
lecture
Brain Sciences
Volatile cortical working memory representations crystalize with practice
Prof. Peyman Golshani
June 1, 2023
12:30
-
13:30
Working memory (WM), the process through which information is transiently maintained and manipulated over a brief period of time, is essential for most cognitive functions. However, the mechanisms underlying the generation and stability of WM neuronal representations at the population level remain elusive. To uncover these mechanisms, we trained head-fixed mice to perform an olfactory working memory task and used optogenetics to delineate circuits causal for behavioral performance. We used mesoscopic and light bead two photon imaging to record from up to 35,000 secondary motor cortical neurons simulataneously across multiple days and show differential stabilization of different task parameters with learning and practice of the task. We find that cortical working memory representations causal for task performance are highly volatile but only stabilize after multiple days of practice well after task learning. We hypothesize that representational drift soon after learning may allow for higher levels of flexibility for new task rules.
I will also review some of the new open-source tools developed for large-scale imaging of neural activity patterns in freely behaving animals.
I will also review some of the new open-source tools developed for large-scale imaging of neural activity patterns in freely behaving animals.