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Abstract

During the evolution of coupled nonlinear oscillators on a lattice, with dynamics dic-
tated by the discrete nonlinear Schr€odinger equation (DNLSE systems), two quantities
are conserved: system energy (Hamiltonian) and system density (number of particles). If
the number of system oscillators is large enough, a significant portion of the array can
be considered to be an “open system,” in intimate energy and density contact with a
“bath”—the rest of the array. Thus, as indicated in previous works, the grand canonical
formulation can be exploited in order to determine equilibrium statistical properties of
thermalized DNLSE systems. In this work, given the values of the two conserved quan-
tities, we have calculated the necessary values of the two Lagrange parameters (typically
designated β, μ) associated with the grand canonical partition function in two different
ways. One is numerical and the other is analytic, based on a published approximate
entropy expression. In addition, we have accessed a purposely-derived approximate
PDF expression of site-densities. Applying these mathematical tools, we have generated
maps of temperatures, chemical potentials, and field correlations for DNLSE systems
over the entire thermalization zone of the DNLSE phase diagram, subjected to all
system-nonlinearity levels. The end result is a rather complete picture, characterizing
equilibrated large DNLSE systems.
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1. Introduction

The dynamics of a number of periodic systems—molecular, mechan-

ical, optical, and lattice-trapped ultra-cold atoms, can be approximated by

the DNLSE. This being the case, a book (Kevrekidis, 2009), and a wealth

of scientific papers studying the properties of DNLSE-governed systems

were published over the years—(Davydov, 1973; Davydov & Kislukha,

1973; Eilbeck & Johansson, 2003; Eilbeck, Lomdahl, & Scott, 1985;

Malomed & Weinstein, 1996; Mendl & Spohn, 2015; Polkovnikov,

Sachdev, & Girvin, 2002; Rasmussen, Cretegny, Kevrekidis, & Grønbech-

Jensen, 2000; Rumpf, 2008; Rumpf, 2009) to cite just a few.

The simplest two-termDNLSE reads (Eilbeck & Johansson, 2003;Meier

et al., 2004):

i � dUm

dζ
¼ C � Um�1 + Um+1ð Þ + γ � Umj j2 � Um (1)

where ζ is the evolution coordinate (distance or time),Um(ζ) is the complex

field function of the oscillator at site m, the parameter C is the nearest-

neighbor coupling constant and γ is the unharmonic parameter. In the next

section, we present a modified dynamics equation (Eq. (3)) with the

unharmonic parameter (γ) replaced by a nonlinearity parameter (Γ) defined
as Γ≡γ/jC j.

DNLSE systems are Hamiltonian systems (Kevrekidis, 2009; Pelinovsky,

2011). The equivalent Hamiltonian from which the two-term DNLSE is

derived (designated Ha below—Eq. (5)) is made up of two “energy” terms

(Eilbeck et al., 1985; Lederer et al., 2008; Rasmussen et al., 2000)—a

tunneling energy term (Rumpf, 2008) (designated H2 below—Eq. (6))

and interaction energy term (Rumpf, 2008) (designated H4 below—

Eq. (6)). The equivalent Hamiltonian (energy), is a conserved quantity of

the (isolated) system. The other conserved quantity of the system (designated

Wa below—Eq. (7)) is density (number of particles).

The Hamiltonian-derived DNLSE equation (Eq. (1) above or Eq. (3)

below) has only two integrals of motion (conserved quantities) (Kevrekidis,

2009; Lederer et al., 2008; Smerzi, Trombettoni, Kevrekidis, & Bishop,

2002) and therefore, for a system of more than two sites, has no general
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analytic solution. Namely—no analytic expression for amplitude and phase of

each and every oscillator at every distance (time) and for every possible set of

initial excitation conditions. However, statistical properties of thermalized

systems at equilibrium are analytically predictable, given the set of initial exci-

tation conditions. Predictions of these equilibrium properties are the subject

of the present study.

A DNLSE system initially excited onto a specific point

Da¼Wa

N
, 7a¼Ha

N

� �
on a well-defined thermalization zone of the DNLSE

phase diagram (cf. Fig. 2 and Eq. (2) below) will thermalize (Rasmussen

et al., 2000). Namely, at long evolution distances all systems initially excited

onto the same point of the phase diagram (i.e., same Da,7að Þ values) are
doomed to reach the same equilibrium statistical properties, regardless of ini-

tial system-excitation details (cf. Fig. 3 below). And, as stated above, these

equilibrium statistical properties are predictable.

Many published papers discuss properties of DNLSE systems initially

excited onto the breather-forming zone (above the thermalization zone) of

the DNLSE phase diagram. Other papers typically discuss a single property

of systems initially excited onto the thermalization zone of the DNLSE

phase diagram—transition behavior (Rumpf, 2008), entropy (with focus

on breather dynamics) (Rumpf, 2009), system instability (Meier et al.,

2004), or system ground states (Levy, 2021). Characteristics of thermalized

systems such as PDFs of site-densities (amplitudes squared, designated “I”

below), temperatures, chemical potentials, and field correlations for all initial

excitation conditions and for all values of the nonlinearity parameter (Γ)
were not published in the scientific literature to-date.

Previous studies predicted PDFs and temperatures for strong sys-

tem nonlinearities based on the quantum phase approximation that jus-

tified system-entropy separation into the sum of density-entropy and a

relative-phase (θ) entropy. Entropy separation led to the derivation of

system temperatures as well as analytic expressions of equilibrium PDF

(I ) and equilibrium PDF(θ) (Levy & Silberberg, 2018; Levy, Yang,

Matzliah, & Silberberg, 2018; Silberberg, Lahini, Bromberg, Small, &

Morandotti, 2009).

Here, we have taken a rigorous approach of predicting system equilib-

rium statistics based on the thermodynamics formalism of grand canonical

ensembles (Rasmussen et al., 2000) (cf. Fig. 2 below and related text). The

thermodynamics approach allowed the extension of system-characteristics

predictions to cover the entire thermalization zone—the zone of strong sys-

tem nonlinearity as well as the zone of weak system nonlinearity.
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The grand canonical statistics is determined by two Lagrange

parameters—(β,μ). The value of each of these two parameters is uniquely

determined by the value of the two DNLSE conserved quantities—density

and energy. Once β Da,7að Þ, μ Da,7að Þð Þ are determined, equilibrium sta-

tistical properties of the system studied such as entropy, temperature, chem-

ical potential, nearest-neighbors field correlations, and PDF(I) can be

calculated.

In the study presented here, we have determined (β,μ) given Da,7að Þ in
one of two ways. First, by numerically inverting thermodynamics partial

derivatives. Such 2D numerical inversion is challenging and could some-

times introduce uncertainty errors. Second, by finding βexp through a direct

execution of an analytic expression.We have derived the analytic expression

from an approximate analytic expression of system entropy published in

Rumpf (2009). Once the value of βexp is determined, the value of μexp is cal-
culated through solving a one parameter implicit integral equation.

In addition to finding equilibrium PDF(I) by rigorous numerical calcu-

lations, we have gone in this study through deriving an approximate analytic

PDF(I) expression. Our derivation here is based on approximating the ker-

nel associated with the partition function in the grand canonical formalism

(cf. Section 8 and Appendix 1). The easily executed approximate analytic

PDF(I) expression “works” well on a large area of the thermalization zone

and brings additional system-characteristics-related insights. For example—

the identification of system’s temperature with the variance of the system’s

PDF(I).

Following is a summarizing list of the mathematical tools we have

employed in the present study to quantitatively describe key equilibrium

properties of thermalized DNLSE systems under all initial excitation

conditions:

• Simulations of system evolution: given the initial amplitude and phase of

each and every oscillator in the array, execute the DNLSE (Eq. 3 below)

to stationary-statistics distances. Next, calculate equilibrium PDFs of

densities and of relative phases. Clearly, PDFs calculated this way faith-

fully describe the PDFs of actual thermalized systems.

• The rigorous grand canonical statistics suggested in Rasmussen et al.

(2000). This mathematical tool requires numerical inversion of two ther-

modynamic equations to compute exact values of the two associated

Lagrange parameters (β,μ). Small numerical errors in the values deter-

mined this way often creep-in.

• The grand canonical statistics with approximate values of the two associ-

ated Lagrange parameters (βexp,μexp). The parameter βexp is determined
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by an analytic expression derived from an approximate analytic expres-

sion for system entropy published in Rumpf (2009) (hence the subscript

“exp,” standing for expression). The parameter μexp is determined next by

numerically solving a single parameter implicit equation.

• Previously published analytic expressions for PDF(densities) and PDF(rel-

ative phase-angles). These analytic expressions hold for high nonlinearity

DNLSE systems (strong nonlinearity of the oscillators and/or high average

of oscillator amplitudes) (Levy et al., 2018; Levy & Silberberg, 2018).

• Approximate analytic expression for PDF(densities). During the present

study, we have derived an approximate analytic expression to PDF(den-

sities) of equilibrated DNLSE systems under a second-order approxima-

tion to the kernel of the grand canonical partition function (cf. details in

Appendix 1). PDFs calculated through the second-order-derived ana-

lytic expression well match the evolution-simulated PDFs for a surpris-

ingly large class of equilibrated DNLSE systems.

In our dynamics-governing DNLSE (Eq. (3)), and unlike many DNLSE

versions of other studies, we have left the oscillator fields (Um
0 s) dimensional

and left the nonlinearity parameter (Γ) dimensional as well. For example, if

the DNLSE system is an array of proximity optical waveguides then the

dimension of the complex site functions squared is typically power/volume.

In this case, the dimension of “energies” is also power/volume. The dimen-

sion of the nonlinearity parameter (Γ), and the dimension of the Lagrange

parameter β is inverse (power/volume). In this case, the dimension of Eq. (3)

below is sqrt (power/volume). This amplitude-nonlinearity separation

allowed us here the study of the effect of each of the three variables—system

density Dað Þ, system energy 7að Þ, and the value of the nonlinearity param-

eter (Γ) independently, keeping the other two variables constant.

In the next three sections, we elaborate on the process of system thermal-

ization and on the related mathematics. In the sections that follow, wemath-

ematically analyze and graphically demonstrate the characteristics of

equilibrated DNLSE systems: temperature, chemical potential, field corre-

lations and PDF(densities).

Let us start then in discussing the thermalization of DNLSE systems.

2. Thermalization of DNLSE systems

In this stage-setting section, we describe the DNLSE phase diagram,

discuss in more details the grand canonical formulation as applied to DNLSE

systems, and present a specific thermalization example. The thermalization

example consists of showing evolution-simulated and analytically predicted
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equilibrium PDFs for two systems. Both systems are placed onto the same

location of the phase diagram (same Da,7að Þ, see below) but each system

is launched by a unique set of initial excitation conditions.

The two conserved quantities, most frequently appearing in this study,

are the intensive site-averaged quantities. Namely—system density Dað Þ and sys-
tem energy 7að Þ. The two extensive conserved quantities are thus total system

density—Wa¼N �Da, and total system energy—Ha¼7a �N , where N is the

number of oscillators in the array.

A DNLSE phase diagram (not to be confused with “phase space”) can

now be constructed on the Da,7að Þ plane (cf. Fig. 1).
The DNLSE phase diagram is divided into three zones—an inaccessible

zone, a thermalization zone, and a negative temperature (or a “breather-

forming”) zone. The thermalization zone is limited from below by a zero

temperature line 7a0ð Þ and is limited from above by an infinite temperature

line 7a∞ð Þ (Rasmussen et al., 2000). Crossing the thermalization zone is an

intermediate Li line (Levy & Silberberg, 2018). The mathematical expres-

sions for these three lines are:

Fig. 1 Phase diagram for DNLSE systems with a positive nonlinearity parameter
(Γ¼ +1.0). The magenta area is the thermalization zone, limited at the bottom by
the zero temperature line (or the “ground state line”—7a0), and limited at the top
by the infinite temperature line 7a∞ð Þ. Crossing the thermalization zone is an interme-
diate Li line. The colored circular disk on the Li line represents a systemwith all oscillators
initially excited at a uniform amplitude (¼ ffiffiffi

6
p

) with random phases in the full range of
[0, 2 �π). The dark magenta area above the thermalization zone is a negative tempera-
ture (or “breather-forming”) zone. The study presented here is devoted solely to the
equilibrium properties of DNLSE systems initially excited onto the thermalization zone.
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7a0 Dað Þ¼�2 �Da +
1

2
�Γ �D2

a

Li Dað Þ¼ 1

2
�Γ �D2

a

7a∞ Dað Þ¼Γ �D2
a (2)

The Li line is characterized by two unique properties. The first property is

related to system initial excitation conditions. To be on the Li line, systems

can be initially excited with uniform amplitudes and random phases in the

full range of [0,2 �π). As the window from which random phase-angles are

drawn is getting narrower and narrower, same-amplitude systems are placed

closer and closer to the ground state line 7a0ð Þ. To place a system above the

Li line, initial excitation amplitudes must be spread apart, more and more so

getting closer and closer to the infinite temperature line 7a∞ð Þ. The second
property is related to two limiting cases. The Li line becomes the lower

(upper) limit of the thermalization zone as the nonlinearity parameter (Γ)
goes to infinity (zero).

Following Levy and Silberberg (2018), we refer to the thermalization

zone below the intermediate Li line as a cold zone and refer to the thermal-

ization zone above the intermediate Li line as a hot zone. In the coming sec-

tions, we show quantitatively that indeed system temperatures, chemical

potentials, field correlations, and PDFs of densities and relative

phase-angles, change moderately for systems on the cold zone and change

drastically for systems on the hot zone.

The phase diagram of Fig. 1 is plotted for a positive nonlinearity param-

eter (Γ>0). In Levy (2021) the Hamiltonian corresponding to a positive

nonlinearity parameter is referred-to as a positive Hamiltonian. Here, without

loss of generality, we consider only positive Hamiltonian systems, givenmir-

ror equivalence. Namely—statistical properties of a system on a point

Da,7a; Γ> 0ð Þ are equal to the properties of a system on its mirror image

position— Da, �7a; Γ< 0ð Þ. (In Rumpf (2008), the nonlinearity parame-

ter is altogether normalized away, i.e.,—its value is fixed at a positive unity.)

Schematic of a grand canonical setting as applied to a large array of

coupled oscillators is depicted by Fig. 2. A large portion of the array—the

“open system” is in density contact and in energy contact with the rest of

the array—the “bath.” At equilibrium, the ensemble averages Da,7að Þ
of the open system take on the values of the two conserved quantities

Da,7að Þ of the bath, determined as soon as the entire array is initially
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excited. Specifically, the values of the Lagrange parameters—β Da,7að Þ,
μ Da,7að Þ of the grand canonical partition function are fixed such that

hDa β, μð Þi¼Da and h7a β, μð Þi¼7a (Claudine, 2006). Once β and μ are

determined, equilibrium statistical properties of the entire (isolated) array

can be analytically predicted.

Systems on the thermalization zone evolve to equilibrium (Rasmussen

et al., 2000). Entropy rises to its maximum and stays there (Levy, 2021),

and other system statistical properties such as tunneling energy, interaction

energy, PDFs of densities and of relative phase-angles, and field correlations,

reach a stationary value or shape. These stationary statistical properties are

predictable, based on the Gibbsian formalism applied to a grand canonical

ensemble (Rasmussen et al., 2000).

Note on passing that mathematically, the family of zero entropy discrete

planewave states satisfying theDNLSEwillNOT thermalize.Not even those

that are launched onto the thermalization zone. However, under small added

noise these states will evolve to reach their expected statistical equilibrium. In

the preceding chapter, we have shown that under a tailored perturbation pre-

serving the two DNLSE conserved quantities, all excited plane wave states

(with energy above ground state energy) are entropy-unstable (Levy, 2021).

Back to thermalized systems, two PDF(I) predictions of evolved-to-

stationary-statistics DNLSE systems are shown in panel B of Fig. 3. One

Fig. 2 Grand canonical statistics applied to a large array of coupled oscillators.
A significant portion of the array is (artificially) assumed to be an “open system” in
contact with the rest of the oscillators in the array. At equilibrium, through diffusion-
exchange of energy and density between the “bath” and the open system, the grand
canonical ensemble averages ðhDai, h7aiÞ settle on values equal to the known
conserved density Dað Þ and conserved energy 7að Þ values of the entire excited array
(Claudine, 2006). This equality dictates the values of the Lagrange parameters—
β Da ,7að Þ,μ Da ,7að Þ. Once β and μ are accurately determined, equilibrium statistical
properties of the entire (isolated) array can be faithfully derived.
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curve by previously published analytic expressions assuming strong system

nonlinearity (Levy & Silberberg, 2018). Another curve by the rigorous

grand-canonical statistics as discussed in Section 4. Thus, the example of

Fig. 3 shows system thermalization and proves that statistical properties of

a thermalized DNLDE system at equilibrium are analytically predictable.

3. Dynamics and conserved quantities

The evolution dynamics of a 1d array ofN coupled unharmonic oscil-

lators is given by Eq. (1) above. Throughout this work, without loss of gen-

erality, we will use the notation of optics (evolution coordinate ζ as distance,
or z as a normalized distance, with coupled optical waveguides in mind). In

this study, we assumeN to be very large and subject the equation to periodic

boundary conditions (Um+N¼Um). The equation consists of two terms—a

linear hopping term, and a cubic on-site nonlinear term.

Fig. 3 Thermalization of DNLSE systems. (A) PDF(I) curves of initial excitation densities
of two DNLSE systems. Considering the DNLSE phase diagram, both systems are
initially excited onto the same thermalization-zone point: Da ,7að Þ¼ 16:0;147:2ð Þ.
(B) Equilibrium PDF(I) curves of the two same-point-initially-excited systems. The red
and blue points are respective PDFs(I) calculated by evolution-to-equilibrium simula-
tions (averaged over six realizations). The shown two practically identical red and blue
simulated curves prove system thermalization, independent of initial excitation details.
The continuous yellow curve and the dashed green curve are theoretically-predicted
equilibrium PDF(I) curves for the given Da,7að Þ point of the thermalization zone.
The yellow curve by previously published analytic expressions assuming strong system
nonlinearity (Levy & Silberberg, 2018). The dashed green curve by the rigorous
grand-canonical statistics as discussed in Section 4. The two analytic PDF(I) curves
matching the evolution-simulated PDF(I) curves prove predictability of equilibrium sta-
tistical properties for the shown thermalized DNLSE system.
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Several options for normalizing Eq. (1) are available (Eilbeck &

Johansson, 2003; Kevrekidis, 2009) and are often applied (Polkovnikov

et al., 2002; Silberberg et al., 2009). Here, as in Levy (2021), we shall elim-

inate the coupling constant from Eq. (1) except for its sign, following a divi-

sion by jC j

i � dUm

dz
¼ signC � Um�1 + Um+1ð Þ + Γ � Umj j2 � Um

z ≡ Cj j � ζ; signC ≡ sign Cð Þ; Γ ≡ γ
Cj j (3)

In Eq. (3), the amplitudes Um
0s are dimensional. The evolution coordinate

(z)—“distance” (or “time”) is dimensionless. The dimension of the non-

linearity parameter Γ is [Um]
�2. System nonlinearity is expressed by the

dimensionless product of the nonlinearity parameter and the conserved sys-

tem density i:e.; as Γ �Dað ÞÞð . If signC¼ sign (Γ)/� sign (Γ) then Eq. (3) is a

“focusing”/“defocusing” version of the DNLSE systems (Kevrekidis, 2009;

Rebuzzini, Artuso, Fishman, & Guarneri, 2007).

It is convenient at this point, and indeed done in almost every DNLSE

study, to perform a Madelung transformation on the complex canonical

coordinates (Um, i �Um∗) into the set of density-angle real canonical polar

coordinates: (Um, i �Um∗)! (Im,ϕm). The complex field functions

(Um
0 s(z)) of Eq. (3) take then the form:

Um ¼ um � ei�ϕm ; um ≡
ffiffiffiffiffi
Im

p
; θm ≡ ϕm � ϕm+1 (4)

Eq. (3) can be derived from an equivalent Hamiltonian Hað Þwhich is a con-
served quantity, associated with the system’s time translation invariance

(Pelinovsky, 2011; Roberts, 2020)

Ha ¼
XN
m¼1

signC � U∗
m � Um+1 + Um � U∗

m+1

� �
+

Γ
2
� Umj j4

n o
(5)

The variables (Um, i �Um∗) are canonical variables. Adopting the assignment

qm¼Um; pm¼ i �Um∗, Eq. (3) is derived from the Hamiltonian Eq. (5) as
dUm

dz
¼ ∂Ha

∂ i�U∗
mð Þ.

In the polar variables (Im,ϕm) of Eq. (4), the DNLSEHamiltonian Eq. (5)

takes on the form:
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H2 zð Þ ¼ signC �
XN
m¼1

2 � umum+1 � cos θm ; H4 zð Þ ¼
XN
m¼1

Γ
2
� u4m

Ha ≡H2 zð Þ + H4 zð Þ
72 zð Þ≡H2 zð Þ

N
; 74 zð Þ≡H4 zð Þ

N
; 7a≡

Ha

N
(6)

The Hamiltonian energies— H2 zð Þ,H4 zð Þð Þ are the nearest-neighbor

tunneling energy and the on-site interaction energy, respectively. Obviously,

both H2 zð Þ and H4 zð Þ vary with propagation distance, but their sum does

not. During DNLSE evolution then, an energy diffusion process transfers

energy from H2 zð Þ to H4 zð Þ or the other way around.

Another conserved quantity of DNLSE systems, thanks to the system’s

invariance with respect to global phase rotations (Kevrekidis, 2009;

Pelinovsky, 2011), is “density” Wað Þ(or norm, or number of particles) given by:

Wa¼
XN
m¼1

Im zð Þ ; Da≡
Wa

N
(7)

As stated above, system density and system energy Da,7að Þ form a plane

over which the DNLSE phase diagram is graphically represented (cf. Fig. 1).

4. Grand canonical partition function and PDF
of site-densities

The grand canonical partition function Z β, μð Þð Þ is given as

(Rasmussen et al., 2000):

Z β, μð Þ ¼
Z ∞

0

Z 2π

0

YN
m¼1

dϕm � dIm � e�β� H+μ�Wð Þ (8)

Following integration over the phase variable (ϕm), the expression for the

partition function is reduced to

Z β, μð Þ ¼ 2πð ÞN �
Z ∞

0

YN
m¼1

K Im, Im+1ð Þ � dIm

K Im, Im+1ð Þ ≡ e �β� μ
2
�Im+Γ

4
�I2mð Þ�β� μ

2
�Im+1+Γ

4
�I2m+1ð Þ½ � � I0 2 � β � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Im � Im+1
p� �

(9)

where I0 ∙ð Þ is the zero order modified Bessel function of the first kind, sat-

isfying for integer n (Weisstein, n.d.): I n zð Þ ¼ 1
π �

R π
0
ez� cos θ � cos n � θð Þ � dθ.
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The nonnegative symmetric kernel K x, yð Þð Þ of Eq. (9) satisfiesR K x, yð Þ � vi xð Þ � dx ¼ λi � vi yð Þ. If the array of oscillators is large enough

then the partition function, to a very good approximation, is given by

the largest eigenvalue of the kernel (Rasmussen et al., 2000):

Z β, μð Þ ffi 2 � π � λ1 β, μð Þ½ �N (10)

and the PDF(I) of site-densities PI Ið Þð Þ is given by the square of the eigen-

function (v1(I)) associated with the largest eigenvalue (Rasmussen et al.,

2000):

PI Ið Þ ¼ v21 Ið Þ (11)

For numerical calculations, we treat the kernel (K x, yð Þ) as a 2D matrix on a

Δ-spaced grid and solve for λi and vi:

K x, yð Þ � Δð Þ � vi ¼ λi � vi (12)

where now vi are the normalized eigenvectors of the matrix K x, yð Þ � Δð Þ.
The kernel K x, yð Þ is written explicitly as:

K x, yð Þ ¼ e �β� μ
2
�x+Γ

4
�x2ð Þ�β� μ

2
�y+Γ

4
�y2ð Þ½ � � I0 2 � β � ffiffiffiffiffiffiffiffi

x � yp� �
(13)

Two sets of equations relate the two conserved quantities Da,7að Þ to the

two Lagrange parameters of the grand canonical partition function (β,μ).
The first set is the average-calculating integrals

Da¼hDaðβ,μÞi¼
Z ∞

0

I � v21 β, μ; Ið Þ � dI

7a¼ 7a β, μð Þh i¼ Ha β, μð Þh i
N

(14)

The second set is the set of partial derivatives of the grand canonical partition

function (Claudine, 2006):

Da¼hDaðβ,μÞi¼�1

β
�∂ ln λ1ðβ,μÞ½ �f g

∂μ

7a¼ 7a β, μð Þh i¼�∂ ln λ1 β, μð Þ½ �f g
∂β

�μ �Da β, μð Þ (15)

In Eqs. (14) and (15), v1
2(β,μ; I), Ha β, μð Þh i, and λ1(β,μ) are each a 2D map

calculated through Eqs. (12) and (11). Inverting (numerically) one of these

two important equation sets yields the exact value of β Da,7að Þ,μ Da,7að Þ.
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Once (β,μ) are uniquely determined, exact equilibrium statistical properties

of a system excited onto a point Da,7að Þ of the thermalization zone can be

determined.

In the following sections we present maps of temperatures, chemical

potentials, and field correlations, for equilibrated DNLSE systems. Map cal-

culations cover the entire thermalization zone and hold for all system non-

linearity levels. The maps reveal, for example, the universality property of

field correlations, and illuminate the inverse relation between system tem-

peratures and field correlations. Further, we present here-derived analytic

expressions (cf. Appendix 1) that well approximate the grand canonical par-

tition function and the PDF of site-densities on a large portion of the

thermalization zone.

We start with the temperature of a DNLSE system.

5. Temperature of a DNLSE system

This temperature section consists of three parts. In the first part, we

rigorously derive an expression for the temperature of a DNLSE system.

In the second part, we present an analytic expression for the temperature

following an entropy expression published in Rumpf (2009). The third part

is devoted to graphical illustrations.

Exact expression. Temperature of an equilibrated DNLSE system is calcu-

lated through the energy derivative of Gibbs entropy. The Gibbs entropy

equation relates the entropy of a system to the probability distribution of

the microstates (Popovic, 2017). Applied to the grand canonical ensemble

considered here, continuous Gibbs entropy is given as (Rumpf, 2008;

Silberberg et al., 2009):

S β, μð Þ ≡ � k �
Z ∞

0

Z 2π

0

P β, μð Þ � ln h � P β, μð Þ½ �dNI � dNθ (16)

where k is the Boltzmann constant (later on to be set at dimensionless unity).

The integration sign dNI stands for
Q

1
NdIm and similarly for dNθ. The value

of the scale parameter h, with units of energyN, is set at one.

The probability density of any given state P I1, I2,…IN ,θ1,θ2;…ð
θN ;β,μÞ is

P I1, I2,…IN , θ1, θ2,…θN ; β, μð Þ ¼ 1

Z β, μð Þ � e
�β� H+μ�Wð Þ (17)
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Note the use of the pair (Im,θm) (cf. Eq. (4)) in the entropy expression (16)

with the probability density Eq. (17) (Rumpf, 2008; Silberberg et al., 2009)

and not the use of the canonical pair (Im,ϕm).

Inserting Eq. (17) into Eq. (16) and working out the integral using

Eq. (10):

1

k
�S β, μð Þ¼N � ln 2 �π �λ1 β, μð Þ½ �+ β �N � 7a + μ �Dah i (18)

Defining site-averaged system entropy s¼S/N, setting k¼1, and using

hDa β, μð Þi¼Da; h7a β, μð Þi¼7a, we arrive at:

s β, μð Þ¼ ln 2 �π �λ1 β, μð Þ½ �+ β � 7a + μ �Dað Þ (19)

Since the Lagrange multipliers (β,μ) are each a function of Da,7að Þ,
Eq. (19) for the site-averaged system entropy (s) rigorously reads:

s Da,7að Þ¼ ln 2 �π �λ1 Da,7að Þ½ �+ β Da,7að Þ
� 7a + μ Da,7að Þ �Da½ � (20)

In the present study, we adhere to the definition of DNLSE system temper-

ature as put forward in Levy and Silberberg (2018):

TDNLSE Da,7að Þ≡ Γ
∂s Da,7að Þ

∂7a

� ��1

Da

(21)

Taking the derivative of s Da,7að Þ given by Eq. (20) (multiply by Γ and

invert later), we arrive at the following three term expression (keeping

Da fixed):

∂s 7að Þ
∂7a

¼ ∂ ln λ1 7að Þ½ �
∂7a

+Da �∂ β 7að Þ �μ 7að Þ½ �
∂7a

+ β 7að Þ (22)

Somewhat surprisingly, as we have shown numerically, for all Da,7að Þ
points of the thermalization zone of the DNLSE phase diagram, the first

two terms of Eq. (22) cancel out:

∂ ln λ1 7að Þ½ �
∂7a

+Da �∂ β 7að Þ �μ 7að Þ½ �
∂7a

¼ 0 (23)

So that after multiplying by Γ and inverting we are left with

TDNLSE Da,7að Þ≡ Γ
∂s Da,7að Þ

∂7a

� ��1

Da

¼ 1

β Da,7að Þ �Γ (24)
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Down below we use just “T” for the exact TDNLSE given by Eq. (24).

The dimension of the Lagrange parameter β is the inverse of the

equivalent-Hamiltonian dimension, i.e., energy�1. Similarly, the dimension

of the nonlinearity parameter Γ is also energy�1. The dimension of the tem-

perature of a DNLSE system is thus energy2. Note that energy2 is also the

dimension of the variance of PDF(I).

Analytic expression. The author of Rumpf (2009) derived an expression

for system entropy that is an approximation in the center of the thermaliza-

tion region, and is exact at the margins.Modifying the derived expression (to

explicitly include the nonlinearity parameter (Γ)) and taking the energy

derivative (at constant density—Eq. (21)) we arrive at the analytic

expression:

Texp Da,7að Þ¼ 1

Γ
�
4 � Da +

7a∞ Dað Þ
4

� �2

�Δh2a Da,7að Þ
2 �Δha Da,7að Þ

7a∞ Dað Þ≡Γ �D2
a ; Δha Da,7að Þ≡7a∞ Dað Þ�7a (25)

From Eqs. (24) and (25) the Lagrange parameter βexp is determined and then

the other Lagrange parameter—μexp, is calculated through solving a one

parameter implicit equation given by the integral Eq. (14):

Da βexp, μexp

� �D E
�Da¼

Z ∞

0

I � v21 βexp, μexp; I
� �

� dI�Da¼ 0 (26)

Once (βexp,μexp) are determined, system PDF(I) can be numerically com-

puted through Eq. (12).

On the Li line (Eq. 2), Eq. (25) is reduced to a particularly simple

expression

Texp,Li
Dað Þ¼ 4+ 2 �Da �Γ

Γ2
(27)

Thus, if 2 �Da �Γ≫ 4 then the temperature along the Li line is the straight

line 2 �Da=Γ, in agreement with Levy and Silberberg (2018). If, on the

other hand, 2 �Da �Γ≪ 4 then the temperature along the Li line is indepen-

dent of system density Dað Þ and goes to infinity with Γ!0 as Γ�2.

Consulting Eq. (25), it is clear that in general (not only on the Li line) as

Γ!0 temperatures of systems on all points of the thermalization zone

(except for systems in the ground state) go to infinity. PDFs(I) on the other

hand are still of a finite width (see, for example, panel A of Fig. 17).
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Twomathematical methods are at our disposal then to calculate the tem-

perature of a DNLSE system initially excited onto a Da,7að Þ point on the

DNLSE phase diagram. Onemethod—Eq. (24)—involves numerical calcu-

lation of a λ1(β,μ) map (Eq. 12) and finding (β,μ) to satisfy the partial deriv-
atives of Eq. (15). Mathematically this numerical procedure should yield the

exact temperature (Eq. 24). Practically, a certain uncertainty in the deter-

mined value creeps-in as the vicinity of the minimum of the maps involved

is rather shallow. The other method is a direct execution of the analytic

expression (25). In the graphical illustrations below, we use both ways as

the case may be.

Graphical illustrations. Temperature characteristics of equilibratedDNLSE

systems such as temperature dependence on system energy (exponential-

like), or dependence of temperature on the value of the nonlinearity coeffi-

cient (inverse relations) are illustrated by Fig. 4 through Fig. 10.

In Fig. 4, we show that temperatures calculated analytically (Eq. (25))

reasonably approximate the rigorously determined system temperatures

(inversion of expressions (15) to determine β Da,7að Þ).
The curves of Fig. 5 show the rise of temperatures with system energy at

a fixed system density (traveling vertically on the phase diagram). Initially

temperatures rise linearly with energy, going to kind of an exponential rise

to infinity for systems initially excited with higher and higher energies. Note

the temperature “restriction” effect of increased system nonlinearity

Γ �Dað Þ.
The next two figures—Fig. 6 and Fig. 7 show equilibrium temperatures

for systems initially excited (at z¼0) onto the intermediate (Li) line: uniform

amplitudes, um ¼ ffiffiffi
2

p
for all m, and random phases in the full range of

[0,2 �π). The figures show the sharp rise of system temperature as the value

of the nonlinearity parameter (Γ) is reduced. Note that as Γ!0 the infinite

temperature line (ha∞) gets closer and closer to the intermediate Li line

(where the system in question resides), until the two lines merge at Γ¼0

and system temperature is infinitely high (Fig. 7). It is fair then to reach

the very intuitive conclusion that the energy-distance of a system from

the ha∞ line is a strong indication to its temperature: shorter distance—

higher temperature.

At weak system nonlinearities, the shape of PDFs(I) deviate from a pure

Gaussian shape. In addition, the value of system temperature no longer

coincides with the “variance” (the variance of an untruncated Gaussian)

of the PDF(I), but rather deviates to the high side. This is shown by

Fig. 8 and by Fig. 9.
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The last figure of this temperature section—Fig. 10—presents two maps

of log-temperatures for DNLSE systems on the low-nonlinearity portion of

the thermalization zone (Γ �Da of order unity). Shown temperatures were

calculated analytically (Eq. 25). The two maps presented here are comple-

mentary to a temperature map for a stronger nonlinearity portion of the

thermalization zone, presented in an already-published study (Levy &

Silberberg, 2018).

Fig. 4 Temperatures of equilibrated DNLDE systems. Three of the four panels show tem-
peratures on a log scale vs system energy at a fixed system density as marked. Two
curves are shown on each of the three panels. The discrete blue dots on the blue
curve, showing exact temperatures, were calculated through inversion of the partial
derivatives of Eq. (15). The magenta curves were calculated by the analytic expression
(25). The blue-green-red vertical lines designate the crossings of the 7a0;Li ;7a∞
lines, respectively (cf. Eq. (2)). The lower-right panel shows three curves of P I Ið Þ
corresponding to the two marked points on the lower left panel. The red-points curve
is the result of simulations, evolving the system to equilibrium (averaged over 16 real-
izations). The green curve, pretty much following the red-points curve, corresponds to
the green point on the left panel and was calculated through the exact procedure
(Eqs. 15 and 12). The cyan curve corresponds to the cyan dot on the left panel and
was calculated by the analytic expression Eq. (25). Generally, the figure indicates that
whereas the temperature values predicted analytically are approximate, their general
dependence on system energy and system density follows the exact-temperature
dependence.
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Fig. 5 Temperature vs system energy (Eq. 25) at a fixed system density Da ¼ 2:0ð Þ, for
two values of the nonlinearity parameter (Γ¼0.3;1.0). Energy range for both Γ values is
7a0 + 0:01 �Δha to 7a0 + 0:95 �Δha. Vertical lines as in Fig. 4. Note the very high system
temperatures at the low Γ value.

Fig. 6 Temperatures and PDFs(I) for a system on the Li line having a fixed, relatively
low, system density Da ¼ 2:0ð Þ. Temperatures and PDFs(I) are shown for three dif-
ferent values of the nonlinearity parameter (Γ¼3.0;1.0;0.3). Top left panel shows
analytically calculated system temperature: Texp¼1.78; 8.0; 57.8, respectively. The
other three panels show simulated PI(I) curves by magenta dots corresponding to the
three values of the nonlinearity parameter as indicated by the black arrows. The cyan cur-
ves were numerically calculated (Eq. 12 given (βexp,μexp) (Eqs. 24–26). The dark blue curve
on the lower left panel is an exact PDF(I) (Eqs. 15 and 12). The figure shows the very strong
dependence of system temperature on the value of the nonlinearity parameter Γ, for a
system on the Li line, characterized by a relatively low system density of Da ¼ 2:0.



Fig. 7 Equilibrium distribution of densities PI Ið Þð Þ for a system on the Li line
withDa ¼ 2:0ð Þ at zero system nonlinearity Γ �Da ¼ 0ð Þ. The left-panel-shown densities
distribution P I Ið Þð Þof the oscillator array is a decaying exponent (Silberberg et al., 2009),
corresponding to an infinite system temperature (cf. Eqs. (25) and (27)). The right panel
shows the position of the system on the DNLSE phase diagram. Note the merging of the
7a∞ Dað Þ line with the Li Dað Þ line (Eq. 2).

Fig. 8 Equilibrium distribution of site-densities for a weak system nonlinearity
Γ �Da ¼ 0:6ð Þ and a very cold system (very close to the ground state line, see the inset).
The simulatedP I Ið Þ is shown by the cyan-colored dots. Three continuous colored curves
are overlaid. Blue—the exact theoretically predicted P I Ið Þcurve for the specific point on
the phase diagram Da ,7að Þ¼ 0:6;�0:95ð Þ½ � at Γ¼1. Red—a perfect-Gaussian least-
mean-squared fitted to the blue curve. The figure shows then that the equilibrium
PDF(I) is NOT everywhere on the phase diagram a perfect, possibly-truncated,
Gaussian. Or, to make a positive statement, at weak nonlinearities and low tempera-
tures, the shape of the distribution of DNLSE site-densities may deviate from a perfect
possibly-truncated Gaussian. At strong nonlinearities, the equilibrium distribution
of site-densities everywhere on the thermalization zone of the DNLSE phase diagram
is a pure possibly-truncated Gaussian (Levy & Silberberg, 2018 and Section 8). Light
green—a Gaussian with variance equals to the temperature of the system
{TDNLSE Da,7að Þ¼ β Da ,7að Þ �Γð Þ�1, Eq. (24)}. At weak nonlinearities then, system
temperature may be significantly larger than the “variance” of the distribution of
site-densities (see also Fig. 9).



Fig. 9 Equilibrium distributions of site-densities (PI Ið Þ) for weak nonlinearities and very
cold systems, all at system density ofDa ¼ 1. Value of the nonlinearity coefficient for [(A
and D), (B and E), (C and F)] is sequentially increased as Γ¼ (0.3,1.0,3.0), respectively.
Each panel of the top row shows four curves: magenta—simulated-to-equilibrium
PDF(I). Blue—exact theoretically predicted equilibrium PDF(I). Dashed light-blue—fit
of a Gaussian curve to the theoretical PDF(I) curve (very small deviation in A and close
match in B and C). Light green—a Gaussian with variance equal to the temperature of
the system (Eq. 24). Comparing the green curves to the other curves of each panel,
going from A to C, we see how the large difference of temperature vs variance of
the PDF(I) at low system nonlinearity gradually shrinks as the value of the nonlinearity
coefficient is increased. The panels of the bottom row show the position of the analyzed
systems on the respective phase diagrams.

Fig. 10 Maps of log temperatures on a weak nonlinearity portion (system nonlinearity
of order unity) of the thermalization zone. Left: Γ¼0.3. Right: Γ¼1.0. The maps were
calculated analytically (Eq. 25). The yellow lines crossing a green area on both maps
mark the respective Li lines. The dark lines crossing along the top of the green area
on the left map and crossing the blue area on the right map are isotherm lines,
having—as shown—a concave shape. These low nonlinearity maps complement a tem-
peraturemap for a stronger nonlinearity portion (system nonlinearity greater then order
unity) of the thermalization zone presented in an already-published study (Levy &
Silberberg, 2018).



With Fig. 10 our discussion of system temperatures is concluded. We

proceed now to discuss the associated chemical potentials of these

equilibrium-reached DNLSE systems.

6. Chemical potentials of equilibrium-reached DNLSE
systems

The multiplier μ in the grand canonical partition function (Eq. 8) is

introduced in analogy with a chemical potential to ensure conservation of

total system density Wað Þ (Rasmussen et al., 2000). Note that here, different

from the standard thermodynamic chemical potential that has a dimension of

physical energy (Baierlein, 2001), the equivalent chemical potential intro-

duced in Eq. (8) is dimensionless.

Back to conservation of total system density—indeed, we calculate the

value of the density-conserving chemical potential μexp Da,7að Þ
� �

for a

system at Da,7að Þ by solving the one parameter implicit integral Eq. (26)

to equate the known system density Dað Þ with its computed average

Dah ið Þ. Eq. (26) is solved with a known βexp, as determined by the analytic

expression (25) (and applying Eq. (24)). We thus designate the so-calculated

chemical potential by the subscript “exp.”

The next three figures highlight key characteristics of the chemical

potential of systems initially excited onto the thermalization zone of the

DNLSE phase diagram and evolved to equilibrium.

The curves of Fig. 11 show the dependence of equilibrium chemical

potential on system energy for fixed system density as marked (going up ver-

tically on the phase diagram). The two sets of curves were calculated for two

different values of the nonlinearity parameter (Γ¼0.3;1.0). Moving up in

energies, the curves show fast rise of chemical potential values for high sys-

tem energies, but, interestingly, show slow fall of values for system energies

close to the ground state energy 7a0ð Þ.
The two panels of Fig. 12 reveal an interesting dependence of the DNLSE

chemical potential on systemdensity. The panels show that chemical potential

values plotted against system density for systems with energies at a fixed ratio

(qh) of the total energy span 7a Dað Þ¼7a0 Dað Þ+ qh �Δha Dað Þð Þ form a

straight line. Not surprising, starting value (for a near-zero density) and slope

of a straight line depend on the value of the nonlinearity parameter (cf. left

panel vs right panel). Such regular dependence could provide a clue for deriv-

ing an independent analytic expression to calculate equilibrium chemical

potentials of DNLSE systems (not done in the present study).
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Fig. 11 Chemical potential (μexp) as a function of system energy for a fixed system den-
sity Da ¼ 2:0ð Þ. Colored vertical lines as in Fig. 4. Two curves are shown, corresponding
to two values of the nonlinearity parameter as marked. Somewhat like temperature,
values of the chemical potential rise sharply as system energy 7að Þ gets closer to the
infinite temperature line 7a∞ð Þ. Like the value of system temperature, the value of
the chemical potential vary strongly with the value of the nonlinearity parameter (Γ).
Interestingly, unlike temperature curves, the rise of the chemical potential curve with
system energy is not monotonic. At small system energies, close to the ground state
energy, chemical potential values are shown to decrease with system energy before
the onset of a monotonic rise.

Fig. 12 Chemical potential (μexp) as a function of site-averaged system density for four
qh-values (the parameter qh designates a fraction of the energy span—Δha, i.e.,
7a Dað Þ¼7a0 Dað Þ+ qh �Δha Dað Þ). Bottom to top—(qh¼0.1,0.5,0.9,0.95) as marked.
Left: Γ¼0.3. Right: Γ¼1.0. The blue dots were numerically calculated by solving the
one parameter implicit integral (Eq. 26). The fitted straight green lines, each coincides
with the first and last data point of the respective qh curve. It is quite illuminating to
realize that for a fixed qh value, the values of the chemical potentials of DNLSE systems
at equilibrium, as a function of system density, essentially fall on a straight line.
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The last figure of this section—Fig. 13—presents two maps of DNLSE

chemical potentials. Note that, different from the temperature maps (Fig. 10),

the color scale is linear. Looking at the maps, we see that values of

DNLSE chemical potentials, like temperature values, sharply rise with

energies if the systems are initially excited onto a high energy region of

the thermalization zone.

With Fig. 13 our discussion of chemical potentials is concluded. We

proceed now to discuss the important dynamic phenomenon of evolving

DNLSE systems—field correlations.

7. Field correlations of DNLSE systems

A key characteristic of evolving DNLSE systems is the formation of field

correlations. The formation of correlations is perhaps best viewed in terms of

energy diffusion between interaction energy and tunneling energy, keeping

the sum constant. Consider, for example, a system initially excited onto the

Li line with uniform amplitudes, say um¼u0 for all m and random phases in

the full range of [0,2 �π). On system launch, the tunneling energy is zero—

72 0ð Þ¼ 0, and interaction energy is at a minimum of 74 0ð Þ¼ 1
2
�Γ �u40. As

the system evolves, amplitudes spread, amplitude-related entropy is generated,

and the interaction energy goes to higher values. Necessarily, to keep the sum

of energies constant, tunneling energy must go to negative values, forcing the

Fig. 13 Maps of chemical potential (μexp) shown on the thermalization zone of the
DNLSE phase diagram. The green line crossing the map designates the Li line. The con-
cave dark line crossing each of the maps is an equipotential line.
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relative phases of neighboring sites to pile-up close to π (to get negative

cosθ 0 s as signC is positive) and thus field correlations are formed.

We realize then that field correlations are intimately related to phase

coherence. In fact, for nearly equal amplitudes, the normalized DNLSE field

correlations (hCki/hC0i, see below the defining mathematical expressions)

coincide with phase correlations (hcos θi), much like the phase coherence

of a Bose–Einstein condensate in a lattice potential (Esteve, Gross,

Weller, Giovanazzi, & Oberthaler, 2008).

The level of the formed field correlations can be measured. In trapped

ultracold atoms experiments, the degree of phase coherence is directly related

to the (measurable) visibility of fringes in the interference patterns formed

after expansion of Bose–Einstein condensed atomic clouds (Pitaevskii &

Stringari, 2016).

Positive Hamiltonian systems entertain two ground states (both with

energy 7a0), corresponding to the two values of signC (cf. Eq. (3)).

Correlation distance (k) of the field functions of each of these two ground

states extends to infinity. Absolute value of the normalized field correlations

at all site-separations is unity (jCkN jground state¼1.0) (Levy, 2021).

Most interestingly, for high enough system nonlinearity, the field corre-

lation function and the distribution of phases assume universal forms, inde-

pendent of the exact value of the nonlinearity parameter and of system

density. And equilibrium field correlations can be interrogated experimen-

tally by the study of the equivalent optical system (Silberberg et al., 2009).

The current “field correlations” section consists of two parts. In the first

part, we present field-correlations-related expressions. The second part is

devoted to graphical illustrations.

Expressions to calculate field correlations. Correlation of fields separated

k-sites apart, is defined as (Silberberg et al., 2009)

Ck zð Þ ¼ 1

N
�
XN
m¼1

um zð Þ � um+k zð Þ � cos θm,k zð Þ½ �

θm,k zð Þ ≡ ϕm zð Þ � ϕm+k zð Þ (28)

Let us first consider equilibrium nearest neighbor correlation.

It follows from Eqs. (6) and (28) that

C0¼Da ; C1 zð Þ¼ signC �H2 zð Þ
2 �N ¼72 zð Þ

2
(29)
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and

C1N zð Þ≡ C1 zð Þ
C0

¼72 zð Þ
2 �Da

¼7a�74 zð Þ
2 �Da

(30)

Eq. (30) holds for any distance (z), including of course long equilibrium dis-

tances. If the Lagrange parameters (β,μ) are known, then the equilibrium

site-averaged interaction energy 74,eq β, μð Þ� �
can be calculated as:

74,eq β, μð Þ¼ h4,eq β, μð Þ	 
¼ 1

2
�Γ �

Z ∞

0

I2 �PI β, μ; Ið Þ � dI (31)

with PI β, μ; Ið Þgiven by Eq. (11). Thus, at equilibrium, the value of nearest

neighbors field correlation of DNLSE systems can be determined through

finding the equilibrium interaction energy 74,eq β, μð Þ (cf. Eqs. (30), (31),
and (11)).

Alternatively, if C1N is independently known, as prescribed for example

in the next paragraph, then the values of both equilibrium tunneling energy

72 zequil:
� �� �

and equilibrium interaction energy 74 zequil:
� �� �

can be trivi-

ally determined.

A second, more general approach for calculating equilibrium field cor-

relations at any site-separation is through the value of hcos θi, θ being fields’
relative phase-angle. The Expression for field correlation at site-separation

k (hCki) was derived by the authors of Levy et al. (2018) as

C0¼ I ¼Da¼Da

Ckh i¼
ffiffi
I

pD E2

� cos θð Þh ik ; k� 1 (32)

Elaborating on Eq. (32), the authors of Levy et al. (2018) say that the derived

correlation equation is general, not limited to initial statistical-Gaussian exci-

tation, and holds for field correlations in systems evolving under DNLSE

dynamics for any long distance fields distribution where the site-densities

(Im’s) are not correlated and phase differences (θm’s) are random (over real-

izations). Eq. (32) shows that if the phase-differences are not flat-distributed

(such that hcos(θ)i 6¼0), then the fields are correlated and correlations expo-

nentially decay with site-separation (k). If hcos(θ)i is negative, the sign of the
fields’ correlations alternates with k.

To determine hcos(θ)i, the relative phase-angle density distribution

Pθ θð Þð Þmust be known. An analytic expression forPθ θð Þ in the hot zone near
the Li line—Pθ θð Þ∝ exp 2 � η �M2

1 � cos θ
� ��was derived in Levy et al.

(2018), and an analytic expression for Pθ θð Þ in the entire cold zone—
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Pθ θð Þ∝ exp 2 �η �Da � cosθð Þ—was derived in Levy and Silberberg (2018).

The parameter η is a Lagrange parameter with a value determined by solving

an appropriate implicit equation. The parameter M1 is a first-moment of an

(assumed) initial statistical-Gaussian excitation. These PDFs(θ) were derived

for strong system nonlinearity Γ �Da≫1ð Þ justifying the quantum phasemodel

approximation (Huber, Theiler, Altman, & Blatter, 2008; Silberberg et al.,

2009) under which the analytic PDFs(θ) expressions were derived.
Calculating hcos(θ)i according to the known PDFs(θ) and inserting in

Eq. (32), we arrive at an analytic expression for equilibrium field correla-

tions, at any site-separation (k) for systems near and below the Li line on

the strong nonlinearity portion of the DNLSE thermalization zone:

Ck ¼ Ckh i¼
ffiffi
I

pD E2

�
�1ð Þ � I 1 2 �η �Dað Þ

I 0 2 �η �Dað Þ
� �k

; 7a Dað Þ�Li Dað Þ

�1ð Þ �I 1 2 �η �M2
1

� �
I 0 2 �η �M2

1ð Þ
� �k

; 7a Dað Þ>Li Dað Þ

8>>><
>>>:

9>>>=
>>>;
; k� 1

CkN ≡
Ckh i
C0h i¼

Ck

Da

(33)

where I n zð Þ is the modified Bessel function of the first kind.

The field correlation curves and map in the illustrating figures shown

below were calculated either by direct running of system-evolution simu-

lations and applying the definition (28), or by executing the analytic

expression (33).

Graphical illustrations. The next four figures show field correlation values

for systems on different parts of the DNLSE thermalization zone, along with

graphical representations of the universality of field correlations formed dur-

ing the evolution of DNLSE systems.

Start with Fig. 14. The red dots in all eight panels were calculated by

evolution-to-equilibrium simulations and executing Eq. (28). The red cur-

ves of all panels show high nearest-neighbors field correlations (absolute

value of ) for cold systems (between the vertical blue and vertical green lines)

and essentially zero field correlations for hot systems close to the vertical red

7a∞ line. The blue dots were calculated analytically through Eq. (33). The

blue curves show that the analytic expression (33) predicts the value of the

field correlations reasonably well for high absolute correlation values or at

high system nonlinearity. Consulting the top three right panels and the bot-

tom two right panels, we see that the red curves cross the green line at
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Fig. 14 Normalized nearest-neighbors equilibrium field correlations (C1N) as a function of site-averaged system energy at two different values
of the nonlinearity parameter (Γ). The red dots were obtained by simulations (averaged over several realizations) through a focusing DNLSE
equation Eq. (3). The blue dots were calculated analytically (Eq. 33). The blue dots are missing from the two left panels as the quantum phase
approximation is invalid for such low system nonlinearities Γ �Da � 1ð Þ. Colored vertical lines as in Fig. 4. Clearly, normalized field correlations
at all parameters are maximal (in absolute value) (C1N¼ �1) at the ground state, and are all monotonically reduced as system energy (and
system temperature) goes up, reaching a zero value at the infinite temperature line.



essentially C1N¼ �0.4, indicating universality of DNLSE field correlations

at high system nonlinearity (Levy et al., 2018; Silberberg et al., 2009).

The curve of Fig. 15 indicates the inverse relations of system temperature

and field correlation (in absolute value). Explicitly—higher system temper-

ature, weaker field correlations. Remembering that temperature is propor-

tional to the width of PDF(I), we can make a parallel inverse-relation

statement: the width of equilibrium PDF(I) is inversely related to field cor-

relation. Explicitly: wider PDF(I), weaker field correlation.

Next, Fig. 16 shows the remarkable universality property of equilibrium

field correlations formed during evolution of DNLSE systems at high system

nonlinearities Γ �Da≫1ð Þ. The straight horizontal lines of Fig. 16, each of a
different energy, extend the correlation’s universality findings of Silberberg

et al. (2009), and of Levy et al. (2018). The data points of the figure were

calculated through Eq. (33). As shown very clearly, at high system non-

linearity, normalized equilibrium values of field correlations of all

DNLSE systems with energies 7a qg;Da

� �¼7a0 Dað Þ+ qg �2 �Da are prac-

tically equal, independent of the value of the nonlinearity parameter (Γ) and
independent of system density Dað Þ. This correlation-level equality extends
to each and every site-separation (k).

Fig. 15 Absolute value of nearest-neighbors field correlation vs system temperature.
The red dots were calculated through evolution-to-equilibrium simulations and execut-
ing Eq. (28). System density is taken to be constant atDa ¼ 16:0. System energy 7að Þ is
a parameter, i.e., the data points of the curve are on the plane C1N 7að Þj j, Texp 7að Þ� �

with
system energy going straight up (on the DNLSE phase diagram) from the 7a0 line
toward the 70∞ line. The vertical green line designates the temperature of a system
on the Li line. The figure clearly shows the inverse relations between field correlation
and system temperature. Explicitly—higher system temperature lower absolute value
of the system’s field correlation.
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The next figure—Fig. 17—compares the characteristics of a linear system

(Γ¼0) and the characteristics of a nonlinear DNLSE system. Both systems

are initially excited onto the lower part of the cold zone, near the 7a0 line

(panels D and H). Key differences are seen in the PDFs(I), panels (A and E)

and in the constant vs decaying field correlations in panels (C and G).

In the extreme case of system nonlinearity approaching zero (essentially

by Γ!0), system temperatures rise to infinity everywhere on the

triangular-shaped phase diagram, with the exception of the zero-variance

non-energy-diffusing ground state. Stated differently: a DNLSE system

above ground state is formally approaching an infinite temperature as the

nonlinearity parameter is approaching zero, yet except for systems on the

Li line (cf. Fig. 7), the PDFs(I) are of a finite variance (panel A of Fig. 17).

The last figure of this section—Fig. 18—is a map of normalized equilib-

rium field correlations. The map shows a relatively strong nonlinearity

Fig. 16 Universality of the DNLSE equilibrium field correlations. Shown are nor-
malized values (Eq. 33) of the nearest-neighbors (C1N(zequil)—left) and next-nearest-
neighbors (C2N(zequil)—right) field correlations as a function of the site-averaged
density Dað Þ and the nonlinearity parameter (Γ¼0.5,1.0,2.0). The parameter (qg) is a
multiplier of the energy distance between the ground-state and the Li line (i.e.,
7a qg;Da

� �¼7a0 Dað Þ+ qg �2 �Da). The remarkable universality characteristics of the
field correlations in equilibrated DNLSE systems is clearly revealed. Namely, at strong
enough system nonlinearity Γ �Da≫1ð Þ, the values of every site-separation (k) field
correlation is independent of system density and of the nonlinearity parameter (Γ) at
a fixed qg energy level across the entire DNLSE thermalization zone. Along the Li line
for example (qg¼1.0), the value of C1N is 	
0.455, and the value of C2N is +0.215,
independent of the value of the nonlinearity parameter (Γ). The shown several straight
horizontal correlation lines of each panel extend the correlation’s universality findings
of Silberberg et al. (2009), and of Levy et al. (2018).
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Fig. 17 See figure legend on opposite page.



region of the thermalization zone. Values for the colored part were deter-

mined analytically (Eq. (33)). Values for the discrete red dots by evolution-

to-equilibrium simulations. The map area above these discrete points should

have been covered red, signifying no correlations. Looking at the map, two

effects become clear. First, once more—the universality of DNLSE field

correlations at high system nonlinearity as discussed above. Second, the fact

of essentially no field correlations at the upper region of the hot zone.

Namely, no field correlations at a high temperature-high system non-

linearity region of the DNLSE phase diagram.

In the next section, along with a complementary appendix (Appendix 1),

we derive an approximate analytic expression to the grand-canonical

partition function (Eq. (9)) and to the associated distribution function of

site densities (PDF(I)—Eq. (11)). We show that the so-derived PDF(I)

well approximates the exact PDF(I) on a large region of the DNLSE

thermalization zone.

Fig. 17 Characteristics of an equilibrated linear system (top row, Γ¼0) vs an equili-
brated nonlinear system (bottom row, Γ¼1.0). (A and E) Simulated PDF(I). As shown,
the shape of the P I Ið Þ curve for the linear system does not resemble a Gaussian at
all. Note the high amplitude oscillators of the stationary-statistics-reached linear system
(A). (B and F) PDF(θ). The magenta dots are simulated. The continuous green curve is
theoretical (Levy & Silberberg, 2018). In both linear-nonlinear cases, relative
phase-angles (θm¼ϕm�ϕm+1) are narrowly concentrated around π, as expected for sys-
tems initially excited close to the ground state and evolving under the dynamics a
focusing-type DNSLE equation. (C and G) Simulated field correlations. Considering
the linear system, if the system is initially excited with uniform amplitudes and with
a small random-phase window, the launched fields are strongly correlated, indepen-
dent of site-separation (k). These k-independent strong correlations are maintained dur-
ing evolution of the single-term-Hamiltonian linear system (C). Unlike field correlations
of the linear system, during evolution of the two-term-Hamiltonian nonlinear system
(Γ>0), the initially-formed strong field correlations do gradually weaken to reach a
k-dependent exponential decay at steady state distances (independent of nonlinearity
value) (panel G). (D and H) System position on the DNLSE phase diagram Da ¼ 1:75ð Þ.
Looking at the panel for the linear system (D), note the coincidence of the infinite
temperature line 7a∞ð Þ with the intermediate (Li) line, forming a triangular-shaped
thermalization zone. In terms of temperature, the equilibrated linear system (and all
other systems in the linear thermalization zone, except for ground-state-excited sys-
tems) is formally at infinite temperature. In contrast, the nonlinear system, initially
excited near the ground state line is quite “cold.”
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8. Analytic PDF(I) expression for systems on the
hot zone

The symmetric nonnegative kernel related to the grand canonical par-

tition function of large DNLSE systems is the product of two decaying expo-

nential functions and a zero order modified Bessel function of the first kind

(Eq. (9)). In the “second-order” approximation, we represent the modified

Bessel function by the first two terms of its series expansion (cf. Appendix 1).

Eigenvalues (λi) and nonnegative eigenfunctions (vi(x)) of this kernel are the
solutions of the Fredholm integral equation of the second kind with sym-

metric kernel (Polyanin & Manzhirov, 2008):

Fig. 18 Map of DNLSE equilibrium nearest neighbors field correlations (C1N) on a strong
system nonlinearity portion Γ �Da≫1ð Þ of the thermalization zone. Same-color points
are all at a distance of qg (i.e., at a distance of qg �2 �Da) from the 7a0 line (or “the
ground-state line,” designated by the bottom orange line). The black line crossing
the colored area is at a distance of qg¼1.0. The yellow line at the top of the colored
portion is at a distance of qg¼2.0, showing a value of C1N¼ �0.2 (cf. Fig. 16). Thus, here
too, universality of the DNLSE equilibrium field correlations is clearly revealed. The
colored portion was calculated by the analytic expression Eq. (33). The black area
was left untouched. The 10 isolated discrete nearly-red-colored dots are at a distance
of qg¼4.0. Their C1N values, ranging between �0.058 and �0.027, were determined
by field-propagation simulations (averaged over several realizations). The map area
above these discrete point should have been covered entirely by a red color.
Namely, essentially zero field correlations at this high temperature region of the
DNLSE phase diagram.
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Z∞

0

F xð Þ �G yð Þ � 1 + β2 � x � y� �
 � � vi xð Þ � dx ¼ λi � vi yð Þ

F xð Þ ≡ e �β� μ
2
�x+Γ

4
�x2ð Þ½ � ; G yð Þ ≡ e �β� μ

2
�y+Γ

4
�y2ð Þ½ � (34)

with the largest eigenvalue (λ1) directly related to the partition function

(Eq. (10)) and the associated eigenfunction (v1(x)) directly related to the

PDF(I) of the equilibrated DNLSE system in question (Eq. (11)).

It turns out that if the Bessel function of Eq. (9) is described by a “second-

order” approximation (for arguments smaller than unity), namely, by taking

the first two terms of the otherwise infinite series describing the function,

then the Fredholm integral Eq. (34) can be solved analytically (cf.

Appendix 1).

The solved expressions for the integral equation with a second-order

approximated Bessel function (Eq. (34)) are (Appendix 1):

λ1E β, μð Þ ¼ eq
2
0 � ν0

2 � ffiffi
E

p + κ0 � 1� eq
2
0 � q0 � ν0
2 � E

PIE β, μ; Ið Þ ¼ C�1 � e�
ffiffi
E

p �I+q0ð Þ2 � 1 + κ0 � Ið Þ2 (35)

where λ1E is the largest eigenvalue and PIE β, μ; Ið Þ ¼ v2IE β, μ; Ið Þ where

vIE(β,μ; I) is the associated eigenfunction. All constants of Eq. (35) are

defined in Appendix 1.

Consulting Eq. (35), we see that the second-order PDF(I) is a product of

a Gaussian and a parabola. The parabolic-parameter κ0 appearing in the

parabolic-term is smaller than the value of the Lagrange parameter β and

is thus smaller than unity if β is smaller than unity, i.e., if system temperature

is greater than the value of 1/Γ.
The three panels of Fig. 19 show the equilibriumPDF(I) ofDNLSE systems

at three different energies:7a¼ “cold”;7a¼Li;7a¼ “hot”, all at the same den-

sity of Da¼ 6:0. System nonlinearity is also fixed at Γ �Da¼ 6:0. The

parabolic-parameter κ0 values for the (A; B; C) panels of Fig. 19 are

κ0¼ (0.575;0.038;0.00057), respectively. The panels show that second-order

PDF(I) of the “cold” system does not match the exact PDF(I). However,

the other two panels show that second-order PDFs(I) of Eq. (35) do match

the exact PDFs(I) for the two higher energy systems.
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Consulting Eq. (35) and the panels of Fig. 19, we can make the following

observations:

• Given high system nonlinearity Γ �Da≫1ð Þ, The equilibrium PDFs(I)

of systems at or above the Li line are well described by the analytic

PDF(I) expression of Eq. (35).

• As the parabolic curves in the analytic PDF(I) expression (Eq. (35)) for

the high energy systems are very shallow, the Gaussian-parabola product

is another slightly shifted Gaussian with essentially the same width. Thus,

at high system nonlinearity, the shape of the equilibrium PDF(I) curves

for DNLSE systems at or above the Li line is practically a pure (possibly

truncated) Gaussian shape.

• The parameter E in the PIE β, μ; Ið Þ expression of Eq. (35) is related to

the (untruncated) Gaussian variance σ2 as E�1¼2 �σ2. Thus, looking
at the definition of E in Eq. (39) of Appendix 1 E ≡ 1

2
� β � Γ� �

we find:

T¼ (β �Γ)�1¼σ2. Put it all together: given high system nonlinearity, the

shape of the equilibrium PDF(I) curves for DNLSE systems at or above

the Li line is practically a pure (possibly truncated) Gaussian shape with

“variance” (σ2) equal to the temperature of the system (Eq. 24).

Fig. 19 Distribution functions of site densities PI Ið Þð Þ. Four curves are shown in each
panel—the continuous cyan curve (1) and the dashed blue curve (3) show the P I Ið Þ
of Eq. (11), calculated with all Bessel terms in place. The continuous thin-dark curve
(2) and the dashed magenta curve (4) show the approximate analytic PIE Ið Þ of
Eq. (35), calculated with only two Bessel terms in place. The continuous cyan curve
(1) and the continuous thin-dark curve (2) were calculated with exact (β,μ) values deter-
mined by numeric inversion of Eq. (15). The (β,μ) values for the two dashed curves
(3 and 4) are actually (βexp,μexp) determined through the analytic Eq. (25) using
Eq. (24) and through the implicit integral Eq. (26). The panels show that
second-order PDF(I) of the “cold” system (A) does not match the exact PDF(I).
However, the other two panels (B and C) show that second-order PDFs(I) of Eq. (35)
do match the exact PDFs(I) for the two higher energy systems.
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These “second-order-related” observations end the present analytic PDF(I)

section and actually end our entire detailed characterization of equilibrated

large DNLSE systems.

9. Summary

The subject of the study presented here is a system consists of a long

1d array of coupled nonlinear oscillators. The evolution dynamics of the sys-

tem is taken to be the DNLSE (Eq. 3). A DNLSE system initially excited

onto a point Da,7að Þ of a well-defined thermalization zone of the DNLSE

phase diagram (Eq. 2) will thermalize (Rasmussen et al., 2000) (cf. Fig. 3).

The equilibrium statistical properties of a thermalized system are predictable.

Previous studies predicted equilibrium PDFs and temperatures for strong

system nonlinearities by system-entropy separation into the sum of

density-entropy and a relative-phase entropy. Entropy separation was justi-

fied in the strong system nonlinearity regime by the quantum phase approx-

imation. Entropy separation led to the derivation of system temperatures as

well as the derivation of analytic expressions for equilibrium PDF(I) and

equilibrium PDF(θ) (Levy et al., 2018; Levy & Silberberg, 2018;

Silberberg et al., 2009).

Here, we have taken a rigorous approach of predicting system equilib-

rium statistics based on the thermodynamics formalism of grand canonical

ensembles (cf. Fig. 2 and related text). The thermodynamics approach

allowed the extension of system-characteristics predictions to cover the

entire thermalization zone.

The grand canonical statistics is determined by two Lagrange

parameters—(β,μ). To determine the values of β and μ we have taken here

one of two routes. The first is numerically inverting the two exact thermo-

dynamics partial derivatives of Eq. (15). Such 2D numerical inversion is

challenging and could sometimes introduce uncertainty errors. The second

is finding βexp through execution of the analytic expression (25), along with

expression (24). We have derived the analytic expression (25) from an

approximate analytic expression of system entropy published in Rumpf

(2009). Once the value of βexp is determined, the value of μexp is calculated
through solving the one parameter implicit integral Eq. (26). Once

β Da,7að Þ, μ Da,7að Þð Þ are determined, equilibrium statistical properties

of the system studied such as entropy, temperature, chemical potential,

nearest-neighbors field correlations, and PDF(I) can be calculated.
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To derive physics insights from numerical calculations, graphical repre-

sentations are typically required. Analytic expressions on the other hand

often provide deeper physics understanding by direct inspection. As part

of the present study we have gone through deriving an approximate analytic

PDF(I) expression (Section 8 and Appendix 1). Probing further the derived

expression enabled the insightful identification of system’s temperature with

the variance of the system’s PDF(I) (cf. the last part of Section 8).

Crossing the DNLSE thermalization zone is an intermediate Li line

(Eq. (2)). The Li line divides the thermalization zone into a cold zone below

the line and a hot zone above the line (Levy & Silberberg, 2018).

Characteristics of DNLSE systems can be generalized in relations to these

cold-hot zones.

Some of our deduced characteristics of equilibrated DNLSE systems are

the following:

• Temperatures of systems on the cold zone rise approximately linearly

with energy. Temperatures of systems on the hot zone rise

exponentially-like with energy.

• On the high system nonlinearity region of the thermalization zone

Γ �Da≫1ð Þ the PDF(I) is of a Gaussian shape, possibly truncated.

• On the high system nonlinearity region of the thermalization zone, sys-

tem temperature and the “variance” of its equilibrium PDF(I) are equal.

• Chemical potentials of systems on the hot zone rise exponentially-like

with energy.

• Field correlations are inversely related to system temperature—higher sys-

tem temperature, lower absolute value of the system’s field correlation.

• Field correlations for all site-separations (CkN) of systems on the high sys-

tem nonlinearity region of the thermalization zone at all energies are

universal—their values are independent of system density or of the value

of the nonlinearity parameter. At energies of 4 �Da above ground state,

absolute value of nearest-neighbors normalized field correlation is

already as low as 0.2 (cf. Fig. 18).

• On the high system nonlinearity region of the thermalization zone,

nearest-neighbors field correlations of DNLSE systems with energies

7að Þ of 8 �Da or more above ground state practically vanish (cf. Fig. 18).

• Given high system nonlinearity, the equilibrium PDF(I) of systems at or

above the Li line are well described by the analytic PDF(I) expression of

Eq. (35).

These observations, derived here for an abstract DNLSE system, hold of

course for the equilibrium properties of the variety of actual discrete

nonlinear physical systems with evolution dynamics approximated by a
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DNLSE type equation as analyzed in the present study. In the preceding

chapter (Levy, 2021) for example, we have discussed in some detail the

DNLSE dynamics as applied to systems in the fields of magnetism, optics,

and ultracold atoms.
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Appendix 1: Approximate distribution function of site
densities

In this appendix, we derive an approximate analytic expression for the

grand canonical partition function of Eq. (9) along with an approximate

analytic expression for the distribution function of site densities PI Ið Þð Þ.
We derive the approximate expressions through taking only two first terms

of the infinite series by which the zero order modified Bessel function of the

first kind is described. We refer to this approximation as a “second-order”

approximation.

The infinite series describing the zero order modified Bessel function of

the first kind (I 0 zð Þ, Eq. (13)) with z a complex number, is given by the

expression (Weisstein, n.d.):

I0 zð Þ ¼
X∞
k¼0

1
4
� z2� �k
k!ð Þ2 (36)

If the argument of the modified Bessel function is small 2 � β � ffiffiffiffiffiffiffiffi
x � yp

< 1
� �

for (x,y) in the range of interest (determined by the decay-rate of the pre-

ceding exponential functions), then the modified Bessel function can be

approximated by the first two terms:

I 0 2 � β � ffiffiffiffiffiffiffiffi
x � yp� � ffi 1 + β2 � x � y ; 2 � β � ffiffiffiffiffiffiffiffi

x � yp
< 1 (37)

The kernel of Eq. (13) is approximated then as K x, yð Þ ffi F xð Þ �G yð Þ �
1 + β2 � x � y� �

with F xð Þ ≡ e �β� μ
2
�x+Γ

4
�x2ð Þ½ �;G yð Þ ≡ e �β� μ

2
�y+Γ

4
�y2ð Þ½ � . We are

now looking for an eigenvalue (λ1) and an eigenfunction (v1(x)) such that

(Polyanin & Manzhirov, 2008):

Z∞

0

F xð Þ �G yð Þ � 1 + β2 � x � y� �
 � � v1E xð Þ � dx ¼ λ1E � v1E yð Þ (38)
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The subscript “E” in Eq. (38) stands for “expression.”

It is convenient at this point to define a set of four parameters (E;α;q0;ν0)
each depends, directly or indirectly, on the two Lagrange parameters

(β,μ) as:

E ≡ 1

2
� β � Γ ; α ≡ β � μ ; q0 ≡

α
2 � ffiffi

E
p ; ν0 ≡

ffiffiffi
π

p � erfc q0ð Þ (39)

Working out the lengthy mathematics, we first determine the value of a par-

abolic-parameter—κ0 as:

κ	0 ¼ �b	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 + 4 � β2

p
2

; κ0 ≡ κ+0 ; b ≡ I0 � β2 � I2
I1

I0 ¼ ν0
2 � ffiffi

E
p ; I1 ¼ e�q20 � q0 � ν0

2 � E

I2 ¼
�2 � e�q20 � q0 + 1 + 2 � q20

� � � ν0
4 � E3=2 (40)

And then, with κ0 in place, calculate the thought-for expressions for

Z β, μð Þ; λ1 β, μð Þ;PI β, μ; Ið Þð Þ as:
ZE β, μð Þ ffi 2 � π � λ1E β, μð Þ½ �N

λ1E β, μð Þ ¼ eq
2
0 � ν0

2 � ffiffi
E

p + κ0 � 1� eq
2
0 � q0 � ν0
2 � E

PIE β, μ; Ið Þ ¼ C�1 � e�
ffiffi
E

p �I+q0ð Þ2 � 1 + κ0 � Ið Þ2
C ¼ I0 + 2 � κ0 � I1 + κ20 � I2 (41)

where λ1E(β,μ) and v1E(β,μ; I) inPIE β, μ; Ið Þ ¼ v21E β, μ; Ið Þare the solutions
of Eq. (38).

As PIE Ið Þ is explicitly known, the statistical averages of system density

DaE β, μð Þð Þ, equilibrium interaction energy 74E β, μð Þð Þ, and equilibrium

tunneling energy 72E β, μð Þð Þ can be explicitly known as well:

I3 ¼ e�q20 � 1 + q20
� �� q0 � 1:5 + q20

� � � v0
2 � E2

I4 ¼ �e�q20 � 2 � q0 � 5 + 2 � q20
� �

+ 3 + 12 � q20 + 4 � q40
� � � v0

8 � E5=2
DaE β, μð Þ¼ C�1 � I1 + 2 � κ0 � I2 + κ20 � I3

� �
74E β, μð Þ¼Γ

2
� C�1 � I2 + 2 � κ0 � I3 + κ20 � I4

� �
72E β, μð Þ¼7a�74E β, μð Þ (42)
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As shown by Fig. 19 in the main text, the derived PIE Ið Þ expression of

Eq. (41) well approximates the exact PDF(I) of Eq. (11) on a large region

of the DNLSE thermalization zone.
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