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� Introduction

��� The good� the bad� the natural� and the complemented

There are many interesting problems about in�nite dimensional subspaces of
Lp��� Lp�	� ��� which have �nite dimensional analogues� For example� it has
long been a central problem in Banach space theory to classify the comple�
mented subspaces of Lp up to isomorphism� the �nite dimensional analogue
is to �nd for any given C a description of the �nite dimensional spaces which
are C�isomorphic to C�complemented subspaces of Lp� A lot is known about
both the in�nite dimensional �see ���� and �nite dimensional �see section ��
versions of this complemented subspaces of Lp problem� but in neither case
does a classi�cation seem to be close at hand�

It sometimes happens that the �nite dimensional version of an in�nite di�
mensional problem leads to a theory which is much more interesting than
the in�nite dimensional theory� Take� for example� the problem of describing
the subspaces of Lp which embed isomorphically into a �smaller� Lp space�
namely� �p� for which there is a fairly simple answer �see ����� Now it is clear
that a �nite dimensional subspace X of Lp embeds� with isomorphism constant
� � �� into �Np if N � N���X� is su�ciently large� The attempt to estimate
well N in terms of � and X �or the dimension of X� has led to a deep theory
�see sections ��� and ����� A sideline of this investigation also led to deeper
understanding of how certain natural subspaces of Lp �such as the span of a
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sequence of independent Gaussian random variables� are situated in Lp �see
section �����

Besides being an interesting subject in its own right� the study of �nite di�
mensional subspaces of Lp is often needed in order to understand properties
of in�nite dimensional subspaces� For example� the easiest and best way to
obtain subspaces of Lp� � � p � �� which fail GL�l�u�st� �cf� ���� section 
��
is to show that random large dimensional subspaces of �np are bad in a certain
sense �see section �����

The topic discussed herein which has the most applications is that of restricted
invertibility �see section 
�� Basically the theorem says that an n by n matrix
which has ones on the diagonal and is of normM � say� as operator on �np � must
be invertible on a coordinate subspace of dimension at least ��M�n� One of the
many consequences of this result is that certain �nite dimensional subspaces
X of Lp contain well�complemented �

n
p subspaces with n proportional to the

dimension of X�

��� The role of change of density

Generally the structure of the Lp spaces is described for a �xed value of p�
However� proofs of many of the results about Lp for a �xed p use the entire
scale of Lr spaces� � � p � �� Consider� for example� the proof ���� section 
�
that a subspace X of Lp� � � p � �� is either isomorphic to a Hilbert space
or contains a subspace which is complemented in Lp and is isomorphic to �p�
There one needs only to compare the L� norm and the Lp norm on X�

In proofs of other theorems about Lp it is necessary to change the measure
before making a comparison between the Lp norm and another norm� Since
the technique of changing the measure ��making a change of density�� is used
in the proofs of most of the results we discuss in this article� we chose to devote
this section to describing the change of densities that arise later� It turns out
that the framework in which this technique is most naturally used is that of
an Lp��� space when � is a probability� For us there is no loss of generality in
restricting to that case since the space �Np is isometric to Lp��� when � is any
probability on f�� � � � � Ng for which ��fng� 	 	 for each � � n � N � For such
a measure � we denote Lp��� by L

N
p ���� or just L

N
p if � assigns mass �
N to

each integer n� � � n � N �

A density on a probability space ��� �� is a strictly positive ��measurable
function g on � for which

R
g d� � �� Such a density g induces for �xed

	 � p � � an isometry M � Mg�p from Lp��� onto Lp�g d�� de�ned by
Mf � g���pf � Sometimes a gain is achieved by making such a change of
density� that is� by replacing Lp��� by its isometric copy Lp�g d��� The gain
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usually occurs because for some subspace E of Lp��� and some value of r
di�erent from p� the space Mg�pE is better situated with respect to Lr�g d��
than E is to Lr���� For example� it follows from the Pietsch factorization
theorem ���� section �	� that if an operator T from some space X into L����
has p�summing adjoint� then by replacing the original L� space by another
isometrically equivalent L� space� TX is actually contained in Lp� Formally�

Proposition � If T � X � L���� �� a probability measure� has p�summing
adjoint� then there is a change of density g and an operator �T � X � Lp�g d��
so that Mg�pT is the composition of �T followed by the canonical injection from
Lp�g d�� into L��g d��� Moreover� k �Tk � �p�T

�� as long as TX has full sup�
port� i�e�� there is no subset �� � � with ����� � � so that Tx � ���

Tx ��a�e�
for every x in X�

To prove this factorization theorem� assume for simplicity that � is a regular
Borel measure on a compact space � and that TX has full support� Get a
Pietsch measure � for the restriction of T � to C�K�� which means that � is a
regular probability measure on K such that kT �fkp � �p�T

��p
R jf jp d� for all

f in C�K�� This same inequality is true if � is replace by its Radon�Nikody �m
derivative with respect to �� so one can assume that � is of the form g d�
with g � 	 and � � �� �

R
g d�� It is easily checked that this g is the desired

density provided that g is strictly positive ��a�e�� which it must be since TX
has full support� �When TX does not have full support� reason the same way
but at the end add a small constant function to g and renormalize��

The next change of density result� due to D� Lewis �
��� gives useful information
about �nite dimensional subspaces of Lp�

Theorem � Let � be a probability measure and let E be a k dimensional
subspace of Lp���� 	 � p � �� with full support� Then there is a density g
so that Mg�pE has a basis ff�� � � � � fkg which is orthonormal in L��g d�� and

such that
kP

n��
jfij� � k�

For a proof when � � p �� see �
��� The �rst step is to apply Lewis� lemma
����� section ��� to get an operator T from �N� onto E for which �p�T � � �
and Ip��T

��� � N � The rest of the proof involves checking that the choices

g �� �
P jTeij����� and fi ��

p
kg���pTei satisfy the conditions of Theorem ��

Another proof� for the entire range 	 � p ��� is contained in �����

Recall that if T � X � Y is an operator� 
��T � is the in�mum of kTkkUk over
all factorizations T � SU with U � X � �� and S � �� � Y �

Theorem � If E is a k�dimensional subspace of Lp��� then there is a projec�
tion P from Lp��� onto E with 
��P � � kj��p����j�






Since the Banach�Mazur distance from �kp to �k� is k
j��p����j ���� section ���

Theorem � implies that the distance of a k dimensional subspace of Lp��� to
�k� is maximized when the subspace is �

k
p�

To prove Theorem �� observe �rst that the case p � � follows trivially from
the fact proved in ���� section �	� that ���IE� �

p
k for every k dimensional

space E� When p ��� in view of the comments made in ���� section �	�� there
is no loss in generality in assuming the � is a probability measure and that
E has full support� Theorem � says that we can further assume that E has a

basis ff�� � � � � fkg which is orthonormal in L���� and such that
kP

n��
jfij� � k�

Let P be the orthogonal projection onto E� If p � �� a simple computation
shows that kP � Lp��� � L����k � k��p���� and so also 
��P � Lp��� �
Lp���� � k��p����� The case p 	 � is even easier�

For a generalization of Theorem � to spaces of type p 	 � see ��	� ���
�������

The change of density in Theorem � is used in section ��� to show that a k di�
mensional subspace of Lp well embeds into �

n
p with n not too large� There what

is needed is the relation between the L� and the Lp�g d�� norms on Mg�pE�
The relevant estimate follows from a trivial observation which we record for
later reference�

Lemma � Let � be a probability measure and let E be a k dimensional sub�
space of Lp��� which has a basis ff�� � � � � fkg which is orthonormal in L����

and such that
kP

n��
jfij� � k� Then for each f in E� kfk� � k��pkfkp if

	 � p � � and kfk� � k���kfkp if � � p ���

There is a pretty characterization� due to Maurey �

�� ���� III�H��	� of subsets
of Lp��� which are bounded in Lq after a change of density�

Theorem � Let � be a probability measure� 	 � p � q ��� and S a subset
of Lp��� of full support� Then there is a density g so that Mg�pS � BLq�g d�� if
and only if for all 	nite subsets S� of S and fax � x � S�g � �	� ���

k�X
x�S�

jaxxjq���qkLp��� � �
X
x�S�

jaxjq���q� ���

Assuming the Pietsch factorization theorem� for the case p � � and when
S � TBX for some operator T � X � L����� Corollary � is little more than a
restatement of Theorem �� Recall ����� Section ��� that when T is an operator
into a Banach lattice� M �q��T � denotes the q�convexity norm of T �

Corollary � Suppose T is an operator from a Banach space X into an L�

space� Then M �p��T � � �p��T
���
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A consequence of Theorem � that we shall need in section 
 is the result of
���� that an operator on Lp is bounded on L� after an appropriate change of
density�

Theorem � If 	 � p � �� � is a probability measure� and T is an operator
on Lp���� then kMg�pTM

��
g�p � L��g d�� � L��g d��k � �KGkTk for some

density g � �
�� where KG is the constant in Grothendieck
s inequality ����
section �
��

If one does not wish to make a change to the measure g d�� then by throwing
away the part of the measure space where g � � one gets�

Corollary 	 If 	 � p ��� � is a probability measure� and T is an operator
on Lp���� then kRATRA � L���� � L����k � �KGkTk for some set A with
�A � �
�� where RA is the restriction operator de	ned by RAf �� �Af �

Theorem � is a �xed point version of the following factorization consequence
�due to Maurey �

�� of Theorem ��

Theorem 
 Let � be probability measure and T be an operator from a Banach
lattice X into Lp���� 	 � p � �� Then there is a change of density g and an
operator �T from X into L��g d�� so that Mg�pT � I��p �T � where I��p is the iden�
tity mapping from L��g d�� into Lp�g d��� Moreover� k �Tk � KGM

����X�kTk
if TX has full support�

For the proof of Theorem 
� let fxigni�� be in X and assume that TX has
full support� Then using a consequence of Grothendieck�s inequality �see ����
section �	�� in the �rst step we have

k �Pn
i�� jTxij����� kLp��� � KGkTkk �Pn

i�� jxij����� k
� KGkTkM ����X� �

Pn
i�� kxik����� �

Now apply Theorem � with S the image under T of the unit sphere of X to get
the inequality in the conclusion of Theorem 
� A trivial perturbation argument
now gives Theorem 
 when TX does not have full support� In the general case�
given � 	 	� the density g can be chosen so that k �Tk � �KGM

����X�� ��kTk�

We now deduce Theorem � in the range � � p � � from Theorem 
� By
duality we can assume that � � p � �� and also suppose that TLp��� has
full support� If h is a density and we apply Theorem 
 to the adjoint of the
operator

Lp���
Mp�hT������Lp�hd��

Ip������L��hd�� ���
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we get a density g so that for every f in Lp����

Z
jTf j�h�p����pd� � K�

GkTk�
Z
jf j�g�p����pd�� ���

Set g� �� � and get densities g�� g�� � � � so that for each n� ��� is satis�ed with

h �� gn and g �� gn��� De�ne �g ��
�P
n��
��n��g�p����pn � This series is absolutely

convergent in L�p����p��� to a function whose norm is at most one� so the
function g �� k�gkL�����g is a density with g � �
� which satis�es� for arbitrary
f in Lp����

Z
jTf j�g�p����pd� � �K�

GkTk�
Z
jf j�g�p����pd��

This gives Theorem � with a slightly better constant when TLp��� has full
support and hence also Theorem � as stated in the range � � p ���

For 	 � p � �� Theorem � follows via interpolation from Theorem �	�

Theorem �� If 	 � p � �� a 	 �� � is a probability measure� and T is an
operator on Lp���� then kMg�pTM

��
g�p � L��g d�� � L��g d��k � akTk for

some density g�

To prove Theorem �	� it is enough to �nd a strictly positive function �g��p in
Lp��� so that T maps the order interval ���g��p� �g��p� into ��akTk�g��p� akTk�g��p��
The main point is that every operator T on Lp���� 	 � p � �� has a mod�
ulus jT j which satis�es kjT jk � kTk and jTf j � jT jjf j for all f in Lp���
�see� e�g�� the remark preceding Theorem ��� in ������ One then de�nes �g��p �

� �
�P
n��

a�nkTk�njT jn�� See ���� for details when p � ��

We conclude this section with a change of density lemma due to Pisier ����
which� except for constants� improves Theorem �� Theorem �� will be used in
section ���

Theorem �� Let � be a probability measure� 	 � p � q ��� and S a subset
of Lp���� The following statements are equivalent�

�i� There is a constant C� and a density g so that for all measurable sets E

and x in S� k�ExkLp��� � C� �
R
E gd��

��p���q�

�ii� There is a constant C� and a density g so that Mg�pS � C�BLq���g d���

�iii� There is a constant C	 so that for all 	nite subsets S� of S and subsets
fax � x � S�g of �	� ��� k supx�S� jaxxjkLp��� � C	�

P
x�S� jaxjq���q�

�



Moreover� there is a constant C � C�p� q� so that in the implication �i�	 �j��
Cj � CCi�

For a proof of Theorem ��� see ����� This paper also contains a nice proof of
Theorem ��

� Subspaces of �np

��� Fine embeddings of subspaces of Lp into �np

Let X be a k�dimensional subspace of Lp� 	 � p ��� and let � 	 	� What is
the smallest n such that X ��� ���embeds in �np� That is� what is the smallest
n such that there is a k�dimensional subspace Y of �np and an isomorphism
T � X � Y with kTkkT��k � �� �� Let us denote this n by Np�X� �� and the
maximal Np�X� ��� when X ranges over all k�dimensional subspaces of Lp� by
Np�k� ���

Fixing a basis in X and approximating each of its members by an appropriate
simple function� one sees that Np�X� �� �� for every k�dimensional X and ��
Moreover� it depends on X only through its dimension k so that Np�k� �� ���
However� one gets that way a �larger than� exponential in k bound on Np�k� ���
In this section we shall review results which give much better bounds� close
to the best possible ones�

The case p � � is of course trivial and one can take n � k even for � � 	� The
case p � � has a nice geometrical interpretation� The unit ball of the dual to a
k�dimensional subspace of �n� is easily seen to be �isometric to� the Minkowski
sum of n segments in Rk �centered at 	� and visa versa� Consequently� the n
sought after is the smallest n such that every �centered at zero� body K in
R
k which is the Minkowski sum of arbitrarily many segments �or the limit of
such bodies � these are called zonoids� can be ��approximated by a body Z
which is the sum of n such segments in the sense that Z � K � �� � ��Z�

The history of this problem can be traced to the o�springs of Dvoretzky�s
theorem as discussed in ��
�� There the case ofX being a k�dimensional Hilbert
space �which embeds isometrically in all the Lp spaces� is treated and solved
quite satisfactory� For some absolute constant C� Np��

k
�� �� is at most C�

��k
for p � � and C���pkp�� for p 	 �� This is best possible except that it is
unknown whether the factor ��� can be replaced by a smaller function of ��
Notice the following nonintuitive special case� The k�dimensional Euclidean
ball can be approximated by a body which the sum of a constant �depending
on the degree of approximation� times k segments in Rk �
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The �rst result in this direction which did not involve Euclidean spaces was
proved in ����� There it was shown that� for 	 � p � � and p � q � ��
�kq �which is known to embed isometrically into Lp whenever 	 � p � q � ��
������embeds into �np for some n � C�p� q� ��k� Later the second named author
found some initial results indicating in particular that the dependence of n on
k in the general problem stated at the beginning of this section is polynomial
rather than exponential as one is �rst tempted to believe� The �rst proofs
were quite complicated and worked only for p � � as they used �ne properties
of q�stable random variables� Later a much simpler method was introduced in
��
�� Assuming� as we may� that X is already a subspace of �Np for some �nite
N � pick randomly a �few� coordinates and hope that the natural projection
onto these coordinates� restricted to X� is a good isomorphism� If we do it
with no additional preparation this cannot work� Indeed� X may contain a
vector with small support �say one of the unit vector basis elements of �Np ��
in which case the chance that a coordinate in its support is picked is small�
of course� if no such coordinate is picked� the said projection cannot be an
isomorphism on X� The point is that one wants to change X �rst to another
isometric copy of X in which each element of X is �spread out�� This can be
done by a change of density� The method of ��
� was used with other tools in
���� ����� and some other papers to produce the best known results� In these
results it is not known what is the right dependence of n on � and we shall
not try to emphasize what are the exact estimates one gets from the proofs�
However� the dependence of n on k is best possible except for log factors in
some places� we shall pay more attention to this in the sequel�

We now state the best known results�

Theorem �� �i� For p 	 �� Np�k� �� � C�p� ��kp�� log k�
�ii� For � � p � �� Np�k� �� � C���k log k�log log k���
�iii� For p � �� N��k� �� � C���k log k�
�iv� For 	 � p � �� Np�k� �� � C�p� ��k�log k��log log k���

Under some conditions ensuring that X does not contain good copies of �mp
spaces� one gets better results for p � �� Recall that a quasi�normed space X
is of type p with constant C for some 	 � p � � provided

�
Ek

nX
i��

�ixik�
����

� C

�
nX
i��

kxikp
���p

for all �nite sequences x�� � � � � xn of elements of X� The best C is denoted
Tp�X�� The space Lp� 	 � p � �� is of type p� Recall also that K�X� denotes
the K�convexity constant of X� i�e�� the norm of the Rademacher projection in
L��X�� See ���� for a brief discussion of these notions �although it is restricted
to the normed spaces� which always have type p � �� and �
�� for a more






comprehensive discussion�

Theorem ��

�i� Let 	 � p � q � � and let 	 � �� C � �� Then for some constant C � �
C ��p� q� �� C� and all k�dimensional subspace X of Lp with Tq�X� � C�
Np�X� �� � C �k�
For p � � we have a quantitatively better estimate�

�ii� For all k�dimensional subspaces X of L�� N��X� �� � C���K�X��k�

Theorem ���i� was proved for p � � in ���� ���� contains the full statement
with a di�erent proof� ��� also contains Theorem ���i� and somewhat weaker
versions of Theorem ���ii�� �iii�� and Theorem ���ii�� The exact Theorem
���ii� is contained in ��
� while Theorem ���ii� is the main result of �����
Theorem ���iii� follows from it since it is known ��

�� that K�X� � C

p
log k

for every k�dimensional subspace X of L�� see Lemma ��� Finally� Theorem
���iv� was proved only recently ����� ��
� after noticing its omission while
writing this survey�

Before describing the proofs� we mention that there are several unsettled prob�
lem related to Theorems �� and ��� The most important one �or at least the
one that attracted the most attention� is whether the various log factors and
the dependence on the type and K�convexity are really needed� It is strange
that the constants in the proofs blow up when X contains �mp spaces� Actually�
as we shall see below� in at least some of the proofs the worst case occurs when
X is isometrically �kp� Another problem is the determination of the dependence
of N�
� on �� Scant attention has been given to that in the published work� A
problem we �nd particularly interesting is whether there is an �isomorphic�
�as oppose to �almost isometric�� version to some of the results here� Here is
an instance of this problem� is it true that for all � � p � � and all � 	 � there
is a positive constant C � C�p� �� such that whenever n � �k� �kp C�embeds
into �n�� Some progress on this problem has recently been achieved in �
���

Next we would like to sketch some of the ideas involved in the proofs of
some of the statements of Theorems �� and ��� As we already indicated
above� a common feature of all the proofs we shall sketch is that� using a
change of density� we �rst �nd an isometric copy of X with some additional
good properties� We delay stating theses properties and the actual change of
density that ensure them until later and denote the new space by the same
notation X� We may also assume without loss of generality that X lies in a
�nite �but large� dimensional �mp space� say Lm

p ���� where � is a probability
measure on f�� � � � � mg� We denote �i � ��fig�� We would like to show that
the restriction operator to a set of relatively few of the m coordinates is a
good isomorphism on X� We prefer to do it iteratively by �rst showing how
to �nd a subset of cardinality at most m
� such that the restriction operator
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is a �very� good isomorphism on X� provided m is much larger than k� We
shall then show how to iterate this procedure� The choice of the subset will be
random� for example� it is enough to show that� for an appropriate ��k�m��

AveA sup
x�X�kxk��

������
X
i�A

�ijxijp �
mX
i��

�ijxijp
�����

� E sup
x�X�kxk��

�����
mX
i��

�i�ijxijp
����� � ��k�m�� �
�

Here AveA denotes the average over all subsets of f�� � � � � mg while E is the
expectation with respect to the natural product measure on f��� �gn� Indeed�
if this is the case then for some A the restriction operators to both A and the

complement of A are
�
����k�m�
����k�m�

���p
�isomorphisms and of course either A or its

complement Ac is of cardinality at most m
��

Alternatively� in order to �nd such an A� it is enough to show that

P

�
sup

x�X�kxk��

�����
mX
i��

�i�ijxijp
����� 	 ��k�m�

�
� �� ���

In both cases after iterating we get that as long as

lY
i��

�
� � ��k�m��i�

�� ��k�m��i�

���p

� � � �� ���

X must �� � ���embed into �np for some n � m��l���

So this approach reduces the problem to �nding good bounds on the quantity
in �
� or ���� For technical reasons involving splitting of atoms� as explained in
Lemma �
 below� we may need to enlarge m to at most �m
� before making
the random choice in each step� This does not e�ect the process signi�cantly�
after the random choice we end up in �	m�


p and this just means that instead
of ��� we shall need to ensure that

lY
i��

�
� � ��k�m�	



�i�

�� ��k�m�	


�i�

���p

� � � �� ���

Before proceeding further� we would like to point out why there is very little
hope of eliminating the log factors altogether using this approach� Consider� in
�cn log n� � n vectors of the form xi � �c logn�

��P
j��i ej with �i� i � �� � � � � c logn�

��



disjoint sets of cardinality c logn �assuming it is an integer�� It is easy to
calculate �and appears in many probability books� sometimes as the coupon
collector�s problem� that� if c is small� a random choice of c

�
n logn of the

coordinates will most likely miss at least one of the �i�s� Thus the restriction
to a �random� subset of cardinality c

�
n logn will not be an isomorphism on

X � spanfxig �which incidentally is isometric to �n� �� We did not change the
density here� but it is not hard to see that a change of density is not going to
help to reduce the minimal m for which this procedure works below cn logn
for some absolute c 	 	�

We now continue sketching the idea of the proofs� We �rst sketch a version
of the simple argument of ���
 which only gives

Np�k� �� � C���k� for 	 � p � � and

Np�k� �� � C���k�p����� for p 	 ��
���

By Lemma 
 there is a change of density on Lm
p so that for all x � X�

kxk� � k��pkxkp� for 	 � p � � and

kxk� � k���kxkp� for p 	 ��
�
�

Splitting the atoms of this change of density we may assume in addition that
�i � 

m �paying by enlarging the originalm to �m
��� This follows from the
following simple lemma�

Lemma �� Let � be a probability measure on f�� �� � � � � mg� Then there is an
m � M � �m
�� a probability measure � on f�� �� � � � �Mg and a partition
f��� ��� � � � � �mg of f�� �� � � � �Mg satisfying

�i� ��fig� � 

m� i � �� � � � �M � and
�ii�

P
i��j ��fig� � ��fjg��

The proof of the lemma is very simple� Split the atoms of � which have mass
larger than 

m into pieces each of size larger than �
m� This does not add
more than m
� atoms to the original ones� thus ending the proof� Of course
Lp���� and thus alsoX� naturally embeds into Lp��� in particular the estimates
in 
 still hold for the image of X in Lp���� This justi�es the statement in the
paragraph preceding the statement of the lemma�

Fixing an x � X of norm one� we get by classical deviation inequalities �see

��



for example Proposition ��iii� in ����� that for 	 � p � ��

P �jPm
i�� �i�ijxijpj 	 t� � K exp���t�
Pm

i�� �ijxijp�
� K exp���t�
max��i�m �ijxijp�
� K exp����t�m
k��

Let 	 � t � � and pick a t�net N in the unit sphere of X which has at most
��
t�k elements �see e�g� �
�� p� � for an easy proof of the existence of such a
net�� Then as long as k� � ct� log����
t�m �for some absolute constant c 	 	��

P

�
sup
x�N

�����
mX
i��

�i�ijxijp
����� 	 t

�
� K exp����t�m
k��

from which it is easy to get that� as long as k � cm����

P

�
sup

x�X�kxk��

�����
mX
i��

�i�ijxijp
����� 	 Ck
m���

�
� �� ��	�

This and ��� implies the desired result ��� for 	 � p � �� The treatment for
p 	 � is similar�

This sketch of the argument of ��
� was given only to illustrate the basic
method involved� We now continue to sketch the arguments which give
the stronger statements of theorems �� and ��� The point is to �nd
estimates for the quantities in �
� or ��� which are better than ��	�� We �rst
relate the second quantity in �
� to a similar one involving Gaussian variables�
Let g�� � � � � gm be independent standard Gaussian variables� Then

E sup
x�X�kxk��

�����
mX
i��

�i�ijxijp
����� �

r
�

�
E sup
x�X�kxk��

�����
mX
i��

gi�ijxijp
����� �

This version of the �contraction principle� is easy to prove� Replace each of
the gi on the right by �ijgij� where f�ig is independent of fgig� and replace E
with the successive application of the two expectations E �E g � Now push the

expectation E g inside the outer j 
 j and use the fact that E jg� j �
q

�
�
�

The problem now reduces to evaluating the quantity

E sup
x�X�kxk��

�����
mX
i��

gi�ijxijp
����� � ����

��



Set Gx �
Pm

i�� gi�ijxijp� Then fGxgx�X�kxk�� is a Gaussian process indexed
by elements of B�X� and we are required to estimate the expectation of its
supremum� This is a well studied area in probability theory �see e�g� �
����
related to the continuity of Gaussian processes� This quantity �or the similar
one involving the Rademacher functions in �
�� is evaluated by di�erent means
in the proofs of the di�erent parts of Theorems �� and ��� We shall �rst present
a

Sketch of proof of Theorem ���ii�� Consider the process fHxgx�X�kxk��
where Hx �

Pm
i�� gi�ixi� Then

EG�
x � EH�

x and EGxGy � EHxHy

for all x� y � X of norm at most �� Slepian�s lemma �see e�g� �
�� p� ���� implies
now that

E sup
x�X�kxk��

�����
mX
i��

gi�ijxij
����� � E sup

x�X�kxk��

�����
mX
i��

gi�ixi

����� �

We shall show that after a change of density �and possibly enlarging m to
�m
���

E sup
x�X�kxk��

�����
mX
i��

gi�ixi

����� � CK�X�

�
k

m

����

� ����

Then one concludes the proof of Theorem ���ii� by applying ���� To prove
���� we shall use the following two propositions�

Proposition �� Let X be a k�dimensional subspace of Lm
� ��� with � a prob�

ability measure and let f�� � � � � fk be an orthonormal basis of X �considered as
a subspace of Lm

� ����� Then� one can split some of the atoms of � to a total of
at most M � �m
� atoms getting a new probability measure � and a natural
embedding I � Lm

� ���� LM
� ��� satisfying

E sup
y�Y�kyk��

�����
MX
i��

gi�iyi

����� � �m����
Ek

kX
i��

gifik��

Here Y � IX and k 
 k� is the dual norm to that of X where duality is given
by hP aifi�

P
bifii � P

aibi�

�




Proposition �� With the notation of the previous proposition�

E

��� kX
i��

gifi
���� � p

�K�X�
���� kX

i��

f �i
�������

�
�

We now conclude the proof of ���ii� by applying Lewis� change of density�
Theorem � to get an orthonormal basis for �an isometric copy of X� satisfying����Pk

i�� f
�
i

�������
�
� n����

Before sketching the proofs of Propositions �� and �� we would like to deduce
Theorem ���iii�� This follows from the following Lemma ��rst observed in
�

���

Lemma �� Let X be a k�dimensional subspace of L�� Then K�X� � C
p
log k

for some absolute C�

PROOF� Using Lewis� change of density we may assume kxk� � kkxk� for
all x � X� Then easily kxk� � kxkp � k�p����pkxk� for all x � X� Letting Xp

denote X with the Lp norm we get that

K�X� � k�p����pK�Xp� � k�p����pK�Lp� � Ck�p����p
q
p
�p� ��

where the last inequality follows from the easy fact that K�Lp� � K�Lp��p����
and a �not entirely obvious� application of Khinchine�s inequality� with the
best order of the constant� in Lp��p���� Picking p with p
�p� �� � log k we get
the result�

We now turn to the

Sketch of proof of Proposition ��� Using the contraction principle in the
�rst inequality� we get

E sup
x�X�kxk��

��� mX
i��

gi�ixi
���� max

��i�m
�
���
i E sup

x�X�kxk��

��� mX
i��

gi�
���
i xi

���
� max

��i�m
�
���
i E sup

x�X�kxk��

���D mX
i��

gi�
����
i ei� x

E���
� max

��i�m
�
���
i E sup

k
P

ajfjk��

��� kX
j��

aj
D mX
i��

gi�
����
i ei� fj

E����

��



Put hj �
DPm

i�� gi�
����
i ei� fj

E
� Then h�� � � � � hk are standard Gaussian vari�

ables which are easily seen to be independent �check that Ehjhl � �jl�� Thus

E sup
k
P

ajfjk��

��� kX
j��

aj
D mX
i��

gi�
����
i ei� fj

E���� E sup
k
P

ajfjk��

��� kX
j��

ajgj
���

� E

��� kX
i��

gifi
����� ����

It remains to see that splitting the atoms we may also assume that �i � 

m�
but this follows from the splitting of atoms lemma �
�

Proof of Proposition ��� The proposition follows easily from ���� Lemma
�� but we present a di�erent proof� Let f�ijgn�ki���j�� denote nk independent
Rademacher functions �i�e�� the �ij are the coordinate functions in the product
probability space f��� �gnk�� In the �rst inequality below we use the central
limit theorem and in the last Khintchine�s inequality �with the best constant�
�����

E

��� kX
i��

gifi
���� � �

lim
n��

E

���n���� kX
j��

nX
i��

�ijfj
���������

� lim
n��

n���� sup
nD kX

j��

nX
i��

�ijfj� f
E
� kfkL��X� � �

o

�K�X� lim
n��

n���� sup
n kX
j��

nX
i��

h�ijfj� xiji � xij � X� E
���X

i�j

�ijxij
���� � �o

�K�X� lim
n��

sup
n����X

i�j

x�i�j�
���
���
L�

���� kX
j��

nX
i��

n��f �j
�������

L�
� E

���X
i�j

�ijxij
���� � �o

�K�X�
���� kX

j��

f �j
�������

L�
sup

n����X
i�j

x�i�j�
���
���
L�

� E
���X

i�j

�ijxij
���� � �o

�
p
�K�X�

���� kX
j��

f �j
�������

L�
�

We now sketch a proof of Theorem ���i�� We have chosen a version of the
proof of ���� since it is the shortest one� However� this proof does not give a
good dependence on ��

��



Sketch of proof of Theorem ���i�� We assume �rst as we may that X �
�mp � The condition of Theorem ���iii� is easily seen to be satis�ed for S� � �any
�nite subset of� the unit ball of X and C	 � Tq�X�� So we can deduce from
that theorem that� without loss of generality� X � Lm

p ��� for some probability
measure � and kxkq�� � C �kxkp for all x � X and some C � which depends
only on p� q and Tq�X�� By Theorem ���i� it is also easy to see that we may
assume that �i � �
�m �replace g with g��

�
�� Splitting the large atoms of �

as in Lemma �
 and changing m to �m
� we may assume in addition that
�i � 

m for all � � i � �m
��

Put r � q
p and note that for x � X with kxkp � ��

kf�ijxijpg	m��
i�� kr��� max

��j�	m��
j��r��jjxjjp��

�max
t��

t� fi� �ijxijp � tg���r ��
�

with f��jjxjjp��g denoting the decreasing rearrangement of f��jjxjjp�g�

Using the fact that �i is of order �
m and relating the quantity in ��
� to

kxkq���max
t��

t���fi� jxij � tg����q

�max
t��

t�m�� fi� jxij � tg���q� ����

we get that the quantity in ��
� is at most Cm
p
q
�� for some C depending only

on p� q and Tq�X�� We now use the inequality

P
���� nX

i��

�iai
��� 	 t

�
� � exp����t
kfaigkr���s� ����

which holds for all t 	 	� � � r � � and all sequences of scalars faig� Here
s � r

r�� and � is a positive constant depending only on r� The inequality is
a special case of a martingale inequality of Pisier �see �
��� p� 
� for a proof
or ����� Proposition � for a discussion of this and other similar inequalities��
Note that we may assume that r � q
p � �� Using ���� we get from ��
� that
for all x � X with kxkp � ��

P
���� 	m��X

i��

�i�ijxijp
��� 	 t

�
� � exp����tsm�

for some �� depending only on p� q and Tq�X�� From this we get� as in the

��



standard argument leading to ��	��

P
�

sup
x�X�kxk��

��� 	m��X
i��

�i�ijxijp
��� 	 t

�
� � exp�k log��
t�� ���tsm�� ����

It follows that� as long as ��tsm log����
t� 	 �k� We can �nd a set of at most
�m

 coordinates for which the restriction operator is an ����t��isomorphism�
Choosing t � � k

m
log m

k
���s we get that there is a set of at most �m

 coordi�

nates for which the restriction operator is an �� � C� k
m
log m

k
���s���p� isomor�

phism where C depends only on p� q and Tq�X�� Iterating� we get that as long
as

lY
i��

�
� � C

� k

m��

�i
log

m��

�i

k

���s���p � � � �

X must ��� ���embed into �np for some n � m��

�l��� Note that in each step
of the iteration we get a space which is at most ��isomorphic to X� Since the
new space has type q constant at most twice that of the original space we can
continue the iteration�

Now it is easy to get the conclusion�

��� Natural embeddings of �kr into �np

The methods described in Section ��� as well as all other methods for pro�
ducing �tight embeddings� are probabilistic and as such are not constructive
and do not produce an explicit good embedding� The most basic question
concerning explicit embeddings may be to produce a speci�c good embedding
of �n� into �

m
� with m proportional to n �m � �n� say�� We remark in passing

that for p an even integer there are speci�c embeddings �even isometric ones�
of �n� into �

m
p with the relation between m and n close to the optimal one �in

particular� for p � 
� m � n��� See ���� for that�

A natural approach to get an explicit embedding of �n� into �m� is to �x a
natural subspace Xn of L� which is well isomorphic to �

n
� � for example the span

of n independent standard Gaussian variables or n independent Rademacher
functions� and �nd a subspace Ym with Xn � Ym � L�� Ym well isomorphic
to �m� � and m small� However� this fails in a very strong sense� under the
requirements above� the smallest m can be is Cn for some C 	 � depending
only on the distance of Ym to �

m
� � Here is a somewhat stronger theorem from

����� Recall that for an operator T � X � Y � 
��T � � inf kukkvk� where the inf

��



is taken over all L���� spaces and all operators v � X � L����� u � L����� Y �
satisfying T � uv�

Theorem �	 For every 	 � K �� there exists a � � ��K� 	 	 such that if
X is the span� in L�� of n independent Gaussian variables or n independent
Rademacher functions� X � Y � L�� and the inclusion J � X � Y satis	es

��J� � K then� for some m � e	n� �m� is ��isomorphic to a subspace of Y � In
particular dim Y � e	n�

The proof of this is rather technical and we shall not reproduce it here� ����
and ���� contain many re�nements and variations of this theorem� Also� ��	� p�
�	�� contains an exposition of the proof of the simplest instance of this class
of results� namely� the statement in the �in particular� part of Theorem ��
for X being the span of n independent Rademacher functions�

��� �kr subspaces of m�dimensional subspaces and quotients of �np

This short section deals with the question of what is the largest k such that �kp
well embeds into any m�dimensional subspace X of �np � as well as some related
questions� We shall not present any proofs but only summarize what is known
on this subject�

Note that� since X � �m� well embeds into �
n
p � p � �� for m proportional to

n� the answer to the question above for p � � is not very interesting �i�e�� k
must be bounded� unless n � m � o�n�� We shall say something about this
case latter� For � � p � � the following theorem of Bourgain and Tzafriri
���� basically solves the problem� Let k � kp�X�K� be the maximal dimension
of a subspace Y of X which is K�isomorphic to �kp�

Theorem �
 Let � � p � � and � 	 	� Then there are positive constants
c � c�p� ��� C � C�p� �� such that for all m � n and every m�dimensional
subspace X of �np �

kp�X� � � �� � cminfmp���� �m
n��p�p��p���g�

The result is best possible in the sense that for each m � n there exists a
subspaceX with kp�X� ���� � Cminfmp���� �m
n��p�p��p���g� �p� � p
�p�����

As can be suspected from the statement� the proof of this result is quite in�
volved and very technical� It uses ideas from the work of Bourgain and Tzafriri
concerning restricted invertibility �some of which is surveyed Section 
�� be�
low� as well as from Bourgain�s work on !p sets ���� We think it worthwhile
to �nd a simpler proof�

�




As we said above� there can be no similar theorem in the range p � �� However�
one can prove a similar theorem for quotients of �np � � � p � �� This was done
by Bourgain� Kalton and Tzafriri in ����

Theorem �� For each � � p � � there is a constant Cp 	 	 such that if X
is an m�dimensional quotient space of �np then

kp�X�Cp� � C��
p �m

p
n��p���������p��

for p 	 �� while

k��X�C�� � C��
� m�
� � logn
m��

Except for the constants involved the results are best possible�

Note that for m proportional to n the resulting dimension of the contained
�kp space is also proportional to n� For p � � this case was observed earlier in
����� Note also that the conclusion of this theorem is �isomorphic� rather than
�almost isometric�� We do not know if one can replace the constant Cp in the
left hand side of the inequalities by � � � �of course paying by replacing the
constant in the right hand side by one depending on ���

There is also a version of Theorem �
 for p ��� If m � n	� with � 	 	� then
every m�dimensional subspace X of �n� contains a well isomorphic copy of �

k
�

with k � c���m���� This was proved in ���� for m proportional to n� and in ���
in general�

When m is very large there is also a version of Theorem �
 for p � �� It was
proved in ���� that for every m�dimensional subspace X of �n� �

k��X�K� � cminf�n
�n�m�� log�n
�n�m��� ng�

K and c are universal constants�

� Finite dimensional subspaces of Lp with special structure

��� Subspaces with symmetric basis

In this section we treat the classi�cation of the �nite symmetric basic sequences
in Lp� � � p � � and to some extent also the classi�cation of the �nite
unconditional basic sequences in Lp� � � p � ��

�	



Recall that a sequence x�� � � � � xn in a quasi normed space X �over R� is said
to be K�symmetric if for all scalars faig� all sequences of signs f�ig and all
permutations � of f�� � � � � ng

k
nX
i��

aixik � Kk
nX
i��

�ia��i�xik�

If we require the inequality only for the identity permutation the sequence is
called K�unconditional�

The article ���� treats the classi�cation of symmetric basic sequences in Lp�
p 	 � so we only state the result �from ��
�� see ����� Theorem 
�
��

Theorem �� For every � � p �� and every constant K there is a constant
D such that any normalized K�symmetric basic sequence in Lp is D equivalent
to the unit vector basis of Rn with the norm

kfaigk � maxf�
X jaijp���p� w�

X jaij�����g ����

for some w � �	� ���

Of course� since �n� isometrically embeds in Lp� any norm of the form ����
embeds� with constant �� into Lp�

For � � p � � the structure of the symmetric sequences in Lp is more involved�
Let M be a Orlicz function �see ���� Section ��� and �M the associated Orlicz
sequence space� It turns out that the space �M embeds isomorphically into
Lp if and only if the unit vector basis of �M is p�convex and ��concave and
this happens if and only if M�jtj��p� is equivalent to a convex function and
M�t���� is equivalent to a concave function on �	��� �see ��
��� Recall that two
functions M��M� � R � �	��� are equivalent �at 	� if there exist constants
K�� K�� �� � and x� 	 	 such that for all jxj � x� K�M���x� � M��x� �
K�M���x��

With the right quanti�ers� a similar statement holds also for �nite dimensional
Orlicz spaces� �nM � The embedding� when it exists� is as a span of independent�
identically distributed symmetric random variables� It follows that if fMjgmj��
is a collection of Orlicz functions such that �nMj

K�embed in Lp for all j and

�j 	 	 for all j then also R
n with the norm k
k � �Pm

j�� �jk
kp
Mj
���p K�embeds

in Lp� The converse is also true�

Theorem �� For every constant K and for every 	 � p � � there is a con�
stant D such that given any normalized K�symmetric basic sequence ffigni��
in Lp there is an m and there are m symmetric functions Mj � R � �	����
j � �� � � � � m for which Mj�	� � 	� Mj�jtj��p� are convex and Mj�t

���� are

��



concave on �	��� and for some weights �j� ffigni�� is D equivalent to the unit
vector basis of Rn with the norm

k 
 k �
� mX
j��

�jk 
 kp
Mj

���p
� ��
�

This theorem is a consequence of the following very nice inequality of Kwapie�n
and Sch"utt ��
��

Theorem �� Let fai�jgni�j�� � R
n� and denote by fa�i gn�i�� the decreasing rear�

rangement of fai�jg� Then� for any � � p ���

Ave�
�Pn

i�� jai���i�jp
���p � �

n

Pn
i�� a

�
i �

�
�
n

Pn�

i�n�� a
�p
i

���p
� �Ave�

�Pn
i�� jai���i�jp

���p
�

��	�

Here Ave� denotes the average over all permutations of �� � � � � n�

The case p � � of Theorem �� appears in ��
�� The proof for the other values
of p is quite similar and we shall sketch it below� The starting point is a lemma
which gives another equivalent expression to the ones in ��	�� For � � p ��
put

M�t� �Mp�t� �

�	

	�
�p� p��

n
���np��jtjp if jtj � �
n

�p� p��
n
����pjtj � p��

n
� if jtj 	 �
n�

����

Note that Mp is an Orlicz function and that Mp�t
��p� is a concave function on

�	����

Lemma �� Let � � p �� and let a� � a� � � � � � an� � 	� Then

�


n

���faign�i��
���

M
� �

n

nX
i��

ai �
��
n

n�X
i�n��

ai
���p � p

�n

���faign�i��
���

M

����

PROOF� Note that M�pt� � pM�t� for all t� Consequently� if kfaign�i��k
M �
�
p
then�

�
p� p� �

n

���� X
ai���n

�
pai � p� �

n

�
� np��

X
ai���n

api
�
� �

p
� ����

��



It follows that
P

ai���n ai �
P

ai���n

�
pai � p��

n

�
� � so that

nX
i��

ai � � and  fi � ai 	 �
ng � n�

It now follows from ���� that
Pn

i�� ai � n
�
n��

Pn�

i�n�� a
p
i

���p � ��
To prove the other side inequality assume

Pn
i�� ai � n

�
n��

Pn�

i�n�� a
p
i

���p � ��
Then

np��
X

ai���n

api � np��
� n�X
i�n��

api �
X

ai���n�i�n

api
�
� �

and� since an�� � �
n

Pn
i�� ai � �

n
�
P

ai���n ai �
Pn

i�� ai � ��

It follows that �for n � ��
Pn�

i��M�ai� � �p� p��
n
���
�P

ai���n�pai � p��
n
� � np��

P
ai���n a

p
i

�
� �p� p��

n
����p� �� � 
�

Since M�
t� � 
M�t� this concludes the proof�

We now turn to a

sketch of the proof of Theorem �� � Let ffigni�� be a ��symmetric basic
sequence in lmp � Then up to a universal constant �

kPn
i�� aifik �

�Pm
k��Ave��

Pn
i���a��i�fi�k��

��p��
���p

�
�Pm

k�� �
p
kAve��

Pn
i���a��i�fi�k�
�k�

��p��
���p

where �pk � kff pi �k�gni��k
M
��p
�

By Theorem �� and Lemma �
 the last expression is equivalent� with constants
depending on p only� to

��
n

mX
k��

�pkkfapi jfj�k�jp
�pkgni�j��k
M
��p

���p
� ��
�

��



Put� for k � �� � � � � m�

Nk�t� �
nX
i��

M��p�tjfi�k�jp
�pk��

It is easy to check that the Nk are Orlicz functions with Nk�t
p��� concave and

that

kfapi jfj�k�jp
�pkgni�j��k
M
��p
� kfapi gni��k
Nk � kfaigni��k

p

Mk

Where Mk�t� � Nk�jtjp�� From this and ��
� it is easy to conclude the proof�

The main result of �
�� states that every unconditional basic sequence in Lp�
� � p � �� is equivalent to a block basis of a symmetric basic sequence in Lp�
�The block basis can be chosen to be with equal coe�cients and consequently
the embedded space is also complemented� This will not be used here�� Of
course if the unconditional basic sequence is �nite also the containing sym�
metric sequence can be taken �nite and the constants �of the symmetricity
and of the equivalence� can be controlled by the unconditional constant� Re�
call that given a sequence of n Orlicz functions �M � fMigni�� the modular
space � �M is R

n with the norm kxk �M � infft 	 	 �
Pn

i��Mi�xi
t� � �g� Using
�
�� and Theorem �� one can now easily prove the following theorem�

Theorem �� For every constant K and for every � � p � � there is a
constant D such that given any normalized K�unconditional basic sequence
ffigni�� in Lp there is an m� m Orlicz function sequences �Mj � fMjigni���
j � �� � � � � m� and positive constants �j and �ji such that Mji�jtj��p� are convex
and Mji�t

���� are concave and ffigni�� is D equivalent to the unit vector basis
of Rn with the norm

kxk �
� mX
j��

�jkfxi�jigni��kp�Mj

���p
� ����

Of course if Mji�t
��p� are K�equivalent to convex functions and Mji�t

���� are
K�equivalent to concave functions then any norm as in ���� embeds into Lp

with constant depending on K only�

�




��� Subspaces with bad gl constant

Recall �rst that the Gordon�Lewis constant� gl�X�� of a Banach space X is
de�ned to be

gl�X� � supf
��T � � T � X � ��� ���T � � �g

where �� denotes the ��summing norm �see ���� section �	�� and 
��T � X �
Y � � inffkAkkBkg� Here the inf is taken over all L� spaces L and over all
decompositions T � AB with B � X � L� A � L� Y �

An easy but very useful theorem of Gordon and Lewis ����� or ��	� p� ��	��
says that the unconditional constant of every basis of X is at least gl�X��

When � � p � � there is an abundance of �bad� subspaces of �np � By �bad�
we mean here lacking good unconditional bases or even the weaker property
of small Gordon�Lewis constant� Recall that Ln

p is Lp over the measure space
consisting of n points and endowed with the uniform probability measure�

Theorem �� There are positive constants c� c� such that if X is any subspace
of Ln

p � � � p � �� satisfying dimX � cn and kxkLn
�
� �kxkLn

�
for all x � X

then gl�X� � c�n������p�

Theorem �� was proved by Figiel and Johnson in ����� A somewhat weaker the�
orem� still ensuring the abundance of subspaces with large gl�X� was proved
earlier by Figiel� Kwapie�n and Pe#lczy�nski ��	�� We refer to ��	� p� ���� for the
proof of Theorem �� for p ��� The case � � p �� follows easily since the
Banach�Mazur distance between Ln

p and L
n
� is n

��p�

Of course� for some c 	 	� a random subspace X of Ln
� of dimension cn satis�es

the second assumption of Theorem ��� i�e�� kxkLn
�
� �kxkLn

�
for all x � X �see

�
�� or ��
��� This is why we claim that there is an abundance of subspaces of
Ln
p satisfying the conclusion of Theorem ���

For � � p � �� gl�X� is uniformly bounded for any subspace X of Lp� Nev�
ertheless� there are �nite dimensional subspaces of Lp which have only bad
unconditional bases �see ������ This implies that supfubc�X� � X � �npg � �
as n�� but no estimates are known�

��



� Restricted invertibility and �nite dimensional subspaces of Lp of
maximal distance to Euclidean spaces

��� Restricted invertibility of operators on �np

Motivated by some problems about the structure of �nite dimensional sub�
spaces of Lp that will be discussed in section �
���� in ��	� Bourgain and
Tzafriri ��	� proved Theorem �� about the restricted invertibility of operators
on �np � Qualitatively� this result says �or rather implies� that a bounded oper�
ator on �np which has ones on the diagonal must be invertible on a coordinate
subspace of proportional dimension �even after projecting back into the co�
ordinate subspace�� In order to state Theorem �� we introduce the following
notation� Given a subset � of f�� �� � � � � ng� let ��p be the span in �np of the
unit vector basis vectors fei � i � �g and let R� be the natural coordinate
projection from �np onto �

�
p �

Theorem �� Let � � p � �� For each � 	 	 there is �p��� 	 	 so that if
T is an n by n matrix� considered as an operator on �np � with zero diagonal�
then for each � 	 	 there is a subset � of f�� �� � � � � ng of cardinality at least
�p���n so that kR�TR�kp � �kTkp� Consequently� if �kTkp � �� then k�R��I�
T �R��

��kp � �
���kTkp

�

The case p � �� as well as the case p � �� which follows by duality� of
Theorem �� was proved earlier by the second author ��	� and� independently�
by Bourgain �
� p������ Bourgain�s argument gives more than what is stated in
Theorem ��� namely� that there exists a splitting ��� ��� � � � �k of f�� �� � � � � ng
into k � k��� disjoint sets so that for each � � i � k� kR�iTR�ik� � �kTk��
Whether this strengthening of Theorem �� remains valid for other values of
p is open� For p � � this matrix splitting question is particularly interesting
because it is equivalent to the Kadison�Singer problem ���� whether every pure
state on �� has a unique extension to a pure state on B����� For a discussion
of the matrix splitting problem on �� and more on the connection between the
Bourgain�Tzafriri work and the Kadison�Singer problem see �����

For a proof �due to K� Ball� of the matrix splitting result for �n� which gives
the estimate k��� � �
� see ����� Notice that in the case of �n� � there is no
loss of generality in treating only matrices with nonnegative entries because
as operators on �n� � T and jT j have the same norm� Berman� Halpern� Kaftal�
and Weiss ��� independently used ideas similar to those used by Ball to prove
an �n� splitting result for matrices with nonnegative entries �which of course
does not give a splitting result on �n� for general matrices�� It is amusing and
instructive to note that the matrix splitting result for �n� formally implies the
matrix splitting result for nonnegative matrices on �np for all � � p � � via

��



a change of density argument of L� Weis ����� Here is the idea� First� after a
change of density� a positive operator T on Lp��� �� a probability� is nicely
bounded on L����� This follows from the fact that T maps the order interval
��f� f � for some f 	 	 into the order interval ���� � ��kTkf� �� � ��kTkf ��
which in turn follows via iteration and summing �as in the proof of �� from
the inclusion T ��g� g� � ��Tg� Tg�� which is valid for all g � 	 because T
is a positive operator� Secondly� by working both with T and T �� one can
get that� after a suitable change of density� a positive operator T on Lp���
�� a probability� is nicely bounded on both on L���� and on L����� Now
specialize this to a positive operator on �np � The above discussion shows that
this operator can be modeled as a �positive� operator T on Ln

p��� for some
probability on f�� �� � � � � ng in such a way that kT � Ln

� ��� �� Ln
� ���k and

kT � Ln
������ Ln

����k do not exceed �� � ��kT � Ln
p ����� Ln

p���k� Since we
know the splitting result for operators on �n� and �

n
�� the result for �

n
p follows

by interpolation�

The proof of Theorem �� for �np uses �
n
� in a more serious way� By duality� it

is enough to prove the case � � p � �� so we restrict to this range of p� The
�natural� approach to prove Theorem �� is to show that if the set � is chosen
at random from among the subsets of f�� �� � � � � ng having cardinality �n for
small enough � � ����� then with big probability kR�TR�kp � �kTkp� This is�
unfortunately� obviously wrong �consider the right shift operator�� However�
regarding �np as L

n
p �so that the injection Ip�� � L

n
p � Ln

� has norm one�� it is
true that for most such choices of � the operator W �� Ip��R�TR� has norm
not exceeding ����p

�kTkp �the factor ���p� is natural� it goes away when we
regard W as an operator from L�

p into L
�
� �� For a proof� which is nice� and not

particularly di�cult� see ��	� Proposition ���	�� What is remarkable is that
the p � � case in Theorem �� then follows immediately by an application
of Grothendieck�s inequality via Proposition �$ Indeed� W � maps Ln

� into
a Hilbert space and thus has ��summing norm at most KGkWk� where KG

is Grothendieck�s constant �see ���� section �	�� Applying Proposition �� we
conclude that W � DU for some operator U on Ln

� of norm at most �KGkTk�
and some norm one diagonal operator D � Ln

� � Ln
� � The operator D is

multiplication by some function g which has norm one in Ln
� � hence U is

de�ned by the formula Uf � R�TR�f
g

� whence kR�TR�f
g

k� � �KGkTk�kfk� for
all f in Ln

� � Since kgk� � �� P�jgj �
q
�
�� � �
�� that is� jg�j�j �

q
�
� for

at most ��n�
� coordinates j� Throwing away any of these which are in the
set � and calling the resulting set ��� we have that �� has cardinality at least
��n�
� and kR��TR��fk� �

p
�KG�kTk��

That completes the outline of the proof of Theorem �� in the Hilbertian case
p � �� which by itself has many applications �see ��	� and ������ It is� however�
the other cases of Theorem �� that have applications to the structure theory
of �nite dimensional Lp spaces� The proof we sketched for p � � does not

��



carry over because operators from L� into Lp� need not be p
��summing when

� � p � � �they are s�summing for all s 	 p�� but this is not su�cient��
Lemma �� is used to get around this problem�

Lemma �	 Suppose � � r � p � �� �� �� � are probabilities� X is a subspace
of Lp���� T � X � L���� and U � X � Lp��� are operators so that

kTxk� � kUxkr� x � X� ����

Then �p��T
�� � 
�r� p�kUk� where 
�r� p� is the Lr�norm of a p�stable random

variable which is normalized in the L��norm�

In view of Corollary �� to prove Lemma �� it su�ces to verify the estimate
M �p��T � � 
�r� p�kUk� which obviously follows from the the following inequal�
ity� valid for all �nite sets of vectors xi in X�

k�X
i

jTxijp���pk� � 
�r� p�k�X
i

jUxijp���pkp� ����

To prove ����� write �
P
i
jTxijp���p � E jP

i
fiTxij where the fi are independent

p�stable random variables with E jfi j � � and interchange the expectation and
the L� norm to see that this is estimated from above by

k�E jX
i

fiUxijr���rkr� ����

But �E jP
i
fiUxijr���r � 
�r� p��

P
i
jUxijp���p� so ���� is dominated by the right

side of �����

The main tool for proving Theorem �� is�

Proposition �
 For each 	 � � � �	�� there is � � ���� 	 	 so that if
� � r � � and S is an operator on Ln

� �n � n��� r�� with kSk� � �� then there
is a subset � of f�� �� � � � � ng of cardinality at least �n so that for all x�

kR�Sxk� � C��kxkr � kSxkr�� ��
�

where C is a numerical constant�

Here we are using as usual the Ln
p normalization� The important thing is that

the factor C� in ��
� is a gain over the trivial factor ���r
�

�

The p � � case of Theorem �� follows easily from Lemma ��� Proposition �
�
and the p � � case of Theorem ��� Indeed� Corollary � says that to prove

��



Theorem �� it is enough to consider norm one operators on Ln
p which have

norm at most �Jp as operators on Ln
� � The p � � case in Theorem �� then

says that it is enough to consider norm one operators on Ln
p which have norm

at most � � ���� as operators on Ln
� � Now if S is an operator on Ln

p with
kSkp � � and kSk� � �� apply Proposition �
 to get �� De�ne T � R�SR��
considered as an operator from Ln

p into L�
p �so that both the domain and

range are Lp spaces of a probability�� and set U � �C�R� � SR��� considered

as an operator from Ln
p into L�n

p

�� Ln
p �p L

n
p � Then for� say� r �

��p
�
� we

have from Proposition �
 that for all x in Rn � kTxkL�
�
� kUxkL�n

r
� Lemma ��

then gives that �p��T
�� � 
�r� p�kUkp � 
C
�r� p�� Changing back to the Ln

p

normalization �that is� regarding R�SR� as an operator on L
n
p�� we have that

�p��R�S
�R�� � ���p
C
�r� p�� The completion of the proof of Theorem �� is

now just as in the p � � case�

For a proof of Proposition �
 see ���� Section ��� Here is the idea� By the
same kind of reasoning that works in the �rst part of the proof of Theorem
��� most choices of a subset � of f�� � � � � ng of cardinality �n make it true that
kR�Sxk� � C�kSxkr for all vectors x whose support has cardinality at most
�n �an estimate for � � ���� comes out of the proof�� For a general vector x�
apply this to �Ax� where A is the set of the �n largest coordinates of jxj� and
use the smallness of kSk� to take care of x� �Ax�

Corollary �	 gives a method� to be exploited in the next section� for building
complemented copies of �np in subspaces of Lp�

Corollary �� Let � � p � � and � 	 � 	 	� If T is a norm one oper�
ator from �np into Lp��� and there are disjoint ��measurable sets Ai so that
k�AiTeikp � � for each � � i � n� then there is an operator S from Lp��� into
�np with kSk � �
� and a subset � of f�� � � � � ng of cardinality at least �p��
��
so that STj
�p is the identity of ��p � Consequently� TR�S is a projection of Lp���
onto span fTeigi���

Here the function �p�
� is taken from Theorem ��� For the proof of Corollary
�	� take norm one vectors hi� supported on Ai� so that hTei� hii � kTeikp�
De�ne �S from Lp��� to �

n
p by �Sf �

nP
i��
k�AiTeikp��hf� hiiei� Then k �Sk � �
�

and �ST has ones on the diagonal when represented as a matrix with respect
to the unit vector basis for �np � Therefore� by Theorem �� there is a subset � of

f�� � � � � ng of cardinality at least �p��
�� so that R�
�STR� is a �
��perturbation

of the identity operator on ��p � Set S � �R�
�STR��

��R�S�

�




��� Subspaces of Lp with maximal distance to Hilbert spaces

In this section we give some applications to the isomorphic structure theory
of �nite dimensional subspaces of Lp� � � p � �� of the restricted invert�
ibility theorem from the previous section� First� however� we mention what
is known in the isometric and almost isometric theories� It is classical �see
���� that a subspace of Lp��� which is isometric to an Lp��� space must be
��complemented in Lp���� This was extended in ��
� �for p � �� and ���� �for
� � p ��� to the almost isometric setting�

Theorem �� For each � � p �� there is �p 	 	 so that if 	 � � � p and X
is a subspace of Lp��� which is � � ��isomorphic to an Lp��� space� then X is
Cp����complemented in Lp���� Moreover� Cp���� � as �� 	�

Although Theorem �� is stated for general subspaces X� it reduces easily to
the case where X is �nite dimensional� which is the case treated in ��
� and
����� A simpler proof of the p 	 � case is given in ���� Section ���

Conversely� it is classical that a ��complemented subspace of Lp��� is isometric
to a Lp��� space �see �
	��� but the almost isometric version of this result is
open even for �nite dimensional subspaces� �Here a result for �nite dimensional
spaces does not seem to imply formally a result for in�nite dimensional spaces��

It was mentioned already in section ��� that an n�dimensional subspace of
Lp��� has Banach�Mazur distance at most n

j��p����j to �n� � The converse to
this is also true for � � p � �� see ��	� Section 
� �as noted in ��	�� the p � �
case is essentially done in ������ For � � p �� it is open whether there is an
n�dimensional subspace of Lp���� not isometric to �

n
p � which has Banach�Mazur

distance nj��p����j to �n� �

We turn now to the isomorphic theory� Here and in the sequel we shall speak
qualitatively about �nite dimensional spaces� similar to the way one speaks
about in�nite dimensional spaces� In order for our statements to have content�
statements should be quanti�ed so as not to depend on dimension �but there
may be dependence on other parameters�� It takes only one example to illus�
trate why this convention is followed by Banach space local theorists� One of
the main results we shall discuss is the following�

Theorem �� If X is an n dimensional complemented subspace of Lp���� � �
p ��� whose distance to �n� is of maximal order� then X contains a subspace Y
of proportional dimension �say� k� which is isomorphic to �kp and complemented
in Lp����

The meaning of this statement is that there are functions f�p� �� C� 	 	 and
g�p� �� C� � � �de�ned for � � p � �� � 	 	� and C � �� so that if X is

�	



an n�dimensional C�complemented subspace of Lp��� for some n and p� and
d�X� �n� � � �nj��p����j� then for some k � f�p� �� C�n there is a k�dimensional
subspace Y of X with d�Y� �kp� � g�p� �� C� and Y is g�p� �� C��complemented
in Lp����

Theorem �� is also true for p � � ���	��� but in a stronger form % the comple�
mentation assumption is not needed� Given the method of ��	�� the main step
in the proof of Theorem �� which we sketch below is Theorem ���

For p 	 � the complementation assumption in Theorem �� is essential� this
follows easily from Theorem ��� Whether the complementation assumption is
needed when � � p � � is open�

A criterion for building a complemented copy of �np in a subspace X of Lp���
was given in Corollary �	� The idea for getting an operator T taking values
in X which satis�es the hypothesis of the corollary is �rst to �nd vectors fi�
� � i � n� in the unit sphere of X for which the norm of the square function

S��ffigni��� �where Sr�ffigni��� �� �
nP
i��
jfijr���r for r � � and S��ffigni��� ��

max
��i�n

jfij� is nearly extremal� that is� the norm of S��ffig� is proportional
to n��p� Once one has such a sequence� one uses an extrapolation argument�
Indeed� for � � p � �� we shall outline an argument which deals with a
somewhat more general situation� Suppose &fi� � � i � n� are in Lp���� and
S��f &figni��� � �n��p�����

Pn
i�� k &fik������ Set � � p
� and fi � &fi
k &fik� Then�

using the factorization S�
��f &figni��� �

Pn
i�� j &fijpk &fik��pjfij��p�

�n��p�����
Pn

i�� k &fik����� � kS��f &figni���kp
� kSp�f &fik &fik���p��pgni���� S��ffigni��������kp
� kSp�f &fik &fik���p��pgni���k�p kS��ffigni���k�����p

� �
Pn

i�� k &fik����� kS��ffigni���k�����p

Letting �Aj � �jfjj � S��ffigni���� and setting Aj � �Aj 
 �i�j �Ai� we get

disjoint sets Ai so that �
�����p�n��p � k nP

i��
�Aifikp� Thus k�Aifikp is larger

than ������p�
� for at least ���p����p�
��n values of i�

Next suppose that � � p �� and that fi� � � i � n� are norm one vectors in
Lp��� for which kS��ffigni���k � Cn��p� Set � � �
p� Then

n��p � kSp�ffigni���k � kS��ffigni����S��ffigni������k
� kS��ffigni���k�kS��ffigni���k��� � C�n��pkS��ffigni���k����

��



Thus there are disjoint sets Ai so that k�Aifikp is larger than �
��C���p�����

for at least
�
�C

�p
p��


��
n values of i�

To derive Theorem �� from Corollary �	 we need the sequence ffig for which
k�Aifikp is bounded away from zero also to be dominated by the �kp basis� This
can be accomplished in the following way�

Let � � p � � and let P � Lp��� � Lp��� be the projection with range X�
Assume that� for some k proportional to n� ffigki�� is a sequence in the ball
of the range of P � in Lp���� satisfying k�Aifikp 	 � 	 	 for some disjoint sets
fAigki��� Put gi � P �jfijp���sgn�fi��Ai�� Note that fgigki�� is dominated by the
�kp basis and in particular the norm of S��fgig� is dominated by k��p and that
the norms of the gi�s are bounded away from zero since kgik � R

gifi � �p�
It follows that for a proportion of the gi�s there are disjoint Bi�s for which
kgi�Bik are bounded away from zero� Now Corollary �	 applies to produce a
subspace of X of proportional dimension isomorphic to �p of its dimension and
complemented in Lp���� The case � � p � � follows by duality� We remark
that this part of the argument� which is what we had in mind when we wrote
��	�� is considerably simpler than the one presented in ��	��

Finally� we brie'y indicate how to �nd in any n�dimensional subspace X of
Lp��� of maximal order distance from �n� a sequence ffigni�� with kS��ffig�k
of order n��p�����

Pn
i�� k &fik������ Assume for example that � � p � �� By a

theorem of Kwapien� ��	� Th� ������ the type � constant of X is of order
n��p����� and by a theorem of Tomczak ��	� Th� ������ this type � constant
is attained� up to a universal constant� on n vectors� i�e�� there are vectors
ffigni�� in X satisfying kS��ffig�k � �n��p�����

Pn
i�� kfik������

� Complemented subspaces

��� Fine embeddings of complemented subspaces of Lp in �np

Let X be a k�dimensional subspace of Lp� � � p ��� and assume there is a
projection of norm K from Lp onto X� Let � 	 	 and denote by Pp�X�K� ��
the smallest n such that X �� � ���embeds in �np as a �� � ��K�complemented
subspace� i�e�� the smallest n such that there is a k�dimensional subspace Y
of �np � an isomorphism T � X � Y with kTkkT��k � � � �� and a projection
of norm at most �� � ��K from �np onto Y � Also� denote by Pp�k�K� �� the
maximal Pp�X�K� �� when X ranges over all k�dimensional subspaces of Lp�
If � � p � �� looking at the case of X � �k� shows that� at least for some K
depending on p� Pp�k�K� �� � c�p�maxfkp��� kp���g� where p� � p
�p� ��� It

��



turns out that� except for logarithmic terms� one can achieve this bound�

Theorem �� ����� Pp�k�K� �� � C�p�K� ��maxfkp
�� kp�g�log k�C�p�

For p � � one gets a better result

Theorem �� P��k�K� �� � C�K� ��k log k

The proofs follow the method of Section ���� Given a k�dimensional X � �mp �
� � p � �� and a projection P on �mp with range X� we let Y � P ��mp� and
following the scheme of Section ��� we �nd a subset � � f�� �� � � � � mg of the
right cardinality such that

���mj�j��X
i��

jxijp �
mX
i��

jxijp
��� � �� x � X� kxkp � � ��	�

���mj�j��X
i��

jyijp�� �
mX
i��

jyijp�
��� � �� y � Y� kykp� � � ����

���mj�j��X
i��

xiyi �
mX
i��

xiyi
��� � �� x � X� y � Y� kxkp � kykp� � �� ����

For p � �� ���� causes of course a problem� Fortunately enough� in this case
the relevant inequality �stating that the restriction to � is a good isomorphism
when restricted to Y � �m�� follows immediately from ��	�� ���� and the fact
that a restriction to a subset is a norm one operator on �m�� Finally� it is easy
to see that ��	�� ���� and ���� imply the desired result�

��� Finite decomposition and uniqueness of complements

The class of �nite dimensional well complemented subspaces of Lp is a rich
class� at least in the range � � p �� � ��� It follows from the previous section
that the same is true for the well complemented k�dimensional subspaces of
�np as long as k is smaller than a speci�c power of n� The situation for larger
k is not known� In particular� it is not known whether a well complemented
subspace of �np of proportional dimension is well isomorphic to a �

k
p space� It

is also not known whether �np is �primary�� i�e�� whether �p � X � Y implies
that either X or Y is well isomorphic to some �kp �here we mean of course that
the isomorphism constant should depend on the norm of the projection on X
with kernel Y �and p� only�� It is true however that if Y is �small� enough
then X is well isomorphic to an �kp space� There are two known instances of
this statement with two di�erent notions of smallness� These were proved in
���� following somewhat weaker results in �
� for the �rst theorem and ��� for
the second�

��



Theorem �� Assume � � p ��� �np � X � Y � d�Y� �k�� � K� and there is a
projection P from �np onto X with kernel Y and kPk � L� Then d�X� �n�kp � �
C � C�K�L� p��

Theorem �� Let � � p � � and put &p � maxfp� p�g� Assume �np � X � Y

with dimY � k � n���p
�logn�C�p� and that there is a projection P from �np
onto X with kernel Y and kPk � L� Then d�X� �n�kp � � C � C�L� p��

The proofs relay on a simple but powerful �decomposition method� applied
to a �path� of complemented subspaces of Lp together with a proposition
concerning �uniqueness of complements��

We begin with the decomposition method from ����� which improved on the
original �nite dimensional decomposition method introduced in ����

Lemma �� Let � � p � �� Let Zi� i � �� � � � � m� be Banach spaces and�
for i � �� � � � � m� let Yi be a K�complemented subspace of Zi� Assume also
d�Yi� Yi��� � L� i � �� � � � � m� Then Y� � Pm

i���pZi is CKL�isomorphic to
Ym �Pm

i���pZi� In particular� if Zi � �sip � i � �� � � � � m� and s �
Pm

i�� si then
Y� � �sp is CKL�isomorphic to Ym � �sp�

The proof is very simple� Let Xi be the complement of Yi in Zi� i � �� � � � � m�
Then�

Y� �
mX
i��

�pZi �

�
BBBBB�
Y�

�p

	

�
CCCCCA�p

�
BBBBB�
Y�

�p

X�

�
CCCCCA�p

�
BBBBB�
Y�

�p

X�

�
CCCCCA�p � � ��p

�
BBBBB�
Ym

�p

Xm

�
CCCCCA � ����

We now shift the top row to the right

�

�
BBBBB�
Y�

�p

X�

�
CCCCCA�p

�
BBBBB�
Y�

�p

X�

�
CCCCCA�p � � ��p

�
BBBBB�
Ym��

�p

Xm

�
CCCCCA�p

�
BBBBB�
Ym

�p

	

�
CCCCCA ��
�

to get

Y� �
mX
i��

�pZi � Ym �
mX
i��

�pZi� ����

This picturesque proof can easily be justi�ed�

�




To prove Theorem �� we assume that p 	 � and k � �m� We build a
path Y�� � � � � Ym of spaces connecting Y� � �k� with Ym � �kp with d�Yi� Yi��� �
�� This can be done in several ways but� since we also want Yi to be well
isomorphic to a well complemented subspace of �sip with si as small as possible�

we take Yi to be the �p sum of �
i copies of ��

m�i

� �

Given any � 	 	� ��
m�i

� embeds as a complemented subspace� with constants
depending only on p and �� into �rip with ri � ����m�i�p���� The fact that
this holds for some � � � is exposed for example in ��
�� To get it for all
� 	 	 represent �uv� as the �p sum of u copies of �

v
� �introducing of course a

constant depending on u and p�� embed each summand complementably in an
appropriate �p space� and take the �p sum of these u spaces as the containing
�p space�

It follows that Yi well embeds complementably into �
si
p for si � ���

i��m�i�p����
Lemma �� implies then that� for s �

Pm
i�� si� �

k
� � �sp � �s�kp �

The assumption that �k� is well complemented in �
n
p implies that n � 
kp�� for

some 
 bounded away from zero �this is a result of ����� It is now easy to see
that� with the right choice of �� s � n� k and �k� � �n�kp � �np �

It remains to show that if also �k� � X � �np then X � �n�kp � This follows
from the following simple �uniqueness of complement� result of �
� in the form
proved in ����� In the statement ��� denotes a direct sum of subspaces and the
isomorphism constants implicit in the notation � � � of the conclusions depend
only on the constants for the � � � and the projections in the hypotheses�

Proposition �	 Assume Z � Y � X � H � G with H � X� and assume
H � Y �W � Then X � G�W �
In particular� if for i � �� �� Z � Yi � Xi � Hi � Gi with Y � Yi� G � Gi�
H � Hi � Xi and H � Y �W � Then X� � X��

To end the proof of Theorem �� we only have to show that X� the comple�
ment of Y � �k� in �np � contains a subspace well isomorphic to �k� and well

complemented� Since n is of order at least kp��� the general theory of Eu�
clidean sections as exposed in ��
� implies that� for some � 	 	� X contains
a subspace U� well isomorphic to �

	k
� � U� is automatically well complemented

�see �

� or ���� p� 
���� Now �nd another copy of �	
�k
� in the complement of

U� in X and iterate�

The proof of Proposition �	 ������ is very easy� Put F � X � G� Then
Z � Y �X � Y � F �H and consequently G � Y � F � Thus X � F �H �
F � Y �W � G�W �

��



The proof of Theorem �� follows the same outline as that of the proof
of Theorem ��� Given a k�dimensional well complemented subspace Y� of Lp�
� � p � � we �nd a path Y�� Y�� � � � � Ym of well complemented subspaces of
Lp with d�Yi� Yi��� � 
� Ym well isomorphic to �

k
�� and m � �log� k�� We then

use Theorem �� to embed each of Yi in a well complemented fashion in a low
dimensional �p space and continue in a way similar to the proof of Theorem
���

To build the path of spaces Yi� apply �rst the change of density of Theorem
� and then that of Theorem � to get that without loss of generality kykp �
�n������pkyk� for each y � Y� and the projection P from Lp onto Y� is also
well bounded with respect to the L� norm� Put

Yi � f�y� �iy�� y � Y�g � Lp �p L�� i � �� �� � � � � m�

Then clearly d�Yi� Yi��� � 
� i � �� �� � � � � m� Ym is well isomorphic to �
k
� and it

only remains to show that each of Yi is well isomorphic to a well complemented
subspace of Lp�

Since P is bounded in both Lp and L�� Yi is well complemented in Zi �
f�z� �iz�� y � Lpg � Lp �p L�� Finally� by a theorem of Rosenthal ���� �see
also ���� Zi is well isomorphic to a well complemented subspace of Lp�
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