
Concepts in Condensed Matter Physics: Exercise 3

Due date: 14/06/22

1 BCS theory of superconductivity

In this question you will re-derive the BCS theory studied in class and also study the effect
of an applied Zeeman magnetic field. Our starting point is the Hamiltonian of electrons
interacting via an attractive point contact interaction (g > 0):

H =

∫
d3x

{∑
σσ′

c†σ (x)

[(
−∇2

2m
− µ

)
δσσ′ − hσz

σσ′

]
cσ′ (x)− gc†↑ (x) c

†
↓ (x) c↓ (x) c↑ (x)

}
,

(1)
where h is a Zeeman energy, which causes a chemical potential difference between the two
spin species.

1. Write the Hamiltonian in momentum space, and then transform it to a quadratic form
by assuming the order parameter ∆ = g

Ω

∑
k c−k↓ck↑ is weakly fluctuating (i.e., by

performing mean field). Here Ω is the system’s volume.

2. Diagonalize the quadratic Hamiltonian using a unitary transformation and find the
spectrum of excitations. How does h ̸= 0 affect the diagonalization?

3. For h = 0. What is the ground state wavefunction? What is the ground state energy?
Show that by taking ∆ → 0 we recover the known non-interacting ground state energy.

4. For h = 0. Using the ground state wavefunction, write a self-consistent equation (“the
BCS gap equation”) for ∆. Assume the interaction is only operational in a small
window of energies of width 2ωD around the Fermi energy. Solve this equation for
small values of g.

5. We now once again consider h ̸= 0. Find the self consistent equation relating ∆ and
temperature. Do this by promoting the average with respect to the ground state to a
thermal average.

6. Find the critical temperature Tc above which superconductivity is destroyed. At zero
temperature, what is the critical interaction gc, with and without a Zeeman term?
Does the Copper instability persist to finite magnetic fields?
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2 Ginzburg-Landau theory from the BCS Hamiltonian

In this problem you will work through some of the details of going from the microscopic BCS
Hamiltonian to the Ginzburg-Landau action

SGL = β

∫
ddx

[
r

2
|∆|2 + c

2

∣∣∣(∂x − 2ieA⃗
)
∆
∣∣∣2 + u |∆|4

]
. (2)

Specifically, you will derive the phase transition controlled by the parameter r. You will do
so following these steps.

1. Write the quantum partition function associated with the Hamiltonian Eq. (1) (with
h = 0). We also do not concern ourselves with coupling to the electromagnetic field,
so you may assume e = 0.

2. Use a Hubbard-Stratonovitch transformation to decouple the interaction, as we did
in the tutorial. Show explicitly what is the “fat unity” that you are multiplying the
partition function by. Formally integrate out the fermions and arrive at the effective
action for ∆.

3. Now, assume the field ∆(x, τ) is uniform, both in space and imaginary time. Why is
that sufficient to derive r? Expand the action up to second order in ∆ (verify what
happens to the first order term).

4. Comparing your result to Eq. (2), and performing the necessary Matsubara summa-
tions and integrals, find r. (You should again assume the interaction is only operational
in a small window of energies of width 2ωD around the Fermi energy, and that the den-
sity of states is roughly constant within this window.)

5. What happens to r at the critical point? Find the exponent α which describes the
behavior of r near the transition r ∝ (T − Tc)

α.

6. Expalin in a few words how would you derive the parameters c, u in Eq. (2)?

3 Superconductivity on the surface

In this question you will find that above Hc2 there is a range of fields for which supercon-
ductivity can survive on the surface. Consult “Introduction to superconductivity”, by M.
Tinkham, page 135.
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1. Start from the Ginzburg-Landau theory of a superconductor and neglect non-quadratic
orders near the critical point. Write down the corresponding equations of motion, and
using an analogy to the Schrodinger equation, find the critical field Hc2, above which
superconductivity cannot nucleate in the interior of the sample. Write the result in
terms of ϕ0 and ξ. Can you explain the result qualitatively?

2. Consider the same physical setting with an edge at x = 0 (such that for x > 0 there is an
insulator). Show that the boundary conditions take the form

(
∇
i
− 2πA⃗

ϕ0

)
∆|n= 0 (what

is the direction |n?). Show that one can automatically satisfy this boundary condition
by considering an auxiliary potential, containing a mirror image of the original potential
in the insulating region. Does this affect the solution from part (a) well inside the
superconductor (i.e., for |x| ≫ ξ)?

3. Argue, using the auxiliary potential, that very close to the surface one can find a
solution with lower energy, making the critical field higher near the surface.
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