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Abstract
The evolution of random fields with known statistical properties is relatively straightforward to
analyze in the linear regime, but becomes considerably more involved when nonlinearity, or
interactions, are dominant. Previous works have shown that statistical physics techniques can be
applied to predict the evolution of such systems. Here we study the evolution of random fields in
a one-dimensional lattice of optical waveguides in the presence of strong nonlinearities, using the
discrete nonlinear Schrödinger equation. Extending the 2009 work by Silberberg et al (Phys.
Rev. Lett. 102 233904), we assume input fields with random amplitudes and phases. We derive
analytic expressions for the system’s statistical properties at thermodynamic equilibrium.
Specifically, expressions for the probability density functions of field intensities, of fields’ phase
differences, and an expression for the field correlations. We express these properties in terms of
the moments of the assumed statistical excitations, and verify the results with simulations. Most
interestingly, we find that at thermodynamic equilibrium, correlations are formed through the
interaction between sites. These exponentially decaying fields’ correlations take a universal form
that is essentially independent of excitation amplitudes but visibly shrink with increased spread
of the exciting amplitudes. Our results are valid not only to nonlinear discrete optical systems,
but extend also to the evolution of bosonic atoms in optical lattices in the high-occupancy limit
that are governed by the equivalent Gross–Pitaevskii equation.

Keywords: nonlinear optics, optical waveguides, optical lattices, Kerr nonlinearity, correlation
functions, periodic structures, Bose–Einstein condensates

(Some figures may appear in colour only in the online journal)

1. Introduction

A key characteristic of evolving discrete nonlinear systems
with interacting neighboring sites is the formation of field
correlations. That is—as these systems evolve following
certain random excitations, the site-fields, through site-
allowed interactions, influence each other such that correla-
tions are formed [1]. Discrete systems can be very small
starting from only two sites of a bosonic Josephson junction
[2], or of two and three sites dimers and trimers [3–5]. Or can
be very large such as long one dimensional [6] or few
dimensional [7] polymer chains, or continuous systems of
discrete particles [8]. And in the analysis of these and other
discrete systems, correlations play an important role [9]. Field

correlations relate to observable quantities [10]. As an
example, an abrupt change in the radial correlation curve
(from algebraic decay to exponential decay through an
increased temperature step) signifies a Berezinskii–
Kosterlitz–Thouless phase transition. This was demonstrated
experimentally by Hadzibabic et al using a 2D cloud of 87Rb
atoms [11] and shown analytically and numerically by Small
et al for a 2D lattice of optical waveguides [12]. As another
example in the context of zero temperature bosonic atoms in a
double-well trap, Galante et al expressed coherence visibility
in terms of correlation of consecutive expansion coefficients
of a zero temperature energy state in a Fock basis (with a
different version of defined correlation compared to the fields’
correlation version defined below [13]).
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The most frequently used equation prescribing the evol-
ution dynamics of discrete nonlinear systems is the discrete
nonlinear Schrödinger equation (DNLSE) [14–16]. Systems
of various nature—ultracold atoms trapped in optical lattices,
coupled mechanical oscillators, polarons in ionic crystals,
light through discrete optical waveguides, evolve according to
the DNLSE. Several papers and books review the properties
of the DNLSE [15, 17–19].

In their 2009 paper, Silberberg et al discussed universal
correlations formed in a 1D lattice of periodic optical wave-
guides under DNLSE dynamics [1]. Assuming excitation of
all waveguides by constant amplitudes and uniformly-
distributed random phases, the authors of [1] calculated
exponentially decaying correlations (of the fields). In our
work reported here we extend the analysis of [1] to finite-
width Gaussian excitations (with the excitation conditions
assumed in [1] as the limiting case of zero Gaussian width).
This is a natural extension to more general cases where the
exciting amplitudes are not strictly uniform. We find, inter-
estingly, that for any non-zero spread of excitation ampli-
tudes, although the formed correlations are weaker and
shorter (versus those for no spread), universality is still pre-
served. Namely, formed field correlations are independent of
amplitudes’ average value.

Studies of coupled nonlinear optical waveguides have
already been published in quite a few papers in the last
30 years ([20–26] to cite a few). But unlike most of those
studies where initial waveguide excitation conditions placed
the studied systems in the breather-forming regime of the
phase diagram, we treat systems on or slightly above the
strong-interaction line in the no-breathers region [27] (see
figure 2 below). We derive probability density functions for
the site intensities and for neighboring sites phase differences
and calculate field correlations. As in [1], we find exponen-
tially decaying field correlations. We further show that cor-
relations decay faster as the spread of the Gaussian excitation
grows. Surly, our results apply to the mentioned other phy-
sical systems that evolve under DNLSE dynamics.

The evolution of light propagation through periodic
optical waveguides is similar, under certain conditions, to the
evolution of ultracold atoms in periodic traps (see a BEC
review [28] and for a study of system relaxation from none-
quilibrium states [29]). A brief discussion of the conditions
for similarity follows.

The Hamiltonian underlying the DNLSE (equation (1)
below) consists of two terms: a linear (‘kinetic energy’)
term and a cubic (‘interaction’) term:  = å =m

N
1

* *+ ++ +[ ( ) ( ) ( ) ( )]U z U z U z U zm m m m1 1 åG
= ∣ ( )∣U zm

N
m2 1

4 where
( )U zm is a dimensional complex field at site m at distance z,

and ∣ ( )∣U zm
2 is the site’s intensity at distance z. A classical

version of free space (no external potential) Gross–Pitaevskii
(GP) Hamiltonian for ultracold bosonic atoms occupying an
optical lattice with high numbers in each trap is actually
identical: * * å y y y y= + += + +[ ( ) ( ) ( ) ( )]t t t t

m

N
m m m mGP 1 1 1

yå = ∣ ( )∣t
J m

N
m

U

2 1
4 [30–32]. Here y ( )tm is dimensional (unlike in

[31]), representing the matter wave at site m at time t. Now,
whereas the DNLSE dynamics for the optical system holds
for any value of ( )U z ,m i.e. the interaction term can be
(theoretically) arbitrarily strong (and there is no BEC-char-
acteristic excitation gap [33]), the GP dynamics holds only up
to a certain interaction strength. Beyond this interaction
strength the cold bosonic atoms go through a quantum phase
transition (from a superfluid to a Mott insulator) [34], and the
dynamics can no longer be described by the GP equation [35].

Here, for the initialization of the optical system we have
assumed strong interactions. In terms of cold bosonic atoms
then, our analysis applies to a quench study [36, 37]. First the
system is prepared in a Mott configuration—high and almost
uniform occupation numbers [38] and completely random
phases. Or, to describe it from a different angle, the system is
prepared in a highly number squeezed state [39, 40]. Then, at
time =t 0 the system’s parameters are abruptly changed (for
example by reducing the optical barriers) such that the system
evolves to a new equilibrium under GP dynamics [29, 31].
Under such quench situations our results for optical systems
hold for the atomic system as well.

2. Equation of motion and conserved quantities

The fields’ evolution dynamics considered here is described by a
1D periodic ‘cubic’ [41] DNLSE in its simplest version [17]:

z z= - + -z
z - +[ ( ) ( )]( ) C U Ui U

m m
d

d 1 1
m g z z∣ ( )∣ ( )U U .m m

2 Here

Um is the field at site m at position z , C and g are the coupling
coefficient to nearest neighbors and the (material in the case of
waveguides) nonlinearity coefficient respectively. Born–von
Karman [42] (cyclic) boundary conditions are assumed. After
dividing by the coupling coefficient the equation reads:

z g

= - + - G

= G º

- +

( )

( ) [ ( ) ( )] ∣ ( )∣ ( )

/ 1

U z

z
U z U z U z U z

z C C

i
d

d
; .

m
m m m m1 1

2

The evolution coordinate (z) is now dimensionless and the
nonlinearity coefficient G( ) has the dimensions of -∣ ( )∣U z .m

2

Throughout this paper, as in [43], we keep the value of the
nonlinearity coefficient at G =∣ ∣ 1. The nonlinearity of site m at
point z is thus determined by the amplitude (squared) of the site
field— G( ) ∣ ( )∣U zsign .m

2

Let us briefly pause here to look at the linear plus non-
linear two-term evolution equation (1).

From the point of view of the optics community, the
linear term is a nearest neighbors energy coupling term, where
the details of the fields between the (widely-separated)
waveguides, both in the single-level tight binding model or
according to the coupled-mode theory (CMT), are packed into
the coupling coefficient [44, 45]. Actually, the origin of
optical-energy coupling is material polarization: neighboring-
fields are radiated (90° out of phase) by the field-excited
material polarization [46, 47]. The end result is of course
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energy tunneling, much like energy tunneling of matter waves
through potential barriers [48]. From the point of view of the
BEC community, the linear ‘kinetic energy’ term is just the
discrete version of the Laplacian operator [49]. (The missing
- ( )U z2 m ‘diagonal’ term in equation (1) [49] can be restored
by a simple global transformation [50] so that the two ver-
sions of the equation—with and without the- ( )U z2 m term—

are equivalent).
The second, Kerr-like nonlinear term, is a particle–

particle, on-site interaction term. With very different origin
comparing mass-less photons to massive particles. Photon–
photon interaction is again mediated by material polarization.
As a result, given the material selected, control of the non-
linearity coefficient can be achieved through material-induced
changes, which are hard to implement. But the optical non-
linearity strength can be high, limited only by material
damage threshold. Ultracold bosonic atoms directly attract-
repel each other. The interaction strength is lumped into an
s-wave scattering length [30]. This pair-interaction strength
can be controlled [51] and even sign inverted [52] by an
external magnetic field. Yet the density (and hence non-
linearity strength) of site-trapped atoms is limited through
three-body recombinations [39, 53], and through other
effects.

Energy bands are normally associated with periodic
structures [44], also in the cases where nonlinearity is inclu-
ded [45, 54]. For a 1D Kronig–Penney lattice (periodic square
wells) analytic solutions are known [55, 56], and yield
structure and stability properties similar to the properties
under sinusoidal potentials (as in BEC experiments) [56].
However, energy bands are not generated by the CMT-like
DNLSE (equation (1)), and we straightforwardly solve the
equation numerically, applying the Runge–Kutta method.

A final note for the properties of equation (1), related to

focusing–defocusing. Writing the equation as
z

z
=

( )U
i
d

d
m

z z- +- +[ ( ) ( )]C U Um m1 1 −g z z∣ ( )∣ ( )U U ,m m
2 positive

(negative) nonlinearity coefficient g( ) is ‘focusing’ (‘defo-
cusing’) [1]. In terms of ultra-cold atoms, ‘attractive’
(‘repulsive’) is focusing (defocusing) [57]. More generally, if
the two real coefficients g- -( )C, on the right hand side of
the DNLSE are of the same (opposite) sign, then the system is
referred to as ‘focusing’ (‘defocusing’) [32]. In optics,
negative nonlinearity g( ) is rare so systems are usually
focusing, whereas in BECs repulsive interactions, yielding
defocusing systems (that may lead to dark solitons [58]), are
typical [28, 30].

Back to equation (1) now, it is convenient to write the
complex field Um as a product of amplitude um (a real non-
negative number) and a phase factor— f⋅( )exp i :m

*º º =f ( )U u I U U ue ; . 2m m m m m m
i 2

m

Correlations of (any) two fields at ‘distance’ k of
each other ( ( ))C zk are defined as the average =( )C zk

*å ++[ ( ) ( )U z U z
N

N
m m k

1

2 1 *+( ) ( )]U z U zm m k where N is the total

number of sites. Or, using equation (2):

å q

q f f

=

º -
=

+

+

( ) ( ) ( ) [ ( )]

( ) ( )

C z
N

u z u z z

z

1
cos

. 3

k
m

N

m m k m k

m k m m k

1
,

,

Formation of these fields’ correlations is a prime subject
of our study. Note that in BEC studies, ‘correlation’ often
refers to density fluctuations as reflected by the second order
correlation function g2 [59].

Now, unlike the integrable continuous NLS equation
[60], the discrete NLS equation (1) is non integrable [16, 61],
and has two constants of motion [41, 62, 63].

The first constant of motion is the Hamiltonian (or ‘total
energy’—ha), the sum of two un-conserved quantities:

h h h

h

h

å

å

q

= +

= =

=
G

=
+

=

( ) ( )

( ) ( ) ( ) [ ( )] ( )

( ) ( ) ( )

z z

z
N

u z u z z C z

z
N

u z

2
cos 2

2

1
. 4

a

m

N

m m m

m

N

m

2 4

2
1

1 ,1 1

4
1

4

Here h ( )z2 is the ‘kinetic energy’, and h ( )z4 —the ‘interaction
energy’. The Hamiltonian defined by equation (4) (and down
below appears in the phase diagrams of figure 2), is a site-
averaged Hamiltonian. Note that since in our study the values
of all u’s are narrowly spread (around the shift value m—see
equation (6)), the Hamiltonian of equation (4) is approxi-
mately a nearest-neighbors quantum rotor Hamiltonian [64].

The second conserved quantity w( ) is the wave-action [27]:

w å= =
=

( ) ( )
N

u z C
1

5
m

N

m
1

2
0

also written in its site-averaged version (and constitutes the
horizontal axis of the phase diagram). The wave-action is also
termed ‘total power’, ‘total intensity’, ‘number of particles’,
‘density’, or ‘system norm’ in different contexts.

With the evolution dynamics defined, our objective is to
predict the long range (post-thermalization) system’s char-
acteristics given a predefined set of statistical excitations. In
order to illustrate our derived general results, we have
selected a specific type of system’s statistical excitation.
Namely—Gaussian excitation.

3. Gaussian excitation

As mentioned, we extend the work of [1] by studying
DNLSE-governed systems, statistically excited with a finite-
width non-negative Gaussian distribution. Amplitudes of the
fields at =z 0 are Gaussian distributed with flat-distributed
random phases, as in [1]. The system’s excitation statistics
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takes the form:



 

 

   

m
s

p
s

m
s

f p
p

q p
p

¥ =
- -

º +

=  =f q

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( ) ( )

( ) ( ) ( )

R

R

u
u

0
1

exp
2

2
1 erf

2

0 2
1

2
0 2

1

2
. 6

u
u

u

2

2

The non-negative Gaussian excitation (equation (6) and
figure 1) varies with only two parameters—the ‘shift’ m (not
exactly the mean, see equation (12), and not to be confused
with chemical potential), and the ‘width’ (or ‘spread’) s.

Generally, once the statistical distribution of system’s
excitation is known, the expectation values (average over
realizations, designated á⋅ñ) of the constants of motion can be
calculated. Thus, the expectation value of the wave-action

constant wá ñ is given by:

w òá ñ = º
¥

( ) ( ( )) ( ) ( ) ( )u u u u0 0 d 0 0 . 7u
0

2 2

The expectation value of the total energy constant há ña is
given by the sum of the (not conserved) kinetic and interac-
tion energies ( há ñ2 and há ñ4 ) at any z, including =z 0:

h 



ò

ò q q q

q

á ñ =

´

º á ñ á ñ

q

¥

¥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ( )) ( )

( ( )) ( ( )) ( )

( ) ( ( )) ( )

u u u

u

0 2 0 0 d 0

cos 0 0 d 0

2 0 cos 0 . 8

u2
0

2

0

2

Equation (8) holds since the amplitudes ( )u 0 ’s are
independent random variables. Similarly for há ñ4 at =z 0:

h òá ñ =
G

º
G
á ñ

¥
( ) ( ) ( ( )) ( ) ( ) ( )u u u u0

2
0 0 d 0

2
0 . 9u4

0

4 4

Figure 1. Non-negative Gaussians. (A) Relatively wide. (B) Relatively narrow. In all examples studied and reported below we assumed
m s so that for amplitudes near zero the ( )uPDF is also nearly zero (i.e. only amplitudes with values close to the shift value m( ) are
excited). Normal Gaussian moments could have been used. However, for the derived analytic expressions we held-on to the exact
mathematics.

Figure 2. Position of the studied systems on the DNLSE phase diagram. The zone between the blue (zero temperature) line and the red
(infinite temperature) line is the thermalization zone, further divided by the strong-interaction green line. The white zone above the red line is
a (negative temperature) breather-forming zone, and the dark gray zone below the blue line is an inaccessible zone. (A) m = 4. (B) m = 10.
As shown, with s = 0 the systems are positioned exactly on the ‘cold’ strong-interaction line in the thermalization zone (the green line).
With increased s, the systems heat-up and drift upwards in the thermalization zone. The up drift is accompanied by a pronounced reduction
in fields’ correlation length.
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And the expectation value of the total energy constant
há ña (per site) becomes:

h h há ñ = á ñ + á ñ( ) ( ) ( )0 0 . 10a 2 4

Let us just mention that equations (7)–(10) hold for any
statistical excitation (with independent random amplitudes),
not just for the selected Gaussian excitation.

Given the Gaussian excitation of equation (6), the general
expressions (7)–(10) can be expressed in terms of their sta-
tistical moments:

w

h h

h

á ñ =

= á ñ =
G

 á ñ =
G

( ) ( )

( )

M

M

M

0 0; 0
2

2
11a

2

2 4 4

4

With (M1 included for future use):
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-
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2 5 exp
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1 erf
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2
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2 2

2

2

4
4 2 2 4

3 2
2
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Note that the expressions in equation (12) are written
each as the sum of a Normal (Gaussian) distribution moment
and a correction term required for positive-only Gaussian
distribution. It is easy then to see that for large shift m and or
small width s (i.e. m s / 1), all correction terms vanish.
(However, in the evaluation of the analytic equations derived
below we consistently call for the exact expressions).

We now wish to relate the Gaussian-excited systems to
the phase diagram.

The phase diagram associated with the DNLSE (h w( ),a

see figure 2) can be grossly divided into two zones—a ‘no-
breathers’ or thermalization zone (permits the construction of
standard Gibbsian equilibrium measures for positive tem-
peratures [43]), and a breather-forming zone ([27, 43]). The
no-breathers zone is limited below by a zero temperature line
(h w w= - + G2a 2

2 for G > 0, the blue line of figure 2), and
is limited above by an infinite temperature line (h w= G ,a

2

the red line of figure 2). The breathers-forming zone, the zone
above the infinite temperature line, is referred to as a negative
temperature zone [43] and the input power to a system in the
negative temperature zone must be limited from above [27].
The zone below the zero temperature line is inaccessible [43].

The no-breathers zone is further divided by a line for
high nonlinearity systems (h h w@ = G( )z .ss a4

1

2
2 [27], the

green line of figure 2). The green line is an approximation to
the total energy under the assumption that the contribution
of the linear, kinetic energy term ( w=-2 ) is small
compared to the contribution of the quadratic, interaction term

wG( ).1

2
2 In the cold atoms language— /E E 1.int kin We

refer to the green line of figure 2 as a strong-interaction line.
The Gaussian-excited systems discussed here are placed

at or slightly above the strong-interaction line in the no-
breathers zone. As can be seen from equations (11) and (12),
for s = 0, =M M4 2

2 so that the system is exactly on the
h w= Ga

1

2
2 ‘cold’ line for all m’s. However, once s grows

above zero, the system ‘heats up’ and drifts upwards into the
thermalization zone (figure 2). And, as we show below, this
upwards drift with increased excitation width is associated
with quick reduction of the fields’ correlation length.

These system initializing conditions, namely—high
intensity and small intensity fluctuations correspond to the
conditions of an ultra-cold atoms system of high number
of site particles and small number-fluctuations assumed
by Danshita and Polkovnikov in their study of quantum
tunneling [34].

Our objective next, given Gaussian excitation, is the
derivation of analytic expressions for the probability density
of site intensities  ( )I ,I and of phase differences  qq( ) at
thermodynamic equilibrium.

4. Probability densities at thermodynamic
equilibrium

For a system in the thermalization zone, the system’s entropy
is maximized with evolution distance [43]. We are looking
then to find the long-distance PDF ( q q¼ ¼q( )I I , , ,I N N, 1 1

that maximizes system’s entropy:

  ò ò



q q

q

¼ ¼ = -

´

q q
p

q q
¥

( )

[( ( )] ( )

13

S I I

I

, , , ln

d d

I I N N I I

N

i i

, , 1 1
0

2

0
, ,

1

subject to three constraints: conserved wave-action, con-
served total energy, and a normalized PDF. To find the
entropy’s extremum we generally need to solve the following

+N2 3 equations:

    q q a h l ¼ ¼ =a h l¼ ¼q q

( )
( )

14

I I , , , , , , 0,N N N, , , , , , , , 1 1I I N N,1 , ,1 ,

where N is the Lagrangian expression. However, following
[1], since (as we show below) the intensities are not corre-
lated, the quantum phase model [65] approximation applies.
Adopting this approximation, the q-I parameters are Gibbs-
space separable variables [66] so that the PDF  q( )I, splits into
I and q. The system’s entropy becomes the sum of inten-
sity-entropy and phase-difference entropy = +q q( )s s s .I I,

Thus, our task is greatly simplified. We need to solve only six
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equations with four constraints:

  q a h l l =a h l lq ( ) ( )I, , , , , 0. 15, , , , , 1 2I 1 2

Before writing the solutions to equation (15), let us look
at simulated correlations and at simulated entropy curves.

Nearest neighbors correlations are visualized by figure 3.
Left column at excitation =( )z 0 , right column at =z 30.
The rows, top to bottom show correlations of f q I, , . At
=z 0, Following the random excitation, no correlations are

visible. Looking at (B) of the top row we clearly see fields’
phase correlations formed at =z 30. Looking at (D) of the
center row, no correlations are seen, and the PDF  qq( ( )) at
=z 30 is not flat anymore, with higher occupation near 0 and
p2 radians (see figure 6). Going down to the third row, no
intensity correlations are visible and the PDFs ( ( ))II for both
E and F seem to follow Gaussian shapes (see figure 6). The no
intensity correlations assumption that led to the simplified
Lagrangian of equation (15) is thus verified.

Next—simulated entropy curves and simulated field
correlation curves. That is—the change of entropies and
correlations with evolution distance.

Entropy curves are shown in figure 4(A). The figure
shows the contribution of intensity, the contribution of phase-
difference (θ), and the overall (site-averaged) system’s
entropy = +q q( )s s s .I I, Interestingly, we see a weak over-
shoot of the intensity-contributed entropy, and a decay with
small dip in the phase-difference-contributed entropy. In
addition, we see very pronounced overshoots in the fields’
correlation curves of figure 4(B).

Details of evolution of correlation coefficients are shown
by figure 5. At short distances by figure 5(A) and at longer
distances by the zoom out of figure 5(B). The figure shows
three curves of evolution of the correlation coefficient, one for
each of the following three variables—the phase of the fields
f( ), the phase difference (θ), and the site-intensity =( )I u .2

Correlation here, at every distance z, is between the array of
each variable and its k-shifted version (for the simulations of
figure 5 =k 1). Correlation coefficient is defined in the
standard way: if the array is x0 and its k-shifted version is xk

then r = -( ) [ ] ( [ ])
[ ]

x x, k
E x x E x

x0 VAR
k0 0

2

0
(since =[ ] [ ]E x E xk0 and

=[ ] [ ]x xVAR VAR k0 ). The shown curves are the average of
ten realizations. Note the difference between phase correla-
tions defined here and phase correlations defined in a recently
published work by Santra et al [67].

At short distances, correlations are formed in all the three
shown variables. However, phase-difference correlations and
intensity correlations decay with further propagation and only
the phase correlations persist to thermodynamic equilibrium.
These phase correlations are intimately related to the fields’
correlations discussed in section 5.

Back to equation (15), after accepting another approx-

imation h- G @hG⎡
⎣⎢

⎤
⎦⎥( ) ( )/exp 0 ,M

2
2
2

we find its solutions,

yielding the two thought-for PDFs:
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where  ( )z0 is the modified Bessel function of the first kind.
The Lagrange multiplier h appearing in the PDFs expres-

sions is the solution to the implicit equation given in (16) and is
of course, indirectly, a function of the shift m and the width s of
the excitation statistics. We have found numerically that for a
fixeds, the product hM1

2 is constant, surprisingly independent of
the shift m so that h s= s ( )/C M1

2 with ss ( )C a monotonically
decreasing function, s = @s ( )C 0 0.533. For large m then,

indeed h- G @hG⎡
⎣⎢

⎤
⎦⎥( ) ( )/exp 0 .M

2
2
2

Probability density functions, simulated and calculated
according to the expressions of equation (16) are depicted by
figure 6. Note that the expressions in equation (16) are general
and are not specific to Gaussian excitation. They hold for
random flat-distributed phase excitation and high nonlinearity
(practically, in our examples studied here, m > 3 and s m
yield reasonable fits).

With PDFs expressions in place, we can move on to
discussing field correlations.

5. Field correlations

Field correlations are defined by equation (3). Since the
intensities (and therefore ( )u zm ) were shown to be uncorre-
lated, the expectation á ñCk of the fields’ correlation, i.e. the
average over realizations, is given by

qá ñ = á ñ á ñ( ) ( )C I cos 17k k
2

Or explicitly, for post-thermalization distances:

  ò ò q q qá ñ =
p

q
¥⎡

⎣⎢
⎤
⎦⎥( ) ( ) ( )

( )

C I I I kd cos d ; 1

18

k I k
0

2

0

2

with á ñC0 as an exception:

wòá ñ = = = á ñ
¥

( ) ( )C I I I Md . 19I0
0

2
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Figure 3.Nearest neighbors correlations. (A), (C), (E): =z 0. (B), (D), (F): =z 30. (A) and (B) Correlations of the field phases (f). (B) Field
phases are positively correlated (or negatively correlated for positive nonlinearity). The PDF of field phases  ff( ( )) is flat on both (A) and (B)
(the PDF is the set of integrals along vertical, or horizontal, slices). (C) and (D) Field phase differences (θ) are not correlated. (D) The PDF
 qq( ( )) is not flat anymore, having higher values near 0 and 2π (see figure 6). (E) and (F) Intensities are not correlated and their PDF ( ( ))II is
of a Gaussian shape (much wider for =z 30, see figure 6). Uncorrelated intensities justify the quantum phase model approximation that led
from equation (14) to (15).
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Knowing  ( )I ,I the á ñI 2 term of equation (17) can be
calculated exactly. For s m its value will turn out to be (to
a very good approximation, not used in our calculations):

s má ñ @ @  ( )I M M ; . 202
1
2

2

Regarding qá ñ( )cos ,k let us first treat the =k 1 case. For
=k 1 we omit the subscript ‘1’, i.e. q qº .1 For  qq( ) of

equation (16) we then evaluate-

 òq
p h

q qá ñ =
p

h q-
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2
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2

and find:
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2

2
, 221 1
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where  ( )zn is the modified Bessel function of the first kind.
Now to qá ñ( )cos k for k 2. For =k 2 let us write

q q q= + + ( ). 23m m m,2 ,1 1,1

It follows that

q q q q q qá ñ = á + ñ = á ñá ñ∣ ( )242 1 1 1 1 1

Figure 4. Evolution of entropies (A) and evolution of field correlations (B) simulated for a Gaussian-excited system. A: system entropy
(green) is the sum of intensity-contributed entropy (red) and phase-difference (θ)-contributed entropy (magenta) = +q q( )s s s .I I, As the
system evolves, under either focusing or defocusing nonlinearity, the field intensities spread, intensity-entropy shoots up showing even a
small overshoot. Field phase differences on the other hand become correlated (see figure 3), the initially flat  qq( ) shrinks (see figure 5) and
thus phase-difference-entropy goes down, even showing a small dip. Overall system’s entropy q( )sI, is monotonically increasing with
evolution distance. B: field correlations are quickly formed, overshoot to a maximum value, degrade somewhat, and (unlike intensity
correlations) continue to rise very slowly. Separation of entropies goes of course with two separated PDFs ( ( )II and  qq( ), equation (16)).

Figure 5. Evolution of nearest neighbors correlation coefficient—phases (red), phase differences (blue), and intensities (magenta). Early in
the evolution, all three arrays show rather high degree of correlation (positive or negative) (A). However phase differences de-correlate very
quickly (compared to the distance to thermodynamic equilibrium) and at =z 0.2 (for the simulated excitation parameters) phase-difference
correlation coefficients are down to zero. Intensities strongly correlate (maximum correlation value and position of the maximum strongly
depend on the initial amplitude spread), then quickly de-correlate to a certain value, and then gradually de-correlate further to a completely no
correlation state (B). The only array (of the three presented) that stays correlated at long distances, positively correlated for negative
(defocusing) nonlinearity and negatively correlated for positive (focusing) nonlinearity, is the array of phases. The level of the steady-state
phase correlation depends on excitation parameters (particularly on the width of the exciting Gaussian).
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And since qk are random variables (over realizations)

q q qá ñ = á ñ º á ñ ( ). 252 1
2 2

Similarly for qá ñcos :2

q qá ñ = á ñ ( )cos cos 262
2

From here the generalization is obvious:

q qá ñ = á ñ ( )cos cos . 27k
k

So equations (19) and (17) can be written as

w

q
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C I

C I kcos ; 1. 28k
k

0

2

Equation (28) is general, and is not limited to Gaussian
excitation. Equation (28) for field correlations in systems
evolving under DNLSE dynamics holds for any long range
fields distribution where the phase differences (qm’s) are
random (over realizations). The equation shows that if the
phase differences are not flat-distributed (such that

qá ñ ¹( )cos 0), the fields are correlated and exponentially
decay. If qá ñ( )cos is negative, the sign of the fields’ correla-
tions alternates with k.

With  qq( ) of equation (16) the correlations of
equation (28) read:


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h
h

á ñ = á ñ -
⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
( )C I

M

M
1

2

2
. 29k

k
2 1 1

2

0 1
2

Or approximately:
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Equations (29) and (30) hold for both signs of the non-
linearity coefficient G( ).

The PDFs ( ( )I ,I  qq( )) at thermodynamic equilibrium as
well as the field correlations, depend on two parameters of the
statistical excitation of fields’ amplitudes—mean and width.
For Gaussian excitation, we elected to replace the mean by
the shift of amplitude distribution (μ) which, for s m is
very close to the mean. In the next five figures, we present
thermodynamic-equilibrium properties of the system as a

function of the two field amplitudes’ excitation parameters
m s( ), . In all examples considered, fields phases at excitation
=( )z 0 are flat-distributed between 0 and p2 . For all simu-

lations the number of sites in the periodic array is kept at
=N 2048 and cyclic boundary conditions are assumed. All

analytic curves are computed according to equations (16)
and (29).

The curves of figure 7 were computed and simulated to
show the effect of the sign of G (focusing or defocusing
nonlinearity). Indeed both  qq( ) (figure 7(A)) and á ñCk

(figure 7(B)) are affected by the sign of nonlinearity, as
predicted by the corresponding equation (and as calculated for
s = 0 by [1]).

Next, figure 8(A) displays a map showing the normalized
width s( )I of intensity PDF ( ( ))II at thermal equilibrium as a
function of the two excitation parameters. The width s( )I of
the thermalized intensities, as the map shows, depends on
both parameters. Mathematically, as  ( )II has a Gaussian
shape, the normalized width s( )I is calculated through
equation (16) to read:

s
h

=
+

G

( )
∣ ∣

( )
R

M

2ln 1
. 31I

I

2

Back to figure 8(A), starting from the top-left corner of
the map, spread of thermalized intensities is seen to increase
with decreasing shift (μ) (i.e. decreasing nonlinearity) and
with increasing excitation width (σ). Figure 8(B) shows a
curve of the normalized intensity width s( )I versus excitation
width (σ) for a fixed shift (μ). The insets just schematically
illustrate the spread of excitation amplitudes.

The objective of figure 9 is to show ‘universality’ of
 qq( ) in the sense of nonlinearity independence (above a
certain threshold). Nonlinearity, just to restate, is proportional
to M2 that, for s m is very close in its value to m2 (see
equation (12)). The curves of figure 9(A) are simulated and
calculated for m = 4, whereas the curves of figure 9(B) are for
m = 10. Analytically, since the product hM1

2 is independent
of m, the curves of the two panels of figure 9 are identical. The
simulated curves (averaged over 50 realizations) do show
very small differences since the nonlinearity assumed for the
left panel is not very high (m = 162 on the left versus

Figure 6. Probability density functions at thermodynamic equilibrium. (A) Simulated  ( )II at =( ) ( )z z z z, , , 0, 10, 20, 301 2 3 4 and an
analytic curve (light green). (B) Simulated  qq( ) at =z 30 and an analytic curve (red). The simulated curves were averaged over 50
realizations. The continuous analytic curves were calculated according to equation (16).
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Figure 8. Normalized width σ of the PDF of thermalized field intensities ( ( ))II versus shift and width of the amplitude-exciting Gaussian.
The normalized width s( )I of the PDF of site intensities at thermodynamic equilibrium is given by equation (31). The figure shows how
strongly the field intensities spread with decreased nonlinearity and with increased width of Gaussian excitation (see figure 10(D)).

Figure 9. Universality of  qq( ) with respect to changes in the nonlinearity strength (that is proportional to m@M2
2). The analytic curves in

(A) m =( )4 and (B) m =( )10 are identical and the simulated curves (averaged over 50 realizations) show rather small (A) versus (B)
differences.

Figure 7. The effect of the nonlinearity sign on  qq( ) (A) and on á ñCk (B). The theoretical curves were calculated according to equations (16)
and (29) respectively. (A) Continuous light-green and yellow curves are theoretical, green and magenta dots—simulations (averaged over 50
realizations). The  qq( ) curve is shifted by p upon change of the nonlinearity sign. (B) Red and light-green dots—theoretical, blue and
magenta dots (and dashed lines in between to guide the eyes)—simulations (averaged over 50 realizations). The exponentially decaying
correlations switch signs for odd site-distances (k) upon change of the nonlinearity sign. Note that according to equation (3) the field
correlations are not normalized (in figure 11 we show normalized nearest neighbors field correlations).
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m = 1002 on the right). It follows that correlation curves are
also (nearly) universal in the same sense (nonlinearity inde-
pendence, see figure 11).

The four panels of figure 10 show the effect of excitation
width s( ) on system’s characteristics at thermodynamic
equilibrium (by both analytics and simulations). Each of the
panels shows two curves, one for very small s and one for a
larger s. For the larger s, the four panels show lower corre-
lations (A), wider  ( )II distribution (B), flatter  qq( ) (C), and
wider spread of field intensities (D). These shown effects do
not come as a surprise since we have already seen (figure 2)
that with increased s the system moves upwards, i.e. towards
higher temperatures, on the phase diagram.

The last figure, figure 11, is devoted to the universality of
the correlation functions (the general equation (28) and the
specific equation (29)). Again universality in the sense of the
curves being virtually independent of the nonlinearity value

m@( ).2 The map and curve of figure 11 show only the (nor-
malized) value of nearest neighbor fields’ correlation ( )/C C ,1 0

knowing that further away >( )/C C k; 1k 0 the correlations
decay exponentially. Indeed the columns of the map are
nearly mono-color (independent of m). The very weak color
change along the columns comes from the very weak
dependence of the á ñI 2 factor in the equations on the shift
(since hM1

2 in the second factor (equation (29)) is independent
of the shift (μ)).

Whereas the formed fields’ correlations depend very
weakly on nonlinearity, the color change going horizontally
on the map of figure 11(A) and the single curve of
figure 11(B) indicate how strongly the formed correlations

depend on the width of the initially excited amplitudes. Wider
spread of the excited amplitudes results in quick decay of the
correlations’ strength and thus a quick shrink of the correla-
tion length.

6. Summary

We study a discrete optical system entertaining two effects—
energy exchange between sites and on-site nonlinear inter-
action. The dynamics of the system is described by the
DNLSE. Our study is focused on a special set of statistical
excitations (values of the fields at =z 0). The amplitudes of
the site-fields are excited with high mean and narrow width.
The phases of the excited fields are random, flat-distributed
around the full circle. Such excitations place the nonlinearity-
dominated system in the thermalization zone of the phase
diagram, at or slightly above the strong-interaction line ([27]
and figure 2).

At thermodynamic equilibrium, the statistical character-
istics of systems such-excited are analytically predictable.
Systems’ entropy is the sum of intensity-contributed entropy
and phase-difference-contributed entropy = +q q( )s s s .I I, We
have derived expressions, in terms of the moments of the
statistical excitations, for the PDF of field intensities ( ( )I ,I

equation (16)), for the PDF of field phase differences
 qq( ), equation (16)), and for the formed field correlations
(á ñC ,k equation (28)), all at thermodynamic equilibrium.

As the system evolves, very quickly strong field corre-
lations are formed, overshooting, then decay slightly and

Figure 10. Effect of the spread of the excited field amplitudes s( ) on the post-thermalization characteristics of the fields. With increased width
of excitation we see reduction in correlation strength and hence in shrinking of the correlation length (A), widening of the spread of field
intensities ((B) and see figure 8), Flattening of the  qq( ) curve (C) and again, shown in a different manner, widening of the spread of field
intensities (D, green for s = 0.01 and purple for s = 1).
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continue to slowly rise (or fall for odd neighbors count (k) and
positive nonlinearity) towards their equilibrium value. At long
distances field correlations decay exponentially with site-
count (number of sites). The formed correlations are universal
in the sense that correlation length very weakly depends on
nonlinearity strength. However, the formed field correlations
strongly shrink with increasing spread of the initially excited
amplitudes.

Strong and negative second order ( )g ,2 Hanbury Brown
and Twiss type intensity correlations are quickly formed at
the start of evolution (independent of the nonlinearity sign).
But whereas formed first-order ( )g1 field correlations persist to
thermodynamic equilibrium, the formed intensity correlations
gradually decay (see figure 5) due to constantly flowing
wave-action (‘density’) currents.

Applying our derived expressions to Gaussian excita-
tions, we find very good match of predicted and simulated
steady-state system’s characteristics.

The results of this study pertain not only to periodic 1D
nonlinear optical waveguide arrays but generally to low or
medium temperature 1D periodic systems evolving under
DNLSE dynamics. For example, the formation of field cor-
relations in the course of evolution (starting from zero at
=t 0) was qualitatively stated by Polkovnikov et al [31] for a

quench procedure applied to ultracold bosonic atoms trapped
in an optical lattice.
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