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We measure ensemble-averaged quantum correlations of path-entangled photons, propagating in a
disordered lattice and undergoing Anderson localization. These result in intriguing patterns, which show
that quantum interference leads to unexpected dependencies of the location of one particle on the location
of the other. These correlations are shared between localized and nonlocalized components of the two-
photon wave function, and, moreover, yield information regarding the nature of the disorder itself. Such
effects cannot be reproduced with classical waves, and are undetectable without ensemble averaging.
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A quantum particle hopping between sites on a perfect
lattice, such as a free electron in a crystal, performs a
quantum walk [1]. The interference between the many
routes the particle can take leads to ballistic spreading—the
particle moves away from its initial position at a constant
rate. It was assumed for many years that in a disordered
lattice, where wave interference is randomized, ballistic
expansion would become diffusive. However, as Anderson
showed in his seminal 1958 work, such interference in
disordered lattices often leads to the complete arrest of
expansion, and the particle remains localized near its initial
position [2]. Although first predicted in the context of
quantum physics, Anderson localization is primarily a
wave phenomenon, and as such it affects any form of
wave. Indeed, experiments directly observing the localized
wave function have been performed with light [3–6] and
with matter waves [7], as well as with acoustics [8].
As a wave effect, Anderson localization can be demon-

strated with classical sources of light, for example, in
lattices of coupled waveguides [6]. Single particle transport
essentially follows the trajectories of classical waves;
hence, even when single photons are launched into such
a lattice, no new phenomena are expected. In order to
examine quantum behavior beyond that present in wave
mechanics, one must consider the transport of more than
one particle, where quantum statistics enter into play.
Only recently has attention been given to the issue of the

simultaneous quantum walks of two or more particles in
lattices. Theory and experiments with two identical photons
propagating simultaneously in a periodic lattice showed
that their fate is strongly correlated—the output position of
one particle depends in a nontrivial and often surprising
way on the output position of the other [9–11]. It was then
natural to investigate if these correlations survive also in
disordered lattices [12,13], as well as in other disordered
systems [14]. Theoretical and numerical investigations
were carried out, which showed that, indeed, two entangled
photons remain strongly correlated even in the presence

of strong disorder. In fact, in some cases, the predicted
quantum correlations display intriguing, unexpected
patterns.
In this work, we experimentally confirm these predic-

tions, measuring these patterns for the first time. We note
that these experiments pose a double challenge; first, to
investigate correlation, it is essential to launch the quantum
particles pair by pair and to record their eventual locations.
As such, one can no longer send strong multiparticle beams
as in previous single-particle experiments, and the corre-
lations need to be assembled from measuring many such
pair propagations. But on top of that, as in any study of
randomness, it is necessary to repeat the experiment with
many realizations of disorder to extract the average
correlation function. Previous works have managed to
achieve only one of these requirements simultaneously
[15–17], while other experiments meeting both have
focused on scattering from a random medium as opposed
to localization within it [18–20]. In particular, Crespi et al..
who observed propagation of entangled photon pairs in a
disordered lattice [16], did so using only a single realization
of disorder and therefore did not have access to the
underlying average correlation function.
The system used to obtain these results is composed of

arrays of evanescently coupled, single-mode waveguides,
laser written in a bulk glass slide [21–23], as schematically
depicted in Fig. 1(a). In such arrays, each waveguide acts as
a site on the lattice, and the evanescent coupling between
waveguides allows tunneling of photons between sites. The
resulting dynamics are those of a quantum tight-binding
model in a static one-dimensional lattice, as expressed by
the Heisenberg equation [9]:

i
∂a†qðzÞ
∂z ¼ βqa

†
qðzÞ þ Cq−1;qa

†
q−1ðzÞ þ Cq;qþ1a

†
qþ1ðzÞ;

where z is the coordinate along the direction of propagation
and takes the place of propagation in time, a†q is the creation

PRL 115, 133602 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

25 SEPTEMBER 2015

0031-9007=15=115(13)=133602(5) 133602-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.133602
http://dx.doi.org/10.1103/PhysRevLett.115.133602
http://dx.doi.org/10.1103/PhysRevLett.115.133602
http://dx.doi.org/10.1103/PhysRevLett.115.133602


operator for a photon in site number q, βq is the propagation
constant in site q, and Cq;r is the tunneling amplitude
between sites q and r. In terms of observables, the
quantities of interest are the particle density, nqðzÞ ¼
ha†qðzÞaqðzÞi, which is the probability of detecting a photon
in site q, and the photon-number correlation function
Γq;rðzÞ ¼ ha†qðzÞa†rðzÞarðzÞaqðzÞi, which relates to the
probability of detecting one photon in site q and the other
in site r. The h·i here represents ensemble averaging for
both repeated two-photon events in a particular realization

of disorder, and for different such realizations. Such
systems have been used to demonstrate exponential
Anderson localization [4,5], an essential first step on which
we build in this work.
We begin by examining the effect of disorder on the

particle density distribution, by comparing the output of a
disordered lattice with that of an ordered one. For an
ordered, periodic lattice of identical waveguides, that is
Cq;q�1 ¼ C, and βq ¼ β, a photon propagating from a
single input site undergoes a quantum random walk. This
results in ballistic expansion, forming a pattern known as
discrete diffraction [25,26]—where most of the density
distribution ends up in two strong lobes equidistant from
the input site, located at the edge of the distribution
[Fig. 1(b)]. Adding disorder to the lattice interferes with
this ballistic behavior. Disorder was added by randomizing
the distances between the waveguides in an appropriate
way, such that the tunneling amplitudes Cq;q�1 are drawn
from a uniform random distribution in the range C� Δ—a
configuration known as off-diagonal disorder [27].
When inserting light into a single site of such a

disordered lattice, the exact particle density distribution
at the output cannot be predicted without knowledge of the
particular realization of the disorder: different realizations
will have significantly different output distributions [see
Fig. 1(c)]. However, when the experiment is repeated with
different realizations drawn from the same probability
distribution, a pattern emerges: the averaged density dis-
tribution shows increased probability of the light staying
near the input site—the expected signature of Anderson
localization. This effect becomes more pronounced as
the disorder is increased, leading to stronger localization
[Figs. 1(d) and 1(e)], as seen in previous works in these
systems where strong Anderson localization has been
verified [5].
Our main goal is to observe the effect of disorder on the

propagation of two entangled photons, as quantified by the
photon-number correlation function Γq;r. In particular, we
study the propagation of path-entangled input states of the

form 1
2
ða†20 þ eiϕa†

2

1 Þj0i, where two photons are input in a
coherent superposition of being either both in site 0 or both
in site 1, with ϕ a phase in ½0; 2πÞ. Such entangled photon
pairs have been shown to exhibit intriguing properties, as
compared with product input states [12]—by controlling
the phase ϕ it is possible to modify the correlation features.
In periodic lattices, the two photons may bunch (tend to
move to the same direction, a behavior associated with
bosons) or antibunch, (tend to move to opposite sides, a
behavior usually associated with fermions) depending on
the setting of ϕ.
The system used to launch such entangled pairs into the

array, is based on spontaneous parametric down-conversion
(SPDC) pumped by two coherent beams (see Supplemental
Material [24]). Light emerging from the lattice was detected
via coincidence measurement by two single-photon
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FIG. 1 (color online). Propagation of light in a disordered
lattice. (a) Schematic of a disordered evanescently coupled
waveguide array. Light is inserted into one or more input sites,
tunneling between waveguides along propagation, and detected
at the output. For a full description of the experimental setup,
see Supplemental Material [24]. (b)–(e) Experimentally obtained
particle density distributions after propagation, with light
input at site 0. The area around the origin is highlighted in light
green, while the lobe regions are highlighted in darker blue.
(b) No disorder (Δ ¼ 0), single realization—a perfectly periodic
lattice displaying discrete diffraction. (c) Moderate disorder
(Δ ¼ 0.4C), single realization. The discrete diffraction pattern
is lost, and the output does not show any discernible structure.
(d) Moderate disorder (Δ ¼ 0.4C), averaged over 30 realizations.
The light is now partially localized, leading to approximately
50% staying near the origin and 50% reaching the lobes. This
is the regime in which the quantum correlation measurements
were performed. (e) Stronger disorder (Δ ¼ 0.67C), averaged
over 30 realizations. Most of the light localizes in the center,
while the lobes nearly disappear.
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detectors which scanned all possible output combinations.
Fig. 2a shows such a coincidence map measured in a
periodic lattice, with the phase ϕ ¼ 0. This leads to
antibunching, which is marked by the two anti-diagonal
peaks, signifying the high probability of the two photons
to move away from each other and arrive at opposite sides
of the array.
As with the density distribution, adding disorder causes

these correlations to break down, producing patterns with
no immediately discernible structure [Fig. 2(b)]. Averaging
the correlation maps is again needed to reveal the under-
lying order, as the fluctuations between different measure-
ments are significant. We have chosen the strength of
disorder (Δ ¼ 0.4C), so that each photon has a similar
probability to localize or to retain ballistic behavior, as can
be seen in Fig. 1(d). Γq;r was measured for two path-
entangled input states: ϕ ¼ 0 and ϕ ¼ π, by coincidence
counting between all pairs of sites at the output. The results
are presented in Figs. 3(a) and 3(d), where each plot
represents an ensemble averaging over 12 different real-
izations of disorder. This number of realizations was
chosen as it supplied both experimental accessibility, and
enough averaging to reliably bring forth the main features
of the many-realization asymptotic behavior (as verified
by statistical tests carried out on simulated data). These
matrices, as opposed to those obtained from a single
realization, show intriguing structure.
For ϕ ¼ 0 [corresponding to an input state

½j2; 0i0;1 þ j0; 2i0;1�=
ffiffiffi

2
p

, Figs. 3(a), 3(b)], if both photons
remain ballistic (the corners of the matrix), they still tend to
anti-bunch - exiting from different lobes. In contrast, when
both localize, they tend to exit close together inside the
localization area. This can be seen when we inspect the
interparticle distance probability inside the localized zone,
gðηÞ ¼ Pq¼4

q¼−3 Γq;qþη (which corresponds to the absolute
probability that one photon exited η sites away from the
other), presented in Fig. 3(c). Here, we see the probability
decays quickly with increasing interparticle distance.

For ϕ ¼ π [corresponding to an input state
1
2
ða†20 − a†

2

1 Þj0i, Figs. 3(d), 3(e)], if both photons remain
ballistic, they bunch, exiting from the same side of the
array. If both localize, a checkered pattern emerges within
the localization region. gðηÞ in this case Fig. 3(f) shows
peaks at η ¼ 0 and η ¼ �2, meaning that inside the
localized region, the two photons will usually exit from
the same site or its next-nearest neighbor. Surprisingly, they
are more likely to be separated by an empty site than to
localize next to each other.
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FIG. 2 (color online). Measured correlation matrices of single
realizations. (a) Experimentally obtained correlation matrix (Γq;r)

for the input state 1
2
ða†20 þ a†

2

1 Þj0i, measured in a single realiza-
tion of an ordered lattice. Antibunching between the lobes is
evident. (b) The same matrix measured in a single realization of a
disordered lattice. No clear pattern is apparent, demonstrating the
need for ensemble averaging to obtain meaningful results.
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FIG. 3 (color online). Measured correlation matrices for path-
entangled photons propagating in a disordered lattice, for an input

state of 1
2
ða†20 þ eiϕa†

2

1 Þj0i. (a) Measured and (b) simulated
correlation matrix Γq;r for ϕ ¼ 0. Compare with data of a single
realization presented in Fig 2(b). (c) Measured (blue, solid line)
and simulated (red markers) mean interparticle distance for
ϕ ¼ 0. (d) Measured and (e) simulated correlation matrix Γq;r

for ϕ ¼ π. (f) Measured (blue, solid line) and simulated
(red markers) mean interparticle distance for ϕ ¼ 0. Experiments
are averaged over 12 realizations, while simulations were
performed using 1000 realizations of disorder. Error bars of
the measured mean distance plots (c),(f) are smaller than the
data point markers. The simulated data in (c),(f) represent the
expected results of a 12-realization set; the error bars are derived
by taking 83 simulated 12-realization sets drawn from the initial
1000, and calculating the standard deviation among the results
from those 83 sets.
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These results demonstrate that the quantum correlations
of the input entangled photons manage to survive
propagation through a disordered medium even while
undergoing localization. The perseverance of correlations
between the ballistic, nonlocalized photons might be
expected, as one may consider them unaffected by the
disorder. Indeed, the bunching and antibunching behavior
is the same as predicted for path-entangled states in a
periodic lattice [9], and they seem to persist as long as the
ballistic component can still be observed. The presence of
correlations among the localized photons is more surpris-
ing, considering their localization is based on the random
disorder of each of the realizations. For the input state
½j2;0i0;1þj0;2i0;1�=

ffiffiffi

2
p

(i.e., ϕ¼0), these correlations mani-
fest as a form of bunching, or two-photon localization—
the distance between photons in the localized region of
the output is shorter than could be explained by classical
statistics, as calculated from the cross product of the
particle density distribution.
More interesting still is the checkered pattern observed

for the input state ½j2; 0i0;1 − j0; 2i0;1�=
ffiffiffi

2
p

(that is, ϕ ¼ π).
As predicted and elaborated upon in previous works
[12,15], this pattern arises as a result of off-diagonal
disorder, and is observed here for the first time. It stems
from the nature of the localized eigenmodes of a finite
lattice containing certain types of disorder: their energy
spectrum contains a symmetry that originates from the
spectrum of an ordered lattice. This symmetry survives
when disorder is introduced into a lattice, and results in the
modes having a spatial frequency of two sites. This spatial
frequency cannot be observed in the particle density
distribution; as each realization will have it at a different
location in the array, ensemble averaging will wash it out.
Nevertheless, the correlations of each realization will
contain this information in a consistent form, and thus
only through measuring ensemble-averaged correlations
may they be experimentally verified. Such features are a
unique characteristic of discrete systems, such as that
originally described by Anderson, and they could not
be observed in model systems that use a continuously
disordered potential to study localization.
In conclusion, we have observed quantum correlations of

path-entangled photons, propagating in a disordered lattice
and undergoing Anderson localization. These measurements
incorporate ensemble averaging over both two-photon
events and different realizations of disorder—necessary
prerequisites to access the two-particle localization phe-
nomenon in its full statistical nature. They demonstrate that
entanglement manages to survive propagation through a
disordered medium, manifesting in a unique way distributed
among the localized and ballistic parts of the two-photon
state. In addition, they are capable of revealing features of the
underlying mode structure, which are visible neither in the
classical particle density distribution, nor in the quantum
correlations of a single realization of disorder.
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