
Tutorial 3

The BCS Theory of Superconductivity

In the lectures you saw a phenomenological analysis of superconductors. In particular, you saw that given
some empirical results, many additional predictions can be made using the Ginzburg-Landau formalism.
Historically, this approach has been very successful.

However, the theory is still incomplete without a microscopic explanation. In this tutorial we will �ll
this gap by reviewing the famous BCS theory, established by Bardeen, Cooper, and Schrie�er about 50
years after the initial discovery of superconductivity. Then, we will connect the microscopic picture to the
phenomenological one by deriving the Ginzburg-Landau theory.

Part I

Preliminaries

The BCS theory is based on two important insights:

1. Cooper's realization that attractive interactions between electrons in the vicinity of the Fermi-energy
favor the formation of bound states made of two electrons, called cooper pairs.

2. The result that interaction between two electrons, mediated by phonons, can be attractive.

Once one realizes these things, the next step is to assume that the ground state of a many body system with
attractive interactions can be described in terms of a condensate of such weakly interacting pairs. The pairs
satisfy Bose statistics, giving rise to a physics similar to that of a super�uid, yet di�erent due to the fact
that the bosons are now charged. We will see that this picture is capable of explaining superconductivity.

First let us elaborate on the above two crucial points:
To see that pairs of electrons can form bound states, we examine the following toy model. We imagine a

�lled Fermi sea. On top of that, we add two electrons which have an attractive interaction only with each other
(note that they do feel the Fermi sea via the Pauli-principle). We would like to �nd the corresponding two-
Fermion eigenstate. We assume that the total momentum is zero and that the spin-part of the wavefunction
is antisymmetric. Then, we write the wavefunction as

ψ(r1,r2) =
∑
k

(
gke

ik(r1−r2)
)

(|↑↓〉 − |↓↑〉) . (1)

The Schrodinger equation takes the form

[H0(r1) +H0(r2) + V (r1 − r2)]ψ(r1,r2) = Eψ(r1,r2), (2)
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Plugging Eq. 1 in, we get∑
k

gk [H0(r1) +H0(r2) + V (r1 − r2)] eik(r1−r2) = E
∑
k

gke
ik(r1−r2).

In a translation invariant system we get∑
k

gk [2εk + V (r1 − r2)] eik(r1−r2) = E
∑
k

gke
ik(r1−r2).

Multiplying by e−iq(r1−r2) and integrating over space, we get

2εqgqΩ +
∑
k

ˆ
V (r1 − r2)ei(k−q)(r1−r2)gk = EgqΩ,

which can be written in the form ∑
k

Vk,qgk = (E − 2εq) gq, (3)

with

Vk,q =
1

Ω

ˆ
V (r)ei(k−q)r.

Obviously the energies depend on the form of the interaction V , but the phenomena we want to see should
be universal for Fermions with attractive interactions, so we pick the simplest form we can think of:

Vk,q =

{
−V If EF < εk < EF + ∆E and the same for εq

0 Otherwise
. (4)

Plugging this in Eq. 3, we have

−V
∑
k

gk = (E − 2εq) gq,

where the sum over k is restricted by the requirements given by Eq. 4. Dividing by E − 2εq and summing
of over q (with the same restrictions), we get

−
∑
q

V

E − 2εq
= 1.

Transforming this into an integration over energy:

−
ˆ EF+∆E

EF

dε
V n(ε)

E − 2ε
= 1.

We Integrate over a thin shell, so we assume the DOS is constant over this region, and we write

−V n(EF )

ˆ EF+∆E

EF

dε
1

E − 2ε
= 1.

This leads to the equation
V n(EF )

2
log

(
E − 2 (EF + ∆E)

E − 2EF

)
= 1,

2



whose solution is given by

E = 2EF − 2∆Ee
− 2
V n(EF ) .

So we get a state with a lower energy than that of two non-interacting electrons added exactly at the
Fermi-surface. In addition, by studying the corresponding wavefunction, one can show that this is indeed a
bound state. This result demonstrates a general principle: if there is an attractive interaction (which can
be arbitrarily small) between the electrons, there is an instability towards the formation of pairs. One can
then assume that the ground state of a many-body system with attractive interactions is composed of many
weakly interacting pairs.

We now turn to study the possible origin of such attractive interactions. As it turns out, these can
originate from an electron-electron interaction, mediated by phonons. We will only discuss a very qualitative
picture here, but this can be made more rigorous. The idea is that an electron can pass at some time near an
ion and attract it. The electron passes after a short time ∼ E−1

F , and now there is a large concentration of
positive charges around the electron's original position. Using the fact that the ion can return to equilibrium
only after a time ∼ ω−1

D , which is much larger than E−1
F , we �nd that long after the original electron has

passed, there is still a concentration of positive charges. This attracts other electrons. The net e�ect is an
attractive interaction between the two electrons (which in reality is mediated by the phonons).

Part II

BCS theory

Having the above physics in mind, we postulate that as the system becomes superconducting, there is an
instability toward condensation of pairs. To investigate the physics that arises from that, we assume that the
ground state of a system with attractive interactions |Ωs〉 is characterized by a macroscopic number of pairs.

This means that ∆ = g
Ω

∑
k 〈Ωs|ψ−k,↓ψk↑ |Ωs〉, and its complex conjugate ∆̄ = g

Ω

∑
k 〈Ωs|ψ

†
k↑ψ

†
−k,↓ |Ωs〉 is

non-zero. We regard these quantities as the order parameters of our system.
Using the above assumption, we use the usual mean �eld formulation to transform the interacting Hamil-

tonian into a quadratic one, neglecting some quantum �uctuations.
We start from a system of fermions with attractive interactions

H =
∑
k,σ

nk,σ(εk − µ)− g

Ω

∑
k,k′,q

ψ†k+q↑ψ
†
−k↓ψ−k′+q↓ψk′↑.

Under our mean-�eld assumption,
∑

k′ ψ−k′+q↓ψk′↑, is governed by small q's so we take q = 0, and we write∑
k′

ψ−k′↓ψk′↑ =
Ω∆

g
+
∑
k′

ψ−k′↓ψk′↑ −
Ω∆

g︸ ︷︷ ︸
≡Ωδ

g (Small)

,

and in the same way ∑
k

ψ†k↑ψ
†
−k↓ =

Ω∆̄

g
+
∑
k

ψ†k↑ψ
†
−k↓ −

Ω∆̄

g︸ ︷︷ ︸
≡Ωδ̄

g (Small)

.
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The interactions takes the form

− g
Ω

∑
k,k′

ψ†k↑ψ
†
−k↓ψ−k′↓ψk′↑ = −Ω

g
(∆ + δ)

(
∆̄ + δ̄

)
≈ Ω

g

(
|∆|2 + δ∆̄ + δ̄∆

)
.

Plugging this in the Hamiltonian, we get

H =
∑
k,σ

nk,σ(εk − µ) +
Ω

g
|∆|2 −∆

∑
k

ψ†k↑ψ
†
−k↓ − ∆̄

∑
k

ψ−k↓ψk↑.

This is sometimes called the Bogoliubov de-Gennes (BDG) Hamiltonian. We have transformed our interacting
Hamiltonian into a quadratic mean-�eld Hamiltonian that captures the correct ordering in our system. Note,
however, that this form is dramatically di�erent than the type of Mean �eld Hamiltonians we usually write as
it doesn't conserve the number of particles. The number of particles is indeed not conserved, but the parity
of that number (i.e., the number of particles mod 2) remains a good quantum number.

We would like to diagonalize the BDG Hamiltonian. To do so, we de�ne the spinor Ψk =
(
ψk↑ ψ†−k↓

)T
,

in terms of which we can write

H =
Ω

g
|∆|2 +

∑
k

(εk − µ) +
∑
k

Ψ†khBDGΨk,

with

hBDG =

(
εk − µ −∆
−∆̄ − (εk − µ)

)
.

To see that this is true, let us plug the de�nition of Ψk in:

H =
Ω

g
|∆|2 +

∑
k

(εk − µ) +
∑
k

Ψ†khBDGΨk =,

=
Ω

g
|∆|2 +

∑
k

(εk − µ) +
∑
k

[
(εk − µ)

(
ψ†k↑ψk↑ − ψ−k↓ψ†−k↓

)
−
(

∆ψ†k↑ψ
†
−k↓ + ∆̄ψ−k↓ψk↑

)]
=

=
∑
k,σ

nk,σ(εk − µ) +
Ω

g
|∆|2 −∆

∑
k

ψ†k↑ψ
†
−k↓ − ∆̄

∑
k

ψ−k↓ψk↑.

Because the matrix hBDG is Hermitian, we can always perform a unitary transformation and diagonalize it,
such that (assuming ∆ is real)

UhBDGU
−1 =

(
λk 0
0 −λk

)
χk =

(
ck,1
ck,2

)
= U

(
ψk↑
ψ†−k↓

)
.

The unitary transformation can be parametrized by

U =

(
cos θk sin θk
sin θk − cos θk

)
,
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(a) (b)

Figure 1

where tan(2θk) = − ∆
εk−µ , and the eigenvalues are λk =

√
∆2 + (εk − µ)2. In terms of these, the Hamiltonian

takes the diagonal form

H =
Ω

g
|∆|2 +

∑
k

(εk − µ) +
∑
k

(
λkc
†
k,1ck,1 − λkc

†
k,2ck,2

)
. (5)

Taking εk = k2

2m , we get the dispersion shown in Fig. 1a.
It is now simple to identify the ground state: it is the state in which all the negative energy states are

occupied and the positive energy states are empty, that is

|Ωs〉 =
∏
k

c†k,2ck,1 |0〉 ∝
∏
k

(
cos θk − sin θkψ

†
k↑ψ

†
−k↓

)
|0〉 ,

where |0〉 is the vacuum of our Fock space.
To get excited states we can either destroy a ck2 particle, or create a ck1 - both with an energy cost of

λk. The crucial point is that there is a gap ∆ to excitations. This gap is essential for superconductivity.
Recall that ∆ was de�ned as the expectation value ∆ = g

Ω

∑
k 〈Ωs|ψ−k,↓ψk↑ |Ωs〉. We are now in a

position to write a self-consistent equation for it. All we need to do is to write the ψ′s in terms of the c's,
and �nd 〈Ωs|ψ−k,↓ψk↑ |Ωs〉 = − 1

2 sin (2θk) = ∆
2λk

. So we get the self consistent equation

∆ =
g

2Ω

∑
k

∆

λk
.

Transforming this into an integral, and recalling that the attractive interaction occurs only at a thin shell of
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order ωD around the Fermi-energy, we write

1 =
g

2

ˆ ωD

−ωD
dξ

n(ξ)√
∆2 + ξ2

≈ gn

2

ˆ ωD

−ωD

dξ√
∆2 + ξ2

= gn · sinh−1
(ωD

∆

)
.

Solving this for ∆, and assuming the interaction is small, we get

∆ ≈ 2ωDe
− 1
gn .

It is instructive to �nd the critical temperature from this formalism. To do this we need to write the
self-consistency equation at �nite temperatures. You will do this in the homework exercise.

To summarize this part, we now have a microscopic theory that explains the condensation of pairs and
the emerging gap to excitations. However, this picture doesn't actually allow us to �nd the electromagnetic
response of the system. To capture this part, we need to include an additional degree of freedom in our
picture: the Goldstone mode associated with changing the phase of ∆. Such a treatment necessarily goes
beyond the above mean �eld treatment, which treats ∆ as a constant. This will be done next.

Part III

Deriving the Ginzburg-Landau theory

To make contact with the phenomenological analysis, and include the phase mode in the analysis, we turn
to derive the Ginzburg-Landau functional from the microscopics using the Hubbard-Stratonovich transfor-
mation. This is very similar in spirit to what we already saw when we discussed magnetism.

The partition function of the system is given by

Z =

ˆ
D[ψ, ψ̄]e−

´ β
0
dτ
´
dx[ψ̄σ(∂τ+ieφ+ 1

2m (−i∇−eA)2−µ)ψσ−gψ̄↑ψ̄↓ψ↓ψ↑],

where we have introduced coupling to the electromagnetic �eld in the form of the minimal coupling (∂τ →
∂τ + ieφ,−i∇ → −i∇− eA).

To get the Ginzburg-Landau theory, we decouple the interacting term using

e
´ β
0
dτ
´
dxgψ̄↑ψ̄↓ψ↓ψ↑ =

ˆ
D[∆ ¯,∆]e

−
´ β
0
dτ
´
dx

[
|∆|2
g −(∆̄ψ↓ψ↑+∆ψ̄↑ψ̄↓)

]
.

The resulting action is identical to the mean-�eld action we had in the previous section if we treat ∆ as a
constant �eld, giving ∆ the interpretation of the superconducting order parameter we had before. However,
now it's a dynamical �eld, and in particular, it has a phase which can �uctuate.

De�ning the Nambu-spinor as

Ψ =

(
ψ↑
ψ̄↓

)
, Ψ̄ =

(
ψ̄↑ ψ↓

)
,

the full action takes the form

Z =

ˆ
D[ψ, ψ̄]D[∆, ∆̄]e

−
´ β
0
dτ
´
dx

[
|∆|2
g −Ψ̄G−1Ψ

]
,
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with

G−1 =

( [
G(p)

]−1
∆

∆̄
[
G(h)

]−1

)
,

and the di�erential operators [
G(p)

]−1

= −∂τ − ieφ−
1

2m
(−i∇− eA)

2
+ µ

[
G(h)

]−1

= −∂τ + ieφ+
1

2m
(i∇− eA)

2 − µ.

We want an e�ective action for the order parameter ∆, so we would like to integrate out the Grassmann
�elds. This is simple, and the result is

Z =

ˆ
D[∆, ∆̄]e

−
´ β
0
dτ
´
dx

[
|∆|2
g

]
+log detG−1

.

If we want to recover the mean �eld results we can derive the equations of motion out of the e�ective action,
neglecting quantum �uctuations in ∆, and get exactly the same gap equation we got in our mean �eld analysis
above.

But we want to go beyond that, and consider the e�ect of �uctuations. We will assume that ∆ is small,
which is true close to the transition, and expand log detG−1 = tr log G−1 to lowest orders.

To do so, we write G−1 = G−1
0 + ∆̂ = G−1

0

(
1 + G0∆̂

)
, with G−1

0 = G−1(∆ = 0), and ∆̂ =

(
0 ∆
∆̄ 0

)
,

such that

tr log G−1 = tr log G−1
0 + tr log

(
1 + G0∆̂

)
= tr log G−1

0 −
∞∑
n=0

1

2n
tr
(
G0∆̂

)2n

.

We will not calculate the traces here, but those who are interested in such details are referred to Altland
& Simons, chapter 6. The results are:

SGL = β

ˆ
dx
[r

2
|∆|2 +

c

2
|(∂ − 2ieA) ∆|2 + u |∆|4

]
r = n

T − Tc
TC

,

if temporal �uctuations are neglected (making it a semi-classical Ginzburg-Landau theory). This brings us
back to the phenomenological theory you saw in class.

Lets see how the unique experimental properties of superconductors arise from that. Below Tc, r < 0, so

the potential r2 |∆|
2

+ u |∆|4 has a minimum at |∆|2 =
√
−r
4u = ∆2

0. However, the phase (i.e., the Goldstone

mode) is not determined by the potential, so we write ∆ = e2iθ∆0. Putting this back in the Ginzburg-Landau
action and dropping the constant terms, we have

SGL = 2c∆2
0β

ˆ
dx (∂θ − eA)

2
.
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We want to �nd the electromagnetic response of the system. We treat the electromagnetic �eld as a dynamical
�eld, so we should also add its kinetic term SMaxwell = β

2

´
dx(∇ ×A)2 (assuming φ = 0, and the �eld is

static). The total action is

S[A, θ]

β
=

ˆ
dx

[
2c∆2

0 (∂θ − eA)
2

+
1

2
(∇×A)2

]
.

In order to get an e�ective action for the A we integrate over the Goldstone mode. You already saw that
explicitly in class, so I will not repeat this here, but the result is that after integrating out the θ-�eld, the
electromagnetic �eld acquires a mass

S[A]

β
=

ˆ
dx

1

2

[ρ0

m
A2 + ∂iA∂iA

]
(here we used the notations used in class ρ0

m = 4c∆2
0). Deriving the equations of motion, we get ρ0

mA = ∇2A.
Taking the curl of that equation, we get the London equation ρ0

mB = ∇2B, which was discussed in class. In
particular, it was already shown that it results in the decay of the magnetic �eld as we go into the bulk of
the superconductor.

The second e�ect we want to see is the zero DC resistivity. To do that, we �nd the current

j(r) =
δ

δA(r)

ˆ
dx

ρ0

2m
A2 =

ρ0

m
A.

Taking the time-derivative, and working in a gauge where φ = 0, so E = −i∂τA, such that

−i∂τ j =
ρ0

m
E.

This equation says that if we have a constant DC current there is no electric �eld. A system with a �nite
DC current and zero electric �eld has, by de�nition, zero resistivity.
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