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1 Introduction
1.1 The good, the bad, the natural, and the complemented

There are many interesting problems about infinite dimensional subspaces of
L,(:= L,[0,1]) which have finite dimensional analogues. For example, it has
long been a central problem in Banach space theory to classify the comple-
mented subspaces of L, up to isomorphism; the finite dimensional analogue
is to find for any given C a description of the finite dimensional spaces which
are C-isomorphic to C'-complemented subspaces of L,. A lot is known about
both the infinite dimensional (see [1]) and finite dimensional (see section 5)
versions of this complemented subspaces of L, problem, but in neither case
does a classification seem to be close at hand.

It sometimes happens that the finite dimensional version of an infinite di-
mensional problem leads to a theory which is much more interesting than
the infinite dimensional theory. Take, for example, the problem of describing
the subspaces of L, which embed isomorphically into a “smaller” L, space;
namely, £,; for which there is a fairly simple answer (see [1]). Now it is clear
that a finite dimensional subspace X of L, embeds, with isomorphism constant
1+ €, into EZJDV if N = N(e, X) is sufficiently large. The attempt to estimate
well NV in terms of € and X (or the dimension of X) has led to a deep theory
(see sections 2.1 and 5.1). A sideline of this investigation also led to deeper
understanding of how certain natural subspaces of L, (such as the span of a



sequence of independent Gaussian random variables) are situated in L, (see
section 2.2).

Besides being an interesting subject in its own right, the study of finite di-
mensional subspaces of L, is often needed in order to understand properties
of infinite dimensional subspaces. For example, the easiest and best way to
obtain subspaces of L,, 2 < p < oo, which fail GL-l.u.st. (cf. [28, section 9])
is to show that random large dimensional subspaces of £} are bad in a certain
sense (see section 3.2).

The topic discussed herein which has the most applications is that of restricted
invertibility (see section 4). Basically the theorem says that an n by n matrix
which has ones on the diagonal and is of norm M, say, as operator on £, must
be invertible on a coordinate subspace of dimension at least 6(M)n. One of the
many consequences of this result is that certain finite dimensional subspaces
X of L, contain well-complemented ¢ subspaces with n proportional to the
dimension of X.

1.2 The role of change of density

Generally the structure of the L, spaces is described for a fixed value of p.
However, proofs of many of the results about L, for a fixed p use the entire
scale of L, spaces, 1 < p < oo. Consider, for example, the proof [28, section 4]
that a subspace X of L,, 2 < p < 00, is either isomorphic to a Hilbert space
or contains a subspace which is complemented in L, and is isomorphic to £,,.
There one needs only to compare the Ly norm and the L, norm on X.

In proofs of other theorems about L, it is necessary to change the measure
before making a comparison between the L, norm and another norm. Since
the technique of changing the measure (“making a change of density”) is used
in the proofs of most of the results we discuss in this article, we chose to devote
this section to describing the change of densities that arise later. It turns out
that the framework in which this technique is most naturally used is that of
an L,(p) space when p is a probability. For us there is no loss of generality in
restricting to that case since the space E;V is isometric to L,(u) when p is any
probability on {1,..., N} for which p({n}) > 0 for each 1 < n < N. For such
a measure p we denote Ly,(u) by LI],V(M), or just LZ],V if ;1 assigns mass 1/N to
each integer n, 1 <n < N.

A density on a probability space (€2, u) is a strictly positive u-measurable
function ¢g on € for which [¢gdu = 1. Such a density g induces for fixed
0 < p < oo an isometry M = M,, from L,(u) onto L,(gdu) defined by
Mf = ¢ YPf. Sometimes a gain is achieved by making such a change of
density; that is, by replacing L,(u) by its isometric copy L,(gdu). The gain



usually occurs because for some subspace E of L,(x) and some value of r
different from p, the space M, ,E is better situated with respect to L,(gdu)
than E is to L,(u). For example, it follows from the Pietsch factorization
theorem [28, section 10] that if an operator T from some space X into L;(u)
has p-summing adjoint, then by replacing the original L, space by another
isometrically equivalent L; space, T'X is actually contained in L,,. Formally,

Proposition 1 If T : X — Ly(p) (1 a probability measure) has p-summing
adjoint, then there is a change of density g and an operator T : X — L,(gdu)
so that My, T 1s the composition of T followed by the canonical injection from
L,(gdp) into Ly(gdp). Moreover, |T|| = m,(T*) as long as TX has full sup-
port; i.e., there is no subset Qy C Q with 1) < 1 so that Tx = 1q,Tx p-a.e.
for every x in X.

To prove this factorization theorem, assume for simplicity that p is a regular
Borel measure on a compact space 2 and that TX has full support. Get a
Pietsch measure v for the restriction of 7* to C'(K), which means that v is a
regular probability measure on K such that |77 f||? < 7, (T*)? [ | f|P dv for all
f in C(K). This same inequality is true if v is replace by its Radon-Nikodym
derivative with respect to p, so one can assume that v is of the form gdu
with ¢ > 0 and 1 = vQ = [ gdpu. It is easily checked that this g is the desired
density provided that ¢ is strictly positive p-a.e., which it must be since T'X
has full support. (When T X does not have full support, reason the same way
but at the end add a small constant function to ¢ and renormalize.)

The next change of density result, due to D. Lewis [43], gives useful information
about finite dimensional subspaces of L,.

Theorem 2 Let pu be a probability measure and let E be a k dimensional
subspace of L,(p), 0 < p < oo, with full support. Then there is a density g
so that M, ,E has a basis {fi,..., fr} which is orthonormal in Ly(gdp) and

k
such that Y |fi]* = k.
n=1

For a proof when 1 < p < oo see [43]. The first step is to apply Lewis’ lemma
([28, section 8]) to get an operator T' from () onto E for which 7,(T) = 1
and L, (T') = N. The rest of the proof involves checking that the choices
9= (T |Te;|?)"? and f; := Vkg~'/PTe; satisfy the conditions of Theorem 2.
Another proof, for the entire range 0 < p < 00, is contained in [56].

Recall that if T : X — Y is an operator, v2(7') is the infimum of ||T'||[|U]| over
all factorizations T'= SU with U : X — ly and S : ¢y — Y.

Theorem 3 If E is a k-dimensional subspace of L,(u) then there is a projec-
tion P from L,(u) onto E with vy (P) < kIV/p=1/2,



Since the Banach-Mazur distance from & to 5 is kI'/P=1/21 [28, section 8],
Theorem 3 implies that the distance of a & dimensional subspace of L,(1) to
(5 is maximized when the subspace is £}.

To prove Theorem 3, observe first that the case p = oo follows trivially from
the fact proved in [28, section 10] that my(I5) = vk for every k dimensional
space E. When p < 0o, in view of the comments made in [28, section 10|, there
is no loss in generality in assuming the p is a probability measure and that
E has full support. Theorem 2 says that we can further assume that F has a

k
basis {fi,..., fr} which is orthonormal in Ly() and such that Y |fi|*> = k.
n=1

Let P be the orthogonal projection onto E. If p < 2, a simple c?)mputation
shows that ||P : L,(u) — Lao(p)|| < kP42 and so also y(P : L,(u) —
Ly(p)) < k'/P=1/2_ The case p > 2 is even easier.

For a generalization of Theorem 3 to spaces of type p > 1 see [60, 27.4,28.6].

The change of density in Theorem 2 is used in section 2.1 to show that a &k di-
mensional subspace of L, well embeds into £ with n not too large. There what
is needed is the relation between the L., and the L,(gdp) norms on M, ,E.
The relevant estimate follows from a trivial observation which we record for
later reference.

Lemma 4 Let p be a probability measure and let E be a k dimensional sub-
space of L,(p) which has a basis {fi,..., fr} which is orthonormal in La(p)

k

and such that Y |fi|*> = k. Then for each f in E, ||fll < KY?|fll, if
n=1

0<p<2and ||fllo <K2|fl, if 2 <p < 0.

There is a pretty characterization, due to Maurey [44], [63, IIL.H.10] of subsets
of L,(u) which are bounded in L, after a change of density.

Theorem 5 Let pu be a probability measure, 0 < p < q < 0o, and S a subset
of Ly(1) of full support. Then there is a density g so that My,S C By, (gau) if
and only if for all finite subsets Sy of S and {a, : x € Sy} C [0,1],

10X Tasz )|, < (3 fas|)H7. (1)

z€So z€Sp

Assuming the Pietsch factorization theorem, for the case p = 1 and when
S = T By for some operator T : X — L;(u), Corollary 6 is little more than a
restatement of Theorem 5. Recall (|28, Section 5]) that when 7" is an operator
into a Banach lattice, M@ (T) denotes the g-convexity norm of 7.

Corollary 6 Suppose T is an operator from a Banach space X into an Ly
space. Then M®)(T) = 7, (T™).



A consequence of Theorem 5 that we shall need in section 4 is the result of
27] that an operator on L, is bounded on L, after an appropriate change of
density:

Theorem 7 If0 < p < oo, p is a probability measure, and T 1s an operator
on Ly(p), then ||My,TM, )  Ly(gdp) — La(gdp)|| < 2K¢||T|| for some
density g > 1/2, where K¢ is the constant in Grothendieck’s inequality [28,
section 10].

If one does not wish to make a change to the measure gdyu, then by throwing
away the part of the measure space where g > 2 one gets:

Corollary 8 If0 < p < 00, u is a probability measure, and T is an operator
on Ly(p), then ||RATR4 = Lo(p) — Lo(p)|| < 2K¢||T|| for some set A with
pwA > 1/2, where Ry is the restriction operator defined by Raf := 14f.

Theorem 7 is a fixed point version of the following factorization consequence
(due to Maurey [44]) of Theorem 5.

Theorem 9 Let u be probability measure and T be an operator from a Banach
lattice X into L,(u), 0 < p < 2. Then there is a change of density g and an
operator T from X into Ly(gdp) so that M, ,T = I,, T, where I, is the iden-
tity mapping from Ly(gdp) into L,(gdu). Moreover, ||T|| < KaM® (X)||T||
if TX has full support.

For the proof of Theorem 9, let {z;}?; be in X and assume that T'X has
full support. Then using a consequence of Grothendieck’s inequality (see [28,
section 10]) in the first step we have

n 1/2 n 1/2
(S (T2 2 | < Kal| T (25 2?2 |
n 1/2
< Ko|T|M®(X) (35, [|l=:]2)'*.

Now apply Theorem 5 with S the image under T of the unit sphere of X to get
the inequality in the conclusion of Theorem 9. A trivial perturbation argument
now gives Theorem 9 when 7'X does not have full support. In the general case,
given € > 0, the density g can be chosen so that ||T|| < (KgM® (X)+€)||T).

We now deduce Theorem 7 in the range 1 < p < oo from Theorem 9. By
duality we can assume that 2 < p < oo, and also suppose that T'L,(x) has
full support. If h is a density and we apply Theorem 9 to the adjoint of the
operator

M, T Ip2
Ly (1) —=5— Ly (hdps)—"= Ly(hdp) (2)



we get a density ¢ so that for every f in L,(u),

[T s PR < KE|TI? [ 17292, (3)

Set go := 1 and get densities gy, go, . .. so that for each n, (3) is satisfied with
h := g, and g := gn41. Define g := Z 2-7=1g(P=2)/p_This series is absolutely

convergent in L,—9)/,(1t) to a functlon whose norm is at most one, so the
function g := ||g||1,(.)7 is a density with g > 1/2 which satisfies, for arbitrary

fin Ly(p),

/|Tf|29(”‘2)/”du < 2Ké||T||2/|f|29(p—2)/pdﬂ.

This gives Theorem 7 with a slightly better constant when T'L,(x) has full
support and hence also Theorem 7 as stated in the range 1 < p < o0.

For 0 < p < 1, Theorem 7 follows via interpolation from Theorem 10.

Theorem 10 If0 < p < 1, a > 1, u is a probability measure, and T 1s an
operator on Ly(p), then [[My,TM, ) : Loo(gdu) — Lo(gdp)l| < allT|| for
some density g.

To prove Theorem 10, it is enough to find a strictly positive function §'/? in
L, () so that T maps the order interval [—g'/?, /7] into [—al||T||g*/?, a||T||3*/7].
The main point is that every operator T on L,(p), 0 < p < 1, has a mod-
ulus |T'| which satisfies |||T||| = ||T|| and |Tf| < |T||f| for all f in L,(p)
(see, e.g., the remark preceding Theorem 3.2 in [36]). One then defines §'/? =

1+ > a "||T||"|T|"1. See [27] for details when p = 1.
n=1

We conclude this section with a change of density lemma due to Pisier [51]
which, except for constants, improves Theorem 5. Theorem 11 will be used in
section 2.1

Theorem 11 Let pu be a probability measure, 0 < p < q < 0o, and S a subset
of L,(1). The following statements are equivalent.

(i) There is a constant Cy and a density g so that for all measurable sets E
and z in S, |1p2||1, < C1 (Jp gdw)? 7.

(i) There is a constant Cy and a density g so that M ,S C CyBy, _(gdu)-

(11i) There is a constant Cs so that for all finite subsets Sy of S and subsets
{az :x € So} of [0,1], [Isubaes, lao ||z, < C3(Zaes, laz] ).



Moreover, there is a constant C = C(p, q) so that in the implication (i) = (j),
C; < CC.

For a proof of Theorem 11, see [51]. This paper also contains a nice proof of
Theorem 5.

2 Subspaces of [}

2.1  Fine embeddings of subspaces of Ly, into £

Let X be a k-dimensional subspace of L,, 0 < p < 0o, and let € > 0. What is
the smallest n such that X (14 ¢)-embeds in /37 That is, what is the smallest
n such that there is a k-dimensional subspace Y of £} and an isomorphism
T:X — Y with ||T||T || <1+€? Let us denote this n by N,(X, €) and the
maximal N, (X, ¢€), when X ranges over all k-dimensional subspaces of L, by
N, (k,e€).

Fixing a basis in X and approximating each of its members by an appropriate
simple function, one sees that N,(X,€) < oo for every k-dimensional X and e.
Moreover, it depends on X only through its dimension k so that N,(k, €) < oo.
However, one gets that way a (larger than) exponential in & bound on N, (k, €).
In this section we shall review results which give much better bounds, close
to the best possible ones.

The case p = 2 is of course trivial and one can take n = k even for ¢ = 0. The
case p = 1 has a nice geometrical interpretation: The unit ball of the dual to a
k-dimensional subspace of £} is easily seen to be (isometric to) the Minkowski
sum of n segments in R* (centered at 0) and visa versa. Consequently, the n
sought after is the smallest n such that every (centered at zero) body K in
R* which is the Minkowski sum of arbitrarily many segments (or the limit of
such bodies - these are called zonoids) can be e-approximated by a body Z
which is the sum of n such segments in the sense that Z C K C (1+¢€)Z.

The history of this problem can be traced to the offsprings of Dvoretzky’s
theorem as discussed in [24]. There the case of X being a k-dimensional Hilbert
space (which embeds isometrically in all the L, spaces) is treated and solved
quite satisfactory: For some absolute constant C', N,(¢5, €) is at most Ce~%k
for p < 2 and Ce 2pkP/? for p > 2. This is best possible except that it is
unknown whether the factor ¢ 2 can be replaced by a smaller function of e.
Notice the following nonintuitive special case: The k-dimensional Euclidean
ball can be approximated by a body which the sum of a constant (depending
on the degree of approximation) times k segments in R¥.



The first result in this direction which did not involve Euclidean spaces was
proved in [31]. There it was shown that, for 0 < p < 1 and p < ¢ < 2,
Z’q“ (which is known to embed isometrically into L, whenever 0 < p < ¢ < 2)
(1+¢€)-embeds into £, for some n < C(p, q, €)k. Later the second named author
found some initial results indicating in particular that the dependence of n on
k in the general problem stated at the beginning of this section is polynomial
rather than exponential as one is first tempted to believe. The first proofs
were quite complicated and worked only for p < 2 as they used fine properties
of ¢g-stable random variables. Later a much simpler method was introduced in
[54]. Assuming, as we may, that X is already a subspace of Z;)V for some finite
N, pick randomly a “few” coordinates and hope that the natural projection
onto these coordinates, restricted to X, is a good isomorphism. If we do it
with no additional preparation this cannot work. Indeed, X may contain a
vector with small support (say one of the unit vector basis elements of EZJDV )
in which case the chance that a coordinate in its support is picked is small;
of course, if no such coordinate is picked, the said projection cannot be an
isomorphism on X. The point is that one wants to change X first to another
isometric copy of X in which each element of X is “spread out”. This can be
done by a change of density. The method of [54] was used with other tools in
8], [58], and some other papers to produce the best known results. In these
results it is not known what is the right dependence of n on € and we shall
not try to emphasize what are the exact estimates one gets from the proofs.
However, the dependence of n on k is best possible except for log factors in
some places; we shall pay more attention to this in the sequel.

We now state the best known results.

Theorem 12 (i) For p > 2, N,(k,¢) < C(p, €)kP/*logk.
(ii) For 1 <p <2, Ny(k,e) < C(e)klogk(loglog k).

(iii) For p =1, Ni(k,€) < C(e)klogk.

(iv) For 0 <p <1, N,(k,e) < C(p,e)k(logk)(loglogk)*.

Under some conditions ensuring that X does not contain good copies of £}
spaces, one gets better results for p < 2. Recall that a quasi-normed space X
is of type p with constant C' for some 0 < p < 2 provided

1/p

(En zemnﬁ <c (z ||xi||P)
=1 =1

for all finite sequences zi,...,x, of elements of X. The best C' is denoted
T,(X). The space L,, 0 < p < 2, is of type p. Recall also that K(X) denotes
the K-convexity constant of X, i.e., the norm of the Rademacher projection in
Ly(X). See [28] for a brief discussion of these notions (although it is restricted
to the normed spaces, which always have type p > 1) and [45] for a more



comprehensive discussion.
Theorem 13

(i) Let 0 < p < q <2 andlet 0 < ¢,C < oo. Then for some constant C' =
C'(p,q,€,C) and all k-dimensional subspace X of L, with T,(X) < C,
N,(X,e) < C'k.

For p =1 we have a quantitatively better estimate:
(11) For all k-dimensional subspaces X of Ly, Ni(X,¢) < C(e)K(X)%k.

Theorem 13(i) was proved for p > 1 in [8]. [32] contains the full statement
with a different proof. [8] also contains Theorem 12(:) and somewhat weaker
versions of Theorem 12(i7), (éi7), and Theorem 13(i7). The exact Theorem
12(77) is contained in [59] while Theorem 13(i7) is the main result of [58].
Theorem 12(i4) follows from it since it is known ([49]) that K(X) < Cy/logk
for every k-dimensional subspace X of Li; see Lemma 17. Finally, Theorem
12(iv) was proved only recently [56], [64] after noticing its omission while
writing this survey.

Before describing the proofs, we mention that there are several unsettled prob-
lem related to Theorems 12 and 13. The most important one (or at least the
one that attracted the most attention) is whether the various log factors and
the dependence on the type and K-convexity are really needed. It is strange
that the constants in the proofs blow up when X contains ;" spaces. Actually,
as we shall see below, in at least some of the proofs the worst case occurs when
X is isometrically é’;. Another problem is the determination of the dependence
of N(-) on e. Scant attention has been given to that in the published work. A
problem we find particularly interesting is whether there is an “isomorphic”
(as oppose to “almost isometric”) version to some of the results here. Here is
an instance of this problem: is it true that for all 1 < p < 2 and all A > 1 there
is a positive constant C' = C'(p, A) such that whenever n < Ak, Z’; C-embeds
into /77 Some progress on this problem has recently been achieved in [48].

Next we would like to sketch some of the ideas involved in the proofs of
some of the statements of Theorems 12 and 13. As we already indicated
above, a common feature of all the proofs we shall sketch is that, using a
change of density, we first find an isometric copy of X with some additional
good properties. We delay stating theses properties and the actual change of
density that ensure them until later and denote the new space by the same
notation X. We may also assume without loss of generality that X lies in a
finite (but large) dimensional £* space, say L)*(u1), where p is a probability
measure on {1,...,m}. We denote p; = p({i}). We would like to show that
the restriction operator to a set of relatively few of the m coordinates is a
good isomorphism on X. We prefer to do it iteratively by first showing how
to find a subset of cardinality at most m/2 such that the restriction operator

10



is a (very) good isomorphism on X, provided m is much larger than k. We
shall then show how to iterate this procedure. The choice of the subset will be
random; for example, it is enough to show that, for an appropriate e(k, m),

Ave, sup

2 il =Y el
=1

zeX[zlI<T] jea
= E sup Y epill?| < e(k,m). (4)
€X||lz)I<1 |i=1
Here Ave, denotes the average over all subsets of {1,...,m} while E is the

expectation with respect to the natural product measure on {—1,1}". Indeed,
if this is the case then for some A the restriction operators to both A and the

1+e(k,m)
1—e(k,m)
complement A° is of cardinality at most m/2.

1
complement of A are ( ) /p—isomorphisms and of course either A or its

Alternatively, in order to find such an A, it is enough to show that

m
Z €ifti|wil”

=1

P( sup

zeX,[lz]<1

> e(k,m)) <1 (5)

In both cases after iterating we get that as long as

li[ (1+e(k,m2—f)>1/p it (6)

1\ 1 —e(k,m27%)

X must (1 + €)-embed into £ for some n < m27'"".

So this approach reduces the problem to finding good bounds on the quantity
in (4) or (5). For technical reasons involving splitting of atoms, as explained in
Lemma 14 below, we may need to enlarge m to at most 3m/2 before making
the random choice in each step. This does not effect the process significantly;
after the random choice we end up in Z?)m/ * and this just means that instead
of (6) we shall need to ensure that

IL[ (1 + e(k, m(??) v <l+e (7)

i\ —e(k,m(

Before proceeding further, we would like to point out why there is very little
hope of eliminating the log factors altogether using this approach. Consider, in
(5198 ™ ' vectors of the form z; = (clogn) ™ Y ,e,, e; with oy, i =1,..., clogn,

11



disjoint sets of cardinality clogn (assuming it is an integer). It is easy to
calculate (and appears in many probability books, sometimes as the coupon
collector’s problem) that, if ¢ is small, a random choice of $nlogn of the
coordinates will most likely miss at least one of the o;’s. Thus the restriction
to a “random” subset of cardinality $nlogn will not be an isomorphism on
X = span{z;} (which incidentally is isometric to ¢}'). We did not change the
density here, but it is not hard to see that a change of density is not going to
help to reduce the minimal m for which this procedure works below cnlogn
for some absolute ¢ > 0.

We now continue sketching the idea of the proofs. We first sketch a version
of the simple argument of [54] which only gives

< C(e)k* for 0 < p <2 and ®)
< C(e)kP+272 for p > 2.

By Lemma 4 there is a change of density on L' so that for all z € X,

|2]| oo < kl/p||x||p, for 0 <p<2 and

2]l < k72||2[l,, for p > 2.

Splitting the atoms of this change of density we may assume in addition that
p; < 4/m (paying by enlarging the original m to 3m/2). This follows from the
following simple lemma.

Lemma 14 Let p be a probability measure on {1,2,...,m}. Then there is an
m < M < 3m/2, a probability measure v on {1,2,..., M} and a partition
{o1,09,...,0m} of {1,2,..., M} satisfying

(i) v({i}) <4/m,i=1,...,M, and
(it) Yieq; v({1}) = n({s})-

The proof of the lemma is very simple. Split the atoms of x4 which have mass
larger than 4/m into pieces each of size larger than 2/m. This does not add
more than m/2 atoms to the original ones, thus ending the proof. Of course
L,(u), and thus also X, naturally embeds into L, (v) in particular the estimates
in 9 still hold for the image of X in L,(v). This justifies the statement in the
paragraph preceding the statement of the lemma.

Fixing an € X of norm one, we get by classical deviation inequalities (see

12



for example Proposition 5(i7i) in [55]) that for 0 < p < 2,

P (IS0 eipilziP| > 1) < K exp(—66*/ Sy ilaif?)
< Kexp(—5t2/max1gigm 1] i|P)
< K exp(—8't*m/k).

Let 0 < ¢t < 1 and pick a t-net N in the unit sphere of X which has at most
(3/t)F elements (see e.g. [47] p. 7 for an easy proof of the existence of such a
net). Then as long as k% < ct>log™"(1/t)m (for some absolute constant ¢ > 0),

m
Z €ifti|T;]”

=1

P (sup

zeN

> t) < Kexp(—6§'t*m/k),

from which it is easy to get that, as long as k < em!/2,

m
Z €ifti|T;]”

=1

P( sup

veX,|lal|<1

> Ck/m1/2> < 1. (10)

This and (7) implies the desired result (8) for 0 < p < 2. The treatment for
p > 2 is similar. [

This sketch of the argument of [54] was given only to illustrate the basic
method involved. We now continue to sketch the arguments which give
the stronger statements of theorems 12 and 13. The point is to find
estimates for the quantities in (4) or (5) which are better than (10). We first
relate the second quantity in (4) to a similar one involving Gaussian variables.
Let g1,..., g be independent standard Gaussian variables. Then

ks T
> epilzilP| < \/j]E sup
2 zeX,||z||<1

=1
This version of the “contraction principle” is easy to prove: Replace each of
the g; on the right by €;|g;|, where {¢;} is independent of {g;}, and replace E
with the successive application of the two expectations E.E,. Now push the

expectation E, inside the outer | - | and use the fact that E|g,| = \/g :

E sup
zEX,[|lz][<1

Zgiﬂi|$z’|p‘-

=1

The problem now reduces to evaluating the quantity

E sup
zEX,[|lz][<1

Zgimlxil”‘- (11)

=1
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Set G, = Yt gipilzi|P. Then {G,}eex o<1 i a Gaussian process indexed
by elements of B(X) and we are required to estimate the expectation of its
supremum. This is a well studied area in probability theory (see e.g. [41]),
related to the continuity of Gaussian processes. This quantity (or the similar
one involving the Rademacher functions in (4)) is evaluated by different means
in the proofs of the different parts of Theorems 12 and 13. We shall first present
a

Sketch of proof of Theorem 13(ii). Consider the process {H,}ocx,|jz)<1
where H, = 3", g;itiz;. Then

EG? = EH? and EG,G, > EH, H,

for all z,y € X of norm at most 1. Slepian’s lemma (see e.g. [41, p. 75]) implies
now that

Z GilbiZi| -

=1

Zgiﬁbz’|$i|

=1

E sup
zeX,[lz]<1

<E sup
zEX,[|lz][<1

We shall show that after a change of density (and possibly enlarging m to
3m/2),

< CK(X) <£>1/2. (12)

m

Z GilbiT;

=1

E sup
zEX,[|lz][<1

Then one concludes the proof of Theorem 13(ii) by applying (7). To prove
(12) we shall use the following two propositions.

Proposition 15 Let X be a k-dimensional subspace of L () with p a prob-
ability measure and let f1, ..., fr be an orthonormal basis of X (considered as
a subspace of LY (w)). Then, one can split some of the atoms of u to a total of
at most M = 3m/2 atoms getting a new probability measure v and a natural
embedding I : LT (n) — LM (v) satisfying

M k
E sup | gy <2m PE|Y gifill*
yeY|lylI<1 |i=1 i=1

Here Y = IX and || - ||* is the dual norm to that of X where duality is given
by (X aifi, X bifi) = X aibi.
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Proposition 16 With the notation of the previous proposition,

k . k 1/2
B Y oof] < vakeO|(2 ).

We now conclude the proof of 13(ii) by applying Lewis’ change of density,
Theorem 2 to get an orthonormal basis for (an isometric copy of X) satisfying

I(zt )] <. :

Before sketching the proofs of Propositions 15 and 16 we would like to deduce
Theorem 12(ii7). This follows from the following Lemma (first observed in
[49]).

Lemma 17 Let X be a k-dimensional subspace of Ly. Then K(X) < C/logk
for some absolute C.

PROOF. Using Lewis’ change of density we may assume ||z||- < k[|z||; for
all v € X. Then easily ||z||; < ||z, < k®~Y/?||z||; for all z € X. Letting X,
denote X with the L, norm we get that

K(X) < k(p_l)/pK(Xp) < k(p—l)/pK(Lp) < Ckle=D/lr /p/(p—1)

where the last inequality follows from the easy fact that K(L,) = K(Ly/p-1))
and a (not entirely obvious) application of Khinchine’s inequality, with the
best order of the constant, in L,/ 1y. Picking p with p/(p —1) = logk we get
the result. [ ]

We now turn to the

Sketch of proof of Proposition 15. Using the contraction principle in the
first inequality, we get

m

m
1/2 1/2

E sup \E gimiTi| < max p; " sup \E gill;' T
zeX |lz||<1 =1 s zeX,|lzl|<1 7 =1
m

1/2 —1/2

= max u;''E  sup KE Gilt; ei,x>‘

lsism zeX |lell<t =

k m
o 1/2 —-1/2
= max ;" "'E  sup E 0 E :gi:ui ei, [ )]
ISsz ” Zajfj”Sl ‘jZI J< P J>‘
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Put h; = <E§Z1 giu;l/Qei, fj>. Then hq,...,h; are standard Gaussian vari-
ables which are easily seen to be independent (check that Eh;h, = 6;;). Thus

E sup ‘Xk:aj<§:giufl/26nfj>‘= sup ‘Zajgj‘

1S e flI<t j=1 =1 \IZa]fJ||<1 j=1

~E S|
=1

(13)

[t remains to see that splitting the atoms we may also assume that p; < 4/m,
but this follows from the splitting of atoms lemma 14. ]

Proof of Proposition 16. The proposition follows easily from [17, Lemma

1] but we present a different proof. Let {e;;}7" =1 denote nk independent
Rademacher functions (i.e., the ¢;; are the coordinate functions in the product
probability space {—1, 1}”’“) In the first inequality below we use the central
limit theorem and in the last Khintchine’s inequality (with the best constant)
28].

*2>1/2
=i s (35 e fi )¢ Il <1)

(i B3 e,

E| S <
=1

7=11=1
E n
SK(X) TLILI{OIOTL_I/Q sup { ZZ(Eijfj,$ij> ; Tij € X, ]EH Zeijxij ’ < 1}
J=1i=1 i

< K(X) lim sup{Hszjl/Q gl}

n—oo

Ly

k n
(Xxn )], E T e
7=11=1 ij
X)H(ZlfJZ)I/QHLm SHP{H(Z“T?J)WHLI ; EH D €T :
J1= 2,7 i,J
k 1/2
<o (5)"],..

<1}

We now sketch a proof of Theorem 13(i). We have chosen a version of the
proof of [32] since it is the shortest one. However, this proof does not give a
good dependence on e.
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Sketch of proof of Theorem 13(i). We assume first as we may that X C
7. The condition of Theorem 11(ii7) is easily seen to be satisfied for Sy = (any
finite subset of) the unit ball of X and C3 = T,(X). So we can deduce from
that theorem that, without loss of generality, X C L7*(u) for some probability
measure £ and ||z]|; < C'||z||, for all z € X and some C’ which depends
only on p, ¢ and T,(X). By Theorem 11(7) it is also easy to see that we may
assume that p; > 1/2m (replace g with 2f*). Splitting the large atoms of u
as in Lemma 14 and changing m to 3m/2 we may assume in addition that
pi <4/mforall 1 <i<3m/2.

Put r = ¢/p and note that for x € X with ||z]|, <1,

1/r

3m/2
ol FE o= a5 (sl )

=max (#{5; plal’ > th (14)
with {(u;]z;[?)*} denoting the decreasing rearrangement of {(u;|z;?)}.

Using the fact that y; is of order 1/m and relating the quantity in (14) to

lllg.00 = max t(u({is ai] > }))"7

~max t(m s || > 1)1, (15)

we get that the quantity in (14) is at most Cma~" for some C depending only
on p,q and T,(X). We now use the inequality

> 1) < 2exp(=8(¢t/ | {ai}lIroo)°) (16)

P(‘ zn: €,
=1

which holds for all t > 0, 1 < r < 2 and all sequences of scalars {a;}. Here
s = — and 6 is a positive constant depending only on r. The inequality is
a special case of a martingale inequality of Pisier (see [47], p. 45 for a proof
or [55], Proposition 5 for a discussion of this and other similar inequalities).
Note that we may assume that r = ¢/p < 2. Using (16) we get from (14) that

for all x € X with ||z]|, =1,

P(‘ 3%2 6iﬂi|$i|p‘ > 75) < 2exp(—4't"m)
i=1

for some ¢’ depending only on p,q and T,(X). From this we get, as in the
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standard argument leading to (10),

3m/2
P( sup ‘ > eiui|xi|p‘ > t) < 2exp(klog(3/t) — 8"t>m).  (17)

zeX [lz|<17 =1

It follows that, as long as §'t*mlog '(3/t) > 2k, We can find a set of at most
3m/4 coordinates for which the restriction operator is an (1+2¢)-isomorphism.
Choosing t ~ (£ log ™)'/* we get that there is a set of at most 3m/4 coordi-
nates for which the restriction operator is an (1 + C/(£ log )!/*)1/?- isomor-
phism where C' depends only on p, ¢ and T, (X). Iterating, we get that as long
as

I+ o ™)) <1

X must (1+ €)-embed into £ for some n < m(3/4)!**. Note that in each step
of the iteration we get a space which is at most 2-isomorphic to X. Since the
new space has type ¢ constant at most twice that of the original space we can
continue the iteration.

Now it is easy to get the conclusion. [ ]

2.2 Natural embeddings of (¥ into by

The methods described in Section 2.1 as well as all other methods for pro-
ducing “tight embeddings” are probabilistic and as such are not constructive
and do not produce an explicit good embedding. The most basic question
concerning explicit embeddings may be to produce a specific good embedding
of /% into /7" with m proportional to n (m < 2n, say). We remark in passing
that for p an even integer there are specific embeddings (even isometric ones)
of £y into £ with the relation between m and n close to the optimal one (in
particular, for p = 4, m ~ n?). See [38] for that.

A natural approach to get an explicit embedding of ¢ into (7" is to fix a
natural subspace X,, of L; which is well isomorphic to £5, for example the span
of n independent standard Gaussian variables or n independent Rademacher
functions, and find a subspace Y,, with X,, C Y,, C Ly, Y,, well isomorphic
to (7", and m small. However, this fails in a very strong sense: under the
requirements above, the smallest m can be is C™ for some C' > 1 depending
only on the distance of Y,, to ¢7*. Here is a somewhat stronger theorem from
[22]. Recall that for an operator T : X — Y, 71(T") = inf ||u||||v||, where the inf
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is taken over all L;(v) spaces and all operators v : X — Ly(v), u: Li(v) — Y,
satistying T' = wuwv.

Theorem 18 For every 0 < K < oo there exists a 6 = 6(K) > 0 such that if
X s the span, in Ly, of n independent Gaussian variables or n independent
Rademacher functions, X C'Y C Ly, and the inclusion J : X — Y satisfies
v (J) < K then, for some m > e, T is 2-isomorphic to a subspace of Y. In
particular dim 'Y > e®".

The proof of this is rather technical and we shall not reproduce it here. [22]
and [23] contain many refinements and variations of this theorem. Also, [60, p.
201] contains an exposition of the proof of the simplest instance of this class
of results; namely, the statement in the “in particular” part of Theorem 18
for X being the span of n independent Rademacher functions.

2.8 (* subspaces of m-dimensional subspaces and quotients of ly

This short section deals with the question of what is the largest k such that é’;
well embeds into any m-dimensional subspace X of £}, as well as some related
questions. We shall not present any proofs but only summarize what is known
on this subject.

Note that, since X = £3" well embeds into 7, p < 2, for m proportional to
n, the answer to the question above for p < 2 is not very interesting (i.e., k
must be bounded) unless n — m = o(n). We shall say something about this
case latter. For 2 < p < oo the following theorem of Bourgain and Tzafriri
[12] basically solves the problem. Let k = k,(X, K') be the maximal dimension
of a subspace Y of X which is K-isomorphic to é’;.

Theorem 19 Let 2 < p < oo and € > 0. Then there are positive constants
c = c(p,€),C = C(p,€) such that for all m < n and every m-dimensional
subspace X of (7,

kp(X, 1+ €) > cmin{m?" /%, (m/n*?y/ =2},

The result is best possible in the sense that for each m < n there exists a
subspace X with k,(X, 1+€) < Cmin{m?" /2 (m/n2/P)P/e=DY (p* = p/(p—1).)

As can be suspected from the statement, the proof of this result is quite in-
volved and very technical. It uses ideas from the work of Bourgain and Tzafriri
concerning restricted invertibility (some of which is surveyed Section 4.1 be-
low) as well as from Bourgain’s work on A, sets [6]. We think it worthwhile
to find a simpler proof.
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As we said above, there can be no similar theorem in the range p < 2. However,
one can prove a similar theorem for quotients of £, 1 < p < 2. This was done
by Bourgain, Kalton and Tzafriri in [7].

Theorem 20 For each 1 < p < 2 there is a constant C,, > 0 such that if X
is an m-dimensional quotient space of £ then

kp(X, Cp) > Cpfl(mp/nﬂp*l))l/(?ﬂ?),

for p > 1, while

ki (X,C1) > C 'm(/1 +logn/m).

Ezxcept for the constants involved the results are best possible.

Note that for m proportional to n the resulting dimension of the contained
é’; space is also proportional to n. For p = 1 this case was observed earlier in
[15]. Note also that the conclusion of this theorem is “isomorphic” rather than
“almost isometric”. We do not know if one can replace the constant C), in the
left hand side of the inequalities by 1 + € (of course paying by replacing the
constant in the right hand side by one depending on ¢).

There is also a version of Theorem 19 for p = oo: If m > n’, with § > 0, then
every m-dimensional subspace X of /" contains a well isomorphic copy of /%,
with k& > ¢(8)m!/2. This was proved in [21] for m proportional to n, and in [5]
in general.

When m is very large there is also a version of Theorem 19 for p = 1. It was
proved in [25] that for every m-dimensional subspace X of /7,

ki(X, K) > emin{(n/(n — m))log(n/(n — m)),n}.

K and ¢ are universal constants.

3 Finite dimensional subspaces of L, with special structure
3.1 Subspaces with symmetric basis

In this section we treat the classification of the finite symmetric basic sequences
in L,, 1 < p < oo and to some extent also the classification of the finite
unconditional basic sequences in L,, 1 <p < 2.
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Recall that a sequence w1, ...,x, in a quasi normed space X (over R) is said
to be K-symmetric if for all scalars {a;}, all sequences of signs {¢;} and all
permutations 7 of {1,...,n}

n n
1D asi|| < K| eiangaya:|-
=1 =1

If we require the inequality only for the identity permutation the sequence is
called K-unconditional.

The article [61] treats the classification of symmetric basic sequences in L,
p > 2 so we only state the result (from [29]; see [61], Theorem 4.4).

Theorem 21 For every 2 < p < oo and every constant K there is a constant
D such that any normalized K -symmetric basic sequence in L, is D equivalent
to the unit vector basis of R™ with the norm

{ail = max{(3_ [a:")?, w3 lail*)"'?} (18)

for some w € (0,1).

Of course, since ¢ isometrically embeds in L,, any norm of the form (18)
embeds, with constant 2, into L,.

For 1 < p < 2 the structure of the symmetric sequences in L, is more involved.
Let M be a Orlicz function (see [28, Section 5]) and ¢, the associated Orlicz
sequence space. It turns out that the space ¢); embeds isomorphically into
L, if and only if the unit vector basis of ¢j; is p-convex and 2-concave and
this happens if and only if M(|t|'/?) is equivalent to a convex function and
M (t'/?) is equivalent to a concave function on [0, 00) (see [14]). Recall that two
functions My, M, : R — [0,00) are equivalent (at 0) if there exist constants
Ky, Ky, A\, and x5 > 0 such that for all |z] < zy K1 My(Ax) < Mi(z) <
Ky M, ().

With the right quantifiers, a similar statement holds also for finite dimensional
Orlicz spaces, ¢};. The embedding, when it exists, is as a span of independent,
identically distributed symmetric random variables. It follows that if { M},

is a collection of Orlicz functions such that é" K-embed in L, for all j and

A; > 0forall j then also R with the norm ||-|| = (EF Nill-117 M_)l/p K-embeds
in L,. The converse is also true.

Theorem 22 For every constant K and for every 0 < p < 2 there is a con-
stant D such that given any normalized K-symmetric basic sequence {f;}"_,
in L, there is an m and there are m symmetric functions M; : R — [0, 00),
j = 1 ,m for which M;(0) = 0, M;(|t|'/?) are conver and M;(t'/?) are
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concave on [0,00) and for some weights \;, {f;}, is D equivalent to the unit
vector basis of R™ with the norm

0= (A1, )™ (19)

This theorem is a consequence of the following very nice inequality of Kwapien
and Schiitt [39].

Theorem 23 Let {a;;}};_, € R and denote by {a} :’il the decreasing rear-
rangement of {a; ;}. Then, for any 1 < p < oo,

1/p 1/p
Aver (T lasn@l) " < ETE a4 (3 T )

20)
. 1/p (
< 5Ave, ( D1 |ai,7r(i) |p) :

Here Ave, denotes the average over all permutations of 1,...,n.

The case p = 1 of Theorem 22 appears in [39]. The proof for the other values
of p is quite similar and we shall sketch it below. The starting point is a lemma
which gives another equivalent expression to the ones in (20). For 1 < p < oo
put

Yl e it < 1/n

(

-
(p—

p—1
n
p—1

] (21)
“Ly=Hplt| — 21) if [¢] > 1/n.

Note that M, is an Orlicz function and that M, (¢'/?) is a concave function on
0, 00).

Lemma 24 Let1 <p<oo andleta; > ay > ... > a,2 > 0. Then

<

N (22)

n n2
i+ (5 % o) < e,

1 1=n-+1

ez, <2

(5%

2

PROOF. Note that M(pt) > pM(t) for all t. Consequently, if ||[{a;}72,||e,, <
1 then
p Y

- (=P e T )<

1
a;>1/n a;<1l/n p
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It follows that 3 q.51/m @i < Xgis1/n (pai — p—:) <1 so that

> a;<2 and #{i; a;>1/n} <n.
i=1

1
It now follows from (23) that >, a; + n(n_l Einﬂ af) v < 3.

1
To prove the other side inequality assume > " ; a; + n(n‘l Z;ﬁn L1 ay ) & <1.
Then

n2

np’l(Zaij > aﬁ’)§2

1=n+1 a;<1/n,i<n

IN

nPt > b
a;<1/n

: 1 n 1 n
and, since any1 < 304 < oy Ygsim @ <20, <1

It follows that (for n > 2)

2 M(a;) = (p— 507 (S iyn(pa: — B2) + 027 Sy chm af)
< -2 <a
Since M (4t) > 4M(t) this concludes the proof. u

We now turn to a

sketch of the proof of Theorem 22 . Let {f;}; be a I-symmetric basic
sequence in ['. Then up to a universal constant ,

IStafill (S Aven(Si(an fi(k)2?)
- (2221 )‘iAVew(Eznzl(aW(i)fi(k)/)‘k)Q)p/Q)l/p

where A; = [|{f7 (k)

n
i:l”ﬁMQ/p'

By Theorem 23 and Lemma 24 the last expression is equivalent, with constants
depending on p only, to

1/p

1 - p p p p\n
COIRAICIVIC PR w1 (24)
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Put, for k=1,...,m,

Ni(t) = iMQ/pum(knp/Az).

It is easy to check that the Ny are Orlicz functions with Ny (#/?) concave and
that

{ai (R A = llen,,, = IHai Yimillew, = IHaatis Iz,

Where My(t) = Ni(|t[P). From this and (24) it is easy to conclude the proof.
u

The main result of [46] states that every unconditional basic sequence in L,
1 < p <2, is equivalent to a block basis of a symmetric basic sequence in L.
(The block basis can be chosen to be with equal coefficients and consequently
the embedded space is also complemented. This will not be used here.) Of
course if the unconditional basic sequence is finite also the containing sym-
metric sequence can be taken finite and the constants (of the symmetricity
and of the equivalence) can be controlled by the unconditional constant. Re-
call that given a sequence of n Orlicz functions M = {M;}™, the modular
space {y; is R” with the norm ||z||;; = inf{t > 0; ¥, M;(x;/t) < 1}. Using
[46] and Theorem 22 one can now easily prove the following theorem.

Theorem 25 For every constant K and for every 1 < p < 2 there is a
constant D such that given any normalized K-unconditional basic sequence
{fi}r_, in L, there is an m, m Orlicz function sequences M; = { M},
j=1,...,m, and positive constants \; and p;; such that M;(|t|*/?) are convez
and M;;(t'/%) are concave and {f;}?_, is D equivalent to the unit vector basis
of R™ with the norm

= n 1/p
lall = (32 s sy, ) (25)
7=1

Of course if M;;(t'/?) are K-equivalent to convex functions and Mj;(t*/?) are
K-equivalent to concave functions then any norm as in (25) embeds into L,
with constant depending on K only.
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3.2 Subspaces with bad gl constant

Recall first that the Gordon-Lewis constant, g{(XX), of a Banach space X is
defined to be

gl(X)=sup{n(T); T: X — {,, m(T) <1}

where 7 denotes the 1-summing norm (see [28, section 10]) and v (T : X —
Y) = inf{||A||||B]|}. Here the inf is taken over all L; spaces L and over all
decompositions ' = ABwith B: X - L, A: L —Y.

An easy but very useful theorem of Gordon and Lewis ([26] or [60, p. 260])
says that the unconditional constant of every basis of X is at least gl(X).

When 2 < p < oo there is an abundance of “bad” subspaces of £;. By “bad”
we mean here lacking good unconditional bases or even the weaker property
of small Gordon-Lewis constant. Recall that L] is L, over the measure space
consisting of n points and endowed with the uniform probability measure.

Theorem 26 There are positive constants ¢, ¢’ such that if X is any subspace
of Ly, 2 < p < oo, satisfying dimX > cn and ||x||py < 2[|2[/rn for all z € X
then gl(X) > ¢n'/?=/p,

Theorem 26 was proved by Figiel and Johnson in [21]. A somewhat weaker the-
orem, still ensuring the abundance of subspaces with large gl(X) was proved
earlier by Figiel, Kwapien and Pelczyniski [20]. We refer to [60, p. 261] for the
proof of Theorem 26 for p = oco. The case 2 < p < oo follows easily since the
Banach-Mazur distance between L and L7, is n'/p.

Of course, for some ¢ > 0, a random subspace X of L2 of dimension cn satisfies
the second assumption of Theorem 26, i.e., |||y < 2[|z||zs for all z € X (see
[47] or [24]). This is why we claim that there is an abundance of subspaces of
Ly satistying the conclusion of Theorem 26.

For 1 < p < 2, ¢gi(X) is uniformly bounded for any subspace X of L,. Nev-
ertheless, there are finite dimensional subspaces of L, which have only bad
unconditional bases (see [37]). This implies that sup{ubc(X) ; X C {3} — oo
as n — 00 but no estimates are known.
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4 Restricted invertibility and finite dimensional subspaces of L, of
maximal distance to Euclidean spaces

4.1 Restricted invertibility of operators on (}

Motivated by some problems about the structure of finite dimensional sub-
spaces of L, that will be discussed in section (4.2), in [10] Bourgain and
Tzafriri [10] proved Theorem 27 about the restricted invertibility of operators
on /. Qualitatively, this result says (or rather implies) that a bounded oper-
ator on £; which has ones on the diagonal must be invertible on a coordinate
subspace of proportional dimension (even after projecting back into the co-
ordinate subspace). In order to state Theorem 27 we introduce the following
notation. Given a subset o of {1,2,...,n}, let £7 be the span in £ of the
unit vector basis vectors {e; : i € o} and let R, be the natural coordinate
projection from £ onto £;.

Theorem 27 Let 1 < p < oo. For each € > 0 there is 6,(¢) > 0 so that if
T 4s an n by n matriz, considered as an operator on {}, with zero diagonal,
then for each € > 0 there is a subset o of {1,2,...,n} of cardinality at least
bp(€)n so that || R,T R, ||, < €||T||,. Consequently, if €||T||, < 1, then ||(R,(I+
T)Ro) o < ;-

The case p = 1, as well as the case p = oo, which follows by duality, of
Theorem 27 was proved earlier by the second author [30] and, independently,
by Bourgain [4, p.113]. Bourgain’s argument gives more than what is stated in
Theorem 27; namely, that there exists a splitting oy, 09, ...0% of {1,2,...,n}
into k = k(e) disjoint sets so that for each 1 < i < k, |Ry, TRy, ||1 < €||T|1-
Whether this strengthening of Theorem 27 remains valid for other values of
p is open. For p = 2 this matrix splitting question is particularly interesting
because it is equivalent to the Kadison-Singer problem [35] whether every pure
state on {4, has a unique extension to a pure state on B(/s). For a discussion
of the matrix splitting problem on /5 and more on the connection between the
Bourgain-Tzafriri work and the Kadison-Singer problem see [16].

For a proof (due to K. Ball) of the matrix splitting result for ¢ which gives
the estimate k(e) < 2/e see [11]. Notice that in the case of ¢}, there is no
loss of generality in treating only matrices with nonnegative entries because
as operators on (7, T and |T'| have the same norm. Berman, Halpern, Kaftal,
and Weiss [3] independently used ideas similar to those used by Ball to prove
an (4 splitting result for matrices with nonnegative entries (which of course
does not give a splitting result on ¢4 for general matrices). It is amusing and
instructive to note that the matrix splitting result for /7 formally implies the
matrix splitting result for nonnegative matrices on £ for all 1 < p < oo via
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a change of density argument of L. Weis [62]. Here is the idea. First, after a
change of density, a positive operator 7" on L,(x) (4 a probability) is nicely
bounded on L. (x). This follows from the fact that 7' maps the order interval
[—f, f] for some f > 0 into the order interval [—(1 + €)||T||f, (1 + )||T|| f],
which in turn follows via iteration and summing (as in the proof of 7) from
the inclusion T[—g, g] C [-Tg,Tg|, which is valid for all g > 0 because T
is a positive operator. Secondly, by working both with 7" and T, one can
get that, after a suitable change of density, a positive operator T on L, (1)
(u a probability) is nicely bounded on both on L;(x) and on L. (4). Now
specialize this to a positive operator on 7. The above discussion shows that
this operator can be modeled as a (positive) operator 7" on L7}(u) for some
probability on {1,2,...,n} in such a way that ||T" : L?(u) —: L?(p)]| and
T : L, (p) —: L, ()|l do not exceed (2 + €)||T : Ly(p) —: Ly (p)]]- Since we
know the splitting result for operators on (1 and (7, the result for £} follows
by interpolation.

The proof of Theorem 27 for £ uses ¢} in a more serious way. By duality, it
is enough to prove the case 1 < p < 2, so we restrict to this range of p. The
“natural” approach to prove Theorem 27 is to show that if the set ¢ is chosen
at random from among the subsets of {1,2,...,n} having cardinality én for
small enough 6 = 6(€), then with big probability |R,TR,||, < €||T||,. This is,
unfortunately, obviously wrong (consider the right shift operator). However,
regarding £ as Ly (so that the injection I, : Ly — L} has norm one), it is
true that for most such choices of o the operator W := I, | R,T R, has norm
not exceeding e5*/?"||T||, (the factor §'/P" is natural; it goes away when we
regard W as an operator from LJ into L9). For a proof, which is nice, and not
particularly difficult, see [10, Proposition 1.10]. What is remarkable is that
the p = 2 case in Theorem 27 then follows immediately by an application
of Grothendieck’s inequality via Proposition 1! Indeed, W* maps L7 into
a Hilbert space and thus has 2-summing norm at most Kg||[W||, where Kg
is Grothendieck’s constant (see [28, section 10]. Applying Proposition 1, we
conclude that W = DU for some operator U on L} of norm at most eKq||T||
and some norm one diagonal operator D : Ly — LT. The operator D is
multiplication by some function g which has norm one in Lj, hence U is

defined by the formula U f = f=fel "whence || f=Ll=l]|, < eKg||T||o]| ]|, for

all f in Lj. Since [|gll = 1, Pllg| > \/2/6] < 6/2; that is, |g(j)| > /2/6 for
at most (6m)/2 coordinates j. Throwing away any of these which are in the
set o and calling the resulting set ¢’, we have that ¢’ has cardinality at least
(6n)/2 and ||Ry/T Ryrsll2 < V2Kae||To-

That completes the outline of the proof of Theorem 27 in the Hilbertian case
p = 2, which by itself has many applications (see [10] and [11]). It is, however,
the other cases of Theorem 27 that have applications to the structure theory
of finite dimensional L, spaces. The proof we sketched for p = 2 does not
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carry over because operators from L., into L, need not be p*-summing when
1 < p < 2 (they are s-summing for all s > p*, but this is not sufficient).
Lemma 28 is used to get around this problem.

Lemma 28 Suppose 1 <r <p < 2, u, v, 7 are probabilities, X is a subspace
of L,(n), T: X — Ly(v) and U : X — L,(7) are operators so that

[Tzl[y < |[Uzll,, e X. (26)
Then mp(T*) < ~(r,p)||\U||, where v(r,p) is the L.-norm of a p-stable random
variable which 1s normalized in the Li-norm.

In view of Corollary 6, to prove Lemma 28 it suffices to verify the estimate
M®)(T) < ~(r,p)||U||, which obviously follows from the the following inequal-
ity, valid for all finite sets of vectors z; in X:

12 Ty Pl < A p)I 21U )7 (27)

To prove (27), write (Z |Tz;|P)'/P = B E fiTz;| where the f; are independent

p-stable random Varlables with E|f;| = 1 and interchange the expectation and
the L; norm to see that this is estimated from above by

EIZfU% )Y (28)

But (E| Y f;Uz;|")'/" = ~(r, p)( |Uz;[P)"/?, so (28) is dominated by the right
side of (27).

The main tool for proving Theorem 27 is:

Proposition 29 For each 0 < ¢ < 1072 there is p = p(e) > 0 so that if
1 <r<2andS is an operator on Ly (n > n(e,r)) with ||S||2 < p, then there
is a subset o of {1,2,...,n} of cardinality at least en so that for all x,

[1BeSlly < Ce(flzlle + [|S[l.), (29)

where C 1s a numerical constant.

Here we are using as usual the L) normalization. The important thing is that

the factor Ce in (29) is a gain over the trivial factor /™",

The p < 2 case of Theorem 27 follows easily from Lemma 28, Proposition 29,
and the p = 2 case of Theorem 27. Indeed, Corollary 8 says that to prove
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Theorem 27 it is enough to consider norm one operators on L; which have
norm at most 2.J, as operators on L. The p = 2 case in Theorem 27 then
says that it is enough to consider norm one operators on L which have norm
at most p = p(e) as operators on Ly. Now if S is an operator on L with
IS]|, = 1 and [|S||2 < p, apply Proposition 29 to get 0. Define ' = R,SR,,
considered as an operator from L7 into L7 (so that both the domain and
range are L, spaces of a probability), and set U = 2C(R, @ SR,,), considered

2
n 2n 2 Tn n _ l+4p
as an operator from Ly into L" = L} &, L. [hen for, say, r = =%, we

have from Proposition 29 that for all z in R*, ||Tz|[zs < [|[Uz/zzn. Lemma 28
then gives that m,-(T*) < v(r,p)||U||, < 4C~(r,p). Changing back to the L
normalization (that is, regarding R, SR, as an operator on L}), we have that
Tp-(RyS*Ry) < €/P4Cy(r, p). The completion of the proof of Theorem 27 is
now just as in the p = 2 case.

For a proof of Proposition 29 see [11, Section 5]. Here is the idea: By the
same kind of reasoning that works in the first part of the proof of Theorem
27, most choices of a subset o of {1,...,n} of cardinality en make it true that
||R,Sz||; < Ce¢||Sx||, for all vectors 2z whose support has cardinality at most
7n (an estimate for 7 = 7(¢€) comes out of the proof). For a general vector z,
apply this to 142, where A is the set of the 7n largest coordinates of |x|, and
use the smallness of ||S]|» to take care of v — 14z.

Corollary 30 gives a method, to be exploited in the next section, for building
complemented copies of £} in subspaces of L,.

Corollary 30 Let 1 < p < ocoand 1 > € > 0. If T is a norm one oper-
ator from (3 into L,(p) and there are disjoint pi-measurable sets A; so that
114, Teil|, > € for each 1 < i < n, then there is an operator S from L,(u) into
Cy with ||S[| < 2/e and a subset o of {1,...,n} of cardinality at least 6,(e/2)
so that STy is the identity of ;. Consequently, TR, S is a projection of L,(1)
onto span{Te;}icy.

Here the function 6,(-) is taken from Theorem 27. For the proof of Corollary
30, take norm one vectors h;, supported on A;, so that (T'e;, h;) = ||Te;l,-

Define S from L, (1) to £y by Sf= i 114, Tesll, (£, hi)ei. Then ||S]| < 1/e
=1

and ST has ones on the diagonal when represented as a matrix with respect
to the unit vector basis for /. Therefore, by Theorem 27 there is a subset o of

{1,...,n} of cardinality at least 6,(e/2) so that R,STR, is a 1/2-perturbation
of the identity operator on £7. Set S = (R,STR,) 'R,S.
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4.2 Subspaces of L, with mazimal distance to Hilbert spaces

In this section we give some applications to the isomorphic structure theory
of finite dimensional subspaces of L,, 1 < p < o0, of the restricted invert-
ibility theorem from the previous section. First, however, we mention what
is known in the isometric and almost isometric theories. It is classical (see
[1]) that a subspace of L,(x) which is isometric to an L,(r) space must be
1-complemented in L,(x). This was extended in [19] (for p = 1) and [53] (for
1 < p < o0) to the almost isometric setting:

Theorem 31 For each 1 < p < oo there is 6, > 0 so that if 0 < e <p and X
is a subspace of L,(p) which is 1 + e-isomorphic to an L,(v) space, then X is
C

»(€)-complemented in L,(p). Moreover, Cy(€) — 1 as e — 0.

Although Theorem 31 is stated for general subspaces X, it reduces easily to
the case where X is finite dimensional, which is the case treated in [19] and
[53]. A simpler proof of the p > 1 case is given in [11, Section 3].

Conversely, it is classical that a 1-complemented subspace of L, (1) is isometric
to a L,(v) space (see [40]), but the almost isometric version of this result is
open even for finite dimensional subspaces. (Here a result for finite dimensional
spaces does not seem to imply formally a result for infinite dimensional spaces.)

It was mentioned already in section 1.2 that an n-dimensional subspace of
L,(p) has Banach-Mazur distance at most nl'/?=/2 to (2. The converse to
this is also true for 1 < p < 2; see [10, Section 4] (as noted in [10], the p =1
case is essentially done in [21]). For 2 < p < oo it is open whether there is an
n-dimensional subspace of L, (), not isometric to £, which has Banach-Mazur
distance n!'/P=1/2l to ¢3.

We turn now to the isomorphic theory. Here and in the sequel we shall speak
qualitatively about finite dimensional spaces, similar to the way one speaks
about infinite dimensional spaces. In order for our statements to have content,
statements should be quantified so as not to depend on dimension (but there
may be dependence on other parameters). It takes only one example to illus-
trate why this convention is followed by Banach space local theorists. One of
the main results we shall discuss is the following:

Theorem 32 If X is an n dimensional complemented subspace of L,(p1), 1 <
p < 00, whose distance to U is of maximal order, then X contains a subspaceY

of proportional dimension (say, k) which is isomorphic to f’; and complemented
in Ly(p).

The meaning of this statement is that there are functions f(p,6,C) > 0 and
g(p,6,C) < oo (defined for 1 < p < 00, § > 0, and C' < 00) so that if X is
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an n-dimensional C-complemented subspace of L,(u) for some n and p, and
d(X, 03) > énlV/P=1/2l then for some k > f(p, 6, C)n there is a k-dimensional
subspace Y of X with d(Y, Z’;) < g(p,6,C) and Y is g(p, 6, C')-complemented
in L,(u).

Theorem 32 is also true for p =1 ([30]), but in a stronger form — the comple-
mentation assumption is not needed. Given the method of [30], the main step
in the proof of Theorem 32 which we sketch below is Theorem 27.

For p > 2 the complementation assumption in Theorem 32 is essential; this
follows easily from Theorem 26. Whether the complementation assumption is
needed when 1 < p < 2 is open.

A criterion for building a complemented copy of /7 in a subspace X of L, (1)
was given in Corollary 30. The idea for getting an operator T taking values
in X which satisfies the hypothesis of the corollary is first to find vectors f;,
1 <4 < n, in the unit sphere of X for which the norm of the square function
Sa({fikizy) (where S, ({fi}iLy) = (£ [fil)V/ for v < 0o and Sw({fi}iy) =
max |fi]) is nearly extremal; that is, the norm of Sy({f;}) is proportional
to n'/?. Once one has such a sequence, one uses an extrapolation argument.
Indeed, for 1 < p < 2, we shall outline an argument which deals with a
somewhat more general situation. Suppose f;, 1 < i < n, are in L,(p); and

So({fitiey) = ontP2 12 (S, [1filP)! 2. Set 0 = p/2 and f; = fi/||f]l. Then,
using the factorization S3({fi},) = S, [ PIAI*?1£:* 7,

St (2 (LAY < 1S A
< 1S (Al &P )? So({ £} o)
<SRN PP ) 1Sso (LIS
= (T A2 (1S (LA

Lettlng Aj = [|f]| = Soo({fl}:lzl)] and setting Aj = Aj ~ Ui<in; we get

disjoint sets A; so that 6%/G-Ppl/p < | 3 La, fill,- Thus ||14,fi|l, is larger
i=1

than 6%/(=P) /2 for at least (6%*/(~P) /2)n values of i.

Next suppose that 2 < p < oo and that f;, 1 < i < n, are norm one vectors in
L, (p) for which [|Sy({fi},)|| < Cn'/P. Set § = 2/p. Then

n'? = [1S,({fi) | < [1S:({fi}e) S ({fidi)
< [1S({ DS ({fHE)IT < COnPlSu({ i) 1.
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Thus there are disjoint sets A; so that |14, f;||, is larger than 1/(202%/®=2))
L\ L
for at least <2C%> n values of 1.

To derive Theorem 32 from Corollary 30 we need the sequence {f;} for which
|14, fi]lp is bounded away from zero also to be dominated by the £¥ basis. This
can be accomplished in the following way.

Let 2 < p < oo and let P : L,(u) — L,(1) be the projection with range X.
Assume that, for some k proportional to n, {f;}¥_, is a sequence in the ball
of the range of P* in L,-(u) satisfying ||14, fi||, > 6 > 0 for some disjoint sets
{A;}e_ . Put g; = P(|f;|” ‘sgn(fi)14.). Note that {g;}*_, is dominated by the
(% basis and in particular the norm of Sy({g;}) is dominated by k'/? and that
the norms of the g;-s are bounded away from zero since ||g;|| > [ g:fi > OF.
It follows that for a proportion of the g¢;-s there are disjoint B;-s for which
lgi15,|| are bounded away from zero. Now Corollary 30 applies to produce a
subspace of X of proportional dimension isomorphic to /¢, of its dimension and
complemented in L,(u). The case 1 < p < 2 follows by duality. We remark
that this part of the argument, which is what we had in mind when we wrote
[30], is considerably simpler than the one presented in [10].

Finally, we briefly indicate how to find in any n-dimensional subspace X of
L,(11) of maximal order distance from ¢4 a sequence {f;}i, with ||So({f:})||
of order n'/P=12(" || £i||>)Y/2. Assume for example that 1 < p < 2. By a
theorem of Kwapien, [60, Th. 13.15] the type 2 constant of X is of order
n'/P=1/2 and by a theorem of Tomczak [60, Th. 25.6], this type 2 constant
is attained, up to a universal constant, on n vectors; i.e., there are vectors

{fi}izy in X satisfying [|So({f:})I] = on'/P=12(Ziy 1 fill*)'2.

5 Complemented subspaces
5.1 Fine embeddings of complemented subspaces of Ly, in £}

Let X be a k-dimensional subspace of L,, 1 < p < oo, and assume there is a
projection of norm K from L, onto X. Let € > 0 and denote by P,(X, K, ¢)
the smallest n such that X (1 + ¢)-embeds in /; as a (1 + ¢) K-complemented
subspace; i.e., the smallest n such that there is a k-dimensional subspace Y
of €2, an isomorphism 7' : X — Y with ||T[[|T"]] < 1+ ¢, and a projection
of norm at most (1 + ¢)K from ¢, onto Y. Also, denote by F,(k, K, ¢€) the
maximal P,(X, K, €) when X ranges over all k-dimensional subspaces of L,,.
If 1 <p < oo, looking at the case of X = ¢§ shows that, at least for some K
depending on p, P,(k, K,€) > c(p) max{k?/2 kP"/?} where p* = p/(p — 1). Tt
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turns out that, except for logarithmic terms, one can achieve this bound.
Theorem 33 (/8]) P,(k, K, ¢) < C(p, K, ¢) max{kP/2, k" }(log k)“»)

For p =1 one gets a better result

Theorem 34 Pi(k,K,¢) < C(K,€)klogk

The proofs follow the method of Section 2.1. Given a k-dimensional X C /7,
1 < p < 00, and a projection P on (' with range X, we let Y = P*(]} and
following the scheme of Section 2.1 we find a subset Q@ C {1,2,...,m} of the
right cardinality such that

mlQ Y |l = Y x| <6, zeX, |lafl,=1 (30)

1€Q2 =1

m|Q ™Y |yl =S s
=1

1€Q

m|Q|_1 inyi - Z%’yi
=1

1€Q2

p*

<e, yev, |y

=1 (31)

<€7 .'L'EX,yEY, ||"E||P:||y

=1 (32)

For p = 1, (31) causes of course a problem. Fortunately enough, in this case
the relevant inequality (stating that the restriction to €2 is a good isomorphism
when restricted to Y C ¢2) follows immediately from (30), (32) and the fact
that a restriction to a subset is a norm one operator on (7. Finally, it is easy
to see that (30), (31) and (32) imply the desired result.

5.2 Finite decomposition and uniqueness of complements

The class of finite dimensional well complemented subspaces of L, is a rich
class, at least in the range 1 < p # 2 < oo. It follows from the previous section
that the same is true for the well complemented k-dimensional subspaces of
(, as long as k is smaller than a specific power of n. The situation for larger
k is not known. In particular, it is not known whether a well complemented
subspace of £} of proportional dimension is well isomorphic to a E’; space. It
is also not known whether (7 is “primary”; i.e., whether £, = X @Y implies
that either X or Y is well isomorphic to some E’; (here we mean of course that
the isomorphism constant should depend on the norm of the projection on X
with kernel Y (and p) only). It is true however that if ¥ is “small” enough
then X is well isomorphic to an E’; space. There are two known instances of
this statement with two different notions of smallness. These were proved in
[33] following somewhat weaker results in [9] for the first theorem and [8] for
the second.
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Theorem 35 Assume 1 <p <oo, (y =X +Y,d(Y, %) < K, and there is a
projection P from (7 onto X with kernel Y and ||P|| < L. Then d(X, )~ *) <
C=C(K,L,p).

Theorem 36 Let 1 < p < oo and put p = max{p,p*}. Assume (; = X +Y
with dimY = k < n*?/(logn)°®) and that there is a projection P from (7
onto X with kernel Y and ||P|| < L. Then d(X, 02 %) < C = C(L,p).

The proofs relay on a simple but powerful “decomposition method” applied
to a “path” of complemented subspaces of L, together with a proposition
concerning “uniqueness of complements”.

We begin with the decomposition method from [33], which improved on the
original finite dimensional decomposition method introduced in [2].

Lemma 37 Let 1 < p < oo. Let Z;, i = 1,...,m, be Banach spaces and,
for i =1,...,m, let Y; be a K-complemented subspace of Z;. Assume also
dY;,Yioy) < L,i=1,...,m. Then Yy ® Xi", ®,Z; is CK L-isomorphic to
Yo ® X% ©pZi. In particular, if Z; = 0, i=1,...,m, and s = 321" s; then
Yo @ 0 is C K L-isomorphic to Yy, ® (5.

The proof is very simple. Let X; be the complement of Y; in Z;, i =1,...,m.
Then,

Yo Y Yy Yo
Yb N Z 691’2’ ~ @P 6917 69p 6917 69p 6917 o 6917 @p . (33)
=1
0 X X, X

We now shift the top row to the right

YE) )/1 Ym—l Ym
R B | Do | B[O Dp | By | D | By (34)
X1 Xo X 0
to get
Y0OY ®ZixmYn®)Y ®pZ:. (35)

=1 i=1

This picturesque proof can easily be justified.
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To prove Theorem 35 we assume that p > 2 and k£ = 2™. We build a
path Yy, ..., Y, of spaces connecting Yy = £§ with Y,, = ¢} with d(Y;,Yi_;) <
2. This can be done in several ways but, since we also want Y; to be well
isomorphic to a well complemented subspace of £;7 with s; as small as possible,

we take Y; to be the £, sum of 2 copies of £2™ .

Given any 6 > 0, (2" embeds as a complemented subspace, with constants
depending only on p and 6, into £ with r; = [62(m=P/2] The fact that
this holds for some § < oo is exposed for example in [24]. To get it for all
6 > 0 represent (4" as the ¢, sum of u copies of ¢§ (introducing of course a
constant depending on u and p), embed each summand complementably in an
appropriate ¢, space, and take the ¢, sum of these u spaces as the containing
¢, space.

It follows that Y; well embeds complementably into ¢35 for s; = [§2/2(m=9r/2],
Lemma 37 implies then that, for s = 37, s;, 5 @ €5 ~ £51F.

The assumption that /% is well complemented in ¢, implies that n = vkP/? for
some 7y bounded away from zero (this is a result of [2]). It is now easy to see
that, with the right choice of §, s =n — k and /% @ EZ"“ ~ L.

It remains to show that if also /5 ® X ~ (7 then X ~ (2= This follows
from the following simple “uniqueness of complement” result of [9] in the form
proved in [33]. In the statement “+” denotes a direct sum of subspaces and the
isomorphism constants implicit in the notation “ ~ ” of the conclusions depend

PR’

only on the constants for the “ ~” and the projections in the hypotheses.

Proposition 38 Assume Z =Y + X = H+ G with H C X, and assume
HxY®eW. Then X ~GpW.

In particular, if fori =1,2, Z =Y, + X; = H;+ G; withY = Y, G ~ G;,
H~H,C X, and H=Y @& W. Then X; ~ X,.

To end the proof of Theorem 35 we only have to show that X, the comple-
ment of Y ~ (5 in (;, contains a subspace well isomorphic to (% and well
complemented. Since n is of order at least kP/2, the general theory of Eu-
clidean sections as exposed in [24] implies that, for some 6 > 0, X contains
a subspace U; well isomorphic to ¢5*. U; is automatically well complemented
(see [44] or [18, p. 46]). Now find another copy of £5* in the complement of
U; in X and iterate.

The proof of Proposition 38 ([33]) is very easy: Put F = X N G. Then
Z =Y +X =Y+ F+ H and consequently G~ Y @ F. Thus X = F+ H ~
FeYoWx=GaoW. ]
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The proof of Theorem 36 follows the same outline as that of the proof
of Theorem 35. Given a k-dimensional well complemented subspace Y of L,,
2 < p < oo we find a path Yy, Y7, ..., Y, of well complemented subspaces of
L, with d(Y;,Y; 1) < 4, Y,, well isomorphic to £5, and m = [log, k|. We then
use Theorem 33 to embed each of Y; in a well complemented fashion in a low
dimensional ¢, space and continue in a way similar to the proof of Theorem
35.

To build the path of spaces Y;, apply first the change of density of Theorem
2 and then that of Theorem 7 to get that without loss of generality ||y||, <
2n1/271/7||y||, for each y € Y; and the projection P from L, onto Yj is also
well bounded with respect to the Ly norm. Put

Vi ={(9,2%); y €Yo} C L, ®, Ly, i=1,2,...,m.

Then clearly d(Y;,Y;i_1) < 4,i=1,2,...,m,Y,, is well isomorphic to /5 and it
only remains to show that each of Y; is well isomorphic to a well complemented
subspace of L.

Since P is bounded in both L, and L., Y; is well complemented in Z; =
{(2,2'2); y € L,} C L, ®, Ly. Finally, by a theorem of Rosenthal [52] (see
also [1]) Z; is well isomorphic to a well complemented subspace of L,,. n
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