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I. LIGHT PRESSURE ON A DIELECTRIC HALF-SPACE

We aim to find the pressure of light normally indicent on a dielectric half-space.

A. Naive answer

It is easy to obtain the answer in the limit n� 1 where |r| → 1 and light is fully reflected.

In this case the pressure is just given by the Newton’s law, p = dP/dt, where P is the change

of momentum of light when reflected from the surface of unit area. To find the momentum

we remember that the incident light has energy density (E2 + H2)/(8π) i.e. E2
0/2π on

average. Here we assume that the time dependence is E(t) = E0e
−iωt + E∗0eiωt and take

into account that the time average of E(t)2 is 2E2
0 . Since for light the dispersion relation

between momentum P and energy E for relativistic particles is E = cP , the momentum

density is P = E2
0/2πc. The momentum going through unit area per unit time is then given

by cP = E2
0/(2π). We also take into account that outgoing wave carries the same momentum

but in the opposite direction. Hence, the pressure of light is

p =
E2

0

π
≡ 2J

c
, where J =

cE2
0

2π
is the light intensity,

[ erg

cm2 · s

]
. (1)

Let us consider a grain of dust of the size 1 µm × 1 µm × 1 µm illuminated by a tightly

focused laser pointer of the power 1 mW focused to the area of A = 1 µm2. We find

J = 109 J/m2/s, p ∼ 10 N/m2 and force frad = pA = 10 pN. The pressure is weaker than

atmospheric pressure by 5 orders of magnitude! (this was a problem for first experiments of

Lebedew and of Nicholls and Hull). On the other hand, the volume is about 10−12 cm3 and

for the density of 1 g/cm3 we find the mass of 10−15 kg. Hence, the gravitation force mg is

much smaller than the light pressure force.

Now we try to generalize Eq. (1) for the medium with arbitrary complex refractive index

n.
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FIG. 1 Schematic illustration of a plane wave incident on a dielectric surface.

B. General formalism

We consider the geometryE ‖ x, H ‖ z, see Fig. 1. Maxwell’s equations read:

[rotE]y ≡
∂Ex
∂z

= −1

c

∂Hy

∂t
(2)

[rotH ]x ≡ −
∂Hy

∂z
=

1

c

∂Ex
∂t

+
4π

c
jx (3)

1

c

∫
dzjxHy +

1

4π

∫
dzHy

∂Hy

∂z
+

1

4πc

∫
dz
∂Ex
∂t

Hy = 0

Hy
∂Hy

∂z
=

1

2

∂H2
y

∂z
,

∂Ex
∂t

Hy =
∂ExHy

∂t
− ∂Hy

∂t
Ex =

∂ExHy

∂t
+
∂Ex
∂z

Ex =
∂ExHy

∂t
+

1

2

∂E2
x

∂z

The momentum conservation law reads:∫
dz

[
∂Gz

∂t
− ∂σzz

∂z

]
+ pz = 0, (4)

where

pz =

∫
dzjxHy (5)

is the pressure (force/cm2),

Gz =
ExHy

4πc
=

1

4πc
[E ×H ]z (6)

is the light momentum density, and

σzz = −
E2
x +H2

y

8π
≡ 1

4π

[
EαEβ +HαHβ −

δαβ
2

(E2 +H2)

]∣∣∣
α=β=z

(7)

is the Maxwell stress tensor ( in the Abraham formulation, see discussion in Sec. II.C). In

the stationary case, e.g. for fields that harmonically change in time, the term ∂Gz/∂t is

zero.
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C. Application to light reflected from a dielectric half-space

The electromagnetic field is given by

Ex(z) =

E0(e
iqz + re−iqz), z < 0

tE0e
iqnz, z > 0 ,

, Hy(z) =

E0(e
iqz − re−iqz), z < 0

tnE0e
iqnz, z > 0 ,

(8)

Here t = 1 + r, r = (1 − n)/(1 + n), the half-space permittivity is ε = n2 and n = n′ + in′′

is the complex refractive index. This derivation loosely follows a more general quantum

approach in (Loudon, 2002).

pz =
1

c

∫ ∞
0

dzjxBy . (9)

jx(t) = jxe
−iωt + j∗xe

iωt, By(t) = Bye
−iωt +B∗ye

iωt, jx(t)By(t) = 2 Re jxB
∗
y

where the overlain stands for the time average. The current can be expressed via the

dielectric polarization P = (ε− 1)E/(4π).

jx =
dPx
dt

= −iω
ε− 1

4π
Ex (10)

We need to express real pressure via the complex amplitudes, Using Eq. (8) we find

1

c

∫ ∞
0

dzjxBy =
2ω

4πc
|t|2|E0|2 Re [−i(ε− 1)n∗]

∫ ∞
0

dze−2ωn
′′/c =

|E0|2

π|n+ 1|2
Im

[(n2 − 1)n∗]

n′′

=
|E0|2

π|n+ 1|2
Im
|n|2n− n∗

n′′
=
|E0|2(|n2|+ 1)

π|n+ 1|2
. (11)

Introducing the light intensity J = cE2
0/(2π) we rewrite the answer as

p =
2J

c

(|n2|+ 1)

π|n+ 1|2
. (12)

In case when n� 1 and reflection is close to 100%, Eq. (12) reduces to Eq. (1), p = 2J/c.

D. Approach via Maxwell stress tensor

Alternatively, we could obtain the same answer just by evaluating the Maxwell stress

tensor at z → −0. In this case

Ex(z → −0) = E0(1 + r), Hy(z → −0) = E0(1− r) (13)

[−σzz]z=−0 = 2
E2
x +H2

y

8π
=
E2

0

4π
(|1 + r|2 + |1− r|2) =

E2
0

2π
(1 + |r|2) =

E2
0

π

(|n2|+ 1)

|n+ 1|2
(14)
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Expectations Reality

laser "pulls" liquidlaser "pushes" liquid

FIG. 2 Left: schematic illustration of experimental results from (Ashkin and Dziedzic, 1973):

liquid is pulled by the laser beam instead of being pushed out by it, as could be naively expected

from Eq. (1) for the pressure of light

E. Approach via change of light momentum

We could just calculate the pressure by assuming, that the momentum difference for

photons near the dielectric is J(1 + |r|2)/c, where J/c is the flux of momentum for incoming

wave and J |r|2/c is the (reversed) flux of momentum for the outgoing wave.

Disclaimer: this approach is in fact calculating exactly the same stress tensor contribution

as in Sec. I.D and not the contribution ∂Gz/∂t that is zero for a monochromatic wave.

II. OPTICAL FORCES FOR A SMALL PARTICLE

In the previous section we can calculated the pressure of light on a dielectric half-space.

It seems that light can only push objects forward.

In fact, some experiments done by Ashkin (Ashkin and Dziedzic, 1973), Nobel Prize in

Physics (2018) have demonstrated just the opposite. The liquid was attracted by a tightly-

focused laser beam, not repelled by it, see Fig. 2!

What is wrong with our derivation? The answer is that there is one more force, namely,

a ponderomotive force! A dipole p in the electric field E has an energy U = −p ·E. Now let

us assume that the dipole is induced by the same field, p = αE where α is the polarizability.

Then we find U = −αE2 and the force

F = −∇U ∝ ∇(αE2), (15)

so that for α > 0 the particles are attracted to the maxima of electric field. This is what

https://www.nobelprize.org/prizes/physics/2018/ashkin/facts/
https://www.nobelprize.org/prizes/physics/2018/ashkin/facts/
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happens with the water in the glass under the laser beam illumination and why it raises

upwards instead of been pressed down (Gordon, 1973). More details are given in Sec. II.C.

However, Eq. (15) is not the final answer. It does not take into account that we are dealing

with electromagnetic fields that dynamically change in time, rather than static fields. How

should it be modified when we also consider the effect of the Lorentz force and the fact that

the polarizability α is complex? We will now consider this in more detail.

A. Force, acting on a small electric dipole

Let us consider an atom, consisting of a heavy ion with large mass and a charge −q

and an electron with the charge +q. The force, acting on the atom as a whole, has two

contributions: Lorentz force and electrostatic force acting upon the two charges:

F =
q

c
ṙ ×B + q[E(r)−E(0)] ≈ q

c
ṙ ×B + q(r ·∇)E(0) ≡ 1

c
ṗ×B(t) + (p ·∇)E(t) .

(16)

Wave packet traveling through a gas of atoms

Let us consider a wave packet propagating along z direction and polarizing along y;

E(z, t) = exE(z − ct/n), H = eynE(z − ct/n)

where n is the refracting index. In this case the force can be rewritten as

F (z, t) =
αnez

2c

∂

∂t
E(z − ct/n)2 . (17)

where α is the dipole polarizability, p = αE. In the lowest order in α we can write the

refractive index of the gas as n ≈ 1 + 2πNα where N is the concentration of atoms (we

neglect local field corrections etc). As such, the volume density of force acting on atoms

(Gordon, 1973) can be presented as

f(z, t) =
∂

∂t
M (z, t), M (z, t) =

n− 1

4πc
E2ez ≈

n− 1

4πc
E ×H . (18)

Here, M can be interpreted as mechanicaI momentum density of the atoms traveling through

the gas with the pulse. We stress, that after the pulse passes a given point, no momentum

is left in the gas ; total momentum is conserved at least in the linear order in n − 1, see

Fig. 3(b). However, when the pulse enters the gas through the boundary, some mechanical

momentum is transferred the gas, see Fig. 3(a).
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FIG. 3 Forces acting on particles when pulse (a) enters the gas and (b) propagates inside the gas.

After Ref. (Gordon, 1973).

Monochromatic field acting upon a single particle

Next, we consider the harmonic fields and rewrite the time-averaged force Eq. (16) taken

into account that

E(t) = Ee−iωt + c.c., B(t) = Be−iωt + c.c., p(t) = αEe−iωt + c.c. (19)

The time-averaged force then reads

F (t) ≡ Frad + Fgrad =
2ω

c
Im[αE ×B∗] + 2 Re[α(E ·∇)E∗] . (20)

The second, gradient, force, can lead to the trapping of the particle in the focus of strong

electromagnetic wave. So the first contribution is proportional to the photon momentum

and the second to the gradient of the photon power. The same two contributions exist in

semiconductors, where an interaction of the electromagnetic wave with the charge carriers

can lead to a steady current (Perel’ and Pinskii, 1973). This is termed photon drag effect,

see (Glazov and Ganichev, 2014) for a recent review of photon drag effect and other similar

effects in graphene.

Important note. We dealing here with electromagnetic waves, rather than static fields.

For static field we have ∆E = 0 which means that ∆E2 = 2
∑

µ(gradEµ)2 > 0 and stable

maxima of electric field are impossible (Earnshaw theorem). However, this is not a problem

for electromagnetic waves where tightly focused beams are possible.

For a plane electromagnetic wave propagating along the direction n in vacuum we have
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B = n×E. In this case the force reads

F ≡ Frad =
2ω

c
Imα|E|2n = σext

J

c
n , (21)

where J is the light intensity and σext = 4π(ω/c) Imα is the scattering cross section. Phys-

ically, the light pressure force requires transfer of light momentum to the particle. Hence,

light is either absorbed or scattered. Namely, for a small spherical particle with the radius

R one has

α =
α0

1− 2iq3

3
α0

, α0 = R3 ε− 1

ε+ 2
. (22)

We see, that even for dielectric particle with Imα = 0 we still have Imα 6= 0, since energy

losses are possible due to emission to the free space. However, for small enough particle the

radiative corrections are weak, Imα � Reα, so the gradient force provides the dominant

contribution and ensures the trapping.

Given that B∗ = i(c/ω) rotE∗ we can rewrite Eq. (20) as (Chaumet and Nieto-Vesperinas,

2000)

F = 2 Re [α(E · ∇)E∗ + αE × (∇×E∗)] (23)

or

Fµ = 2 Re

[
αEν

∂E∗ν
∂xµ

]
, where µ, ν = x, y, z . (24)

FIG. 4 Illustration of optical trapping of dielectric particle in the focus of laser beam. Directions

of radiation pressure and gradient force are shown.



9

FIG. 5 Explanation of the optical trapping in the focus of the laser beam by ray tracing. Yellow

arrow shows the direction of the net force.

B. Radiation trap in the ray optics language

Radiation trapping of particles, that are larger than the wavelength, could be understood

using geometrical optics. Namely, it is possible to show that the particle is attracted to the

focus of laser beam independent of its initial position by tracing the refraction of the rays,

see Fig. 5.

C. Abraham-Minkowsky controversy for the surface of liquid and its resolution

Let us consider the controversy in Fig. 2 in more detail. This section loosely follows the

discussion of Fig. 2 in Ref. (Gordon, 1973). In fact, there is no controversy, it arises only

because the matter and electromagnetic field degrees of freedom are sometimes separated in

different ways, see the review (Pfeifer et al., 2007) for more details. One arrives to different

answers only when neglecting some terms or forces. If all the terms are properly taken into

account, the result will be correct independent of the approach. Let us try to calculate again

the force acting on the surface of the liquid with the refractive index n ≈ 1, n − 1 � 1 by

making such different calculations.

“Abraham approach” (neglecting the lateral gradient force)

We assume that the wave packet in the medium has total momentum density (mechani-

cal+electromagnetic).

G(medium)
z =

nExHy

4πc
=

(n− 1)ExHy

4πc
+
ExHy

4πc
, (25)
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where M = (n − 1)ExHy/(4πc) is the mechanical momentum density, see discussion of

Eq. (18). Here, ExHy

4πc
is the Abraham electromagnetic momentum density, that is the same

in vacuum and corresponds to the stress tensor (7) that also is the same as in vacuum. Now,

if we consider the thin layer near the surface, the momentum that enters the layer from air

per unit area and unit time is dp/dt = cG
(vac)
z = ExHy/(4π). The momentum that leaves

the layer and goes further inside the medium per unit time is c/nG
(medium)
z = ExHy/(4π),

i.e. it is the same (Ex and Hy are continuous at the surface). Hence, no momentum is

transferred to the layer at the surface and no force acts. This is consistent with the results

of three other approaches: (i) Lorentz force Eq. (5) acting upon the infinitely thin layer is

zero, (ii) the Abraham stress tensor Eq. (7) is continuous at the boundary and that (iii) no

momentum is left in a given point of the gas after the pulse has passed, see Fig. 3.

The momentum per single photon i can be obtained by dividing the total momentum

density by the photon flux. Since the photon flux is the same in medium and in vacuum,

and the total momentum flux c/nG
(medium)
z is also the same in medium and in vacuum, we

conclude that the momentum per single photon in the medium and in vacuum is also the

same and equal to ~ω/c. This is again consistent: the photons have the same momenta

to the left and right from the surface layer, their flux is conserved, so no momentum is

transferred to the layer.

Lateral gradient force

The previous discussion ignores the ponderomotive force due to finite width of the beam.

In fact,

f(t) = ∇U, U =
1

2
αNE2(t) ≈ n− 1

4π
E2(t) = (n− 1)

J

c
, (26)

where J = cE2(t)/(4π) is the light intensity. Hence, there is an extra pressure U in the parts

of liquid inside the beam that “pushes” the liquid to the surface in the vertical direction,

see Fig. 6. The total vertical pressure acting at the surface is then equal to

f (total)
z = −(n− 1)J/c . (27)
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FIG. 6 Explanation of water being pulled into the laser beam of finite width due to the lateral

gradient force

Lateral ponderomotive force

The same pressure Eq. (27) could also be obtained by calculating the flux of Minkowsky

momentum. The density of Minkowsky momentum is given by

G(Mink) =
D ×B

4πc
. (28)

and corresponds to the stress tensor (Zangwill, 2013),

σ
(Mink)
αβ =

1

4π

[
εEαEβ + µHαHβ −

δαβ
2

(εE2 + µH2)

]
(29)

where we assume isotropic medium with the permittivity ε and the permeability µ. The mo-

mentum, leaving the thin surface layer per unit time, following from Eq. (28) is c/nG
(Mink)
z =

nExHy/(4π). The rate of momentum, entering the layer is still ExHy/(4π), as in the previous

section. Hence, the momentum transferred to the layer is −(n−1)ExHy/(4π) = −(n−1)J/c,

in agreement with Eq. (27). This can be understood as a difference between the momentum

of photon ~ω/c, coming into the layer and the momentum ~ωn/c going from the layer to

the medium.

To summarize the discussion, naive Abraham approach yields zero, but lateral gradient

force adds −(n−1)J/c which is the same as the naive Minkowsky approach. This coincidence

is not accidental, see discussion in (Gordon, 1973) (Landau and Lifshitz, 1974), (Pfeifer et al.,

2007).

This section demonstrates, that macroscopic electrodynamics by itself should not be

regarded as a fully self-consistent theory; Maxwell equations in the medium should be ac-
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Abraham Minkowsky

Energy density εE2+H2

8π ≡ εE2

4π

Momentum density Electromagnetic E×H
4πc undefined

Mechanical (n− 1)E×H4πc undefined

Total nE×H
4πc ≡ εE2

4πc
k
k

n2E×H
4πc

Single photon energy ~ω

Photon momentum ~ω
cn ~ω

c n
Photon + mechanical momentum ~ω

c

TABLE I Comparison of Abraham and Minkowsky approaches for a plane wave propagating in a

medium with refractive index n.

companied by material relations distinguishing a liquid from a solid, etc. More details on

the Maxwell stress tensor in a medium are given in (Landau and Lifshitz, 1974).

III. MORE READING

A. Optical pressure

Resolution of Abraham-Minkowsky controversy and different confusions with Maxwell

stress tensor: recent review and textbook: (Pfeifer et al., 2007), (Zangwill, 2013),

Very pedagogical analysis (Gordon, 1973), pioneering experiment: (Ashkin and Dziedzic,

1973).

Very detailed analysis of different contributions for light pressure on a dielectric half-space

(Loudon, 2002).

Literature in this field can be quite contradictory and should be read with exreme caution,

even the reviews by renowned experts. For instance, a recent review (Toptygin and Levina,

2016) presents the stress tensor Eq. (49), that is called Minkowsky stress tensor, but is

actually different from the Minkowsky stress tensor given in all other literature, e.g. (Pfeifer

et al., 2007; Zangwill, 2013).

Generalization of stress tensors and optical forces in case when the permittivity depends

on frequency or wavevector (time and spatial dispersion) is still a subject of active studies,

see e.g. (Bliokh et al., 2017a,b).
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B. Optical trapping

First experiment of Ashkin for dielectric particles: (Ashkin et al., 1986)

General derivations: (Novotny and Hecht, 2012)

Force acting on a small dielectric and magneto-dielectric particle: (Chaumet and Nieto-

Vesperinas, 2000; Chaumet and Rahmani, 2009)
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In the previous Lecture we considered how light does affect the motion of matter. Now we are

going the consider the opposite effect: how does the motion of matter affects the photonic modes

of the system. We will first provide a general introduction to the mechanisms of optomechanical

interaction (Sec. I), briefly discuss semiconductor microcavities (Sec. I.D) and then discuss how

to probe optomechanical interactions in optical experiments (Sec. II).
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FIG. 1 Cavity with a moving mirror

I. INTERACTION MECHANISMS

For simplicity we consider a simple Fabry-Perot cavity filled with a medium with permittivity

ε. Our goal is to examine the effect of the the deformation on the cavity resonant frequency.

A. Geometric mechanism

In this case the mode frequency shifts due to the movement of the mirror:

ωc =
πc

(L+ x)
√
ε
≈ πc

L
√
ε

(1− x

L
) = ω(0)

c − ggeomx, ggeom = ω(0)
c

1

L
. (1)

The value of geometric coupling constant can be roughly estimated as 1015 Hz/1000 nm =

1 THz/nm.

B. Photoelastic mechanism

This mechanism is due to the modification of the permittivity of the cavity due to the

deformation of the cavity material. We introduce the strain

u =
x

L
, (2)

Hence, Eq. (1) has to be modified to

ωc = ω(0)
c − (ggeom + gphotoel)x, (3)

where

gphotoel = ω(0)
c

1

2ε

dε

du

1

L
. (4)

The ratio of photoelastic and geometric contributions can be estimated as

gphotoel

ggeom

∼ 1

2ε

dε

du
. (5)
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The photoelastic contribution dominates at the material resonances. For example, let us con-

sider the cavity filled by a semiconductor with the excitonic resonance at the frequency ω0. The

strain leads to the shift of the semiconductor band gap, which is described by the deformation

potential Ξ (for a typical semiconductor Ξ ∼ 10 eV). The permittivity has a resonance at the

frequency ω0:

ε = εb

(
1 +

ωLT

ω0 + Ξu− ω − iΓ

)
, (6)

εb is the background permittivity, ωLT is the longitudinal-transverse splitting describing the

light-exciton coupling strength, Γ is the resonance damping. Hence, the photoelastic term has

a double resonance at the exciton frequency:

dε

du
∝ 1

(ω0 − ω − iΓ)2
. (7)

In experiment the value of (1/ε)dε/du ∼ 105 has been observed at the excitonic resonances in

quantum wells at low temperatures (Jusserand et al., 2015) .

C. Dissipative coupling

Other interaction mechanisms are possible in principle. For instance, mechanical vibrations

can modulate the damping rate κ of optical modes. This effect is termed as dissipative coupling

(Li et al., 2009; Kyriienko et al., 2014). Values for the waveguide system:(Li et al., 2009)

γom =
dκ

dx
= −27 MHz/nm. (8)

D. Semiconductor microcavities

A nice platform to study the optomechanical effect on the nanoscale is a micropillar, with

of two Bragg mirrors, see Fig. 2. Each Bragg mirror contains a stack of alternating GaAs

and AlGaAs layers. The key observation of Ref. (Fainstein et al., 2013) was that the ratio of

refractive indices of GaAs and AlAs is approximately equal to the ratio of sound velocities,

c2/c1 = s2/s1 ≈ 1.2. Hence, the same structure acts like a Bragg mirror both for light and

sound.The advantages of such structure are

• Ultra-High frequencies of confined acoustic phonon modes: Ω/2π up to 100 GHz (An-

guiano et al., 2017) (estimation: s/d ∼ 106 cm/s/100 nm = 100 GHz).
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FIG. 2 From Ref. (Anguiano et al., 2017). (a) SEM images of an array of circular and square pillars

with lateral sizes ranging from 50 to 1 µm. The inset presents a zoom on a 5 µm square pillar.

(b) k-space image of the optical cavity modes for a square pillars of 8 µm lateral size. The shaded

ellipse represents the profile (energy broadening and angular dispersion) of the pump and probe laser

pulses. (c) Spatial distribution of volumetric strain associated with a confined mechanical mode around

19 GHz, calculated using finite element methods.

• Strong photoelastic coupling: gphotoel ∼ 83 THz/nm, ggeom ∼ 4 THz/nm (Fainstein

et al., 2013) (103 times larger than for integrated waveguides (Li et al., 2009))

• planar scalable integrated technology at nanoscale .

Very important recent work: “Polariton-driven phonon laser”, (Chafatinos et al., 2020)

II. PROBING OPTOMECHANICAL INTERACTION FOR WEAK COUPLING WITH

PHONONS

1. Time-dependent transmission

How can one probe the optomechanical interaction in experiment? The first approach is the

pump-probe reflection experiment. In this case the first pump pulse excites the deformations of

the structure. For instance, it can heat the sample, which leads to the expansion of the lattice
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and coherent excitation of different mechanical modes. Let us consider how the mechanical

vibrations modify the reflection coefficient. Suppose, that we work near an optical resonance

(e.g. a Fabry-Perot one), so the amplitude transmission coefficient of light through the cavity

reads

t(ω) =
iΓ0

ωc − ω − i(Γ + Γ0)
. (9)

Here ωc is the resonance frequency, and the parameters Γ0 and Γ characterize the resonance

strength and the width. Due to the mechanical vibrations with the amplitude x0 and the

frequency Ω the cavity frequency oscillates in time as

ωc = ω(0)
c + g(x0e−iΩt + x∗0eiΩt) . (10)

We assume that the structure is illuminated by a monochromatic pulse ,

E0(t) = E0e−iωt =

∫
dω

2π
E0(ω)e−iωt, E0(ω) = 2πE0δ(ω − ω0) . (11)

The transmitted field can be then presented as

Et(t) =

∫
dω

2π
e−iωtt(ω)E0(ω) =

=

∫
dω

2π
e−iωtt(0)(ω)E0(ω) +

∫
dω

2π

dt(ω)

dωc

g(x0e−iΩt +x∗0eiΩt)e−iωtE0(ω) = e−iω0t[E
(0)
t +E

(1)
t (t)] ,

(12)

where

E
(0)
t (t) = t(0)(ω)E0, E

(1)
t (t) =

dt

dω0

E0g(x0e−iΩt + x∗0e+iΩt) . (13)

Hence, the transmitted wave will not be monochromatic. Due to the modulation of the cavity

parameters it will contain the response at the anti-Stokes and Stokes frequencies .

ωaS = ω0 + Ω, ωS = ω0 − Ω . (14)

A. Scattering on phonons

Another approach is to study light scattering on thermal vibrations instead of reflection

from coherent vibrations (Jusserand et al., 2015) . In this case average amplitude of vibrations

in Eq. (13) is zero,

〈x0〉 = 0 (15)
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however the intensity of vibrations is nonzero:

〈|x0|2〉 ∝

NΩ + 1 (Stokes)

NΩ (anti-Stokes)
(16)

In practice the phonon frequency is much smaller than temperature: T = 300 K corresponds to

25 meV = 6 THz, while the largest photon frequency are about 0.1 THz. Hence, spontaneous

photon emission can be neglected, T � ~Ω and

NΩ =
1

e~Ω/T − 1
≈ T

~Ω
� 1 if T � ~Ω . (17)

Let us develop a more detailed theory of light scattering in a microcavity. We consider the

Hamiltonian

H = ωcc
†c+ Ωma

†a− gcc†c(a+ a†) . (18)

where c is the photon creation operator, a is the creation operator of the phonons with the

frequency Ω, and gc is the optomechanical coupling constant. Next, we write the Heisenberg

equations of motion ċ = i[H, c], ȧ = i[H, a] for the operators c and a:

dc

dt
= −i[ωc − gc(a+ a†)]c (19)

da

dt
= −iΩma− igcc

†ca . (20)

In this section we will solve these equations in the classical regime, when the photon and photon

occupations numbers are large. In this case the operators can be replaced by complex numbers.

We will also include the damping for the cavity mode Γc and will first assume that the

phonon mode oscillates monochromatically as

a(t) = ue−iΩmt . (21)

The first of Eqs. (19) then transforms to

dc

dt
= −i[ωc + gc(ue−iΩmt + u∗eiΩmt)]c− Γcc− iE0e−iωt , (22)

where E0 is the amplitude of the incoming field with the frequency ω. Our goal is to solve

Eq. (22) for small amplitude gc, when the interaction can be considered as a perturbation. We
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will also transform Eq. (22) in the Fourier domain. Then the cavity field will oscillate at the

initial frequency ω and also at Stokes and anti-Stokes frequencies

ωaS = ω + Ω, ωS = ω − Ω . (23)

as

c(t) = c0e−iωt + caSe−iωaSt + cSe−iωSt , (24)

where the field c0 does not depend on the phonon amplitude and caS, cS ∝ gc.

(ωc − ω − iΓc)c0 = −E0 (25)

(ωc − ωaS − iΓc)caS = −gcuc0

(ωc − ωS − iΓc)cS = −gcu∗c0 .

Solving Eqs. (25) we find

caS =
gE0u

(ωc − ωaS − iΓc)(ωc − ω − iΓc)
, cS =

gE0u
∗

(ωc − ωS − iΓc)(ωc − ω − iΓc)
. (26)

The spectrum of the scattered field can be presented by taking the square of the amplitudes

caS, cS:

I = g2|E0|2
|u|2

[(ωc − ω′)2 + Γ2
c ][(ωc − ω)2 + Γ2

c ]
(27)

where ω′ is the scattered light frequency equal to ωaS or ωS. In the stochastic case we can just

replace |u|2 by its thermal average 〈a†a〉 ∝ T/ω, see Eq. (16). We see from Eq. (27) that the

scattered light has two resonances, for incident and scattered photons ω and ω′, respectively,

see also Fig. 3.

In this consideration we have considered vibrations classically. This consideration is valid

when the temperature T is much larger than the characteristic phonon frequency Ω, kBT �

~Ω. We note, that temperature of 300K corresponds to the frequency of ≈ 6THz, which is

much larger than the typical vibration frequency. Hence, at room temperature the classical

approximation is almost always valid, but it can break at lower temperatures. In this case we

should slightly adjust Eq. (21) and replace c-numbers by the operators:

â(t) = ûe−iΩmt, x̂(t) = â(t) + â†(t) . (28)

Here û† and û are proportional to the phonon creation and destruction operators, so

〈û†û〉 = NΩ, 〈ûû†〉 = NΩ + 1, NΩ =
1

e~Ω/T − 1
, (29)
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FIG. 3 Schematic illustration of the Stokes and anti-Stokes light scattering spectra in a cavity, Eq. (27).

where the angular brackets denote the averaging over the equilibrium distribution function

of the phonons. In case when T � ~Ω we get NΩ � 1 and the difference between NΩ and

NΩ + 1 (spontaneous emission) can be neglected. Our whole derivation remains valid also in

the quantum case. The only difference is that in Eq. (26) we should replace u in caS by û, and

u∗ in cS by u†. As a result, the intensities of anti-Stokes and Stokes light will be proportional to

〈û†û〉 = NΩ and 〈ûû†〉 = NΩ + 1, respectively. At zero temperature, when the phonon number

NΩ is zero, we have only spontaneous phonon emission (Stokes processes) and do not have

phonon absorption (anti-Stokes processes).

Resonant optomechanical coupling in microcavities

We will now assume that the microcavity has an embedded quantum well with an excitonic

resonance. Hence, the Hamiltonian Eq. (18) has to be extended to include photon-exciton

coupling and phonon-exciton coupling. The resulting Hamiltonian describing interaction of

exciton (b) with cavity photon (c) and phonon (a) modes reads

H = ωxb
†b+ ωcc

†c+ Ωma
†a+

ωR

2
(c†b+ b†c) + gxb

†b(a+ a†) + gcc
†c(a+ a†) . (30)
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Here ωR is Rabi frequency characterizing the strength of exciton-photon interaction; the op-

tomechanical constant for bare exciton gx is given by

gx = Ξu0

with Ξ ≈ 9 eV being the deformation potential constant and u0 = kxZPF ≈ 10−8 the zero-point

deformation (Jusserand et al., 2015).

Instead of Eq. (24) we write

c(t) = c0e−iωt + caSe−iωaSt + cSe−iωSt (31)

b(t) = b0e−iωt + baSe−iωaSt + bSe−iωSt , (32)

and the generalization of Eq. (33) reads

(ωc − ω − iΓc)c0 + gb0 = E0 , (33)

(ωX − ω − iΓX)b0 + gc0 = 0 ,

(ωc − ωaS − iΓc)caS + gbaS = −gcuc0 ,

(ωX − ωaS − iΓX)baS + gcaS = −gxub0 .

and similarly for Stokes scattering. Solving Eq. (33) we find the the intensity of Raman scat-

tering

I ∝
∣∣∣∣ gxω

2
R/4 + gc(ω − ωx + iΓx)(ω′ − ωx + iΓx)

[(ω − ωx + iΓx)(ω − ωc + iΓc)− ω2
R/4][(ω′ − ωx + iΓx)(ω′ − ωc + iΓc)− ω2

R/4]

∣∣∣∣2 . (34)

where the incoming and outgoing light frequencies are related by |ω − ω′| = Ωm.

One can rewrite Eq. (34) as

I ∝

∣∣∣∣∣ geff

[ω − ωc + iΓc −
ω2
R/4

ω−ωx+iΓx
][ω′ − ωc + iΓc −

ω2
R/4

ω′−ωx+iΓx
]

∣∣∣∣∣
2

, (35)

where the effective optomechanical constant reads

geff = gc +
gxω

2
R/4

(ω − ωx + iΓx)(ω′ − ωx + iΓx)
. , (36)

In the weak coupling regime, the resonant contributions in denominator of Eq. (35) are small

and can be neglected. Then the is given by

I ∝
∣∣∣∣ geff

(ω − ωc + iΓc)(ω′ − ωc + iΓc)

∣∣∣∣2 . (37)
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Comparing Eq. (37) with Eq. (27) we see that the optomechanical interaction constant is

replaced from gc to the function (36) that has an additional resonant term.

In the strong coupling regime, the resonance of Eq. (36) can not be exploited to increase

the observable quantities such as scattering intensity. The reasons are as follows. (a) At the

bare exciton frequency ωx the large value of geff is compensated by the resonant terms in the

denominator of Eq. (35). (b) At the polariton resonance frequency ωp the detuning from the

bare exciton resonance is large (∼ ωR � Γx), so the relevant value of geff is relatively small.

In Ref. (Jusserand et al., 2015) we used Eq. (36) but have forgotten about the resonant terms

in the denominator of Eq. (35), leading to the detuning of the polariton resonances from bare

exciton one.

In particular, for Γx,Γc � ωR, the maximum intensity is achieved when both ω and ω′ are

in the vicinity of upper or lower polariton resonances ωp = [ωx − ωc ±
√

(ωx − ωc)2 + ω2
R ]/2,

see Ref. (Kavokin et al., 2006) for more details on polaritons in microcavities.

Then Eq. (34) simplifies and assumes the form [cf. Eq. (2) in Rozas et al., PRB 90, 201302

(2014)]

I ∝
∣∣∣∣Cc

gpol

(ω − ωp + iΓp)(ω′ − ωp + iΓp)

∣∣∣∣2 , (38)

where the Hopfield coefficients are given by

Cx =
ω2
R/4

(ωp − ωx)2 + ω2
R/4

, (39)

Cc =
ω2
R/4

(ωp − ωc)2 + ω2
R/4

, (40)

and the effective optomechanical coupling constant for polariton is given by the weighted aver-

age of optomechanical coupling constants for excitons and photons,

gpol = Cxgx + Ccgc . (41)

Physically, the Hopfield coefficients with Cx + Cc = 1 tell us which about the photonic and

excitonic contributions into the polariton modes. Since gx is proportional to the larger defor-

mation potential of exciton Ξ ∼ 10 eV, there is still a room to improve the scattering by using

resonant optomechanical coupling.
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I. OPTOMECHANICAL SPRING EFFECT

In the previous Lecture we have analyzed the effect of the mirror vibrations of light. Namely,

the vibrations lead to appearance of Stokes and anti-Stokes light scattering in a cavity. In this

Lecture we go further and take into account the optomechanical backaction: effect of light on

the movement of the mirror.

dc

dt
= −i(ωc − gx)c− Γcc+ E0e−iωt (1)

(note the different sign of g)

|c|2 =
E2

0

Γ2
c + (ω + gx− ωc)2

(2)

Frad(x) = g|c|2(x) = Frad(x = 0)− kx, k ∝ (ω − ωc) (3)

∗Electronic address: poddubny@coherent.ioffe.ru

mailto:poddubny@coherent.ioffe.ru
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FIG. 1 Optical force and number of photons in the cavity: classical picture (adapted from Ref. (As-

pelmeyer et al., 2014))

For negative detuning, ω < ωc, we get k < 0 which can lead to instability, see Fig. 1. Namely,

at negative detuning increase of x due to radiation pressure leads to decrease of ωc. Hence,

detuning decreases, hence, radiative pressure increases and ωc decreases stronger. This means

instability. For positive detuning the decrease of ωc leads to increase of detuning and smaller

radiation pressure, hence, the system remains stable.

This argument can be elaborated further:

m
d2x

dt2
= −mΩ2x+ g|c|2 = −dU

dx
(4)

U(x) =
mΩ2x2

2
− E2

0

Γc
arctan

(
ω − ωc + gx

Γc

)
(5)

II. OPTOMECHANICAL COOLING AND HEATING

A. Heating and cooling: classical picture

Let us assume that the cavity vibrates at the frequency Ω and calculate, how the radiation

pressure force affects these vibrations. Namely, our goal is to find the total work of the force

per one cycle of vibrations ,∮
Fraddx =

2π/Ω∫
0

Frad
dx

dt
dt, x = x0 cos Ωt . (6)
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FIG. 2 Optomechanical potential Eq. (5). Black dashed curve: E0 = 0, black solid curve: E0 =

3,ω = ωc, red curve: ω = ωc + 6g , blue curve: ω = ωc − 6g . Other calculation parameters are

m = g = Γc = Ω = 1.

At the first glance this work is zero ,

2π/Ω∫
0

Frad
dx

dt
dt = gΩx0

2π/Ω∫
0

cos Ωt sin Ωt = 0 . (7)

However, here we have assumed that the cavity immediately reacts to the shift of the mirrors.

In fact, there is some retardation due to the finite lifetime of the photons τ = 1/(2Γc). Let

describe it in the simplest possible form: Frad(t) ⇒ Frad(t − τ). Then we obtain for the work

per one cycle of vibrations

∮
Frad

dx

dt
= gΩx0

2π/Ω∫
0

cos Ω(t−τ) sin Ωt ≈ kΩx0

2π/Ω∫
0

(cos Ωt+τΩ sin Ωt) sin Ωt = kπτΩx0 . (8)

Comparing with Eq. (3) we see that for ω > ωc one has k > 0. Hence, the radiation performs

positive work, and the cavity is heated due to the radiative pressure. In the opposite case

ω < ωc, radiation performs negative work, ⇒ radiation cools the cavity (mechanical vibrations

transfer energy to radiation).

More on radiative cooling in another context: (Chen et al., 2016)
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FIG. 3 Radiative heating and cooling

B. Scattering picture

The same results can be understood using the quantum-mechanical scattering picture, see

Fig. 3. The pump incident upon a cavity can undergo Stokes and ant-Stokes scattering. The

efficiency of this process is determined by the distance between the final state and the cavity

resonance: the smaller is the distance the more efficient is the process. For ω < ωc anti-Stokes

scattering with phonon absorption dominates ⇒ radiative cooling. For ω > ωc the Stokes

scattering is more efficient ⇒ heating. The quantum-mechanical picture applies when the

cavity mode linewidth is much less than the phonon mode energy.

III. MORE RIGOROUS DESCRIPTION OF COOLING AND HEATING

dc

dt
= −i[ωc − gx(t)]c− Γcc+ E0e−iωt (9)

d2x

dt2
= −Ω2

mx− 2γmẋ+ g|c|2 (10)

We have also introduced the damping Γc and Γm to the cavity and mechanical modes, respec-

tively. Our goal is to find the eigenfrequency of mirror vibrations Ω. Let us introduce the

vibration amplitude a and assume that |Ω− Ωm| � Ω.

x(t) = x̄+ ae−iΩt + c.c., ẋ(t) = −iΩmae−iΩmt + c.c., (11)
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ẍ(t) + Ω2
mx = (Ω2

m − Ω2)ae−iΩt + c.c ≈ 2Ωm(Ωm − Ω)ae−iΩt + c.c (12)

We stress, that in contrast to previous Lecture, we explicitly take into account the mirror

dynamics instead of postulating it as a(t) = e−iΩmt. Now we assume, that the optomechanical

interaction is weak and linearize Eqs. (9) with respect to this interaction:

c(t) = c0(t) + δc(t) . (13)

Namely, we assume that the strong amplitude c0 is determined by the pump and does not

depend on the vibrations, while the correction δc(t) is due to vibrations. Substituting Eq. (13)

into Eq. (9) we find the linearized equations:

dc0

dt
= −i(ωc − gx̄)c0 − Γcc0 + E0e−iωt (14)

dδc

dt
= −i(ωc − gx̄)c+ igc0(t)(ae−iΩt + a∗eiΩt)− Γcδc (15)

(Ωm − Ω− iγm)a =
g

2Ωm

(c∗0δc+ c0δc
∗)eiΩt (16)

Since the system of equations Eq. (14) is linear, we can try to look for the monochromatic

solutions:

c(t) = c0e−iωt + cSe−iωSt + caSe−iωaSt, ωS = −Ω + ω, ωaS = Ω + ω . (17)

Here Ω is the frequency of oscillations, and similarly to the previous Lecture we get Stokes and

anti-Stokes modes. Substituting Eq. (17) into Eq. (14) we find

(ωc − gx̄− ω − iΓc)c0 = −iE0 , (18)

(ωc − gx̄− ωS − iΓc)cS = gc0a
∗ , (19)

(ωc − gx̄− ωaS − iΓc)caS = gc0a , (20)

(Ωm − Ω− iγm)a =
g

2Ω
(c∗Sc0 + caSc

∗
0) , (21)

Linearized equations Eq. (18)–Eq. (20) present the central result of this Lecture. In the following

we will consider different aspects of these equations. Expressing cS and caS from Eqs. (19),(20)

and substituting back into Eq. (21) we find

(Ωm + Σ− Ω− iγm)a = 0. (22)

Thus, the eigenfrequency is given by

Ω = Ωm − iγm + Σ (23)
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where

Σ = −g
2|c0|2

2Ω

(
1

ωc − gx̄− ωS + iΓc
+

1

ωc − gx̄− ωaS − iΓc

)
= δΩm − iδγm, (24)

is the optomechanical correction, describing modification of mechanical resonant frequency Ωm

and mechanical damping γm due to interaction with light:

δΩm =
g2|c0|2

2Ω

(
ωS − ωc + gx̄

(ωc − gx̄− ωS)2 + Γ2
c

+
ωaS − ωc + gx̄

(ωc − gx̄− ωaS)2 + Γ2
c

)
(25)

δγm =
g2|c0|2Γc

2Ω

(
− 1

(ωc − gx̄− ωS)2 + Γ2
c

+
1

(ωc − gx̄− ωaS)2 + Γ2
c

)
. (26)

The optical spring correction becomes negative for ω � ωc which means instability. We also

see that the correction to the damping of the phonons is proportional to the difference between

Stokes and anti-Stokes scattering. If we pump in resonance with the Stokes mode, the mechan-

ical damping decreases, because extra phonons are generated due to the scattering. This can

lead to the “phonon lasing”. At the anti-Stokes resonance the damping decreases.

In case of very bad cavity, when Γc � Ω we find

δΩm =
g2|E0|2(ω − ωc + gx̄)

ΩΓ4
c

(27)

which agrees with the result of expansion of Eq. (5) up to quadratic terms in x.

Numerical solutions of Eqs. (9) in the regime of optomechanical heating and cooling can be

found on YouTube here: heating and cooling.
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In the previous lecture we have considered interaction of localized photon mode with localized

vibrations. The goal of this lecture is to extend these concepts to the continuous medium and

consider optomechanical effects in light-sound interaction. We will also introduce the concept of

phonoritons (Ivanov and Keldysh, 1982): polaritons hybridized with phonons in the presence

of external optical pump.

I. DERIVATION OF EQUATIONS FOR INTERACTION OF LIGHT WITH VIBRATIONS

The derivation below loosely follows A.V. Poshakinskiy and A.N. Poddubny, Phys. Rev. X

9, 011008 (2019). We start with the Lagrangian describing interaction of light with sound in

the form

L = Lem + Lu + Lint + Lj(j) , (1)
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or, explicitly,

L =
1

8π

(
1

c2
(∂tA)2 − (∂zA)2

)
+
ρ

2
[(∂tu)2 − s2(∂zu)2] +

1

c
j(z)A(z + u) + Lj . (2)

We assume that the electromagnetic field is described by the vector potential A(z, t) ‖ x. The

medium can vibrate longitudinally, u(z) ‖ z. The key concept here is that the movement of

the medium does not affect the material relationship, it stays the same in the moving frame.

Thus, the current j(z) just senses the potential in the shifted point z + u. For more details see

the derivation in [asymscat.pdf].

The Lagrangian Lj depends only on the current and enforces the local material relationship

j(z) ≡ j[A(z + u)] =
∂P (z + u)

∂t
= χ

∂E(z + u)

∂t
= −χ

c

∂2A(z + u)

∂t2
(3)

where χ is the medium susceptibility. Here we intend to neglect the derivative of u over

t because these effects are relativistically small. We use the vector potential because Ax is

Lorentz invariant in the reference frame moving along z.

A. Equation for light

In order to derive the equation for vector potential we write

A(z + u) ≈ A(z) + u∂zA, Lint ≈
1

c
j[A(z) + u∂zA] . (4)

The Langrange equation
∂

∂t

∂L

∂ ∂A
∂t

+
∂

∂x

∂L

∂ ∂A
∂z

=
∂L

∂A
(5)

then becomes
1

4π

(
1

c2
∂ttA− ∂zzA

)
+

1

c
∂z(ju) =

1

c
j[A(z + u)] (6)

or
1

c2
∂ttA− ∂zzA =

4π

c
(1− ∂zu)j(z) . (7)

Physically, it means that due to increase of the volume of the crystal in 1 + ∂zu times the

concentration of atoms decreases in 1−∂zu times and the polarizability decreases. Given Eq. (3)

we can rewrite the equation for the vector potential as

ε(z, u)

c2

∂2A

∂t2
=
∂2A

∂z2
, ε(z, u) = 1 + 4πχ

(
1− ∂u

∂z

)
. (8)
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Since we neglect here the derivative of u over time, the same equation can be written also for

the electric field Ex = −Ȧ/c,

ε(z, u)

c2

∂2E

∂t2
=
∂2E

∂z2
, ε(z, u) = 1 + 4πχ

(
1− ∂u

∂z

)
. (9)

B. Equation for sound

We rewrite the full Lagrangian using Eq. (4) and obtain

L = Lem +
ρ

2
(∂tu)2 − ρs2(∂zu)2 +

j

c
[A(z) + uj∂zA] + Lj(j) . (10)

The Lagrange equation
∂

∂t

∂L

∂ ∂u
∂t

+
∂

∂z

∂L

∂ ∂u
∂z

=
∂L

∂u
(11)

yields

ρ(∂ttu− s2∂zzu) = f =
1

c
j∂zA , (12)

where f is the force density, describing action of light on vibrations. We do not intend to

describe optomechanical cooling or spring effects. As such, we will evaluate f neglecting the

displacement u, i.e. will assume that j ≡ j[A(z + u)]→ j[A(z)] = ∂tP (z).

Hence, equation for the force density can be rewritten as Now in the simplest approximation

we get for the force density

f =
1

c
j∂zA =

1

c

∂P

∂t
B =

1

c

∂PB

∂t
− 1

c
P
∂B

∂t
=

1

c
χ
∂EB

∂t
+ χE

∂E

∂z

= χ

[
1

c

∂(EB)

∂t
+

1

2

∂

∂z
(E2)

]
, (13)

where By = ∂zAx is the magnetic field. This result apparently agrees with the one in (Gordon,

1973). Two contributions correspond to light pressure and ponderomotive force.

II. PHONORITONS

Let us now consider light-sound interaction in the presence of strong optical pump Eeikz−iωt.

ε

c2

∂2E(z, t)

∂t2
− ∂2E(z, t)

∂z2
= +

4πχ

c2

∂u

∂z

∂2E

∂t2
, (14)

ρ
∂2u

∂t2
− s2∂

2u

∂z2
= χ

[
1

c

∂(EB)

∂t
+

1

2

∂

∂z
(E2)

]
, (15)
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FIG. 1 Mandelstam-Brillouin scattering. Energy and momentum conservation conditions

Here χ is the polarizability of the medium and ε = 1 + 4πχ. We write the ansatz for electric

field and vibrations as

E(z, t) = E0eikz−iωt + ESeikSz−iωSt + EaSeikaSz−iωaSt + c.c. , (16)

and

u(z, t) = ueiqz−iΩt + u∗e−iqz+iΩt . (17)

Due to the energy and momentum conservations we obtain for Stokes scattering

ωS = ω − Ω, kS = k − q (18)

and for anti-Stokes scattering

ωaS = ω + Ω, kaS = k + q . (19)

These conditions describe so-called Mandelstam-Brillouin scattering. The energy-momentum

Since s/c ∼ 10−5 � 1, we have Ω� ω, and ωS ≈ ωaS ≈ ω. Hence, the energy and momentum

conservation conditions are satisfied only in the backscattering geometry, see Fig. 1, when

|k| ≈ |kaS| ≈ |kS| ≈ 2|q|, (20)
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so that

q ≈ 2k ≈ 2ω

c

√
ε(ω) . (21)

Hence, measurement of the Stokes shift Ω allows one to determine q = Ω/s = 2|k| assuming

that the sound velocity is known. Given Eq. (21) this allows one to find the dispersion law

ω
√
ε/c almost directly: one measures just the dependence of Stokes shift on incident photon

frequency. Such approach has been used to map dispersion of excitonic polaritons in crystals

and superlattices, see e.g. (Jusserand et al., 2012).

Substituting Eq. (16) and Eq. (17) into Eq. (14) and Eq. (15) we find(
k2 − εω2

c2

)
E0 = 0 (22)(

k2
S −

εω2
S

c2

)
ES = 4πiqχ

ω2
S

c2
E0u

∗ . (23)(
k2

aS −
εω2

aS

c2

)
EaS = −4πiqχ

ω2
aS

c2
E0u . (24)

and

ρ(s2q2 − Ω2)u = iqχ(E0E
∗
S + E∗

0EaS) . (25)

The light pressure term 1
c
∂(EB)

∂t
in the optical force has been neglected since q ∼ Ω/s � Ω/c.

Gathering all together we obtain the following dispersion equation for hybridized light and

sound:

s2q2 − Ω2 = −Σ(Ω, q), Σ = −δ
(

1

(c2k2
aS/ε)− ω2

aS

+
1

(c2k2
S/ε)− ω2

S

)
, δ =

4πq2ω2χ2|E0|2

ρε
.

(26)

Here in the expression for δ we make use of Ω� ω, so both ω2
S and ω2

aS are replaced by Ω2. The

solution of Eq. (26) in case when ε(ω) has an excitonic resonance are termed “phonoritons”:

“polaritons+phonons” (Ivanov and Keldysh, 1982).

Eq. (26) very much reminds the equation we had for light interacting with vibrations in a

cavity,

(Ωm +Σ−Ω− iγm)a = 0, Σ = −g
2|c0|2

2Ω

(
1

ωc − gx̄− ωS + iΓc

+
1

ωc − gx̄− ωaS − iΓc

)
. (27)

Important the dispersion resulting from Eq. (26), shown in Fig. 2, is the nonreciprocity:

ωS(kS) 6= ωS(−kS), ωaS(kaS) 6= ωaS(−kaS), Ω(q) 6= Ω(−q) . (28)
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FIG. 2 Schematic illustration of the phonoriton dispersion.

Lorentz reciprocity is broken due to the presence of the pump: i.e. transmission coefficients of

light or sound from left to right and from right to left are different.

Equation Eq. (26) will yield avoided crossings between light and sound dispersion, as illus-

trated in Fig. 2.

For anti-Stokes scattering these are “frequency-” avoided crossing, i.e. band gaps are formed

for frequency. For Stokes scattering these are “wave vector-” avoided crossings, i.e. band gaps

are formed for wave vectors. Physically,“wave vector-” avoided crossings mean instability, i.e.

waves with certain wave vectors are amplified exponentially due to the optomechanical heating

effect.

III. MORE READING

First observation of light scattering on sound: (Gross, 1930; GROSS, 1930).

Theory of light scattering on sound in crystals: (Benedek and Fritsch, 1966).

Scattering of excitonic polaritons on sound in crystals (Brenig et al., 1972) and arrays of

quantum wells:(Poddubny et al., 2014; Jusserand et al., 2015).

Derivation of optomechanical interactions: (Poshakinskiy and Poddubny, 2019).

Phonoritons: (Ivanov and Keldysh, 1982; Hanke et al., 1999).
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Nonreciprocity due to phonoritons: (Poshakinskiy and Poddubny, 2017).
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I. CLASSICAL REFLECTION FROM A MOVING MIRROR

Classical reflection from a moving mirror:

Consider a plane wave E(t) = E0e−iωt incident on a layer trembling as u(t) = ue−iΩt + u∗eiΩt

Layer displacement modifies the reflected wave phase by ϕ(t) = 2(ω/c)u(t)

Reflected wave up to u-linear terms

Er = rE0e−iωteiϕ(t) ≈ rE0e−iωt + 2i
ω

c
rE0

[
e−i(ω+Ω)tu︸ ︷︷ ︸
anti−Stokes

+ e−i(ω−Ω)tu∗︸ ︷︷ ︸
Stokes

]
Transmitted wave phase remains unaffected: Eτ = τE0e−iωt + 0 + 0

See [Poshakinskiy, ANP, PRX 9, 011008 (2019)]

II. DYNAMICAL CASIMIR EFFECT

Vecrtor potential

A =
∑
k

√
2π

ω
(ake

−iωt+ikz + a†ke
iωt−ikz)

∗Electronic address: poddubny@coherent.ioffe.ru
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ω′ = Ω− ω

Aout =

√
2π

ω′
(ak′e

−iω′t+ik′z + a†k′e
iω′t−ik′z)

Ideal mirror, r = −1
1√

Ω− ω
a†,out
k′ = −2iuω

c

1√
ω
ain
k

Here we took into account the fact that the outgoing wave should have k′ < 0. Hence, k′ =

|ω−Ω| = Ω−ω (Ω > ω). Hence, in the scattered field it is the a†k′e
iω′t−ik′z term that corresponds

to the left-going wave.

Vacuum fluctuations:

〈ain
k a

in,†
k′ 〉 = δkk′

Emission spectrum:

〈a†,out
k′ aout

k′ 〉 = 4
u2

c2
ω(Ω− ω)

,

n(ω) = 2
∑
k′

〈a†,out
k′ aout

k′ 〉 ≡ 8

∫ Ω

0

dω

2π

u2

c2
ω(Ω− ω) (1)

Eq. (1) agrees with Eq. (7) in [A. Lambrecht, M.-T. Jaekel and S. Reynaud, PRL 77, 615

(1996) ], see also M.-T. Jaekel and S. Reynaud, Quantum Opt. 4 39 (1992).
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Theory for superconducting qubits: J. R. Johansson, G. Johansson, C. M. Wilson, and

Franco Nori, Phys. Rev. A 82, 052509 (2010)

Review from the same group: P. D. Nation, J. R. Johansson, M. P. Blencowe, and Franco

Nori, “Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with supercon-

ducting circuits”. Rev. Mod. Phys. 84 (2012)

and recent video from Franko Nori

With feedback: Casimir-Rabi splitting, Macr`i et al., PRX 8, 011031 (2018)

https://doi.org/10.3390/app11010293
https://doi.org/10.3390/app11010293
https://www.nature.com/articles/nature10561
https://www.nature.com/articles/nature10561
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.82.052509
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.82.052509
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.84.1
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.84.1
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.84.1
https://princeton.zoom.us/rec/play/7LQByr-2aX9mG3weJy8tb7GzjlQny-7u0FQZEfS-j-uUY9PZG9A8AsvTsqx2EL8z9Krm5tGf2k9kJTTI.-5sTNeTYA6IXG027
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.011031


Lecture 5. Optomechanical interferometry

Alexander N. Poddubny

Ioffe Institute∗

(Dated: May 7, 2021)

Contents

I. Standard quantum limit 1

A. Particle 1

B. Optomechanical interferometer 2

II. Squeezed light for LIGO 3

A. Beam-splitter 3

B. Classical and quantum light 4

C. Quantum light in an interferometer 5

III. More reading 6

References 8

I. STANDARD QUANTUM LIMIT

A. Particle

Let us consider a particle with coordinate x and momentum p. Due to the Planck uncertainly

∆p∆x ≥ ~
2
. (1)

Suppose that we measure the coordinate twice at the time moments t = 0 and t = τ . The

first measurement has uncertainty ∆x0 and as a results introduces momentum ∆p = ~/(2∆x0).

∗Electronic address: poddubny@coherent.ioffe.ru
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FIG. 1 Simplified scheme of optical measurement of mechanical object position in an interferome-

ter(from Wikipedia

This momentum leads to the motion of the particle and additional uncertainty in the coordinate

measurement ∆x1 = τ∆p/m. Then we measure the position again and obtain x = (x0 + x1)/2

with the uncertainty

∆x2 =
1

2
(∆x20 + ∆x21) =

1

2
∆x20 +

~2τ 2

8∆x20m
. (2)

This expression has a minimum at

∆x = ∆x0 =

√
~τ
2m

, (3)

which is a so-called standard quantum limit (Braginskǐi, 1967).

B. Optomechanical interferometer

The same limit applies for the measurement of mirror position in a optomechanical inter-

ferometer (Caves, 1980), see Fig. 1. Suppose that laser has average power P . During the

measurement time τ the number of photons incident on a mirror is N = Pτ/~ω and the fluc-

tuation of this number is ∆N ∼
√
N . Hence, the precision of measurement of mirror position

is

∆x0 ∝ λ
∆N

N
∼ λ

√
~ω
Pτ

(4)

where λ is the light wave length. On the other hand, the radiation pressure exerts momentum

N~ω/c on the mirror with the fluctuation ∆p ∼
√
N~ω/c. Hence, the mirror moves by

∆x1 =
τ

m
∆p =

τ

m

√
Pτ

~ω
. (5)

https://en.wikipedia.org/wiki/Quantum_limit
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FIG. 2 Contributions to noise in optical measurement of mechanical object position

In order to achieve highest precision we need a balance between the two contributions Eq. (4)

and Eq. (5), as shown in Fig. 2. The Standard Quantum Limit

(∆x2)min ∼
~τ
m

(6)

is reached for

P ∼ cλm

τ 2
. (7)

The measurement time τ ∼ 10−2 sec is determined by the desired gravitational waves frequency

∼ 100 Hz.

II. SQUEEZED LIGHT FOR LIGO

The following summary is based on the reviews (Leuchs, 1988, 2002). Original idea to used

squeezed light in gravitational interferometry was proposed in (Caves, 1981). It does not allow

to surpass standard quantum limit but allows more precision for the same power. The modern

version to go beyond standard quantum limit was first presented in (Unruh, 1983).

A. Beam-splitter

Let us consider for simplicity a thin 50/50 beam splitter (Fig. 4) that satisfies two equations:

|r|2 = |t|2 =
1

2
(50/50 splitting without losses) (8)

t = 1 + r (electric dipole resonance for a thin beamsplitter) (9)
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FIG. 3 Schematics of a beamsplitter, reflection (r) and transmission (t). (b) is the same but with

different choice of phases, r′ = e7iπ/4r, t′ = e7iπ/4t

FIG. 4 Graphical solution of Eqs. (8)

The second condition is not necessary. It is easy to check that both conditions are satisfied for

r =
i− 1

2
≡ 1√

2
e3iπ/4, t =

i + 1

2
≡ 1√

2
eiπ/4 . (10)

Now it is instructive to change the phases as shown in Fig. 4(b) which means that

r′ = e7iπ/4r =
1√
2

eiπ/2, t′ = e7iπ/4t =
1√
2
. (11)

B. Classical and quantum light

We remind that for a classical oscillator

H =
p2 + ω2q2

2
= ~ω

(
a†a+

1

2

)
, p =

√
~ωi

a† − a√
2
, q =

√
~
a+ a†√

2ω
, [p, q] = −i~ (12)
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FIG. 5 Illustration of different types of classical and quantum light

For electromagnetic field the energy is defined in the same way (we disregard the polarization

and dispersion) ,

H = V
E2 +H2

8π
(13)

and the quantization can lead to E ∼ q, H ∼ p with some finite ∆p∆q ∼ ∆E∆H ≥ ~/2. Hence,

we can introduce the concept of classical and squeezed light, as well as squeezed vacuum, see

Fig. 5.

C. Quantum light in an interferometer

Formation of noise in the optomechanical interferometer is illustrated in Fig. 7. The am-

plitudes in output ports 3 and 4 are proportional to A + C and A − C, respectively. Hence,

for C = 0 (squeezed vacuum input), the vacuum noise does not contribute to the ampli-

tudes (Caves, 1981). Importantly, this idea does not take into account radiation pressure noise

which is determined by the difference of amplitudes in the arms. So the only impact of this

idea is to achieve more sensitivity for the same power. In order to beat standard quantum limit

one has also to control the phase of squeezing in order to compensate the radiation pressure

noise, see Fig. 8. In this case the radiation pressure noise is proportional to the difference of

intensities in two arms of the interferometer, i.e. it is proportional to C. This pressure leads
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FIG. 6 Interference of two beams at a beam splitter with r′ = i/
√

2, t′ = 1/
√

2.

to small change of phase in the upper arm, i.e. fluctuation of ϕ. The corresponding arrow is

shown by green color at output ϕ, it points in the direction 3π/2 − ϕ. The key point is that

the projections of the photon noise (blue and maroon arrows C) and radiation pressure (green

arrow C) on the photon amplitude direction cancel each other. This allows to beat standard

quantum limit.

III. MORE READING

• Popular book about gravitational waves and the concept of LIGO with a lot of historical

details: Kip Thorne, “Black Holes & Time Warps: Einstein’s Outrageous Legacy ”, W.

W. Norton & Company (1994)

Quantum measurement:

• Vladimir B. Braginsky, Farid Ya Khalili, “Quantum measurement”, Cambridge University

Press (1995)

• C. M. Caves, “Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferome-

ter,” Phys. Rev. Lett. 45 75 (1980)

• Caves, C. M., “Quantum-mechanical noise in an interferometer”. Phys. Rev. D, 23, 1693

(1981)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.45.75
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.45.75
https://link.aps.org/doi/10.1103/PhysRevD.23.1693
https://link.aps.org/doi/10.1103/PhysRevD.23.1693
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• W. G. Unruh, “Quantum Noise in the Interferometer Detector,” in Quantum Optics,

Experimental Gravity, and Measurement Theory, Springer US, 647 (1983)

• More modern overview of theory: H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne,

and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into

quantum nondemolition interferometers by modifying their input and/or output optics,”

Phys. Rev. D, 6522002 (2001)

• Modern experiments on LIGO: J. Aasi et al., “Enhanced sensitivity of the LIGO gravi-

tational wave detector by using squeezed states of light,” Nature Photonics, 7,613 (2013)

• Experiment beyond standard quantum limit: D. Mason, J. Chen, M. Rossi, Y. Tsaturyan,

and A. Schliesser, “Continuous force and displacement measurement below the standard

quantum limit,” Nature Physics 15,. 745 (2019)

https://link.springer.com/chapter/10.1007/978-1-4613-3712-6_28
https://link.springer.com/chapter/10.1007/978-1-4613-3712-6_28
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.65.022002
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.65.022002
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.65.022002
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.65.022002
https://www.nature.com/articles/nphoton.2013.177
https://www.nature.com/articles/nphoton.2013.177
https://www.nature.com/articles/s41567-019-0533-5
https://www.nature.com/articles/s41567-019-0533-5
https://www.nature.com/articles/s41567-019-0533-5
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FIG. 8 (Gerd Leuchs, private communication) Illustration of squeezed vacuum input with variable

squeezing phase for mutual cancellation of radiation pressure (green arrow ) and photon noise (C).
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