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Implantation of the embryo in the uterus is essential for
successful pregnancy. This multistage event consists of the
attachment and adherence of the blastocyst to the endome-
trium, followed by its invasion through the luminal epitheli-
um into the stroma, where it generates the placenta that in
turn, nourishes the developing fetus throughout pregnancy.
This intricate crosstalk, between the blastocyst and the
receptive endometrium is mediated by different cytokines,
and opens the gateway for further embryonic development.
The endometrium is receptive during a limited period known
as thewindowof implantation (WOI) that extends, in human,
between days 19 and 23 of the menstrual cycle. The synchro-
nization between the preparation of the endometrium and
early embryonic development is therefore fundamental for
successful implantation. It is the regulation of the ovarian sex
steroid hormones, estrogen (E2) and progesterone (P4), which
allows follicular development, ovulation, and blastocyst for-
mation to synchronize with the development of a receptive
endometrium.

Development of a Receptive Endometrium

The preparation of the endometrium is hormone dependent.
The pituitary gonadotropins follicle-stimulating hormone
and luteinizing hormone stimulate the ovary to secrete the

sex steroids E2 and P4. Proliferation of the endometrial cells is
induced by E2, which ismainly secreted during thefirst half of
themenstrual cycle, referred to as the proliferative phase. The
predominant sex steroid in the second half of the cycle,
known as the secretory phase, is P4, which induces the
differentiation of the endometrial cells. This phase of the
cycle is characterized by the formation of glands that secrete
large amounts of cytokines and growth factors, vasculariza-
tion, infiltration of the endometrium by a variety of immune
cells from the blood, edema of the tissue caused by a localized
increase in vascular permeability, and decidualization of the
stromal cells.1 It is important to note that in humans, decidu-
alization (differentiation of the stromal cells) begins sponta-
neously during the secretory phase, unlike rodents, in which
decidualization requires embryo implantation or another
local mechanical stimulation.

Regulation of Endometrial Receptivity by E2 and P4

The ovarian steroid hormones, E2 and P4, are key regulators of
endometrial function. Binding of these hormones to their
receptors in the uterus drives the proliferation and differen-
tiation of the endometrial tissue, preparing it for the implant-
ing blastocyst. Activation of downstream genes by E2 and P4
stimulates a crosstalk between the endometrial stroma and
epithelium that is crucial for the development of a receptive
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Abstract Implantation is strictly dependent on the mutual interaction between a receptive
endometrium and the blastocyst. Hence, synchronization between blastocyst develop-
ment and the acquisition of endometrial receptivity is a prerequisite for the success of
this process. This review depicts the cellular and molecular events that coordinate these
complex activities. Specifically, the involvement of the sex steroid hormones, estrogen
and progesterone, as well as components of the immune system, such as cytokines and
specific blood cells, is elaborated.
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uterus. Different studies, most of which employed mouse
experimental models, showed that of the two E2 receptors,
ERα and ERβ, the ERα is the predominant mediator of the
activity of this hormone in the endometrium. Mice that are
Erα–/– exhibited hypoplastic uteri that could not support
implantation, whereas in Erβ-/- mice, implantation was
normal.2 Specifically, epithelial cell directed deletion of ERα
caused a decrease in the synthesis of epithelial lactoferrin, an
E2-regulated secretory protein, and led to apoptosis
(►Fig. 1).3

A predominant mediator of E2 action in rodents is leuke-
mia inhibitory factor (LIF), a member of the interleukin (IL)-6
cytokine family. Endometrial expression of LIF in mice is
indispensable for implantation.4,5 Upon its secretion, LIF
binds to its specific receptor, LIFR, in the luminal epithelium,
and through gp130, activates the januse kinase (JAK)-signal
transducer and activator of transcription (STAT) JAK-STAT
pathway that leads to acquisition of endometrial receptivity.6

Using amodel of endometrial epithelium specific, conditional
Stat3 knockout, Pawar et al demonstrated that LIF-induced
STAT3 activation triggers reorganization of the uterine epi-
thelium by modulating different specific components of the
junctional complex, such as E-cadherin, α and β-catenin, and
claudins.7 Moreover, epithelial STAT3 regulates proliferation
and differentiation of stromal cells during decidualization.

This paracrine effect of the epithelium on the stroma is
mediated by the epidermal growth factor (EGF)–like growth
factors, Egf,Hbegf, andAreg, that are produced downstream to
the LIF-STAT3 signaling.7 Although LIF is a vital player in the
mouse endometrium, its role in the human is still inconclu-
sive. This cytokine reaches its peak level in human epithelium
in the mid-secretory phase, the WOI, which is the receptive
phase of the cycle.8 Some clinical studies indicate that low
levels of LIF as well as its receptor are associated with
unexplained infertility and with endometriosis,9–12 whereas
other studies could not demonstrate such correlation.13

Furthermore, it was reported that LIF administration to in
vitro fertilization (IVF) patients did not improve pregnancy
outcome.14

The predominant hormone during the receptive phase of
the human endometrial cycle is P4, secreted by the corpus
luteum that stimulates endometrial cell differentiation fol-
lowing E2 priming. In fact, P4 regulation is crucial for the
transition of the endometrium from its nonreceptive to its
receptive phase. This hormone modulates the expression of
implantation-associated genes in the endometrium and is a
key regulator of the transformation of the stromal cells to
decidual cells, known as decidualization.15 Like E2, the activi-
ty of P4 is exerted through its binding to two receptors,
PRA and PRB, that function in a tissue-specific manner. The
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Figure 1 Molecular and cellular events that lead to the development of a receptive endometrium. Estrogen (E2), secreted during the proliferative
phase induces proliferation of endometrial cells and up-regulates the expression of different cytokines and other target genes that promote
stromal cell decidualization. This activity is mediated mainly by LIF and its downstream EGF-like growth factors. Progesterone (P4) acts during the
secretory phase to induce the differentiation of the E2-primed endometrial cells. The effect of P4 is directly elicited via Hox gene family and
indirectly by inducing molecular crosstalk between the stromal and epithelial cells. Its activity is regulated by several key molecules such as
FKBP52, SRC2, Ihh, and Bmp that modulate its interaction with its receptor. The P4-induced, endometrial cytokine/chemokine secretion recruits
specific immune cells, macrophages (Mac), dendritic cells (DC), and natural killer (NK) cells, from the circulation. These immune cells directly
affect remodeling, growth, and differentiation of the endometrial tissue, facilitating the transition of the endometrium from its nonreceptive to
its receptive state. In addition to their role in the preparation of the endometrium for implantation, Mac, DC, and NK are directly involved in the
implantation process. EGF, epidermal growth factor; LIF, leukemia inhibitory factor.
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P4-induced reproductive functions, necessary for female fer-
tility, are mediated by PRA, while PRB is required to elicit P4-
induced proliferation and differentiation of the mammary
gland.16,17 The signaling via PR depends on its interaction
with molecular chaperones, such as immunophilins. Immu-
nophilin FKBP52 (also called FKBP4) is one of the main
regulators of the uterine P4 function. Its elimination in mice
leads to implantation failure due to impaired endometrial
responsiveness to P4.18 In human, lower expression of FKBP52
is associated with endometriosis.19 It was suggested that
FKBP52 is critical for decidualization.20 Decidualization, in-
duced by P4, is mediated by the homeobox transcription
factors in the Hox gene family. Lack of murine endometrial
Hoxa-10 impairs the responsiveness of stromal cells to P4 that
lead to an aberrant decidualization.21 This reduced respon-
siveness to P4 is attributed to the direct effect of Hoxa-10 on
FKBP52 expression.20 The Hox gene family is also involved in
embryogenesis.22,23 Mutation of Hoxa-10 in female mice
caused implantation failure due to abnormal embryo devel-
opment as well as impaired decidualization.24

Other molecules that regulate/mediate P4 activity are the
steroid receptor coactivator 2 (SRC2), Indian hedgehog (IHH/
Ihh) and bone morphogenetic protein (Bmp). Deletion of
murine SRC2 leads to implantation failure due to impaired
P4-induced decidualization.25 The IHH/Ihh is an example of
the P4-induced crosstalk between the epithelium and the
stroma, during acquisition of uterine receptivity. It is ex-
pressed in the epithelium in response to P4 and acts as a
paracrine signal upon binding to its specific receptors on the
stromal cells, inducing their proliferation. Deletion of Ihh
gene, negatively affects uterine receptivity, leading to im-
plantation failure.2 In the human, expression of IHH increases
during the secretory phase of the cycle in response to the P4
receptor modulator CDB-2914.26 It was further shown that
chicken ovalbumin upstream promoter-transcription factor
II, a downstream target of IHH, is responsible for keeping
balance between ER and PR activities.2,27 Unlike IHH, the P4-
induced transcription factor, Hand2 is expressed in the
stroma and suppresses the E2-induced fibroblast growth
factor (FGF) production. Deficiency in uterine Hand2 results
in implantation failure that is associated with high estrogenic
activity and epithelial cell proliferation, suggesting that
Hand2 mediates the antiproliferative activity of P4 and by
that allows epithelial differentiation, facilitating the acquisi-
tion of uterine receptivity.28 Conditional ablation of the Bmp-
2 leads to a complete infertility, due to impaired decidualiza-
tion. Microarray analysis in vivo and in vitro identified FKBPs
and WNT ligands as Bmp-2 downstream targets.29,30 Taken
together, these studies suggest that the balance between
uterine E2 and P4 activities is crucial for normal receptivity
and that this balance is regulated by stromal-epithelial
communication.

Other Genes that Are Involved in the Development of a
Receptive Endometrium
One of the genes that is up-regulated during the WOI is
proprotein convertase 6 (PC6), localized mainly at the site of
implantation. In vivo ablation of the PC6 in mouse endome-

trium completely inhibited implantation.31 This protein is
crucial for decidualization in mice and humans.31,32 Knock-
down experiments in human endometrial epithelial cells
demonstrated its critical role in blastocyst adhesion.33

It has been suggested that normal implantation takes place
in an inflammatory environment provided by the receptive
endometrium.34,35 In this context, prostaglandins (PGs) were
demonstrated to be crucial for successful embryo implanta-
tion. Uterine depletion of cytosolic phospholipase A2, cyclo-
oxygenase-2 (COX-2), and lysophosphatidic acid receptor
LPA3, which have a central role in PG synthesis, leads to
implantation failure in the mouse.36–38 In human, defective
PG synthesis correlates with repeated implantation failure in
patients undergoing IVF treatment.39 It was suggested that
the levels of PGE2 and PGF2α in the uterine fluid, 24 hours
before embryo transfer, could predict pregnancy outcome. In
vitro experiments demonstrated that embryo adhesion to the
epithelium is significantly reduced in epithelial cells pre-
treated with inhibitors of PG synthesis.39

Involvement of the Immune System in Acquisition of
Endometrial Receptivity
In contrast to its classical role in protecting the organism from
invading foreign antigens, the endometrial immune system
supports invasion and maintenance of the fetal semiallog-
raft.40 This paradoxical immune activity is a result of specific
E2 and P4-regulated cytokines and chemokineswhich serve to
recruit specific leukocyte populations into the endometrium
and regulate their differentiation. Leukocytes in human en-
dometrium comprise different subpopulations, including
uterine natural killer (uNK) cells, macrophages (Mac), and
dendritic cells (DCs). The uNK cells, the abundance of which
increases at the WOI and early pregnancy, compose approxi-
mately 70% of the decidual leukocyte population, and their
role in stromal decidualization has been suggested.41 Circu-
lating NK cells in the peripheral blood are cytotoxic, however,
upon their infiltration into the endometrium, they undergo
differentiation into uNK cells, losing their killing activity.42

The cytokine IL-15, secreted by DCs and endometrial cells, as
well as transforming growth factor beta (TGF-β)1, secreted by
Mac, are essential for this process.41,43–45Mac andDCs are the
major antigen presenting cells in the endometrium. They are
present in the endometrium throughout the menstrual cycle
and demonstrate increased abundance during the WOI and
early pregnancy.46–48

Accumulating evidence suggests that, in addition to their
classical role in mediating immune response, DCs and Mac
have a pivotal role in implantation. Transient deletion of DCs
resulted in a faulty decidualization characterized by reduced
proliferation, differentiation, and delayed angiogenesis.49,50

Supporting their role in implantation, therapy by DCs admin-
istration significantly decreases the rate of spontaneous
resorption of embryos in the mouse uterus.51 As initially
reported by us, and later by others, endometrial biopsy
substantially increases implantation and clinical pregnancy
rates in IVF patients with repeated implantation failure.52–58

This increase in pregnancy rate was associatedwith elevation
of DCs and Mac abundance.59 Endometrial Mac and DCs
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secrete both proinflammatory and anti-inflammatory cyto-
kines, by which they may affect Th1/Th2 cytokine balance as
well as tissue remodeling and growth,60–62 thus inducing
endometrial regeneration. Based on in vitro experiments, we
suggested that endometrial biopsy-induced tumor necrosis
factor (TNF)α mediates the injury-induced secretion of mac-
rophage inflammatory protein (MIP)-1B, growth-regulated
protein (GRO)α, IL-15 by the endometrial tissue.59 Other
studies showed that TNFα induces secretion of IL-11 and
LIF, cytokines that are essential for decidualization,63,64 fur-
ther supporting the contribution of inflammation to the
development of receptive endometrium.

It is important to note that during the menstrual cycle, the
steroid hormones, E2 and P4, modulate the production of
different proinflammatory cytokines such as IP-10 and MIP-
1B.65,66 Interestingly, E2 synthesis is reciprocally regulated by
the proinflammatory cytokine IL-6. This cytokine acts syner-
gistically with TNFα to increase aromatase, 17-β-hydroxys-
teroid dehydrogenase and estrone sulfatase activity,
enhancing local E2 biosynthesis.67 In this context, local injury
of the endometrium during the proliferative phase substan-
tially increases endometrial ER expression in the following
secretory phase.68 Previous experiments in mice revealed
that endometrial niche cells expressing ERα directly respond
to E2 by transmission of proliferative signals to neighboring
endometrial stem/progenitor cells.69,70 Taken together, it
seems that in IVF patients undergoing endometrial biopsy,
stem cells that are present in the endometrium71 may
respond to the injury by proliferation in an E2-dependent
manner.72 Therefore, in IVF patients with recurrent implan-
tation failures, when steroid hormones are apparently insuf-
ficient in provoking endometrial receptivity, mechanical
intervention by endometrial biopsy may elicit the inflamma-
tory response required for successful implantation.

Implantation

Embryo implantation is divided into three sequential stages:
apposition, adhesion, and invasion.

Apposition
Apposition is a dynamic process, during which the free-
floating blastocyst and the receptive endometrium initially
interact. Having tethering and rolling over, “scanning” the
uterine surface, the embryo spots the specific site of implan-
tation and attaches the endometrium. A similarity between
the rolling blastocyst in the uterus and the leukocyte migra-
tion on the endothelial wall has been suggested.73 In both
processes, interaction is established by binding of the L-
selectin molecule expressed on the leukocytes as well as on
the trophoblast cells, to its oligosaccharide ligands, localized
on the endothelial wall and on the luminal epithelium,
respectively.74 Surprisingly, L-selectin-deficient mice are fer-
tile.75 However, in human, elevated level of the L-selectin
ligand, MECA-79, is associated with improved implantation,
while decreased expression of sulfotransferase, GlcNAc6ST-2,
which is involved in the generation of functional L-selectin
ligands in the endometrial cells, was associated with infertili-

ty.76,77 It has been further shown that reduced expression of
endometrial fucosyltransferase, FUT7, generating fucosylated
L-selectin ligands, reduces the embryo–endometrium inter-
action, while overexpression of FUT7 has a positive effect on
implantation in vitro and in vivo in the mouse.78,79 Attempts
to localize the L-selectin ligand, MECA-79, in human endo-
metrium detected a high abundance of this ligand on the
pinopods,80 emphasizing the importance of development of
these organelles for the initial interaction of the human
embryo with the receptive endometrium.

Another protein that was suggested to mediate the initial
embryo–endometrium interaction is heparin-binding EGF
(HB-EGF)–like growth factor.81 The highest expression of
HB-EGF was found at the WOI in both human and mouse
endometrium. In the mouse, HB-EGF is localized in the
luminal epithelium surrounding the blastocysts.82 In human,
it is expressed at the WOI in the epithelium and stroma.83,84

In the luminal epithelium, its localizationwas associatedwith
the fully developed pinopodes.85 The receptors for HB-EGF
(ErbBs) are expressed on the blastocyst surface.86 Deletion of
HB-EGF from the uterus in the mouse resulted in a reduced
litter size.87 Further evidence for the HB-EGF-ErbB4–mediat-
ed attachment of the human blastocyst was generated using
in vitro experimentalmodels.88 It was also suggested that HB-
EGF promotes blastocyst growth, zona-hatching, and tropho-
blast outgrowth followed by its differentiation to its adhesive
state.82,89 As previously reported, cytokines/chemokines se-
creted by the endometrial cells as well as by the infiltrated
immune cells are essential for endometrial receptivity and
implantation. Chemokines, secreted by the endometrial cells
during the WOI, create a gradient that attracts the blastocyst
to the implantation site.90 In vitro experiments indeed dem-
onstrated that IL-6, MIP-1B, CX3CL1, and IP-10 are effective
chemoattractants of the human trophoblast cells.91–93 Fur-
thermore, a positive correlation between endometrial levels
of MIP-1B and IP-10 and successful implantation in IVF
patients was demonstrated by us and by others.59,94 The
role of IP-10 in regulation of blastocyst migration, apposition,
and initial adhesion has been confirmed in vivo in the mouse
as well.95 Attachment of the blastocyst at the precise implan-
tation site is ensured by mucins (MUC), O-glycosylated
proteins that cover the luminal epithelium surface thus
preventing an undesirable embryo–uterine interaction at
the incorrect site. One of the most studied mucins in the
endometrium is MUC1. Its removal is necessary for successful
implantation in many species.96 In humans, expression of
endometrial MUC1 is increased during the receptive phase
under the regulation of P4 and different proinflammatory
cytokines.96–100 In vitro experiments suggest that MUC1 is
locally down-regulated by the implanting blastocyst.96,97 It
was proposed that a disintegrin and the metalloproteinase
(MMP)-17 (ADAM17) as well as the membrane type 1 matrix
MMP (MT-MMP1), secreted by the blastocyst shed the MUC1
molecules from the epithelial cells, allowing its attachment to
the uterine line.101,102 Down-regulation of MUC16, another
member of the mucin family, was also demonstrated as a
critical event for trophoblast cells adhesion to the
epithelium.103
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Adhesion
Embryo–endometrium interaction is stabilized by adhesion
molecules such as troponin, cadherins, and integrins
(ITGs).104 ITGs that are expressed by both, the endometrium
and the blastocyst, bind to several ECM Arg-Gly-Asp (RGD)
containing ligands such as fibronectin, vitronectin, thrombo-
spondin, and osteopontin (OPN). This binding serves as a
bridge between the luminal uterine epithelium and the
blastocyst.104 It was suggested that OPN, the expression of
which increases in the endometrium during its receptive
phase, plays a crucial role in establishing the embryo–endo-
metrium interaction.59,105 Interestingly, although OPN KO
mice are fertile, functional blocking of endometrial OPN
with specific antibodies, significantly reduced the number
of implantation sites.106 Moreover, it has been shown that
OPN increases blastocyst adhesiveness by binding to its
surface receptors, CD44 and/or ITGs. This binding initiates
focal adhesion kinase and PI3K/AKT signaling pathways that
induce the formation of functional ITG adhesion com-
plexes.107 ITG αvβ3 is a well-characterized OPN receptor in
human endometrium, the production of which is elevated at
the WOI. In vivo studies in mice showed that ITGβ3 � defi-
cient mice are infertile, and that functional blocking of
endometrial ITGαvβ3, by intrauterine injection of specific
antibodies, significantly reduces the number of implantation
sites.106,108 Similar to these results, blastocysts failed to
attach to epithelial cells pretreated with ITGβ3 siRNA in
vitro.109 Nevertheless, the correlation between endometrial
ITGβ3 levels and infertility is still inconclusive.13,110–116 The
expression of this ITG is regulated by P4 andmediated by EGF,
HB-EGF, and Hoxa-10.84,117–119 Simón et al120 demonstrated
that human endometrial epithelial cells induce the secretion
of the cytokines IL-1α and IL-1β by theblastocyst, and these in
turn, increase ITG expression by the epithelial cells. A bidi-
rectional crosstalk between the blastocyst and the endome-
trium is also suggested by a recent demonstration that factors
released to the medium by human blastocysts that success-
fully implanted following embryo transfer, alter messenger
RNA levels of several genes in the epithelial cells, in vitro,
facilitating their adhesive properties.121

Invasion
Invasion is the final step of implantation, during which the
trophoblast fractures the epithelial lining of the uterus and
penetrates into the endometrial stroma. Decidualized stro-
mal cell and uNK cells secrete factors that stimulate tropho-
blast invasion by altering expression of key regulators such as,
ITGs, MMPs, and their tissue inhibitors of metalloproteases
(TIMPS).41,122–124 They also induce vascular growth and
remodeling by secretion of large amount of angiogenic fac-
tors, MMP-2 and MMP-9.92,125 Moreover, uNK cells secrete
factors that trigger endometrial stromal cells to produce
cytokines/chemokines, such as IL-15, which in turn supports
uNK differentiation, while others, IL-8, CCL8, and CXCL1, act
synergistically with uNK-secreted chemokines to induce
trophoblast migration.126

Regulation of endometrial remodeling and clearance of
apoptotic trophoblast cells during trophoblast invasion is

attributed to Mac.127,128 The invading trophoblast secretes
chemokines, such as CXCL16 and CXCL12 that recruit and
activate immune cells to the deciduas.129–131 Monocytes that
are recruited and “educated” by the trophoblasts cells, posi-
tively affect trophoblast development and function, by both
secretion of cytokines such as IL-6, IL-8,MCP-1, andGROα and
stimulating trophoblast to secrete cytokines that in an auto-
crine manner facilitate their own growth, survival, and
invasion.130

Proteases pave the way for the invading trophoblast by
digesting the extracellular matrix. The human MMP gene
family includes 23members,132 of whichMMP-2 and -9 were
mostly studied. Almost all MMPs are produced by the tro-
phoblast, decidual stromal cells, and uNK cells,133 and their
expression is tightly regulated by hormones, cytokines, and
growth factors as well as by the TIMPs. It was demonstrated
that EGF and cytokines, such as IL-6, IL-1β, TNFα, and IL-8,
stimulate trophoblast invasion by increasing levels of tropho-
blast MMP-2 and -9.134–138 Activation of STAT3 by LIF was
shown to regulate trophoblast invasiveness by TIMP-1 down-
regulation.124 However, TGF-α1 inhibits the proteolytic ac-
tivity of cytotrophoblast cells by up-regulating TIMP-1 and
2.138,139 Another negative regulator of MMP activity in the
trophoblast cells is P4 that inhibits the expression of MMP-2,
MMP-3, MMP-7, and MMP-9 and increases the expression of
TIMP-3, thus restraining trophoblast invasion.15 In addition
to MMPs, the invasive trophoblast expresses various mem-
bers of a disintegrin andMMPs (ADAMs), such as ADAM8, -12,
-19, and -28.140 In contrast to the secreted forms of MMPs,
most of the ADAM familymembers aremembrane proteins. It
was suggested that ADAM family members regulate tropho-
blast invasion by proteolytic shedding of the membrane
anchoring ectodomains, thus activating variety of chemo-
kines, cytokines, growth factors, receptors, and their
ligands.141

Epilogue

Although protocols for infertility treatments are being con-
stantly improved, implantation remains the rate-limiting
step for their success. In IVF patients, who generate high-
quality embryos but fail to conceive, it is apparently inade-
quate uterine receptivity that is responsible for implantation
failure. Many efforts have been invested in identifying endo-
metrial biomarkers that can predict implantation compe-
tence. The studies discussed in this review suggest different
implantation-associated genes/proteins as promising candi-
dates. Using the “omics” approach (transcriptomics, proteo-
mics, and secretomics) in endometrial biopsies/uterine
aspiration, groups of genes/proteins that characterize a re-
ceptive endometriumwere proposed.142 A newassay defined
as endometrial receptivity array (see article “Endometrium
and Implantation Clinical Management of Endometrial Re-
ceptivity” by Blesa and Ruiz-Alonso in this issue) seems to
provide accurate and consistent parameters for the evalua-
tion of uterine receptivity.143–146 Evaluating uterine recep-
tivity using the appropriate biomarkers could provide a
potential tool for assessing the success of infertility
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treatments. Furthermore, high probability of implantation
argues in favor of the transfer of a single embryo in IVF
treatment, avoiding the subsequent severe complications of
multiple pregnancies.
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