
Concepts in Condensed Matter Physics: Exercise 2

Due date: 06/06/24

1 Path integral formulation for free particles

Consider a gas of free particles with energies ϵa (where the index a labels the single-particle
eigenvalues) and chemical potential µ. In this question you will use the path integral formal-
ism to find thermodynamic properties of this system. Note that while the path integration in
this case is much more complicated compared to the alternatives, the techniques you will use
here are important in more interesting scenarios. (Consult “Condensed matter field theory”
by A. Altland and B. Simons chapter 4).

1. Write the general form of the total particle number, the total energy, and the free
energy characterizing this system in terms of the Fermi or Bose-Einstein distributions
(without using the path integral formalism).

2. Write the partition function as a path integral and perform the functional integration.
Use this to write the free energy, the particle number, and the energy of the system.
For now you can write these as sums over a and the Matsubara frequencies.

3. To find the particle number and energy from the above sums, write them in the form∑
n h (ωn). Note that the sum is of the form

∑
n

C
iωn−ϵ

which actually doesn’t con-
verge. To take care of that, write it in the form

∑
n

C
iωne−iωnδ−ϵ

, where δ is a positive
infinitesimal (can you think of its physical origin?). Show that you can write the sum
as a contour integral ζ

2πi

∮
g (z)h (−iz) dz, with g (z) = β

eβz−ζ
and the contour shown

in Fig. 1(a), where the crosses represent the poles of the function g. Show that one
can deform this contour to that shown in Fig. 1(b), where the crosses which are not
on the imaginary line represent the poles of the function h (−iz). Use this to calculate
the total number of particles and the energy of the system.

4. To find the free energy, write it again in the form
∑

n h (ωn) and use the same trick to
transform it to a contour integral. Note that now the function h (−iz) has a branch
cut, so special care must be taken in deforming the contour. Also, ignore the infinite
constant contribution coming from the contour at infinity (does it affect any physical
observable?).
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Figure 1: Relevant contours for the path integration.

2 Itinerant ferromagnetism in weakly interacting Fermi

fluids (The Stoner instability)

Consider the following Hamiltonian of interacting fermions

H =

∫
d3x

[∑
s=↑,↓

c†s (x)

(
−∇2

2m
− µ

)
cs (x) + gc†↑ (x) c

†
↓ (x) c↓ (x) c↑ (x)

]
. (1)

Here, cs (x) annihilates a fermion with spin s at point x, µ is the chemical potential, and g

is the strength of contact interaction between the two different spin state densities. In this
exercise you will examine different mean field approaches to this problem.

1. Write the interactions as g
4
(n2 − 4s2), where n = n↑ + n↓ and s = 1/2 (n↑ − n↓).

Perform the Hubbard-Stratonovich (HS) transformation and introduce two auxiliary
fields ρ,m. Doing this, you will obtain a theory of non-interacting fermions coupled to
bosonic magnetization and density fields.

2. Find the saddle point of the action at zero temperature by equating the functional
derivative of the action S with respect to the auxiliary fields to zero. Obtain an
integral equation to determine the average values of the auxiliary fields by assuming
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that they are fixed in space and time and by taking the expectation value over the
fermionic fields.

3. Solve the equation obtained by linearizing it with respect to m. What is the critical
value g = gc above which the magnetization develops a finite expectation value? Ex-
press your result in terms of an effective chemical potential (given that the number of
particles is fixed n0). What is the critical exponent β defined by the singularity of the
average magnetization near the transition |⟨m⟩| ∼ |g − gc|β?

4. We will now obtain the same result using mean-field. Starting from the Hamiltonian
above, substitute the electrons spin and density with a mean-field s = M+δs, n = n0+

δn where M and n0 are the mean-field values. Neglect terms of order O (δs2, δn2), and
obtain a quadratic Hamiltonian. In a self-consistent manner compute the expectation
values of s, n using this quadratic Hamiltonian and obtain the same integral equation
as in the previous section.

5. Finally, we would like to obtain this result in yet another way: the variational approach.
Compute the expectation value of the full interacting Hamiltonian (above) using the
ground state of the mean-field Hamiltonian from the previous section. Minimize this
expectation value with respect what are now variational parameters, M,n0, and obtain
the same equation again.

6. Bonus: In the previous sections we performed the mean field approximation in the
exchange and direct channels, taking a specific combination of the two channels and
neglecting the Cooper channel. Alternatively, we can also have different combinations
of the direct and exchange channels, or assume the term c↑c↓ (Cooper channel) is
weakly fluctuating. These possibilities were not accounted for in the analysis above.
How would you generalize the mean field treatment of previous sections such that all
the channels are taken into account?

3 Debye-Waller factor of low dimensional crystals and

the Mermin-Wagner theorem

(Consult the L and N appendices of “Solid State Physics” by Ashcroft and Mermin). In this
question we will show that in low dimensional systems the fluctuations associated with the
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Goldstone modes of a crystal (phonons) diverge and destroy the long range order even if they
are small on the microscopic scale. To see that, we will perform a full quantum mechanical
treatment of the problem. Like we did in class, we will first assume that the fluctuations are
small. This will allow us to derive an effective theory. Using this theory we will find that in
low dimensions the fluctuations can actually be very large when we look at large distances,
in conflict with the original assumption.

To be specific, we consider the Hamiltonian of ions in a cubic crystal phase of general
dimension d

H =
N∑
j=1

P2
j

2M
+
∑
⟨ij⟩

V (ri − rj) , (2)

where ⟨ij⟩ denote summation over nearest neighbors.
Let us denote the classical ground state positions of the ions by {Rj}Nj=1. We can expand

the potential V up to quadratic order in deviations around the ions’ classical ground state
positions, i.e. we take rj = Rj + uj where ⟨|u|⟩ ≪ a, and a is the inter-ion distance. A
typical low-energy Hamiltonian then assumes the form

H =
N∑
j=1

P2
j

2M
+
∑
⟨ij⟩

K

2
(ui − uj)

2 . (3)

This is nothing but an array of coupled harmonic oscillators.

1. Diagonalize the Hamiltonian using the ladder operators in quasi-momentum space, ak,
such that it takes the simple form H =

∑
k ωk

(
a†kak +

1
2

)
. Plot the Goldstone mode

dispersion within the first Brillouin zone.

Comment: To understand if the system maintains long-range order (LRO) we consider
the density-density correlation function, given by

C (r, r′; t, t′) ≡ ⟨ρ (r, t) ρ (r′, t′)⟩,

where ⟨O⟩ = Tr
[
e−βHO

]
/Tr

[
e−βH

]
denotes quantum averaging in a thermal ensemble,

such that ⟨a†kak⟩ = 1
eβωk−1

. Here the density operator is defined as

ρ (r, t) =
N∑
j=1

δ (r− rj (t)) .
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If LRO exists throughout the system we expect that in the limit |r− r′| → ∞ the
function C (r, r′; 0, 0) will have a finite amplitude modulation at the crystal periodicity.
The physics behind this notion is rigidity, namely, if we perturb an ion at r then the
ion at r′ will move in correlation with its motion (even if |r− r′| → ∞).

2. Use the space and time translational invariance of the correlation function (i.e. C (r, r′; t, t′) =

C (r− r′; t− t′)) to show that it’s Fourier transform is given by

C (q,k′;ω, ω′) = V δk,q2πδ (ω + ω′)S (q, ω) ,

where the Fourier transform is defined as

C (q,k′;ω, ω′) =

∫
ddrddr′dtdt′C (r, r′; t, t′) ei(q·r+k·r′+ωt+ω′t′)

and
S (q, ω) =

1

V

∑
jj′

∫
dte−iωt⟨e−iq·rj(t)eiq·rj′ (0)⟩

Note that this function is known as the dynamic structure factor. Do not forget that
we are working in a finite size system where V = Nad.

3. Use the identity ⟨eA+B⟩ = e1/2⟨(A+B)2⟩ to show that you can write the dynamic structure
factor in the form

S (q, ω) =
e−2W

ad

N∑
j=1

eiq·Rj

∫
dte−iωte⟨(q·u0)(q·uj(t))⟩,

where W ≡ 1
2

〈
(q · u0)

2〉 is known as the Debye-Waller factor.

4. Compute the Debye-Waller factor for a general dimension d. For simplicity assume
that the phonons have a linear dispersion, which is cutoff by the Debye frequency ωD

set by the width of the dispersion band.

Comment: To obtain the long range modulations we take the term in the exponent to
be unity such that the sum over j can be performed (the idea is that delta functions
in q-space translate to pure long-range modulations in real space). In such a case one
would obtain

(q, ω) ∝ e−2W
∑
G

δq,G,
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where G are the reciprocal lattice vectors. This result implies that for very low fre-
quencies the delta functions are weighted by Ne−2W .

5. Show that in one dimension W diverges for all temperatures. Is zero temperature
different?

6. Show that in two-dimensions W diverges at finite temperatures.

7. Show the similarity between the one-dimensional case at zero temperature and the
two-dimensional case at finite temperatures. Can you explain this in terms of path
integrals?
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