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ABSTRACT We describe here the subcellular distributions of three junctional proteins in 
different adherens-type contacts. The proteins examined include vinculin, talin, and a recently 
described 135-kD protein (Volk, T., and B. Geiger, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 
10:2249-2260). Immunofluorescent localization of the three proteins indicated that while 
vinculin was ubiquitously present in all adherens junctions, the other two showed selective 
and mutually exclusive association with either cell-substrate or cell-cell adhesions. Talin was 
abundant in focal contacts and in dense plaques of smooth muscle, but was essentially absent 
from intercellular junctions such as intercalated disks or adherens junctions of lens fibers. The 
135-kD protein, on the other hand, was present in the latter two loci and was apparently 
absent from membrane-bound plaques of gizzard or from focal contacts. Radioimmunoassay 
of tissue extracts and immunolabeling of cultured chick lens cells indicated that the selective 
presence of talin and of the 135-kD protein in different cell contacts is spatially regulated 
within individual cells. 

On the basis of these findings it was concluded that adherens junctions are molecularly 
heterogeneous and consist of at least two major subgroups. Contacts with noncellular sub- 
strates contain talin and vinculin but not the 135-kD protein, whereas their intercellular 
counterparts contain the latter two proteins and are devoid of talin. The significance of these 
results and their possible relationships to contact-induced regulation of cell behavior are 
discussed. 

Adherens junctions consist of a family of stable cell contacts 
in which actin is characteristically associated with the endo- 
facial surfaces of the plasma membrane (16, 20, 23, 40). 
Typical examples of adherens junctions are the zonula and 
fascia adherentes of polarized epithelia and cardiac myocytes 
(32, 42), small adhesions of fibroblasts (29), focal contacts in 
cell cultures (3, 18), dense plaque of smooth muscle (19), etc. 
The major justification for the reference to all these morpho- 
logically diverse structures as a closely related group of cell 
contacts was the apparent molecular homology between them. 
Studies in several laboratories indicated that all adherens 
junctions contain vinculin at their cytoplasmic aspects, and it 
was thus postulated that vinculin is involved in the linkage of 
actin to the membrane in these sites. The presence of a 
ubiquitous "plaque" component in all adherens junctions and 
their apparent association with actin filaments have raised the 
possibility that, in spite of considerable morphological varia- 
bility, the molecular homology between all adherensjunctions 
may be quite extensive. To study this aspect directly we have 
tried to identify additional components of adherens junctions 
and study their spatial distributions in cells and tissues. 

Recently two relevant proteins were described which are 
specifically bound to adherens junctions, including talin (9, 
34) and a 135-kD protein (45). The former is a 215-kD protein 
isolated initially from chicken smooth muscle. Immunoflu- 
orescent labeling of cultured chick cells with talin-specific 
antibodies yielded patchy patterns along the ventral cell sur- 
faces which were nearly identical to those of vinculin. The 
requirement for cell permeabilization as well as the relative 
resistance of talin towards treatment with actin-severing pro- 
teins such as fragmin (22) suggested that talin, like vincuhn, 
is a component of the junctional plaque. 

The 135-kD protein was identified with a monoclonal 
antibody (mAb) ~ raised against integral membrane proteins 
of chick cardiac intercalated disks (45). Immunofluorescent 
localization indicated that these mAb's, designated ID 7-2.3, 
react specifically with the intercalated disks of chick cardiac 
muscle as well as with intercellular contacts of cultured my- 
ocytes or lens cells. 

In the present study, we compared the distributions oftalin, 

Abbreviations used in this paper: mAb, monoclonal antibody. 
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vinculin, and the 135-kD protein in various cells and tissues. 
We show here that while vinculin is ubiquitously present in 
all adherens junctions, the 135-kD protein is associated only 
with intercellular contacts and talin with attachments to non- 
cellular matrices exclusively. This molecular heterogeneity of 
adherensjunctions appears to be spatially regulated since both 
types of junctions may co-exist within the same individual 
cells. 

MATERIALS AND METHODS 

tmmunochemicat Reagents: Anti-vinculin was prepared in rabbits 
(polyclonal) or in mice (monoclonal), and affinity purified on Sepharose-bound 
chicken gizzard vinculin (18). Rabbit antibodies to talin were kindly provided 
by K. Burridge from the University of North Carolina at Chapel Hill. In some 
experiments we used mAb's raised by us against chicken talin. The specificity 
of these mAb's was determined by immunofluorescent labeling and immuno- 
blotting analyses (unpublished data). As secondary antibody reagents we used 
goat anti-rabbit Ig or goat anti-mouse F(ab)2, both affinity purified. These 
antibodies were coupled to rhodamine-lissamine sulfonyl chloride or to di- 
chlorotriazinyl amino fluoreseein as previously described (4, 8). Fluorescent 
labeling of actin was performed using rhodamine-phalloidine kindly supplied 
by Dr. H. Faulstich, from the Max-Planck Institute, Heidelberg, FRG (47). 

Immunohistochemical Labeling: Thinfrozensections(0.5-1 ~m) 
of chicken gizzard, heart, and lens were prepared according to Tokuyasu (41 
[see also reference 27]) in the Sorvall MT2B ultramicrotome with a cryoattach- 
merit. The sections were retrieved with a platinum loop in 2.3 M sucrose 

droplets and indirectly immunofluorescently labeled as described earlier (17). 
Lens cell cultures were prepared from 6-8-d-old chick embryos and subcultured 
on 18-ram coverslips. Most of the cultured cells exhibited an epithelioid 
morphology and formed dense sheets. For immunofluorescent labeling, cells 
were permeabilized by a 2-rain exposure to 0.5% Triton X-100 in 50 mM 
morpholinoethane sulfonate buffer, 3 mM EGTA, 5 mM MgCI2, pH 6.0, and 
fixed for 30 rain with 3% paraformaldehyde. Double-immunofluoreseent la- 
beling was carried out, largely as described (18) using, in conjunction, mouse 
and rabbit antibodies. It was routinely verified that the secondary goat antibod- 
ies were exclusively reactive with their respective antigens. 

Immunoelectron Microscopy: Chicken gizzard was dissected into 
square, l-mm blocks in 3% paraformaldehyde containing 0.1% glutaraldehyde 
in 0.1 M cacodylate buffer (pH 7.2). After a l-h fixation, the tissue blocks were 
rinsed and incubated for at least 1 h in 0.9 M sucrose. Ultrathin frozen sections 
of 600 ,g, thickness were then cut in the Sorvall ultracryomicrotome as described 
above. The sections were recovered on 300 mesh grids and immunolabeled 
indirectly with talin antibodies and gold-conjugated (10 nm) goat anti-rabbit 
IgG (Janssen Pharmaceuticals, Beerse, Belgium). 

Quantitative Immunochemical Determination of Vinculin 
135-kD Protein and Talin in Chicken Tissues: Chicken heart, 
lens, and gizzard were homogenized in 10, 15, and 30 volumes, respectively, of 
RIPA buffer (50 mM Tris-HCl, 150 mM NaCI, 0.1% SDS, 1% deoxycholate, 
1% Triton X-100, pH 7.2) and the non-extractable residue removed by a 30- 
min centrifugation in an Eppendorff microcentrifuge. The supernatant was 
applied in threefold dilutions to V-shaped multiwell plates (Dynatech Labora- 
tories, Inc., Alexandria, VA) for 30 rain at 4"C. After extensive rinsing in PBS 
containing 1% bovine serum albumin, monoclonal mouse antibodies (hybri- 
doma supernatant used at various dilution between 1:20 and 1:2,000) were 
added in 50 ul for 1 h to the wells. The wells were then rinsed, incubated with 

FIGURE 1 Immunofluorescent localization of vinculin (A), talin (B), the 135-kD protein (C), and actin (D) in thin frozen sections 
of chicken cardiac muscle. The arrows point to intercalated disk-containing areas, identified by phase-contrast microscopy. The 
arrowhead in C points to contact sites along the lateral cell membranes. Notice the extensive labeling of intercalated disks for 
vinculin and for the 135-kD protein and the apparent absence of labeling of these sites with talin antibodies. Bar, 10/~m. 
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~2~l-labeled goat anti-mouse Ig (70,000 cpm/well), rinsed again, and counted in 
a gamma counter (Kontron AG Analytical Export, Zurich, Switzerland). 

RESULTS 

Localization of Microfilament-associated Proteins: 
Actin, Vinculin, Talin, and the 135-kD Protein in 
Cardiac Muscle, Smooth Muscle, and Eye Lens 

We have localized the various junctional proteins in three 
different chick tissues: heart, gizzard, and lens. Localization 
of vinculin in heart tissue using either affinity-purified anti- 
bodies or a mAb revealed two major patterns of labeling: 
most prominent staining was found along the intercalated 
disks (Fig. 1 A, arrows). In addition, periodic lateral dots were 
detected, corresponding to "costameric" organization as pre- 
viously described (13, 37, 38). Talin antibodies were mostly 
negative in the cardiac muscle tissue with occasional staining 
of the lateral dots, but gave an extensive labeling of the 

vascular smooth muscle, as shown in Fig. 1 B. Staining with 
mAb ID 7-2.3 (anti-135-kD protein) showed a restricted 
labeling confined mostly to the intercalated disks (Fig. 1 C). 
Comparison of the labeling pattern to the phase-contrast 
image of the section was shown in reference 45. Actin, visu- 
alized with rhodamine-phalloidin, exhibited a typical striated 
pattern corresponding to the sarcomeric periodicity in the 
myocytes with relatively little labeling throughout the con- 
nective tissue (Fig. 1 D). 

Different patterns of immunolabeling for the different pro- 
teins was obtained with chick gizzard smooth muscle. Both 
vinculin and talin (Fig. 2, A and B) exhibited indistinguishable 
dotted labeling along the cell periphery. Staining with anti- 
135-kD protein was essentially negative (Fig. 2 C), whereas 
extensive labeling of the smooth muscle was obtained with 
rhodamine-phalloidin. The labeling of the interspacing con- 
nective tissue was relatively low (Fig. 2D). To directly identify 
the site of talin localization at the periphery of the smooth 

FIGURE 2 Immunofluorescent localization of vinculin (A), talin (8), the 135-kD protein (C), and actin (D) in thin frozen sections 
of chicken gizzard smooth muscle. Notice the punctate labeling for vinculin and talin along the cell membranes and the apparent 
absence of labeling for the 135-kD protein. Actin was abundant throughout the cytoplasm of muscle cells with very little labeling 
of the connective tissue (ct). Bar, 10 #m. 
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on multi-well microtiter plates and an indirect solid-phase 
binding assay was performed. At relatively high extract con- 
centrations, a plateau in the level of binding was obtained 
while at higher dilutions the level of antibody binding declined 
linearly. Since our attempt was to compare the relative quan- 
tities of each of the three antigens in the different tissues, we 
have applied all extracts at concentrations yielding 50% sat- 
uration in binding with anti-vinculin at a fixed dilution and 
compared the half-saturation dilutions for each of the other 
antigens. This analysis provided an estimate for the relative 
levels of the various proteins in the extracts. As shown in Fig. 
5, cardiac muscle showed comparable binding profiles for 
vinculin, the 135-kD protein, and talin. In lens, on the other 
hand, antibodies to vinculin and to the 135-kD protein 
showed similar binding while considerably lower levels of 
binding were obtained with anti-talin. The picture was almost 
reversed in chicken gizzard where high levels of talin were 
detected as compared with considerably smaller concentra- 
tions of the 135-kD protein. It should be emphasized that 
essentially the same picture was obtained at different antibody 
concentrations. It was therefore concluded that the relative 
amounts of the three proteins in the tissues examined are 
compatible with the levels of labeling obtained by immuno- 
histochemistry, yet the three proteins were present in all three 
tissues examined. 

FIGURE 3 (A and B) Immunogold labeling of ultrathin frozen sec- 
tions of chicken gizzard smooth muscle for talin shown at two levels 
of magnification. Sections were labeled with rabbit antibodies fol- 
lowed by secondary goat anti-rabbit Ig coupled to 20-nm gold 
particles. The labeling was restricted predominantly to the mem- 
brane-bound dense plaques and was absent from cytoplasmic 
dense bodies. (The cell membranes in B are indicated by the 
arrowheads). In the intercellular space collagen fibers (ct) are com- 
monly detected. It has been previously shown by immunoelectron 
microscopy (19) that vinculin is similarly associated with the dense 
plaques of smooth muscle. Bar, 0.2/~m. 

muscle cells, we have prepared ultrathin frozen sections of 
gizzard tissue and immunolabeled them indirectly with anti- 
talin and gold-conjugated secondary antibodies. As demon- 
strated in Fig. 3, specific labeling was detected on the mem- 
brane-bound dense plaque, a structure previously shown to 
contain vinculin (l 9). 

In chicken lens, an intense labeling along the cell membrane 
was obtained with vinculin-specific antibodies (Fig. 4A), with 
anti-135-kD protein (Fig. 4 C), and with rhodamine-phalloi- 
din (Fig. 4D). In contrast to smooth muscle, no specific 
labeling was obtained for talin in the lens tissue (Fig. 4B). 

The results described above (in particular, the apparent 
absence of organized 135-kD protein from gizzard and talin 
from lens) prompted us to examine whether the proteins were 
actually absent or whether their organization was modified. 
Since the 135-kD protein has not yet been isolated in pure 
form, we have used an indirect approach to quantitate the 
relative amounts of the three proteins in the different tissues. 
Serial threefold dilutions of tissue extracts were immobilized 

Spatial Segregation of Adherens Junction Proteins 
in Cultured Cells 

To further study the selective segregation of the different 
junction-associated proteins at a higher level of resolution, we 
have double-immunolabeled cultured chicken lens cells for 
the 135-kD protein and actin (Fig. 6, A and B). Comparison 
of the fluorescent patterns indicated that the distribution of 
the former protein was restricted to cell-cell contact areas 
from which stress fibers apparently emanated. Double-label- 
ing for the 135-kD protein and vinculin (Fig. 6, C and D) 
demonstrated that the former was present in intercellular 
contacts only and was apparently absent from vinculin-rich 
cell-substrate focal contacts. 

Distinctly different were the patterns of organization of 
talin within cultured lens cells. In individual adherent cells 
(Fig. 7, A and B) the distribution patterns oftalin and vinculin 
were essentially identical, both presenting extensive associa- 
tion with cell substrate as previously described (9, 10). How- 
ever, in denser areas along the culture (Fig. 7, C-F), vinculin 
was apparently present also at the intercellular junctions of 
the cells (Fig. 7, D and F). In some areas the junction- 
associated vinculin was elongated while in others it consisted 
of series of peripheral dots. At later stages, when the cultures 
reached complete confluency, the junctional belt was nearly 
continuous along the entire cell periphery as shown in Fig. 6 
and Fig. 8. Direct examination of talin distribution, in the 
same cells, indicated that it was associated with focal contacts 
exclusively, and was not present at the vinculin-containing 
intercellular junctions (compare Fig. 7, C and E, with D and 
F). Moreover, double-fluorescent labeling of cultured chick 
lens cells for actin and talin indicated that the talin-rich 
plaques were associated only with that population of actin 
bundles, which is attached to the ventral cell membrane and 
was not present at the sites of actin anchorage in the intercel- 
lular contacts (not shown). To directly determine the spatial 
relationships between talin and the 135-kD protein we have 
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FIGURE 4 Immunofluorescent localization of vinculin (A), talin (B), the 135-kD protein (C), and actin (D) in thin frozen sections 
of chicken eye lens. The honeycomb pattern of the lens fibers is readily apparent in the cross or slightly tangential sections. 
Notice that vinculin, the 135-kD protein, and actin are all found predominantly at the cell periphery, the former two displaying a 
spotty pattern. No detectable labeling is obtained with talin-specific antibodies. Bar, 10 #m. 

double-immunolabeled cultured chicken lens cells for the two 
proteins. Examination of the immunofluorescent patterns 
pointed to the mutually exclusive associations of the 135-kD 
protein with intercellular junctions (Fig. 8, B and D) and of 
talin with cell-substrate contacts (Fig. 8, A and C). 

DISCUSSION 

Extensive efforts have been directed in recent years towards 
the molecular characterization of cell junctions. For over two 
decades, the various defined cellular junctions and adhesions 
were characterized morphologically and part of their involve- 
ment in physiological processes was illuminated (see reference 
40). Lately many attempts have been made to isolate intact 
junctions and to study their composition and biogenesis. 
Recent advances are largely attributable to the progress made 
during the last decade in the characterization of the cytoskel- 
eton, the development of methods for subcellular fractiona- 
tion and the preparation of antibodies reactive with junctional 
components. In such studies the molecular properties of gap 
junctions were partially characterized (14, 24, 25, 31) as well 

as those of desmosomes (12, 15, 26, 35, 39) and adherens 
junctions (20, 23). 

The adherens junctions represent a widely spread family of 
cell contacts in which actin is locally associated with the 
endofacial surfaces of the membrane. The findings that vin- 
culin is ubiquitously associated with all adherens junctions 
examined, regardless of whether they were formed with neigh- 
boring cells or with noncellular surfaces and irrespective of 
their fine ultrastructure, were the basis for the suggestion that 
all adherens junctions share considerable molecular homology 
(20, 22). 

To examine this hypothesis, we have previously fraction- 
ated various adherens junctions into several molecular sub- 
domains which could be experimentally modulated (5, 23). 
We have shown that selective severing of membrane-bound 
actin by fragmin leads to destruction of microfflaments and 
the concomitant removal of many actin-assoeiated proteins 
(a-actinin, tropomyosin, myosin, filamin) leaving the vincu- 
lin-rich plaque of focal contacts apparently unaffected. Alter- 
natively, dissociation of cell--cell contacts of cultured epithe- 
lial cells by the removal of extracellular Ca 2÷ induced a 
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coordinated detachment of both vinculin and actin from the 
junctional membrane (20, and Volberg, T., B. Geiger, J. 
Kartenbeck, and W. W. Franke, manuscript in preparation). 

As pointed out above, many attempts have been made to 
identify and isolate additional adherens junction proteins and 
in particular integral constituents of the junctional mem- 
brane. Two such components have recently been identified. 
Burridge and Connell have isolated talin, a 215-kD cyto- 
plasmic protein from smooth muscle, and showed that its 
distribution within cultured fibroblasts was nearly identical to 

FIGURE 5 Radioimmunoassay for vinculin (V), the 135-kD protein 
(135), and talin (T) in extracts of chicken heart, lens, and gizzard. 
The tissue extracts at serial 1:3 dilutions were immobilized on the 
surface of microtiter wells and an indirect binding assay was carried 
out (see Materials and Methods). Notice the comparable concen- 
trations of all three proteins in heart as compared to the relatively 
low levels of talin in lens and of the 135-kD proteins in gizzard. 

FIGURE 6 Double-fluorescent localization of the 135-kD protein (A and C) and actin (B) or vinculin (D) in cultured chicken lens 
cells. Notice that actin bundles terminate at the 135-kD protein-rich junctions and the apparent absence of labeling for the latter 
from vinculin-rich cell-substrate focal contacts. Bar, 10 #m. 
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hGURE 7 Double-immunofluorescent localization of talin (A, C, and E) and vinculin (B, D, and F) in cultured chicken lens cells 
at different cell densities. In individual cells, the labeling for the two is nearly identical, whereas in dense areas it is apparent that 
talin is absent from the spotty or extended intercellular, vinculin-rich junctions (see arrows in C-F). Bar, 10 pm. 

that of vinculin (9, 10). Selective removal of membrane- 
bound actin by fragmin as described above followed by im- 
munofluorescent labeling for talin suggested that the latter, 
like vinculin, was a component of the junctional plaque. A 
different junctional component is the 135-kD membrane 
protein, which we have reported to be present along intercel- 
lular adherens junctions facing the cell exterior (45). The 
detailed molecular properties of the 135-kD protein are still 
poorly characterized. It is noteworthy however that another 
molecule of somewhat lower molecular weight, i.e., uvomo- 

rulin, was localized by immunogold labeling in the intercel- 
lular gap of intestinal zonula adhaerens (6). The relationships 
between the 135-kD protein and uvomorulin are currently 
under investigation. 

In this study we have shown that adherens junctions are 
molecularly heterogeneous and may be subdivided according 
to their molecular constituents into two major subfamilies. 
Those formed with neighboring cells contain vinculin and the 
135-kD protein, but apparently no talin, whereas contacts 
with noncellular materials contain talin and vinculin only. 

GEIGER ET AL. Molecular Heterogeneity of Adherens Junctions 1529 
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FIGURE 8 Doubleqmmunofluorescent labeling of the same cultured chicken lens cells for talin (A and C) and the 135-kD protein 
(B and D). The immunofluorescent patterns of distribution of the two proteins are mutually exclusive. The solid arrows point to 
the 135-kD-containing intercellular junctions which are devoid of talin; the empty arrow points to talin-rich focal contact. Bar, 
10 #m. 

This distinction holds both for intact tissues and for cultured 
cells. The differences in distribution within tissues were most 
dearly apparent by immunofluorescent labeling of intact 
chicken lens and chicken gizzard. The lens tisssue contains 
alternating areas of gap junctions and intercellular adherens 
junctions. Electron microscopy of this tissue together with 
fluorescence microscope examinations (Fig. 4) pointed to the 
abundance of actin, vinculin, and the 135-kD protein along 
the membrane. Smooth muscle cells of the gizzard, on the 
other hand, are usually interspaced by connective tissue and 
apparently form only few direct intercellular contacts. Ac- 
cordingly, they contain only vinculin and talin along their 
membrane-bound dense plaques. Crude semi-quantitative es- 
timation of the content of the three junctional proteins (vin- 
culin, talin, and the 135-kD protein) by an antibody binding 
assay, suggested that their relative levels of expression were 
generally comparable to the intensities of the immunofluores- 
cent labeling. The amounts of the 135-kD protein in gizzard 
were low as compared to lens or to heart, and talin was present 
in relatively small quantities in lens tissue. It should be pointed 
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out that the low levels of the 135-kD protein and talin detected 
in gizzard and lens, respectively, represent an actual presence 
of the two proteins and are not due to nonspecific back- 
ground. In view of the immunofluorescent results it seems 
likely that the 135-kD protein in gizzard and talin in lens are 
present in nonjunctional compartments, and may become 
associated with the plasma membrane only after new types of 
cell contacts are established as probably happens under culture 
conditions. It still remains to be determined at what level and 
by which mechanisms the expression of these proteins is 
regulated in the intact tissues. 

It is, however, evident from the present studies that the 
distinct subcellular distributions of talin and the 135-kD 
protein may be also spatially regulated within individual cells, 
irrespective of their synthesis. Thus, in the same cultured lens 
cells, both proteins may be present, displaying mutually ex- 
clusive association with either focal contacts or with intercel- 
lular junctions. This finding of selective spatial regulation is 
especially interesting in view of the known biochemical inter- 
actions between adherens junction components. It has been 
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directly shown that vinculin can bind to actin (33, 46) and to 
a -200-kD protein, identified as talin (l 1, 36). It is, therefore, 
possible that the selective exclusion of talin from the vinculin 
plaques of  cell-cell contacts involves either the presence of 
different forms of  vinculin in the two subfamilies of  junctions 
with distinct capacity to bind talin or a selective segregation 
of other proteins (yet unidentified) in these junctional com- 
plexes. Attempts to define the extent of  molecular heteroge- 
neity and to identify other junctional components either 
common or junction-specific are presently in progress. 

The molecular differences between cell-cell and cell-matrix 
contacts reported here may also bear on the involvement of 
the two in physiological cellular activities. Generally, cell- 
substrate adhesions are believed to be essential for cell motility 
and growth (phenomena often referred to as anchorage de- 
pendence [for review see references 43 and 44]) while exten- 
sive cell-cell contacts typical of  confluent cultures lead to an 
arrest of  motility and growth, namely contact paralysis and 
contact inhibition (l,  2, 28, 30). There is still no direct 
evidence indicating that these two markedly different types of  
contact-induced transmembrane signals are transmitted spe- 
cifically through the two corresponding subfamilies of  adher- 
ens junctions described here. This possibility seems, however, 
attractive in view of the correlation between loss of  anchorage 
dependence and contact-inhibition in transformed cell and 
the concomitant generalized deterioration of adherens junc- 
tions (for additional discussion of this aspect see reference 
21). The findings reported here on molecular differences 
between the two types of  contacts and a better understanding 
of their fine and detailed architecture may provide us with 
valuable information regarding basic mechanisms involved in 
the control of  cell growth and motility. 

We express our gratitude to Keith Burridge from the University of 
North Carolina at Chapel Hill, for his friendly cooperation, help and 
valuable suggestions. We would like to acknowledge the excellent 
assistance of Mrs. llana Sabanai, in the preparation of thin frozen 
sections for light and electron microscopy and thank Dr. A. Ben- 
Zeev for his helpful comments. 

This study was supported by a grant from The Muscular Dystrophy 
Association. 

Received for publication 4 April 1985, and in revised form 29 April 
1985. 

REFERENCES 

1. Abercrombie, M., and J. E. M. Heaysman. 1953. Observations on the social behavior 
of cells in tissue culture. 1. Speed of movement of chick heart fibroblasts in relation to 
their mutual contacts. Exp. Cell Res. 5:111-131. 

2. Abercrombie, M. 1967. Contact inhibition: the phenomenon and its biological impli- 
cations. Natl. Cancer Inst. Monogr. 26:249-277. 

3. Abercrombie, M., and G. A. Dunn. 1975. Adhesions of fibroblasts to substratum during 
contact inhibition observed by interference reflection microscopy. Exp. CellRes. 92:57- 
62. 

4. Avnur, Z., and B. Geiger. 1981. The removal of extrar,,ellular fibronectin from areas of 
cell substrate contact. Cell. 25:121-132. 

5. Avnur, Z., J. V. Small, and B. Geiger. 1983. Actin-indepandant association of vinculin 
with the cytoplasmic aspect oftbe plasma membrane in cell contact areas..L Cell Biol. 
96:1622-1630. 

6. Boiler, K., D. Vestweber, and R. Kemler. 1985. Cell adhesion molecule Uvomorulin is 
localized in the intermediate junctions of adult intestinal epithelial cells. 3'. Cell Biol. 
100:327-332. 

7. Bower, D. J., L. H. Errington, B. J. Pollack, S. J. Morris, and R. M. Glayton. 1983. The 
pattern of expression of chick-crystallin genes in lens differentiation and in transdiffer- 
entiating cultured tissues. EMBO (Eur. Mol. Biol. Organ.) .L 2:333-338. 

8. Brandtzaeg, P. 1973. Conjugates of immunoglobulin G with different fluorochrumes. I. 

Characterization by anionic exchange chromatography. Scand. Z lmmunol. 2:273-290. 
9. Burridge, K., and L. Connell. 1983. A new protein of adhesion plaques and ruffling 

membranes. J. Cell Biol. 97:359-367. 
10. Burridge, K., and L. Connell. 1983. Talin: a cytoskeletal component concentrated in 

adhesion plaques and other sites of actin membrane interaction. Cell Motility. 3:405- 
417. 

11. Burridge, K., and P. Mangeat. 1984. An interaction betwcen vinculin and talin. Nature 
(Lond.), 308:744-745. 

12. Cohen, S. M., G. Gorbsky, and M. S. Steinberg. 1983. lmmunochemical characterization 
of related families of giycopruteins in desmosomes. J. Biol. Chem. 258:2621-2627. 

13. Craig, S. W., and J. V. Pardo. 1983. Gamma actin, spectrin and intermediate filament 
proteins colocalize with vinculin at costameres, myofibril-to-sareolermma attachment 
sites. Cell Motility. 3:449-462. 

14. Duguid, J., and J. P. Revel. The protein components of the gap junction. 1976. Cold 
Spring Harbor Syrup. Quant. Biol. 40:45-47. 

15. Franke, W. W., R. Moll, D. L. Schiller, E. Schmid, J. Kartenbeck, and H. Mueller. 
1982. Desmoplakins of epithelial and myocardial desmosomes are immunogenically 
and biocbemically related. Dtfferentiaiion. 23:115-127. 

16. Farquhar, M. G., and G. E. Palade. 1963. Junctional complexes in various epithelia. J. 
Cell Biol. 17:375--409. 

17. Geiger, B., K. T. Tokayasu, and S. J. Singer. 1979. Immunocytochemical localization 
of a-actinin in intestinal epithelial cens. Proc. Nail. Acad. Sci. USA. 76:2833-2837. 

18. Geiger, B. 1979. A 130 K protein from chicken gizzard its localization at the termini of 
microfilament bundles in cultured chicken cells. Cell. 18:193-205. 

19. Geiger, B., A. H. Dutton, K. T. Tokuyasu, and S. J. Singer. 1981. lmmonoelectron 
microscopic studies of membrane-microfilament interactions: the distributions of a- 
actinin, tropomyosin, and vinculin in intestinal epithelial brush border and in chicken 
gizzard smooth muscle cells. J. Cell Biol. 91:614-628. 

20. Geiger, B., E. Schmid, and W. W. Franke. 1983. Spatial distribution of proteins specific 
for desmosomes and adhaerens junctions in epithelial cells demonstrated by double 
immunofiuorescence microscopy. Differentiation. 23:189-205. 

21. Geiger, B., Z. Avnur, T. E. Kreis, and J. Schlessinger. 1984. The dynamics of cytoskeletal 
organization in areas of cell contact. In Cell and Muscle Motility 5. J. W. Shay, editor. 
Plenum Publishing Corp. 195-234. 

22. Geiger, B., Z. Avnur, G. Rinnerthaler, H. Hinssen, and V. J. Small. 1984. Microfilament 
organizing centers in areas of cell contact cytoskeletal interactions during cell attachment 
and locomotion..£ Cell Biol. 99:83s--9 Is. 

23. Geiger, B., Z. Avnur, T. Volberg, and T. Volk. 1985. Molecular domains of adherens 
junctions. In The Neurosciences. In press. 

24. Goodenough, D. A. 1976. In vitro formation of gap junction vesicles. J. Cell Biol. 
68:220-231. 

25. Goodenough, D. A. 1980. Intercellular junctions. In Membrane-Membrane Interac- 
tions. N. B. Gilula, editor. Raven Press, NY. 167-178. 

26. Gorbsky, G., and M. S. Steinberg. 1981. Isolation of the intercellular giycoprnteins of 
desmosomes. J. Cell Biol. 90:243-248. 

27. Griffiths, S., K. Simons, G. Warren, and K. Tokuyasu. 1983. lmmunoelectron micros- 
copy using thin, frozen sections: application to studies of the intraceUular transport of 
Scmliki Forest Virus spike giycoproteins. Methods Enzymol. 96:466-485. 

28. Harris, A. K. 1974. Contact inhibition of cell locomotion. In Cell Communication. R. 
P. Cox, editor. John Wiley & Sons. New York. 147-185. 

29. Heaysman, J. E. M., and S. M. Pegrum. 1973. Early contacts hetwecn fibroblasts. Exp. 
Cell Res. 78:71-78. 

30. Heaysman, J. E. M. 1978. Contact inhibition of locomotion: a reappraisal. Int. Rev. 
Cytol. 55:49-66. 

31. Herzberg, E. L., and N. B. Gilula. 1979. Isolation and characterization of gap junctions 
from rat liver. Z Biol. Chem. 254:2138-2147. 

32. Hull, B. E., and L. A. Staebelin. 1979. The terminal web: a reevaluation of its structure 
and function. Z CellBiol. 81:67-82. 

33. lsenberg, G., K. Leonard, and B. M. Jockusch. 1982. Structural aspects of vinculin- 
actin interactions. Z Mol. Biol. 158:231-249. 

34. Mange.at, P., and K. Burridge. 1984. Actin-membrane interaction in fibroblasts: what 
proteins are involved in this association? .L Cell Biol. 99:95s-103s. 

35. Mueller, H., and W. Franke. 1983. Biochemical and immunological characterization of 
desmopslakins I and II, the major polypeptides of the desmosomal plaque..L Mol. Biol. 
163:647-671. 

36. Otto, J. J. 1983. Detection of vincniin-binding proteins with an 12~I-vinculin gel overlay 
technique..L Cell Biol. 97:1283-1287. 

37. Pardo, J. V., J. D. Siliciano, and S. W. Craig. 1982. The costamere: a myofibril- 
sarcolemma attachment site that contains vinculin. J. Cell Biol. 95 (2, Pt. 2):290a. 

38. Pardo, J. V., J. D. Siliciano, and S. W. Craig. 1983. A vinculin-containing cortical lattice 
in skeletal muscle. Transverse lattice elements ("costameres') mark sites of attachment 
between myofibrils and sareolemma. Prac. Nail. Acad. ScL USA. 80:1008-1012. 

39. Skerrow, C. J., and G. Matoltsy. 1974. Chemical characterization of isolated epidermal 
desmosomes..L Cell Biol. 63:524-530. 

40. Staebelin, A. 1974. Structure and function of intercellular junctions. Int. Rev. CytoL 
39:191-283. 

41. Tokuyasu, K. T. 1980. Immunocbemistry on ultrathin frozen sections. Hiswchem. Z 
12:381-403. 

42. Tokuyasu, K. T., A. H. Dutton, B. Geiger, and S. J. Singer. 1981. Ultrastructure of 
chicken cardiac muscle as studied by double immunolabeling in electron microscopy. 
Proc. Nail Acad. Sei. USA. 78:7619-7623. 

43. Trinkaus, J. P. 1984. In Cells into Organs. Prentice-Hall Inc., Englewood Cliffs, New 
Jersey. 

44. Vasiliev, J. M., and I. M. Gelfand. 1981. In Neoplastic and Normal Cells in Culture. 
Cambridge University Press, Cambridge. 

45. Volk, T., and B. Geiger. 1984. A new 135 kd membrane protein of intercellular adberens 
junctions. EMBO (Eur Mol. Biol. Organ.) J. 10:2249-2260. 

46. Wilkins, J. A., and S. Lin. 1982. High-affinity interaction ofvinculin with actin filaments 
in vitro. Cell. 28:83-90. 

47. Wulf, E., A. Deboden, F. A. Bantz, H. Faulstieh, and Th. Wieland. 1979. Fluorescent 
phallotoxin, a tool for the visualization of cellular actin. Proc. Natl. Acad. Sci. USA. 
76:4498-4502. 

GEIGER ET AL. Molecular Heterogeneity of Adherens Junctions 1531 

 on June 15, 2009 
jcb.rupress.org

D
ow

nloaded from
 

 Published October 1, 1985

http://jcb.rupress.org

