; these ions
are then optically confined and measured, implementing
stabilizer measurements. Next, the ion crystal is reconfig-
ured to configuration B, in which multiqubit gates and
measurements realize logical qubit-qubit interactions via
lattice surgery, after which the ion crystal is reconfigured
back to configuration A. This process repeats until the
desired algorithm is realized.
There are several heating mechanisms that are relevant to

this process, namely, heating of barrier ions due to off-
resonance photon scattering induced by the optical trap-
ping, leakage of this heat to the bulk modes, heating of the
barrier ions due to on-resonance photon scattering when
they are used as auxiliary ions and measured, and leakage
of this heat to the bulk modes. Lastly, excitation of motional
modes may occur during reconfiguration due to level
crossing of the bulk modes; however, this has already
been treated in Appendix E, above.
As mentioned in the main text, the optical potentials

induce a Γsc ∼ 3 kHz photon scattering rate on barrier ions.
Each photon scattering event on ion i, assuming it is

initially close to its ground state, has an ðηðiÞm Þ2 ¼ ðRðiÞ
m Þ2η2m

probability of exciting a given motional mode m, where ηm
is its Lamb-Dicke parameter and RðiÞ

m is the participation of
the ion in the mode. The heating rate of a given mode due to

this process is given by ṅm ¼ P
i ΓscðηðiÞm Þ2.

The participation of barrier ions in bulk modes is very
weak; accordingly, the average heating rate of bulk modes
(taken over all m) due to Γsc is approximately proportional
to the number of barrier ions, yet small: hṅi ∼ 10−2 quanta
per second.
Specifically, here we assume that multiqubit gates are

driven at the minimum possible gate time Tmin ¼ 3.1 ms
(where Tmin is inversely proportional to the minimum
spacing of bulk bands [15]). Each entanglement process
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within the QEC scheme (X stabilizers, Z stabilizers, lattice
surgery) can be implemented using a single multiqubit gate;
these operations are implemented in parallel for all seg-
ments within the ion crystal. This implies an accumulated
ṅbulkTmin ≈ 3 × 10−5 average quanta of motion during the
gate, yielding a negligible impact on gate fidelity.
The barrier modes themselves, however, do heat as a result

of this process and acquire an average of ṅbarrierTmin ≈ 0.07
quanta over the gate duration; thesemodes should, therefore,
be cooled before the optical potentials are reconfigured and
the barrier ions join the bulk.
In the QEC scheme above, there are 12 auxiliary ions per

segment that must be measured after each stabilizer
operation. The midcircuit measurement procedure begins
by illuminating each of these ions with an optical trapping
beam. We assume that measurements are carried out by
exposure to 397 nm light, where the collection of approx-
imately 30 photons per ion (e.g., using a multichannel
photomultiplier tube) is sufficient to determine that the ion
is in the “bright” state. Further assuming a photon collec-
tion efficiency of 1%, this corresponds to 3000 scattered
photons per measured ion.
In order to mitigate the antitrapping effect in the P levels,

we set the scattering rate to be low enough, such that the
ions spend only a small fraction of the detection time in
the P levels. Specifically, by spreading the detection
duration over 1 ms, the ion will occupy the P level for
ð3000τ=1 msÞ ¼ 2.4% of the detection time, where
τ ≈ 8 ns is the lifetime of the P level. Since the antitrapping
forces in the P level are only half as strong as trapping
forces in the S levels, this implies that the reduction of the
effective optical trapping potential during detection will be
at the 5% level.
There are two sources of heating associated with mid-

circuit measurement. First, each of the 12 measured ions
may scatter 3000 photons; since measurement is performed
with red-detuned light which also provides Doppler cool-
ing, the ions would heat up only to the Doppler temperature
corresponding to n̄D ¼ 5 quanta. We note that this is the
“worst case” in terms of heating. In general, we are free to
choose stabilizer eigenvalues such that all measured ions
are dark except in the rare case of a detected error; in this
configuration, photon scattering will hardly occur. As the
measured ions are optically confined, this heat remains
local and minorly affects the modes of computational qubit
ions. In particular, assuming each measured ion is locally at
the Doppler temperature, we estimate the heat accumulated
on a mode m of the computational qubit ions to be

n̄m ¼ P
iðRðiÞ

m Þ2n̄D. On average, the modes of computa-
tional qubit ions will heat by hn̄i ¼ 0.005 quanta due to the
midcircuit measurements. This heating is negligible, yet
may accumulate over many rounds of operation, and is,
thus, mitigated below.
Another source of heating during midcircuit measure-

ment is related to the fluctuating dipole force on the

measured ion [84,85]. Each time the ion is excited to
the P level, assuming it is slightly off center of the optical
trapping beam, it experiences a change in the dipole force
ΔF ≈mω2

otpx (where x is the ion displacement from the
center of the beam). This change of force occurs over the
lifetime of the P levels and translates to a momentum kick
pdip ¼ ΔFτ. Taking the displacement to be x ¼ 0.25 μm
(an extreme limit corresponding to the steepest slope of the
Gaussian beam) and comparing to the photon recoil
momentum prec ¼ ℏk397, we have pdip ≈ 0.15 × prec. We
notice that, even for a large displacement, this effect is
smaller than photon recoil.
As optically confined ions (both barrier and measured

ions) may heat considerably, they must be cooled during
the circuit. Ground-state cooling the modes of all optically
confined ions can be done in parallel within the prepare step
following midcircuit measurement. Based on efficient
cooling techniques capable of cooling multiple motional
modes simultaneously [87–89], we estimate this will
require approximately 500 μs. Reconfiguration of the
optical potential is performed in two stages of ≳100 μs
(as described in the previous section). An additional benefit
of this protocol is that, when the optical potential is
removed from the cooled ions, they will, in turn, cool
other modes of the ion crystal sympathetically, thus
mitigating the small heating effects sustained during gate
duration and midcircuit measurements.
We estimate that the temperature of computational qubit

ions will reduced by the ratio of number of cooled ions to
total number of ions in the crystal, which in the case of this
circuit is 14

39
≈ 36%. In all, heating of computational qubit

ions during the gate and midcircuit measurement is at the
10−3 quanta level. This would permit hundreds of rounds of
midcircuit measurements before having an appreciable
effect on gate fidelity and necessitating cooling of the full
ion crystal. In practice, the physical heating rate of any real
ion trap device provides a similar or stricter limitation.
Focusing on operation times, a round of QEC stabilizers—

includingmidcircuitmeasurement, state preparation, ground-
state cooling, and optical potential reconfiguration—would
require approximately 5ms. Incorporating an additional layer
to implement logical qubit entangling gates (e.g., via lattice
surgery) would bring the total circuit time to 10 ms. Here, the
majority of the circuit is taken up by the entanglement gates.
This should be contrasted to QCCD architectures, where the
gate times can be small (approximately 10 μs); however, the
majority of the circuit duration is dedicated to ion shuttling
and cooling operations. For example, in Ref. [17], a QCCD
approach featuring two-ion trapping sites reports that
97%–99% of the circuit is dedicated to ion transport and
cooling for a diverse range of circuit examples. Based on the
results in that reference (particularly the circuits analyzed in
Table I there), we can roughly estimate that the same QEC
circuit considered here would require hundreds of millisec-
onds using that approach. It should be noted that the exact
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duration of a shuttling-based circuit highly depends on the
ordering of shuttling operations and the corresponding
optimization of this process. Moreover, it is possible to
consider a shuttling-based approach featuring transport of
long ion crystals as opposed to two-ion segments; this would
reduce the number of required shuttling operations [90].
However, the complexity of ion transport and the associated
heating rate also increases with the segment size.
Another important comparison should be made to an

architecture based on photonic interconnects. In this
method, many trapping modules are linked via a photonic
network—where each trapping module includes computa-
tional qubit ions and ions dedicated to photon-mediated
communication between modules. Based on Ref. [18], each
remote entanglement operation between two communica-
tion qubits in different trapping modules would require
3 ms. Overall, circuit times highly depend on the structure
of the trapping modules. In particular, local entangling gate
times depend on the size of each register; moreover,

implementing local and remote gates, as well as midcircuit
detection, may require ion shuttling and cooling operations
as in QCCD. Nonetheless, we can roughly compare to a
similar setup, with a single logical qubit contained in each
local trapping module. We assume remote entanglement is
done in parallel; this would require ten communication
ports and ten additional communication qubits per module.
(We note that the hardware overhead can be mitigated at the
cost of running remote gates sequentially and, thus, having
larger overall circuit duration.) Because of the increased
crystal size, the minimum local entangling gate time
increases to approximately 5 ms. Lattice surgery then
involves parallel remote entanglement in addition to a
local entangling operation and measurement. Overall, we
estimate this circuit would run in approximately 20 ms. If
remote entanglement is performed sequentially, this time
would increase to approximately hundreds of milliseconds.
A comparison between our architecture, QCCD, and a

photonic interconnect approach is summarized in Table I.

TABLE I. Comparison between our architecture (optical segmentation), QCCD, and a photonic interconnect approach. We focus on
the QEC example circuit (involving stabilizer measurements and lattice surgery) as a basis for the comparison. The resource estimates
for the latter two architectures are derived from Refs. [17,18], respectively. We emphasize that times shown here are a rough estimate and
could vary based on the details of the quantum circuit. This comparison shows the large potential speedup offered by our method, which
is due to the low overhead of connecting remote qubits.

Method Circuit description
Entangling gate

duration

Total reconfiguration or
remote-communication

time (per layer of
QEC circuit)

Estimated
total circuit
duration Hardware challenges

Optical
segmentation
[this work]

Entanglement: multiqubit
gates

Connectivity:
reconfiguration of
optical potentials

SPAM: midcircuit detection
of optically confined
ions, midcircuit cooling
before reconfiguration

3 ms ∼100 μs (single step
reconfiguration of
optical potentials)

∼10 ms (i) Stability of optical
potentials

(ii) Spectral control
over motional
modes

QCCD
[17]

Entanglement: two-qubit
gates

Connectivity: ion transport
SPAM: midcircuit detection

by shuttling to
measurement zones,
midcircuit cooling
following shuttling
operations

∼10 μs ∼100’s ms (hundreds
of parallel shuttling
operations)

∼100’s ms (i) Precise control over
trapping potentials

(ii) Overhead of ion
shuttling operations

Photonic
interconnects
[18]

Entanglement: two-qubit
gates (multiqubit gates
also possible)

Connectivity: remote
entanglement with
photonic interconnects

SPAM: unspecified

10 μs–5 ms (local
entanglement) or
3 ms (remote
entanglement)

∼10–hundreds ms
(parallel or sequential
remote entanglement,
plus local
entanglement and
measurement)

∼20–hundreds
ms

(i) Efficiency of
probabilistic
entanglement via
photonic
interconnects
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The total circuit time corresponds to the example QEC
circuit detailed above.
While intended as only an approximate resource esti-

mate, this example circuit highlights the feasibility of our
architecture under realistic experimental conditions and a
potential advantage over other methods in terms of overall
circuit duration.
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