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CHAPTER 1. PREFACE

Figure 1.1: xkcd comics #927 on competing standards. Maybe, the same happens for textbooks

of that as well. There are very basic collective interaction e!ects for X-ray di!raction theory,

such as the Borrmann e!ect of suppression of absorption, that seem to be completely forgotten

and have to be rediscovered each time when seen in experiments. The superradiance, collective

enhancement of spontaneous emission in emitter arrays, is now seeing a renaissance of research.

At the same time, there is not much collaboration between the specialists on various times of

emitters, such as real atoms and artificial atoms (quantum dots).

The current book aims to bridge these communities at least partially by considering some

basic e!ects of collective light-matter interactions occurring in various arrays of emitters from a

hopefully universal viewpoint. In the first part, I will focus on the linear response regime, that

is realized either for very low light intensity (below single photon) or for classical light in the

linear optics regime. I will discuss collective enhancement and suppression of the light-matter

interaction strength, the di!erence between strong and weak coupling regimes, Purcell e!ect,

vacuum Rabi splitting. I know there is a little chance of success, as elucidated by the XKCD

comic in Fig. 1.1. The whole concept of a textbook might vanish in the age of AI. But I still

think it is worth a try. The book does not require knowledge of advanced quantum mechanics

or quantum electrodynamics. It is mostly su”cient to know free-space electrodynamics at the

undegraduate level.

I am very grateful for multiple discussions and collaborations with many people, in particular

with Nir Davidson, Ofer Firstenberg, Johannes Fink, Mikhail Glazov, Eougenius Ivchenko, Yuri

Kivshar, Yuri Lozovik, Andrey Miroshnichenko, Alexander Poshakinskiy, Elena Redchenko,

Ralf Rohlsberger, Ephraim Shahmoon, Alexandra Sheremet, Jiaming Shi, Andrey Sukhorukov.

I thank my family for their constant support.
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Chapter 4

Scattering on a single emitter

In this chapter, we consider a most basic problem: interaction of propagating light at a certain

frequency ω with the system, having a single optical resonance at the frequency ω0. The

possible setup, corresponding to this model, is schematically illustrated in Fig. 4.1 — it consists

of a waveguide, where photons propagate in one dimension either forward or backward, with

the constant velocity c, coupled to a two-level atom. However, an actual physical realization

can vary. It can involve di!erent types of light emitters in place of the resonant system. For

example, as described in the previous chapter, one can consider a plane electromagnetic wave

normally incident upon a flat semiconductor quantum well. The equations describing light

reflection in such a setup would be the same up to the change of notation.

Before proceeding to the actual calculation, it is important to think what can happen with

incoming light wave at the frequency ω depending on the relation ω and the system resonance

frequency ω0. If the light is strong from the resonance, we can expect no interaction. Indeed,

due to the energy conservation law, the light can not be absorbed by the emitter. On the other

hand, if ω and ω0 are close, some interaction can take place. The photon can be absorbed,

and after that, it can be reemitted back into the waveguide with some probability. As a result,

there is a possibility that light can be reflected backward with a certain reflection coe”cient r.

Our goal will be to calculate the value of this reflection r depending on the spectral detuning

ω ↑ ω0. By doing this, we will also clarify what is large and what is strong detuning, that it,

at which value of |ω ↑ ω0| the reflection can be neglected. Moreover, we will also show that

the properties of the system change when it can interact with propagating photons. In fact,

our calculation, despite being mostly based on classical Maxwell equations, will allow us to
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4.1. BRUTE-FORCE APPROACHCHAPTER 4. SCATTERING ON A SINGLE EMITTER

Figure 4.1: Schematics of light reflection and transmission from a resonant scatterer.

find the rate of spontaneous emission into the waveguide.

4.1 Brute-force approach

4.1.1 Wave equation

Let us consider a monochromatic electromagnetic wave at the frequency ω, propagating in one

direction z at the frequency ω with the velocity c. It then satisfies the usual wave equation

d2

dz2
E(z) + q

2
E(z) = 0 , (4.1)

where q = ω/c is the light wave vector. When writing Eq. (4.1) we do not write explicitly

the dependence of the electromagnetic field E on two other spatial coordinates x, y. In the

simplest description one can assume E(x, y, z) = E(z)f(x, y), where f(x, y) describes the

mode polarization and the spatial distribution in the transverse direction. We assume that

those are not a!ected by the interaction with the emitter, so that transverse and longitudinal

degrees of freedom can be separated and it su”ces to consider just a single scalar equation

(4.1). Now, in order to describe the light interaction with the emitter, we need to introduce

external polarization P (z) into the wave equation

d2

dz2
E(z) + q

2
E(z) = ↑4εq2P (z) . (4.2)

Here, P (z) is the electromagnetic polarization, induced in the waveguide material, due to the

presence of the emitter. By definition, this polarization is in general nonzero within the emitter

but quickly vanishes outside. We will now make the next approximation and assume that the

emitter is small as compared to other spatial scales in the problem, namely, small as compared

12



CHAPTER 4. SCATTERING ON A SINGLE EMITTER4.1. BRUTE-FORCE APPROACH

to the light wavelength ϑ = 2ε/q. Then, the polarization can be approximated by a ϖ-function

P (z) = pϖ(z) , (4.3)

where we introduced the emitter dipole moment p and assumed that the emitter is placed at

z = 0. The problem is still not quite well defined: we need to specify how to calculate the value

of p. Here comes another approximation of the linear response. We say that the emitter dipole

moment is nonzero only in the presence of the electric field, and that it is linearly proportional

to this electric field, that is

p = ϱE(0) , (4.4)

where ϱ is the emitter polarizability and E(0) is the electromagnetic wave at the position of

the emitter z = 0. The actual value of ϱ depends on the microscopic properties of an emitter.

For example, for an actual atom, it has to be calculated quantum-mechanically. Given ϱ, the

system of equations Eqs. (4.1)–(4.4) becomes complete and can be solved analytically.

4.1.2 Emitter polarizability

The goal of this book is to describe the general properties of resonant light-emitter interaction,

without going into the microscopic details of the emitter. As such, we can make a following

strong assumption about ϱ:

ϱ(ω) =
a

ω0 ↑ ω ↑ iς
. (4.5)

where a and ς are two new real parameters. The parameter a characterizes the strength of

the resonance. The ς characterizes the resonance damping because of some other mechanisms,

unrelated to the resonant interaction with the photon mode in the waveguide. For example,

such term can be related to the spontaneous emission of photons in another optical modes, or

it can phenomenologically describe the dephasing because of the interaction with the modes in

the environment of the emitter. The perfect emitter corresponds to the limit ς ↓ +0. In the

simplest quantum mechanical description of a two-level atom, ω0 corresponds to the energy

di!erence between the levels |1↔ and |2↔, ω0 = E2 ↑ E1, and a = d
2
/⊋, where d is the matrix

element of the atom dipole moment in the direction along the electric field polarization ω,

d
2 = e2|↗1|(ω · r)|2↔|2, and e is the electron charge. However, these details depend on the

particular type of the emitter and will not be important for the following consideration.

We note, that Eq. (4.5) is valid only in the vicinity of the resonance, for ω close to ω0. For

13



4.1. BRUTE-FORCE APPROACHCHAPTER 4. SCATTERING ON A SINGLE EMITTER

large detuning it is necessary to add at least one more counter-rotating term,

ϱ(ω) =
a

ω0 ↑ ω ↑ iς
+

a

ω0 + ω + iς
, (4.6)

that is maximal at ω = ↑ω0 ↑ iς. However, we will neglect this term from now on, since we

assume |ω ↑ ω0| ↘ ω,ω0. As an exercise, you can check that Eq. (4.6) satisfies the general

Kramers-Kronig relationships for the permittivity.

Solving the wave equation

We are now in position to find light reflection coe”cient r and transmission coe”cient z. Let

assume that an electromagnetic wave with the amplitude E0 is incident from the left and is

scattered on the emitter. Everywhere for z ≃= 0 the right-hand side of Eq. (4.2) is absent and

the solution can be presented as a superposition of right- and left-going plane waves exp[±iqz].

This means that

E(z) =






E0(eiqz + re→iqz), z < 0

E0teiqz, z > 0 ,
(4.7)

were, r and t are the light reflection and transmission coe”cients. In order to find the values

of r and t we need to apply the boundary conditions at the emitter position z = 0.

The first of these boundary conditons is the continuity of the electric field, E(↑0) = E(+0),

that yields

1 + r = t . (4.8)

The second of the boundary conditions is obtained by integrating Eq. (4.2) for z from ↑ϖz

to ϖz around the point z = 0 and then setting ϖz to 0. Since the right-hand side of Eq. (4.2)

contains a ϖ-function, it will not be zero even for ϖz = 0. The result yields

dE

dz

∣∣∣
z=+0

↑ dE

dz

∣∣∣
z=→0

= ↑4εq2p (4.9)

which means that

iq(t+ r ↑ 1) = ↑ 4εq2a

ω0 ↑ ω ↑ iς
(1 + r) . (4.10)
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CHAPTER 4. SCATTERING ON A SINGLE EMITTER4.1. BRUTE-FORCE APPROACH

Substituting t = 1 + r, we find

ir = ↑ 2εqa

ω0 ↑ ω ↑ iς
(1 + r) (4.11)

which results in

r(ω) =
iς1D

ω0 ↑ ω ↑ i(ς1D + ς)
, t(ω) =

ω0 ↑ ω ↑ iς

ω0 ↑ ω ↑ i(ς1D + ς)
. (4.12)

with

ς1D = 2εqa . (4.13)

The total probability that the photon will be reflected or transmitted is given by |r(ω)|2

and |t(ω)|2, respectively. We note, that this probabilities do not in general sum up to unity:

|r|2 + |t|2 = 1↑ A, A =
2ςς1D

(ω ↑ ω0)2 + (ς + ς1D)2
. (4.14)

Only for ς = 0 one has |r|2 + |t|2 = 1, which is the photon flux conservation law. In general,

photon can be lost with a probability A. This allows us to better understand the physical

sense of the parameter ς: it describes nonradiative losses in the emitter and emission into

other photonic modes rather than into the waveguide. Reflection, transmission and absorption

spectra |r(ω)|2, |t(ω)|2 and A(ω) are plotted in Fig. 4.2(a).

As expected, away from the resonance one has r(ω) ↓ 0 and t(ω) ↓ 1, that is, the system

is transparent. At the perfect resonance condition, when ω = ω0 and additionally ς = 0, the

probability that photon is transmitted is zero, t = 0. At the same time, r = ↑1, that is, the

photon will be reflected with 100 % probability and with a ε-phase shift. This can be also seen

from Fig. 4.2(b), showing real and imaginary parts of r versus ω: for ς/ς1D = 0.1 the real part

almost reaches minus unity at the resonance. The ε phase shift originates from the processes

of absorption and reemission by the atom.

In order to understand the physical meaning of the parameter ς1D it is instructive to compare

Eq. (9.6) with our starting Eq. (4.5). The original equation had a resonance at ω = ω0 ↑ iς,

and we now know ς is some damping parameter of the system (see also Appendix B). We

will call it the internal decay rate. The reflection coe”cient, obtained taking into account the
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4.1. BRUTE-FORCE APPROACHCHAPTER 4. SCATTERING ON A SINGLE EMITTER
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Figure 4.2: (a) Reflection, transmission and absorption spectra for a single resonant emitter. (b) Real and

imaginary parts of the reflection spectrum. Calculation has been performed following Eqs. (9.6) for ω/ω1D = 0.1.

system interaction with light, has a resonance at

ω = ω0 ↑ iς ↑ iς1D . (4.15)

As such, ς1D can be interpreted as an extra damping rate the emitter acquires due to the

interaction with the waveguide photons. It turns out to be the rate of spontaneous radiative

decay rate of the emitter into the waveguide. We note, that the expression Eq. (4.13) has been

obtained by using an entirely classical electromagnetic calculation. The only quantumness will

be encoded in the resonance strength a.

In another words, equation (4.15) can be sought of as the complex resonant frequency of

the emitter, renormalized by its interaction with the propagating photons. We note, that in

fact ς1D can depend on ω, via the factor q = ω/c in Eq. (4.13). The parameter a itself can be

ω-dependent itself. However, since we are dealing with spectrally narrow resonances, one can
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CHAPTER 4. SCATTERING ON A SINGLE EMITTER4.2. GREEN FUNCTION APPROACH

usually neglect this dependence and assume that

ς1D(ω) ⇐ ς(ω0) = 2εω0a(ω0)/c . (4.16)

This corresponds to the so-called Markovian approximation. It is usually valid when the

parameters of the medium surrounding the resonant system slowly vary with frequency on the

scale of the resonance linewidth. In the following chapters, we will also consider the situations

in which the emitter is strongly coupled to the cavity mode when the Markovian approximation

can break down.

4.2 Green function approach

We will now find the same answer in a bit more general way, using the Green function for the

Helmholtz equation, We will now use the Green function of the Helmholtz equation,

d2
G(z, z↑)

dz2
+ q

2
G(z, z↑) = ↑4εq2ϖ(z ↑ z

↑), G(z, z↑) = 2εiqeiq|z→z→|
, (4.17)

that is derived in Appendix A. Using this Green function, the solution of Eq. (4.2) can be

presented as

E(z) = E0e
iqz ↑ 4εq2

∫
dz↑G(z, z↑)P (z↑) = E0e

iqz ↑ 4εq2
∫

dz↑G(z, z↑)pϖ(z ↑ z
↑) (4.18)

which results in

E(z) = E0e
iqz + 2εiqpeiq|z| (4.19)

where the first term in the left-hand side presents the incident wave and the second term is the

wave scattered by the emitter. Given Eq. (4.4) and Eq. (4.5) we write

(ω0 ↑ iς ↑ ω)p = aE(0) . (4.20)

Since E(0) = E0 + 2εiqp, we find

(ω0 ↑ iς ↑ iς1D ↑ ω)p = aE0 , (4.21)
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4.2. GREEN FUNCTION APPROACHCHAPTER 4. SCATTERING ON A SINGLE EMITTER

where ς1D is the same ς1D as in Eq. (4.13). This equation allows us to find p and after

substituting the result into Eq. (4.19) we obtain an electric field

E(z) = E0(e
iqz + reiq|z|), r =

iς1D
ω0 ↑ ω ↑ i(ς + ς1D)

, p =
aE(0)

ω0 ↑ ω ↑ i(ς + ς1D)
. (4.22)

The answer is exactly equivalent to the one obtained in the previous section. In particular,

Eq. (4.21) can be seen as the equation of motion for the emitter under the influence of the

driving with the electric field E0. The complex frequency ω0 ↑ iς ↑ iς1D, entering Eq. (4.21),

is the same as (4.15) and it can be seen as the emitter resonance frequency renormalized by

the interaction with light.

The advantage of our derivation using the Green function over the derivation in the previous

section is that it is much more general. First, we can apply it for emitters interacting with a

more complex electromagnetic environment, not just with photons in a waveguide with linear

dispersion. In this case we would just need to know the Green function G(z, z↑), solving for

the electromagnetic field in the point z induced by the point dipole z
↑. Similarly as in this

chapter, such Green function can be calculated independently beforehand and does not depend

on the properties of the emitters themselves. Equation Eq. (4.21) will then become

[ω0 ↑ iς ↑G(0, 0)↑ ω]p = aE0 , (4.23)

where G(0, 0) is the field in the origin. Second, Eq. (4.21) can be generalized for an array of N

emitters with dipole moments pm, resonance frequencies ω(m)

0
, internal decay rates ς(m) and

resonance strengths zm. It will then become a linear system of equations

[ω(m)

0
↑ iς(m) ↑ ω]pm ↑

N∑

n=1

G(zm, zn)pn = amE0(zm) . (4.24)

If we introduce the matrix Hmn = ϖmn(ω0,m ↑ iς)↑G(zm, zn), we can rewrite Eq. (4.24) as

N∑

n=1

Hmnpn ↑ ωpm = amE0(zm) . (4.25)

The matrix Hmn is a generalization of the complex eigenfrequency Eq. (4.15) to the emitter

array. We will extensively study its properties in the following chapters, and we will show that it

18



CHAPTER 4. SCATTERING ON A SINGLE EMITTER 4.3. SUMMARY

can be interpreted as an e!ective Hamiltonian of the array, interacting with the electromagnetic

environment. It is also relatively straightforward to further generalize this equation to a full

3D problem and to include the vector polarization degree of freedom of the emitters.

4.3 Summary

To summarize, in this chapter we have calculated the reflection, transmission and absorption

coe”cients for light, scattering on a single emitter. We have also calculated the spontaneous

decay rate of an emitter into the waveguide modes. This was done in two ways: (a) by directly

solving the wave equations with the resonant emitter polarizability and (b) by using the Green

function approach. The latter one can be readily generalized for a more complex setting,

including N > 1 emitters. Such a system will be considered in the next chapter.
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4.4 Additional reading

Kramers-Kronig relationships and analytical properties of susceptibility: L. Landau and E.

Lifshits, Statistical physics, Course of theoretical physics pt. 1 (Butterworth-Heinemann, 1980),
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Light reflection from a quantum well: F. Tassone et al., “Quantum-well reflectivity and

exciton-polariton dispersion”, Phys. Rev. B 45, 6023–6030 (1992)

Light reflection from a cavity coupled to the waveguide: M. F. Yanik et al., “Stopping Light

in a Waveguide with an All-Optical Analog of Electromagnetically Induced Transparency”,

Phys. Rev. Lett. 93, 233903 (2004)

Light reflection from an atom: A. Asenjo-Garcia et al., “Exponential improvement in

photon storage fidelities using subradiance and “selective radiance” in atomic arrays”, Phys.

Rev. X 7, 031024 (2017)
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Chapter 5

Scattering on two emitters

We will now proceed to the next chapter, where we will consider light interaction with N

resonant emitters. The fundamental questions to answer are in this chapter are as follows:

How to treat the multiple-emitter system? Will the interaction be stronger or weaker than for

a single emitter? What will be the spontaneous decay rate of the emitters? Let us start with

the illustrative case of N = 2 emitters, located at the points z1 = 0 and z2 = d. Already this

problem is rich enough to illustrate a lot of basic physics.

Let us first assume that the emitters are characterized by the resonant frequencies ω(1,2)
0

,

radiative decay rates ς(1,2)
1D

, and internal decay rates ς(1,2) that all can in general be di!erent.

How should we proceed to evaluate, say, light reflection coe”cient from both emitters rtot?

Based on the results in the previous chapter, we could start to decompose electric field between

the emitters into plane waves, similar to Eq. (4.7). However, this will be more involved, since

we would now have to include 3 regions: leftmost of the first emitter, z < 0, between the

emitters, 0 < z < d and to the right of the second emitter, z > d. The electric field will be

characterized by four complex amplitudes In total. This amplitude to be determined by the

two boundary conditions at each of the emitter position. Such a procedure is quite tractable

for a computer but rather cumbersome, especially if one has N > 2 emitters. So it is rarely

used in practice. We will now present two alternative ways to find the same answer, that are

more compact and are easier to generalize for larger N .
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5.1. MULTIPLE SCATTERING APPROACHCHAPTER 5. SCATTERING ON TWO EMITTERS

5.1 Multiple scattering approach

Following Eqs. (9.6) we can introduce reflection and transmission coe”cients r1,2, t1,2 for each

emitter. Then we calculate the reflection coe”cient can be calculated as sum of multiple

scattering processes as below illustrated Here, three terms correspond to light having bounced

Figure 5.1: Illustration of the geometric series to calculate light reflection coe!cient from the two emitters.

zero, once and twice between the emitters, respectively, before being reflected back. At each

roundtrip, the reflection amplitude gets a factor r1r2 exp(2iφ) where φ = ωd/c is the light

phase while propagating between the two emitters. As a result, we obtain a geometric series,

that can be summed analytically:

rtot = r1 +
t
2

1
r2e2iω

1↑ r1r2e2iω
. (5.1)

In a similar fashion one can also obtain a transmission coe”cient through both emitters

ttot =
t1t2eiω

1↑ r1r2e2iω
. (5.2)

Interestingly the reflection coe”cient Eq. (5.1) is not symmetric with respect to first and

second emitter, while the transmission coe”cient Eq. (5.2) is symmetric. This is non a

coincidence but a result of a general principle of time-reversal invariance, also related to

Lorentz reciprocity. This principle, when applied to our one-dimensional setup, states that

while reflection coe”cients for light incident from the left and from the right of the structure

can be di!erent, the amplitude transmission coe”cients from the left to the right and from

the right to the left are the same. Swapping the two emitters is equivalent to swapping the

direction the light is incident from. Such symmetry holds in the linear optics regime unless an

external magnetic field is applied.

The multiple scattering procedure can be, in principle, readily generalized for an arbitrary

number of emitters, but it is still slightly inconvenient. Thus, we will consider two more

approaches later in this chapter.
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Figure 5.2 shows the reflection spectra dependence on the distance between the emitters,

encoded by the phase φ = ω0d/c. It is clear that the distance matters much. For φ = 0, ε, 2ε,

corresponding to d = 0,ϑ0/2,ϑ0 (ϑ0 is the light wavelength at the emitter resonance frequency),

the spectrum has a single Lorentzian peak. The half-width at half-maximum for this peak

is equal to 2ς1D, twice larger than for a single emitter, compare Fig. 4.2(a) and Fig. 5.2(a).

For intermediate values of 0 < φ < ε the peak is in general asymmetric. The value of

φ = ε/2 corresponds to a single symmetric peak with significantly lower spectral width than

for φ = 0, ε. This overall behaviour can be understood from a basic arguments of constructive

and destructive interference for light exhibiting multiple scattering events, see Fig. 5.1. For

φ being an integer number of ε, all the waves going from emitter 1 to emitter 2 and back

interfere constructively with each other. Hence, the overall reflection is enhanced as compared

to that for one emitter. This is the essence of the collective enhancement e!ect. For φ = ε/2

the interference is desctructive and the reflection is suppressed.
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Figure 5.2: Reflection spectra for three specific values of ε = ϑ0d/c and the dependence of the reflection spectra

on ε. Calculation has been performed for ω = 0 and identical emitters.

There are also sharp narrow dips in the reflection spectrum when φ is close to 0 or ε, but

not exactly equal. To understand them better, in the next chapter we will develop a more

involved technique of eigenmode decomposition for the reflection and transmission coe”cients.
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5.2 Non-Hermitian Hamiltonian method

We will now present in detail the Non-Hermitian Hamiltonian method that was already briefly

mentioned in the previous chapter. To this end, we generalize Eqs. (4.2)–(4.4) for our system:

d2

dz2
E(z) + q

2
E(z) = ↑4εq2

N∑

n=1

ϖ(z ↑ zn)pn , (5.3)

where

pn =
a
(n)

ω
(n)
0

↑ ω ↑ iς(n)
E(zn) (5.4)

are the corresponding dipole moments. Similarly to Eq. (4.18) we find

E(z) = E0e
iqz +

N∑

n=1

G(z, zn)pn , (5.5)

Substituting Eq. (5.5) into Eq. (5.4) we obtain

N∑

n=1

Hmnpn ↑ ωpm = amE0e
iqzm . (5.6)

with

Hmn = (ω(m)

0
↑ iς(m))ϖmn ↑ amG(zm, zn)

⇒ (ω(m)

0
↑ iς(m))ϖmn ↑ ς

(m)

1D
eiq|zm→zn| , (5.7)

being the e!ective Hamiltonian matrix. We stress, that the matrix Eq. (5.7) is (i) non-Hermitian,

(ii) symmetric and (iii) in general depends on the light frequency ω via the wave vector q = ω/c.

We will further discuss its properties in the following chapter 5.3.

Now, the dipole moments pm can be found from the linear system of equations (5.6). It is

instructive to introduce the matrix Green function of the emitter array, defined as an inverse

of the matrix in the left hand-side of (5.6)

Gmn(ω) =
[(
H(ω)↑ ω1̂

)→1
]

mn
(5.8)
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(1̂ is the N →N identity matrix) . With the help of the Green function we write

pm =
N∑

n=1

GmnamE0e
iqzm . (5.9)

In order to find light reflection and transmission coe”cients rtot and ttot, one substitutes

Eqs. (5.9) into Eq. (5.5) and takes the limits z < z1 or z > z2, respectively. Thus,

E

∣∣∣
z<z1

= E0e
iqz + rtotE0e

iqz
, (5.10)

E

∣∣∣
z>z2

= ttotE0e
iqz

, (5.11)

with

rtot =
N∑

n,m=1

eiq(zm+zn)ς
(m)

1D

2εq
Gmn(ω), ttot = 1 +

N∑

n,m=1

eiq(zm→zn)ς
(m)

1D

2εq
Gmn(ω) . (5.12)

Equations (5.12) are valid for arbitrary N . We leave it as an excercise to prove, that for

particular case of N = 2 they reduce to Eq. (5.1) and Eq. (5.2).

5.3 Complex eigenmodes

As has been mentioned in the previous chapter, the e!ective non-Hermitian Hamiltonian (5.7)

does in general depend on the light frequency. This dependence comes from several places.

First, as has been already mentioned in Chapter 4, even the coe”cients a, ς1D and ς can

depend on ω. Typically, they change much only when ω changes by large value on the order

of c/R, where R is the characteristic emitter size. There is an exception of so-called giant

atoms, that are essentially superconducting qubits with the size on the order of the wavelength.

There the ς1D(ω) dependence is fast [5]. However, usually it is slow and can be neglected. The

second place, where Hmn depends on ω, is the phase factor exp[iω|zm ↑ zn|/c] ⇒ exp(iωd/c)

for the considered case of N = 2 emitters . This factor changes when the ω variation is on the

order of c/d, that is inverse flight time of light between the two emitters. Typically, for small

emitters ϖz ↘ d, so c/d ⇑ c/R and the dependence of this factor on ω is more important.

Still, due to the large light velocity typically R/c ↘ ς1D, the flight time is much smaller than

the spontaneous emission time. Equivalently, one can say that the scale at which exp(iωd/c)

changes is much larger than the resonance linewidth ς1D. For example, for superconducting
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qubits coupled to the waveguide one has ς1D ⇓ 10 MHz→ 2ε and ω0 ⇓ 10 GHz→ 2ε ⇑ ς1D.

Even if the spacing between the qubits is on the order of the light wavelength ϑ = 2εc/ω0

at the qubit resonance frequency, the photon flight time will be on the order of 2ε/ω0 and

much shorter than 2ε/ς1D, see e.g. Ref. [6]. As such, one can safely neglect the frequency

dependence of exp(iωd/c) and set

Hmn(ω) ↓ Hmn(ω0) , (5.13)

where ω0 is the emitter resonance frequency. By doing this we also assume that the spread of

the resonance frequencies is small, |ω(1)

0
↑ ω

(2)

0
| ↘ ω

(1,2)
0

, so it does not matter which exactly

ω0 we choose in Eq. (4.16). Equation (4.16) is termed Markovian approximation. It is very

general, and it means that the photon (or general reservoir) dynamics is much faster than the

dynamics of the emitters that we are interested in. We will now show that the Markovian

approximation considerably simplifies the analysis. Later on, in Sec. 5.6, we will also look

beyond this approximation.

Once the Markovian approximation is done, the system Eq. (5.6) can be solved by expanding

pn over the collective eigenmodes of the frequency-independent Hamiltonian Hmn. There is,

however, one important caveat. The Hamiltonian Eq. (5.7) is non-Hermitian, but it is still

complex-symmetric. We will introduce the eigenvectors ↼(ε)
n and eigenfrequencies ω(ε) in the

conventional way:
N∑

n=1

Hmn↼
(ε)
n = ω

(ε)
↼

(ε)
m , (5.14)

but the caveat will reveal itself in the unconjugated orthogonality condition [7]:

N∑

n=1

↼
(ε)
n ↼

(µ)
n = ϖµε . (5.15)

The condition (5.15) for the Hamiltonian with the property Hmn = Hnm is di!erent from the

usual condition
N∑

n=1

↼
(ε),↓
n ↼

(µ)
n = ϖµε . (5.16)

for the usual Hermitian Hamiltonian , Hmn = H
↓
nm. It can be still derived by exactly the same
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way. Multiplying Eq. (5.14) by ↼
µ
m and summing over m we find

N∑

n,m=1

Hmn↼
(ε)
n ↼

(µ)
n = ω

(ε)
N∑

n=1

↼
(ε)
n ↼

(µ)
n , (5.17)

On the other hand, if we write

N∑

n=1

Hmn↼
(ε)
n = ω

(ε)
↼

(ε)
m , (5.18)

multiply by ↼
ε
m and summing over m we find

N∑

n,m=1

Hmn↼
(µ)
n ↼

(ε)
n = ω

(µ)
N∑

n=1

↼
(ε)
n ↼

(µ)
n . (5.19)

Substracting Eq. (5.19) from Eq. (5.17) we find

N∑

n=1

↼
(ε),↓
n ↼

(µ)
n (ω(µ) ↑ ω

(ε)) = 0 . (5.20)

which leads to Eq. (5.20): the modes are orthogonal once their eigenfrequencies are di!erent.

Given the condition Eq. (5.15) we can expand the solution of Eq. (5.6) in the usual way:

pn = E0

N∑

ε=1

↼
(ε)
n ↗↽|q↔

ω(ε) ↑ ω
, ↗↽|a|q↔ ⇒

N∑

n=1

↼
(ε)
n ane

iqzm . (5.21)

where we have introduced an unconjugated scalar product notation ↗↽|µ↔ for the left-hand-side

of Eq. (5.15) and also for the overlap ↗↽|a|q↔ of the incident plane wave exp(iqzm) with the mode

↽ weighted by the emitter radiative decay rates. This allows us to express the reflection and

transmission coe”cients in terms of eigenmodes. Equations (5.12) then acquire an especially

simple form if all decay rates are the same, ς(m)

1D
⇒ ς1D:

rtot(ω) = i
N∑

ε=1

ς1D↗q|↽↔↗↽|q↔
ω(ε) ↑ ω

, ttot(ω) = 1 + i
N∑

ε=1

ς1D↗↑q|↽↔↗↽|q↔
ω(ε) ↑ ω

. (5.22)

The advantage of Eqs. (5.22) is that they clearly show that the reflection and transmission

spectra have resonances at the collective eigenmode frequencies. To be more precise, the

spectra |rtot(ω)|2, |ttot(ω)|2 will have resonances at ω close to Reωε with linewidths of | Imω
ε .
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The states with low | Imωε | will be manifested as sharp resonances.

5.4 Purcell enhancement

Before considering the case of two identical emitters, it is instructive to look closer first into

two di!erent emitters, with di!erent resonant frequencies and di!erent values of ς1D. The

e!ective Hamiltonian Eq. (5.7) then becomes

H =



ω
(1)

0
↑ iς(1)

1D
↑iς1Deiω

↑iς1Deiω ω
(2)

0
↑ iς1Dς

(2)

1D



 , (5.23)

For simplicity we set ς = 0 in this chapter. Let us assume that the spectral detuning between

the two resonance frequencies is large, or, to be more precise,

|ω(1)

0
↑ ω

(2)

0
↑ iς(1)

1D
+ iς(2)

1D
| ⇑ ς

(1,2)
1D

.

Then we can expect that the e!ects of the collective interaction between the two emitters are

weak. Formally, this means that the eigenfrequencies of Eq. (5.23) can be found using the

second-order quantum mechanical perturbation theory. In particular, the complex resonance

frequency of the first emitter, slightly renormalized due to the interaction with the second one,

can be written as

ω̃
(1)

0
= ω

(1)

0
↑ iς(1)

1D
+

ς
(1)

1D
ς
(2)

1D
e2iω

ω
(1)

0
↑ ω

(2)

0
↑ iς(1)

1D
+ iς(2)

1D

, (5.24)

Equation (5.24) is quite instructive. It tells us that both the radiative decay rate ↑ Imω and

the resonance frequency are changed by the interaction. The first e!ect, radiative correction to

the resonance frequency has analogy to the Lamb shift in vacuum quantum electrodynamics.

The second e!ect is the correction to the decay rate of the emitter in the presence of another

one,
↑ Im ω̃

(1)

0

ς
(1)

1D

= 1 + Im
ς
(2)

1D
e2iω

ω
(1)

0
↑ ω

(2)

0
↑ iς(1)

1D
+ iς(2)

1D

⇐ 1 + Re[r2(ω
(1)

0
)e2iω] (5.25)

where

r2(ω) =
iς(2)

1D

ω
(2)

0
↑ ω ↑ iς(2)

1D

. (5.26)

is the reflection coe”cient of the second emitter. The factor in the right-hand side of Eq. (5.25)

is the ratio of the decay rates of the first emitter in the presence of the second one and without

28



CHAPTER 5. SCATTERING ON TWO EMITTERS 5.4. PURCELL ENHANCEMENT

the second one. It can be termed as a generalized Purcell factor. In his seminal work [8] Purcell

understood that the spontaneous decay rate is di!erent for an emitter in vacuum and in a

cavity. Now the term Purcell factor is used to describe the modification of the spontaneous

decay rate in any structured electromagnetic environment. In this paragraph, the environment

is provided by the second emitter. However, in principle the second part of Eq. (5.24) is

valid for emitter near any mirror. For example, in Ref. [9] the authors have measured the

modification of the radiative lifetime the presence of a planar dielectric mirror.

The answer Eq. (5.24) can be also recovered without involving the concept of non-Hermitian

Hamiltonian, directly from the resonances of the reflection coe”cient of the two emitters. The

central idea here is that the collective eigenmodes correspond to the complex poles of the

collective linear response function, for example, of the reflection or transmission coe”cient

for the two emitters. We see from Eq. (5.2) that the resonance condition for the reflection or

transmission of light through two emitters is given just by

1↑ r1r2 exp(2iφ) = 0 . (5.27)

Equation (5.27) is just the usual condition for the Fabry-Pérot resonance in the cavity, made

of two mirrors with the reflection coe”cients r1 and r2. However, if we take into account

that in our case the mirrors are resonant, we will also find “for free” the collective eigenmode

frequencies. Indeed, if we substitute

r1 =
iς(1)

1D

ω
(1)

0
↑ ω ↑ iς(1)

1D

(5.28)

into Eq. (5.27) and solve for ω for fixed r2, we recover

ω = ω0 ↑ iς(1)

1D
(1 + r2e

2iω) , (5.29)

in exact agreement with Eq. (5.24),Eq. (5.25).

It is also instructive to plot reflection spectra for two unidentical emitters, with ς
(2)

1D
⇑ ς

(1)

1D

as function of their spectral detuning ω
(1)

0
↑ ω

(2)

0
. This is done in Fig. 5.3. Since ς

(2)

1D
⇑ ς

(1)

1D
,

away from the first emitter resonance it does not contribute much to the reflection and one has

rtot ⇐ r2. Closer to the resonance the presence of the first emitter is manifested as a specrally
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Figure 5.3: Reflection spectra for two unidentical emitters with ω(2)
1D = 7ω(1)

1D . Di”erent curves correspond to

di”erent values of (ϑ(1)
0 ↑ ϑ(2)

0 )/ω(1)
1D , indicated on graph on top of the curves. Calculation has been performed

following Eqs. (9.6) for ω = 0, ε = 0.

narrow resonant feature. This feature is, in general, asymmetric and its shape depends on the

detuning. Such asymmetric spectral lines are very typical when there exist several resonances

with di!erent spectral linewidths in the system and is termed as Fano resonance. This follows

original work of Ugo Fano on interference of di!erent ionization processes in atomic physics [10]

but is now often used in a much broad (maybe, too broad), context. More details on Fano

resonances in optical settings can be found in Ref. [11].

5.5 Super- and subradiant modes for N = 2

We will now illustrate the non-Hermitian Hamiltonian approach above for two identical coupled

emitters . Since their eigenfrequencies will be the same, the interaction e!ects will be even

stronger than in the previous section. They can no longer be treated perturbatively. To find

the eigenmodes we will diagonalize of the e!ective non-Hermitian Hamiltonian matrix Eq. (5.7),

that assumes the form

H =



ω0 ↑ i(ς1D + ς) ↑iς1Deiω

↑iς1Deiω ω0 ↑ i(ς1D + ς)



 . (5.30)
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We remind that φ = ω0d/c is the phase gained by light between the two emitters and plays

the role of the dimensionless distance. The eigenfrequencies are given by

ω± = ω0 ↑ iς ↑ i(ς1D ± ς1De
iω) . (5.31)

and the eigenvectors correspond to symmetric and antisymmetric excitation, [1,±1]/
⇔
2.

Equations (5.31) show, that both the real and imaginary parts of the two decay rates are

renormalized by the interaction:

Reω± = ω0 ± ς1D sinφ ,↑ Imω± = ς ± ς1D(1± cosφ) . (5.32)

Figure 5.4 shows how the real and imaginary parts of the eigenfrequencies depend on the

distance between the emitters. Clearly, they exhibit an oscillating behavior. Indeed, the

complex o!-diagonal terms in Eq. (5.30) have both real and imaginary part. These parts

correspond to dispersive (also called exchange) coupling and dissipative coupling, that tend to

split real and imaginary parts of the eigenfrequencies, respectively. Such type of oscillating

behavior of collective modes has been first observed in Ref. [12] for two trapped ions. Similarly

to the case of a single emitter, we interpret the terms ς1D(1 ± cosφ) as the radiative decay

rates of the two coupled emitters. As a sanity check, we see that the decay rates state positive.

In other words, Imω± < 0, which means that the eigenexcitations of the system, ↖ exp(↑iω±t),

decay in time. The special case, similar to Fig. 5.2 is when φ = 0 (φ = ε). In this case the

decay rate for the symmetric (antisymmetric) mode ω+ ( ω→) is equial to 2ς1D, twice larger

than for an individual emitter. This mode can be called a collective superradiant mode of the

two emitters: constructive interference between radiation of the two emitters leads to twice

large radiative decay rate. The concept of superradiance has been initially put forward by

Dicke [13] in a broader context of N emitters and many photon excitations, we will encounter

it many times in this book. The antisymetric mode for φ = 0 (symmetric mode for φ = ε) is

completely dark, that is, its radiative decay is zero. When the distance between the emitters is

changed, and deviates from an exact value of 0, ε, 2ε, the dark states stops being completely

dark and becomes subradiant:

↑ Imω→ = ς +
φ
2

2
ς1D for φ ↘ 1 . (5.33)
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Figure 5.4: Real (a) and imaginary (b) parts of the eigenmodes of two coupled emitters. Calculated following

Eqs. (5.31) for ω = 0.

If the other decay channels are weak ς ↘ ς1D, one has | Imω→| ↘ ς1D and, according to

Eq. (5.22), the mode will be seen as a sharp resonance in the reflection spectrum. It is this

subradiant state resonance that is behind the narrow dips in the reflection spectra in Fig. 5.2(a)

for φ close to 0, ε.

For those more used to quantum mechanics description of the spontaneous emission, there

is another simple way to explain collective enhancement or suppression of light emission. Let

us use the Fermi Golden rule to calculate the radiative decay rate:

↑2 Imω
(ε) =

2ε

⊋

↔∫

→↔

dk

2ε
|M (ε)

k |2ϖ(⊋ω0 ↑ ⊋c|k|) (5.34)

Here, Mk is the matrix element for the interaction of the plain electromagnetic wave exp(ikz)

with the given mode. That, Eq. (5.34) represents the sum of the probabilities of emission

of waveguide photons. For simplicity we also in Eq. (5.34) assume ς = 0. The reason of

the factor 2 in the left-hand-side is that the emission rate is twice the imaginary part of the
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eigenmode frequency: if ↼ ↖ exp(↑iω(ε)
t), then |↼|2 ↖ exp(↑2 Imω

(ε)
t). In order to actually

use Eq. (5.34) we also need to calculate M
(ε)
k . We define it as

M
(ε)
k = ⊋g

N∑

m=1

eikdm↼(ε)
m , (5.35)

where ⊋g is the photon-emitter interaction strength. Since we know that for the two emitters

↼
(±) = [1,±1]/

⇔
2 we get

M
(±)

k =
⊋g⇔
2
(1± eikd) . (5.36)

and

↑2 Imω
(ε) =

2g2

c


1± cos

ω0d

c


. (5.37)

If we identify

ς1D = g
2
/c (5.38)

as a spontaneous decay rate of a single emitter in the waveguide, we recover exactly the

radiative decay rates from Eq. (5.32).

5.6 Non-Markovian e!ects

In this section, we will go beyond the Markovian approximation usually used in this book.

Namely, we will solve Eq. (5.27) for the collective modes of the two emitters without assuming

that they are closed to each other:

1↑ r
2 exp(2iωd/c) = 0 . (5.39)

Here, we explicitly write φ = ωd/c and we are going to take the dependence of φ on ω

into account. For simplicity, we assume both emitters to be the same and we remind that

r = iς1D/[ω0↑ω↑ i(ς+ς1D)]. Substituting explicit expressions for r(ω) into Eq. (5.39) we find

ω± = ω0 ↑ iς ↑ iς1D ↙ iς1D exp(iω±d/c) . (5.40)
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Figure 5.5: Eigenmodes (5.41) of two coupled oscillators beyound the Markovian approximation. Calculated

for ω1D/ϑ0 = 0.02, ω = 0 and varying ϑ0d/c = 0 . . . 7ϖ. Aarrows indicate the direction of increasing d the values

of ϱ and mode parity sign ± are indicated near each curve.

Compared to Eq. (5.31), these are now transcendental equations to solve for complex ω±. The

solution can be formally written as

ω
ε
± = ω̃0 + i

c

d
Wε


↙ς1Dd

c
exp


i
ω̃0d

c


, ω̃0 ⇒ ω0 ↑ iς ↑ iς1D . (5.41)

Here, Wε(z) is the so-called Lambert W-function, found as solution of W (z) exp[W (z)] = z.

Importantly, it is a multibranch function, characterized by the integer index ↽. Thus, there are

infinite eigenmode solutions for two oscillators! Where do the additional modes come from?

The answer is simple — the extra modes are just the Fabry-Pérot modes in the cavity, formed

by two emitters, acting as resonant mirrors. There is, in principle, an infinite amount of such

modes, so we should not be surprised much. Indeed, at larger |↽| ⇑ z the main term in Wε(z)

asymptotic expression is 2εi↽. Being substituted in Eq. (5.41) this gives a set of Fabry Pérot

modes separated by 2εc/d.

At small spacing d, when photon flight time d/c is much less than the spontaneous emission

lifetime 1/ς1D, the argument of the Lambert functions is small, and one can use the approximate

expression W0(x) ⇐ x. Both solutions of Eq. (5.41) then reduce to

ω
ε
± ⇐ ω̃0 + i

c

d


↙ς1Dd

c
exp


i
ω̃0d

c


⇐ ω̃0 ± iς1De

iω
. (5.42)

This is equivalent to the usual Markovian approximation answer Eq. (5.31). For ↽ ≃= 0 and
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d ↘ c/ς1D the rest of the solutions will be strongly detuned from ω0 by the frequency ⇓ c/d.

The complex spectrum of eigenmodes plotted for varying d following Eqs. (5.41) is shown

in Fig. 5.5. For low values of d, when ς1Dd/c ↘ 1, there only two eigenmodes in the spectra

vicinity of the resoance |ω ↑ ω0| ↭ ς1D, which are just the usual solutions Eq. (5.31). When

the phase ω0d/c ⇒ φ changes, the imaginary and real parts of these two modes oscillate

and they rotate around the point ω0 ↑ iς1D, just as shown in Fig. 5.4. This is manifested

by spirals in the middle of Fig. 5.5. For large values of d, however, additional Fabry-Pérot

modes appear “from infinity” and the eigenspectrum becomes much more complex. Thus, even

the seemingly simple problem of two coupled oscillators becomes quite involved beyond the

Markovian approximation!

5.7 Summary

To summarize, we have seen that the problem of light scattering on just two emitters is

surprisingly rich. The reason behind this is multiple scattering of light from the emitters

with constructive or destructive interference. Depending on the distance of the emitters, the

di!erence between their resonant frequencies and their radiative decay rates, one can realize

totally di!erent regimes of interaction. The two-emitter problem can illustrate large part of

the collective interaction e!ects. We will however see in the next chapter, that there are also

some e!ects which uncover for larger arrays with N > 2.
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5.8 Additional reading

Fano-like resonance for cavity side coupled to a waveguide: S. Fan, “Sharp asymmetric line

shapes in side-coupled waveguide-cavity systems”, Appl. Phys. Lett. 80, 908 (2002)

Fano resonances in photonics: M. F. Limonov et al., “Fano resonances in photonics”, Nat.

Photonics 11, 543–554 (2017).

A detailed discussion of original Purcell work [8] on spontaneous emission: M. Glazov et al.,

“Purcell Factor in Small Metallic Cavities”, Phys. Solid State 53, 1753 (2011)
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Chapter 6

2→ 2 non-Hermitian Hamiltonian

In the previous chapter, we have seen, that non-Hermitian e!ective Hamiltonians Hmn naturally

arise when considering a problem of emitters coupled by light, i.e. by the processes, when

photon is emitted by an atom n and reabsorbed by an atom m. The goal of this chapter will

be to study the properties of the non-Hermitian Hamiltonians in a bit more detail, without the

focus on the particular setup of a one-dimensional emitter array. We will consider the generic

situation, where two emitters, that can in principle be di!erent, are coupled to exactly the

same electromagnetic mode. This can be realized, for example, when emitters are located in

resonance with the same photonic mode of a cavity. As illustrated in Fig. 6.1, this mode will

induce both collective dissipation for the emitters, when energy is emitted in the far field, and

dispersive coupling, when a photon emitted from the first emitter will be reabsorbed by the

second one and vice versa.

6.1 Derivation of the Hamiltonian

Let us again rewrite the general equation (5.7) for N = 2, assuming that the Green function

G(zm, zn) ⇒ G, i.e. it does not depend on the emitter positions. This can be realized when for

example emitters are placed close to each other, or in the di!erent antinodes of the standing

wave. 

ω
(1)

0
↑ a1G ↑a1G

a2G ω
(2)

0
↑ a2G







p1

p2



 = ω



p1

p2



 . (6.1)

Here, we assumed that the only decay mechanism comes from the emission of photons into the

mode, so we have set internal decay rates ς to zero. It instructive to symmetrize the problem
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1 2

Figure 6.1: Schematic illustration of two emitters coupled to the same electromagnetic enviroment. Real part

of the elecrtromagnetic Green function ReG is responsible for the dispersive coupling, imaginary part ImG is

responsible for the collective dissipation.

Eq. (6.1) by changing the unknowns to ↼1,2 = p1,2/
⇔
a1,2. For a two-level atom emitters,

these amplitudes ↼1,2 describe the coherences between the ground and excited states. We also

explicitly The system Eq. (6.1) is then transformed to

H↼ = ω↼, H =



 ω1 ↑ iς1 g ↑ i
⇔
ς1ς2

g ↑ i
⇔
ς1ς2 ω2 ↑ iς2



 , (6.2)

where ω1,2 = ω
(1,2)
0

↑a1,2 ReG are the resonant frequencies of two coupled emitters (both are real),

shifted due to their interaction with photons by a1,2 ReG. The parameter g = ↑⇔
a1a2 ReG

describes the dispersive part of the coupling and the real parameters ς1,2 = ↑a1,2 ImG describe

the dissipation. The form Eq. (6.2) makes the distinction between the dispersive (exchange)

and dissipative parts of the e!ective non-Hermitian Hamiltonian especially clear. We can write

H = Hexch +Hdiss, Hexch =



ω1 g

g ω2



 , Hdiss = ↑i




⇔
ς1

⇔
ς2








⇔
ς1

⇔
ς2




T

. (6.3)

The dissipative part is a rank-1 matrix, which is a direct consequence of the fact that the

dissipation is due to the emission into a single photonic mode. In a more general case, the

number of terms in the expansion of the dissipative part of the e!ective Hamiltonian is equal

to the number of independent decay channels [16].
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6.2 Exceptional points. Strong and weak coupling

The eigenfrequencies ω± of Eq. (6.2) are given by

ω± =
ω1 + ω2

2
↑ i

ς1 + ς2

2
±
⇔
D, D =


ω1 ↑ ω2 ↑ iς1 + iς2

2

2

+ (g ↑ i
⇔
ς1ς2)

2
. (6.4)

Figure 6.2 plots the dependence of the real (a) and imaginary parts (b) of the eigenfrequencies

on the dispersive coupling strength g for the case of zero detuning, when ω1 = ω2. We have

also chosen ς2 = 0, which means that the dissipative part of the coupling matrix element

g ↑ i
⇔
ς1ς2 in Eq. (6.2) is exactly zero. Even then, the problem is not trivial and there are

two qualitatively di!erent coupling regimes. For |g| < ς1/2 = 1, the coupling is weaker than

the half-di!erence between the imaginary parts of the complex eigenfrequencies. As a result,

the coupling leads to the renormalization of the decay rates, Imω± in Fig. 6.2(b), but the

real parts stay equal to zero. As a sanity check we see that Imω± < 0: the eigenexcitations

of the system, ↖ exp(↑iω±t), decay in time. In the opposite case, |g| > ς1/2 = 1, the real

parts of the eigenfrequencies are split and imaginary stay the same. This regime of large

dispersive coupling is similar to usual avoided crossing of levels in Hermitian problems. In the

case when both decay rate and dispersive coupling are present, the parameter range when the

coupling is stronger than the decay rates is called strong coupling regimes. It means that the

excitations can be coherently transferred between the emitters, and the transfer rate is faster,

then the rate of dissipation. The opposite case of small g is called the weak coupling regime.

In the very strong coupling regime, one can think of the eigenstates of the non-Hermitian

Hamiltonian as hybridized even and odd combinations of the excitations of first and second

emitter, [↼1,↼2] = [1,±1]/
⇔
2. In the weak coupling regime with g ↘ ς1,2 it is easier to think

of the eigenstates as independent modes, [1, 0] and [0, 1].

The transition between the strong and weak coupling regimes goes through the exceptional

point, that is seen as square-root singularities in Fig. 6.2 at g = ±1. Not only two eigenvalues

are the same at the exceptional point, but also the eigenvectors coalesce and the Hamiltonian

matrix becomes degenerate.
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Figure 6.2: Real (a) and imaginary (b) parts of the eigenfrequencies (6.4) depending on the coupling strength

g. Calculation has been performed for zero detuning, ϑ̃(1)
0 = ϑ̃(2)

0 and for ω2 = 0. Dashed red lines in (a) show

the asymptotic description in the strong dispersive coupling limit, ϑ± = ±g. Blue shading indicates the weak

coupling regime. Other calculation parameters are indicated on graph.

6.3 Friedrich-Wintgen condition

Figure 6.3 shows the dependence of the complex eigenfrequencies ω± on g in a slightly more

general scenario. Not only the eigenfrequencies ω1 and ω2 are detuned from each other, but

also ς2 > 0, so that there is an extra o!-diagonal dissipative coupling term
⇔
ς1ς2 in Eq. (6.2).

One can then see in Fig. 6.3 that there is a special point when one the imaginary part of one

of the eigenvalues turns to zero. This point can also be found analytically from Eq. (6.4). If

we denote
⇔
D = x+ iy, we need y = (ς1 + ς2)/2 to have real-valued solution. This yields to

the condition

ReD = x
2 ↑ y

2
, ImD = 2xy, with y =

ς1 + ς2

2
. (6.5)

Finding x from the first equation and substituting in the second one, we find

ReD ↑ (x2 ↑ y
2) ↖


g ↑

⇔
ς1ς2(ω1 ↑ ω2)

ς1 ↑ ς2

2

(6.6)
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Figure 6.3: Real (a) and imaginary (b) parts of the eigenfrequencies (6.4) depending on the coupling strength g.

Calculation has been performed in the detuned case, |ϑ̃(1)
0 ↑ ϑ̃(2)

0 | = 1. Red dot indicates the Friedrich-Wintgen

condition Eq. (6.7), where the imaginary part of one of the eigenmodes is exactly zero. Dashed red lines in (a)

show the asymptotic description in the strong dispersive coupling limit, ϑ± = ±g. Thin horizontal lines show

the eigenfrequencies assuming no coupling between the emitters. Other calculation parameters are indicated on

graph.

which leads to
⇔
ς1ς2(ω1 ↑ ω2) = g(ς1 ↑ ς2) . (6.7)

This is a so-called Friedrich-Wintgen condition, named after the authors of Ref. [17]. Currently,

it is often used in the context of so-called bound states in continuum in photonic structures [18],

where it describes destructive interference of decay via two di!erent decay channels. In the

previous chapter, discussing two emitters coupled to the same waveguide mode, we have already

encountered such points with Imω± = 0 and associated them with dark states see Fig. 5.4 for

d = 0,ϑ/2,ϑ. There we considered identical emitters with no detuning, ω1 = ω2 and ς1 = ς2.

The The Friedrich-Wintgen condition then reduces to just g = 0, zero dispersive coupling. This

is exactly the case for d = 0,ϑ/2,ϑ, when the Green function ↖ i exp(2εiφ) ⇒ i exp(2εid/ϑ) is

purely imaginary. Thus, the dark states present a particular realization of the Friedrich-Wintgen
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condition.
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6.4 Summary

To summarize, in this chapter, we have learned that even the seemingly simple problem of two

emitters coupled to the same electromagnetic environment can be nontrivial. Depending on the

spectral detuning between the emitter resonances, their decay rates, and the dispersive coupling

strength, one can realize both strong coupling regimes when excitations of both emitters can be

hybridized by hopping from one emitter to another and back, and the weak coupling regimes,

when the excitations dissipate faster than hopping and thus stay localized. Transitions between

the two regimes goes through exceptional points. There are also special cases, when the decay

rate of one of the modes becomes exactly zero, i.e. the mode is dark and does not dissipate in

the environment.
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6.5 Additional reading

More on symmetry of 2→ 2 non-Hermitian Hamiltonians in optics [19] .

Discussion of non-Hermitian Hamiltonian for a general system: W. Suh et al., “Temporal

coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities”,

IEEE Journal of Quantum Electronics 40, 1511–1518 (2004) .
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Chapter 7

Light interaction with N > 2

periodically spaced emitters.

The goal of this chapter will be to study the collective light interaction with N > 2 emitters,

arranged in the periodic array and coupled to the waveguide mode, see Fig. ??. Some of

the phenomena, such as formation of collective super- and sub-radiant eigenmodes, will be

essentially the same as in the case of N = 2. The super-radiant modes will just get brighter,

and the subradiant modes will just be darker for a larger number of emitters N . However,

there will be also new phenomena for long periodic arrays. We will show, that light can see a

long periodic array of emitters either as an e!ective medium, where the interaction will be

averaged over all the emitters, or as a resonant periodic photonic crystal. In the first case the

whole array can be described by some e!ective permittivity, in the second case, the photonic

band gap will form, similarly to band gaps for electrons in usual crystals. The description of

such interaction of light with arrays will require di!erent theoretical tools.

7.1 Collective super- and subradiant modes for N emit-

ters.

Let us again look for the eigenstates Eq. (5.7) in the case of the periodic array, when ω0zm/c ⇒

φm, and φ = ω0d/c is still the phase gained by light between the two emitters.

ω0pm ↑ iς1D

N∑

n=1

eiω|m→n|
pn = ωpm, m = 1, 2 . . . N, (7.1)
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EMITTERS.

Figure 7.1: Periodic array of resonant scatterers coupled to the waveguide.

where varpi = 2εd/ϑ is the phase gained by light propagating between the two neighboring

emitters. In this chapter, we will focus on specific case of the Bragg-spaced array. when

d = ϑ/2, so φ = ε.

We start by rewriting the coupled equations using the fact that φ = ε:

ω0pm ↑ iς1D

N∑

n=1

(↑1)m+n
pn = ωpm, m = 1, 2 . . . N, (7.2)

Next, we make the substitute (↑1)mpm = ⇀m which leads to

ω0⇀m ↑ iς1D

N∑

n=1

⇀n ⇒ ↑iς1D# = ω⇀m, m = 1, 2 . . . N, # =
N∑

n=1

⇀n . (7.3)

The same equations describe the systems with d = 0,ϑ, 2ϑ . . .. Next, we can sum the equation

(7.3) over m:

(ω + iς1DN ↑ ω0)# = 0 . (7.4)

From this we find that if # ≃= 0 than ω = ω0 ↑ iς1DN . For the solution with ω = ω0 ↑ iς1DN

we find from Eq. (7.3) that all ⇀m are the same. For the solution with # = 0 Eq. (7.3) means

that ω = 0.

Hence, there is a symmetric solution with

⇀1 = ⇀2 = . . .⇀N ,ω = ω0 ↑ iNς1D (7.5)

and N ↑ 1 states with ω = ω0 , where eigenvectors satisfying the condition

N∑

n=1

⇀n = 0,ω = ω0 . (7.6)

The first solution demonstrates collective enhancement of the spontaneous emission rate,

↑ Imω = Nς1D, it is a Dicke superradiant mode. The radiative decay rate for this mode grows

46



CHAPTER 7. LIGHT INTERACTION WITH N > 2 PERIODICALLY SPACED
EMITTERS.7.1. COLLECTIVE SUPER- AND SUBRADIANT MODES FOR N EMITTERS.

Figure 7.2: From Ref. [20]. Imaginary (a) and real (b) parts of the complex eigenfrequencies of the array of

N = 10 atoms coupled to a waveguide depending on the period of the array d. Shaded areas (b) show the

edges of the polariton band gaps. Each value of d/ς corresponds to N = 10 eigenvalues.

proportionally to the number of emitters. This is the most basic e!ect of collective dissipative

interaction. All the other modes have zero decay rates, and can be termed as dark. These

super- and sub-radiant modes can be seen as generalization of the modes (5.32) for N = 2

emitters for the particular case of φ = ε.

Let us now consider a more general case of arbitrary spacing. We plot in Fig. 7.2 the

complex eigenfrequencies of Eq. (7.2) for N = 10. As already expected after considering the

two-emitter case, the eigenfrequencies oscillate with the array period d. At d = 0,ϑ0/2,ϑ0

there is one superradian state and N ↑ 1 dark states. When the period is detuned from this

condition, the dark states acquire nonzero decay rate.

How does this picture depend on N? For the superradiant state, the answer is already

known and trivial, ω = ω0 ↑ iNς1D. The scaling of the decay rates for subradiant states can

be found using the Fermi Golden rule, similarly to the case of N = 2 emitters, considered in

Sec. 5.5:

↑2 Imω = 2ε

∫ ↔

→↔

dk

2ε
|Mk|2ϖ(ω0 ↑ c|k|), Mk = g

N∑

m=1

eikdm↼m . (7.7)

Here, Mk is the matrix element of the interaction of the state ↼m with photon with wave vector

k , ω0 is the emitter resonance frequency, d is the array period, g is the coupling constant. We
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Figure 7.3: Schematics of the spatial profile of the most superradiant (left) and most subradiant modes (right).

can also rewrite the decay rate as

↑2 Imω =
1

c
M

2

0
, M0 = g

N∑

m=1

eiωm↼m ,φ = ω0d/c . (7.8)

Let us now calculate the decay rate for the states with

↼m =
1⇔
N

(superradiant state) , (7.9)

↼m =


2

N
(↑1)m sin

ε(m↑ 1/2)

N
(most subradiant state for ω0d/c ↘ 1) (7.10)

Here, we assume that N ⇑ 1. The states are illustrated in the Fig. 7.3. We have already proved

that Eq. (7.9) is the eigenstate. We give here Eq. (7.10) for the subradiant state without proof.

The derivation can be found in Ref. [21] and it can be also easily checked numerically that is

the darkest state. It is also easy to see that Eq. (7.10) satisfies the condition
N

m=1
↼m = 0.

The sign oscillations lead to the destructive interference of the photon emission from di!erent

emitters and suppress the overall decay rate. For the Dicke superradiant state, the decay rate

calculation is trivial and yields M0 = g
⇔
N and ↑2 Imω = 2Nς1D. As expected, the radiative

decay rate is enhanced ↖ N because of the constructive interference of the waves from di!erent

emitters.

For the subradiant states, the calculation is more involved. We first find

M0 = ↑
⇔
2
(
eiω + eiω(N+1) ↑ eiNω ↑ 1

)
⇔
N

(
e2iω + 2 cos ϑ

N eiω + 1
) sin

ε

2N
(7.11)

and then expand this up to the linear terms φ to find

M0 = ↑ ig
⇔
2φ

4N3/2
, (7.12)
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which results in

↑2 Imω =
ε
2(ω0d/c)2

8N3
ς1D (most subradiant state) , (7.13)

where ς1D = g
2
/c. This answer can also be found in [21]. It means that the state quickly

becomes darker for larger N . It has been proved in Ref. [22] that such 1/N3 scaling is universal.

The reason for such quick suppression can be intuitively understood as follows. First, the state

Eq. (7.10) oscillates with a ε-phase di!erence between neighboring sites, which suppresses the

light-matter coupling matrix element M0. Second, it is also close to zero at the border of the

structure, see Fig. 7.3. Since the radiative decay goes through the edges of the array, this state

kind of stays away from the edges, which gives an extra power of N in denominator. One

can quickly check this by calculating the decay rate for example for a simpler trial function

of ↼n = (↑1)n/
⇔
N , that will be parametrically larger. In special cases the decay rate can

decrease with N even faster, see review [20] and references therein.

7.2 Transfer matrix method

7.2.1 General approach

Figure 7.4: Definition of reflection coe!cients r→ω, rε↑ and transmission coe!cients t↑, t→ of light, incident

upon the scatterer with length L from left (a) and right (b) half-spaces, respectively.

We consider one-dimensional problem of light scattering on a general object, see Fig. 7.4.

The scattering is characterized by the transfer matrix T that can be conveniently expressed in
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the basis of right-propagating (E+) and left-propagating (E→) waves

E(z) =






E
+

left
eiqlz + E

→
left

e→iqlz (z < 0)

E
+

right
eiqr(z→L) + E

→
right

e→iqr(z→L) (z > L) ,
(7.14)

where qr,l are light wave vectors from the left and from the right of the scatterer. The 2→ 2

matrix T relates the electric field amplitudes by



E
+

right

E
→
right



 = T



E
+

left

E
→
left



 . (7.15)

Goal: Express the transfer matrix elements via the complex reflection coe”cients r↗ϖ, rϱ↘

and transmission coe”cients t↘, t↘ corresponding to the initial wave incidence from the left

and right sides, as illustrated in Fig. 7.4.

Answer:

T =
1

t↘



t↘t↘ ↑ r↗ϖrϱ↘ rϱ↘

↑r↗ϖ 1



 . (7.16)

It can be proved that this is indeed an answer by checking the relations

T



 1

r↗ϖ



 =



t↘

0



 , T



 0

t↘



 =



rϱ↘

1



 . (7.17)

for scattering of the the waves incident from the left and from the right.

Ttot = TNTN→1 . . . T2T1 (7.18)

r↗ϖ = ↑T2,1

T2,2
, t↘ =

detT

T2,2
(7.19)
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Figure 7.5: Schematics of light reflection and transmission from a structure with N scatterers.

7.2.2 Reflection and transmission from a periodic structure

We consider light reflection from a periodic structure containing N unit cells, see Fig. 7.5. The

transfer matrix through 1 unit cell is given be

T =
1

t1



t
2

1
↑ r

2

1
r1

↑r1 1



 . (7.20)

Goal: Calculation reflection coe”cients rN and tN for the structure. Express them via r1,

t1 and the eigenvalues of the transfer matrix exp(±iK).

Answer:

rN =
r1 sin(NK)

sin(NK)↑ t1 sin[(N ↑ 1)K]
, tN =

t1 sinK

sin(NK)↑ t1 sin[(N ↑ 1)K]
, (7.21)

Solution: The solution can be found e.g. in [23] and [24], see also [yariv].

To find the solution we first find the eigenvectors of the transfer matrix C1,2 that are defined

as TC1,2 = e±iK
C1,2. Using the explicit transfer matrix definition we find

C1,2 =



 1

a1,2



 , a1,2 =
r

1↑ te±iK
. (7.22)

Next, we use the boundary conditions. On the left of the structure, the field amplitudes are

given by EL = ( 1
rN ) and on the right side the field amplitudes are ER = ( tN

0
) . The transfer

matrix connects fields on the left and on the right

T
N
EL = ER . (7.23)

51



7.3. POLARITON DISPERSION
CHAPTER 7. LIGHT INTERACTION WITH N > 2 PERIODICALLY SPACED

EMITTERS.

In order to calculate T
N we expand the electric field in terms of the eigenvectors C1,2 ,

EL = C1f1 + C2f2, f1 = ↑a2 ↑ rN

a1 ↑ a2
, f2 =

a1 ↑ rN

a1 ↑ a2
. (7.24)

Next, we can write

ER = T
N
EL = C1e

iKN
f1 + C2e

→iKN
f2 . (7.25)

Since ER = ( tN
0
) we find

f1 = ↑a2tNe→iKN

a1 ↑ a2
, f2 =

a1tNeiKN

a1 ↑ a2
. (7.26)

Combining Eq. (7.26) and Eq. (7.24) and solving them for rN , tN we obtain Eqs. (7.21).

7.3 Polariton dispersion

We consider wave propagation in a one-dimensional periodic array of scatterers, shown in

Fig. 7.1. Wave scattering on each period is characterized by the 2→ 2 transfer matrix

T = TfreeTres (7.27)

where

Tfree =



eiqd 0

0 e→iqd



 (7.28)

is the transfer matrix for the free waveguide propagation in the basis of propagating waves,

q = ω/c, and

Tres =
1

t



t
2 ↑ r

2
r

↑r 1



 , r =
iς1D

ω0 ↑ ω ↑ i(ς1D + ς)
, t = 1 + r. (7.29)

is the resonant matrix of a scatterer.

We are interested in the propagating Floquet-Bloch solutions, that satisfy T↼ = eiK↼.

Goal: Find the dispersion equation, that is express cosK via the transfer matrix elements.

Answer: We use the general answer cosK = TrT/2 and find

cosK = cos qd↑ sin qdς1D
ω0 ↑ ω ↑ iς

. (7.30)
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This answer has been obtained in [25] for the array of quantum wells.

We are interested in finding the eigenstate ↼ and the eigenfrequency ω for the infinite array

of emitters:

↔∑

n=→↔
Hm,n↼n = ω↼m, Hm,n = (ω0 ↑ iς)ϖmn ↑ iς1De

iς0d|m→n|/c
. (7.31)

Here, ω0 is the resonant frequency, c is the speed of light, ς is the nonradiative decay rate, ς1D

is the radiative decay rate. Due to the translational symmetry of the problem, Hm+l,n+l = Hm,n

the solution ↼m can be sought in the form

↼m = ↼0e
iKm

, (7.32)

where K is the polariton wave vector depeding on ω.

Goal: substitute Eq. (7.32) into Eq. (7.31) and find the equation for K(ω) describing the

law ω(K). Plot K(ω) numerically in the range ω0 ↑ 10ς1D < ω < ω0 + 10ς1D for the following

set of parameters: ς = 0,ω0d/c = 0.5.

Answer:

cosK = cos ς0d
c ↑

ς1D sin ς0d
c

ω0 ↑ ω ↑ iς
. (7.33)

7.4 E!ective-medium approximation

Goal: Simplify the dispersion law in the limit K ↘ 1, ωd/c ↘ 1 and rewrite it in the form

K
2 = ω

2
⇁e!(ω)/c2. Obtain the expression for the e!ective medium permittivity ⇁e!(ω). Plot on

the same plot the dispersion law obtained exactly and in the e!ective medium approximation

for ω0d/c = 0.5ε and ω0d/c = 0.97ε (take ς1D/ω0 = 10→2).

Answer:

⇁e!(ω) = 1 +
2ς1D

ωd/c(ω0 ↑ ω)
. (7.34)

The dispersion law is plotted in Fig. 7.7. It shows avoided crossing between the emitter

resonance, ω = ω0 and the light dispersion withount emitter ω = cK (thin lines). Surprisingly,

the e!ective medium approximation works well even for a large period ω0d/c = 0.5ε. For a
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Figure 7.6: Dispersion law in the array of emitters. Calculation has been performed for ε = 0.15ϖ.
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Figure 7.7: Dispersion law in the array of emitters.

close-to-Bragg period , ω0d/c = 0.97ε, there is an additional band gap in the dispersion.

|tN(ω)|2 = e→OD
, OD =

2Nςς1D

(ω ↑ ω0)2 + ς2
. (7.35)

7.5 Bragg-spaced arrays

Blue lines show the edges of the photonic band gaps found from the condition ImK = 0.

Clearly, the reflection coe”cient is at maximum inside the band gaps.

The situation when the atomic resonance frequency and array period d satisfy the resonant
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Appendix A

Green function for the Helmholtz

equation

Here we will find the Green function G(z) of the one-dimensional Helmholtz equation , satisfying

the equation
d2
G(z)

dz2
+ q

2
G(z) = ↑4εq2ϖ(z) . (A.1)

where q = ω/c is the light wavevector. At z ↓ ±∝, the Green function should describe the

outgoing wave, that is, it should satisfy the radiating boundary conditions.

We first note that for z > 0 or (z < 0) the right-hand side of Eq. (A.1) is zero. Hence, we

can choose the Green function in the form of plane waves, that satisfy the homogeneous wave

equation:

G(z) =






A+eiqz + A→e→iqz
, (z > 0)

B+eiqz +B→e→iqz
, (z < 0) .

(A.2)

We also use the radiation boundary conditions A→ = 0 and B+ = 0, that is we assume that

the answer can not contain any terms corresponding to the waves incident on the source, only

the terms propagating from the source. Due to mirror symmetry of the original equation

A+ = B→ ⇒ A and the Green function can be sought as

G(z) =






Aeiqz, (z > 0)

Ae→iqz(z < 0) .
⇒ Aeiq|z| . (A.3)

Now we need to satisfy the equation also at z = 0, that is, to find A. To this end, we can
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formally substitute the expression Aeiq|z| in the left-hand side. Using the identities

d

dz
|z| = sign z,

d

dz
sign z = 2ϖ(z) (A.4)

we find that
d2
G(z)

dz2
+ q

2
G(z) = 2iqAϖ(z) (A.5)

which results in the answer

G(z) = 2εiqeiq|z| . (A.6)
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Appendix B

Resonant susceptibility

Here, we provide more intuition intro Eq. (4.6) for the resonant emitter susceptibility. Let us

consider a toy model for an atom interacting with the electric field. The model represents a

charge q with mass m moving in a harmonic potential mω
2

0
z
2
/2 with the resonance frequency

ω0 around a charge ↑q. The moving charge then satisfies the Newton equation of motion

mz̈ ↑ 2mςż +mω
2

0
z = q[E(z)e→iςt + E

↓(z)eiςt] , (B.1)

where the right-hand side is the force acting upon the atom because of the time-dependent

electromagnetic field E(z, t) = E(z)e→iςt + E
↓(z)eiςt. We have also introduced a phenomeno-

logical friction force described by the coe”cient ς. The dipole moment of the atom is given by

ptot = qz(t) and can be sought in the form ptot(t) = p exp[↑iωt] + c.c. Solving Eq. (B.1) for

p(t) ↖ e→iςt we find

p = ϱE, ϱ =
q
2

m[ω2

0
↑ ω2 ↑ 2iως]

. (B.2)

It is easy to show that for ς ↘ ω0 Eq. (B.2) becomes equivalent to Eq. (4.6) with a = q
2
/(mω0).

77


	Preface
	Introduction 
	 Overview of experimental systems 
	Scattering on a single emitter 
	Brute-force approach
	Wave equation
	Emitter polarizability

	Green function approach
	Summary
	Additional reading

	Scattering on two emitters 
	Multiple scattering approach
	Non-Hermitian Hamiltonian method
	Complex eigenmodes
	Purcell enhancement
	 Super- and subradiant modes for N=2
	Non-Markovian effects
	Summary
	Additional reading

	22 non-Hermitian Hamiltonian
	Derivation of the Hamiltonian
	Exceptional points. Strong and weak coupling
	Friedrich-Wintgen condition
	Summary
	Additional reading

	Light interaction with N>2 periodically spaced emitters.
	Collective super- and subradiant modes for N emitters.
	Transfer matrix method
	General approach
	Reflection and transmission from a periodic structure

	Polariton dispersion
	Effective-medium approximation
	Bragg-spaced arrays
	Borrmann effect
	Additional reading

	Chiral light-matter interaction
	Additional reading

	Arrays in a cavity
	Empty cavity reflection
	Purcell factor in a cavity
	Collective Rabi splitting
	Additional reading

	Two-dimensional arrays
	Additional reading

	Green function for the Helmholtz equation
	Resonant susceptibility

