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Abstract. Bourgain’s discretization theorem asserts that there exists a universal constant
C ∈ (0,∞) with the following property. Let X,Y be Banach spaces with dimX = n. Fix

D ∈ (1,∞) and set δ = e−nCn

. Assume that N is a δ-net in the unit ball of X and that
N admits a bi-Lipschitz embedding into Y with distortion at most D. Then the entire
space X admits a bi-Lipschitz embedding into Y with distortion at most CD. This mostly
expository article is devoted to a detailed presentation of a proof of Bourgain’s theorem.

We also obtain an improvement of Bourgain’s theorem in the important case when Y = Lp

for some p ∈ [1,∞): in this case it suffices to take δ = C−1n−5/2 for the same conclu-
sion to hold true. The case p = 1 of this improved discretization result has the following
consequence. For arbitrarily large n ∈ N there exists a family Y of n-point subsets of
{1, . . . , n}2 ⊆ R2 such that if we write |Y | = N then any L1 embedding of Y , equipped
with the Earthmover metric (a.k.a. transportation cost metric or minimumum weight match-
ing metric) incurs distortion at least a constant multiple of

√
log logN ; the previously best

known lower bound for this problem was a constant multiple of
√

log log logN .

1. Introduction

If (X, dX) and (Y, dY ) are metric spaces then the (bi-Lipschitz) distortion of X in Y ,
denoted cY (X), is the infimum over those D ∈ [1,∞] such that there exists f : X → Y and
s ∈ (0,∞) satisfying sdX(x, y) 6 dY (f(x), f(y)) 6 DsdX(x, y) for all x, y ∈ X. Assume
now that X, Y are Banach spaces, with unit balls BX , BY , respectively. Assume furthermore
that X is finite dimensional. It then follows from general principles that for every ε ∈ (0, 1)
there exists δ ∈ (0, 1) such that for every δ-net Nδ in BX (recall that a δ-net is a maximal
δ-separated subset of BX) we have cY (Nδ) > (1 − ε)cY (X). Indeed, set D = cY (X) and
assume that for all k ∈ N there is a 1/k-net N1/k of BX and fk : N1/k → Y satisfying
‖x − y‖X 6 ‖fk(x) − fk(y)‖Y 6 (1 − ε)D‖x − y‖X for all x, y ∈ N1/k. For each x ∈ BX

fix some zk(x) ∈ N1/k satisfying ‖x − zk(x)‖X 6 1/k. Let U be a free ultrafilter on
N. Consider the ultrapower YU , i.e., the space of equivalence classes of bounded Y -valued
sequences modulo the equivalence relation (xk)

∞
k=1 ∼ (yk)

∞
k=1 ⇐⇒ limk→U ‖xk − yk‖Y = 0,

equipped with the norm ‖(xk)∞k=1/ ∼ ‖YU
= limk→U ‖xk‖Y . Define fU : BX → YU by

fU (x) = (fk(zk(x))∞k=1)/ ∼. Then ‖x − y‖X 6 ‖fU (x) − fU (y)‖YU
6 (1 − ε)D‖x − y‖X

for all x, y ∈ X. By a (nontrivial) w∗-Gâteaux differentiability argument due to Heinrich
and Mankiewicz [14] it now follows that there exists a linear mapping T1 : X → (YU )∗∗

satisfying ‖x‖X 6 ‖T1x‖(YU )∗∗ 6 (1 − ε/2)D‖x‖X for all x ∈ X. Since X, and hence
also T1X, is finite dimensional, the Principle of Local Reflexivity [19] says there exists a
linear mapping T2 : T1X → YU satisfying ‖y‖(YU )∗∗ 6 ‖T2y‖YU

6 (1 + ε/5)‖y‖(YU )∗∗ for
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all y ∈ T1X. By general properties of ultrapowers (see [13]) there exists a linear mapping
T3 : T2T1X → Y satisfying ‖y‖YU

6 ‖T3y‖Y 6 (1 + ε/5)‖y‖YU
for all y ∈ T2T1X. By

considering T3T2T1 : X → Y we have D = cY (X) 6 (1− ε/2)(1 + ε/5)2D, a contradiction.
The argument sketched above is due to Heinrich and Mankiewicz [14]. An earlier and

different argument establishing the existence of δ is due to important work of Ribe [22]. See
the book [5] for a detailed exposition of both arguments. These proofs do not give a concrete
estimate on δ. The first purpose of the present article, which is mainly expository, is to
present in detail a different approach due to Bourgain [7] which does yield an estimate on δ.
Before stating Bourgain’s theorem, it will be convenient to introduce the following quantity.

Definition 1.1 (Discretization modulus). For ε ∈ (0, 1) let δX↪→Y (ε) be the supremum over
those δ ∈ (0, 1) such that every δ-net Nδ in BX satisfies cY (Nδ) > (1− ε)cY (X).

Theorem 1.1 (Bourgain’s discretization theorem). There exists C ∈ (0,∞) such that for
every two Banach spaces X, Y with dimX = n < ∞ and dimY = ∞, and every ε ∈ (0, 1),
we have

δX↪→Y (ε) > e−(n/ε)Cn . (1)

Theorem 1.1 was proved by Bourgain in [7] for some fixed ε0 ∈ (0, 1). The above statement
requires small technical modifications of Bourgain’s argument, but these are minor and all the
conceptual ideas presented in the proof of Theorem 1.1 below are due to Bourgain. Readers
might notice that our presentation of the proof of Theorem 1.1 seems somewhat different
from [7], but this impression is superficial; the exposition below is merely a restructuring of
Bourgain’s argument.

We note that it is possible to refine the estimate (1) so as to depend on the distortion
cY (X). Specifically, we have the bound

δX↪→Y (ε) > e−(cY (X)/ε)Cn . (2)

The estimate (2) implies (1) since due to Dvoretzky’s theorem [12] cY (`n2 ) = 1, and therefore
cY (X) 6

√
n by John’s theorem [16]. If we do not assume that dimY = ∞ then we

necessarily have dimY > n since otherwise cY (X) = ∞, making (2) hold vacuously. Thus,
by John’s theorem once more, cY (X) 6 n, and again we see that (2) implies (1). The
proof below will establish (2), and not only the slightly weaker statement (1). We remark
that Bourgain’s discretization theorem is often quoted with the conclusion that if δ is at
most as large as the right hand side of (2) and Nδ is a δ-net of BX then Y admits a linear
embedding into Y whose distortion is at most cY (Nδ)/(1 − ε). The Heinrich-Mankiewicz
argument described above shows that for finite dimensional spaces X, a bound on cY (X)
immediately implies the same bound when the bi-Lipschitz embedding is required to be
linear. For this reason we ignore the distinction between linear and nonlinear bi-Lipschitz
embeddings, noting also that for certain applications (e.g., in computer science), one does
not need to know that embeddings are linear.

We do not know how close is the estimate (1) to being asymptotically optimal, though we
conjecture that it can be improved. The issue of finding examples showing that δX↪→Y (ε) must
be small has not been sufficiently investigated in the literature. The known upper bounds
on δX↪→Y (ε) are very far from (1). For example, the metric space (`n1 ,

√
‖x− y‖1) embeds

isometrically into L2 (see [11]). It follows that any δ-net in B`n1
embeds into L2 with distortion

at most
√

2/δ. Contrasting this with cL2(`
n
1 ) =

√
n shows that δ`n1 ↪→L2(ε) 6 2/ ((1− ε)2n).
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It turns out that a method that was introduced by Johnson, Maurey and Schechtman [17]
(for a different purpose) can be used to obtain improved bounds on δX↪→Y (ε) for certain
Banach spaces Y , including all Lp spaces, p ∈ [1,∞); the second purpose of this article is to
present this result. To state our result recall that if (Ω, ν) is a measure space and (Z, ‖ · ‖X)
is a Banach space then for p ∈ [1,∞] the vector valued Lp space Lp(ν, Z) is the space of all
equivalence classes of measurable functions f : Ω→ Z such that ‖f‖pLp(ν,Z) =

∫
Ω
‖f‖pZdν <∞

(and ‖f‖L∞(ν,Z) = esssupω∈Ω‖f(ω)‖Y ).
Theorem 1.2. There exists a universal constant κ ∈ (0,∞) with the following property.
Assume that δ, ε ∈ (0, 1) and D ∈ [1,∞) satisfy δ 6 κε2/(n2D). Let X, Y be Banach spaces
with dimX = n < ∞, and let Nδ be a δ-net in BX . Assume that cY (Nδ) 6 D. Then there
exists a separable probability space (Ω, ν), a finite dimensional linear subspace Z ⊆ Y , and
a linear operator T : X → L∞(ν, Z) satisfying

∀x ∈ X, 1− ε
D
‖x‖X 6 ‖Tx‖L1(ν,Z) 6 ‖Tx‖L∞(ν,Z) 6 (1 + ε)‖x‖X .

Theorem 1.2 is proved in Section 5; as we mentioned above, its proof builds heavily on ideas
from [17]. Because ν is a probability measure, for all p ∈ [1,∞] and all h ∈ L∞(ν, Y ) we have
‖h‖L1(ν,Y ) 6 ‖h‖Lp(ν,Y ) 6 ‖h‖L∞(ν,Y ). Therefore, the following statement is a consequence of
Theorem 1.2.

δ 6
κε2

n2cY (Nδ)
=⇒ ∀p ∈ [1,∞), cY (Nδ) >

1− ε
1 + ε

cLp(ν,Y )(X). (3)

We explained above that if Y is infinite dimensional then cY (Nδ) 6
√
n. It therefore follows

from (3) that if Lp(ν, Y ) admits an isometric embedding into Y , as is the case when Y = Lp,
then δX↪→Y (ε) > κε2/(n5/2). This is recorded for future reference as the following corollary.

Corollary 1.3. There exists a universal constant κ ∈ (0,∞) such that for every p ∈ [1,∞)
and ε ∈ (0, 1), for every n-dimensional Banach space X we have

δX↪→Lp(ε) >
κε2

n5/2
. (4)

There is a direct application of the case p = 1 of Corollary 1.3 to the minimum cost
matching metric on R2. Given n ∈ N, consider the following metric τ on the set of all
n-point subsets of R2, known as the minimum cost matching metric.

τ(A,B) = min

{∑
a∈A

‖a− f(a)‖2 : f : A→ B is a bijection

}
.

Corollary 1.4. There exists a universal constant c ∈ (0,∞) with the following property.
For arbitrarily large n ∈ N there exists a family Y of n-point subsets of {1, . . . , n}2 ⊆ R2

such that if we write |Y | = N then cL1(Y , τ) > c
√

log logN.

The previously best known lower bound in the context of Corollary 1.4, due to [20], was
cL1(Y , τ) > c

√
log log logN . We refer to [20] for an explanation of the relevance of such

problems to theoretical computer science. The deduction of Corollary 1.4 from Corollary 1.3
follows mutatis mutandis from the argument in [20, Sec. 3.1], the only difference being the
use of the estimate (4) when p = 1 rather than the estimate (1) when Y = L1.
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For an infinite dimensional Banach space Y define

δn(Y )
def
= inf {δX↪→Y (1/2) : X is an n dimensional Banach space} ,

and set

δn
def
= inf {δn(Y ) : Y is an infinite dimensional Banach space} .

Theorem 1.1 raises natural geometric questions. Specifically, what is the asymptotic behavior
of δn as n → ∞? The difficulty of this question does not necessarily arise from the need
to consider all, potentially “exotic”, Banach spaces Y . In fact, the above discussion shows
that Ω(1/n5/2) 6 δn(L2) 6 O(1/n), so we ask explicitly what is the asymptotic behavior
of δn(L2) as n → ∞? For applications to computer science (see e.g. [20]) it is especially
important to bound δn(L1), so we also single out the problem of evaluating the asymptotic
behavior of δn(L1) as n→∞. Recently, two alternative proofs of Theorem 1.1 that work for
certain special classes of spaces Y were obtained in [18, 15], using different techniques than
those presented here (one based on a quantitative differentiation theorem, and the other on
vector-valued Littlewood-Paley theory). These new proofs yield, however, the same bound
as (1). The proof of Theorem 1.1 presented below is the only known proof of Theorem 1.1
that works in full generality.

Remark 1.2. The questions presented above are part of a more general discretization prob-
lem in embedding theory. One often needs to prove nonembeddability results for finite spaces,
where the distortion is related to their cardinality. In many cases it is, however, easier to
prove nonembeddability results for infinite spaces, using techniques that are available for
continuous objects. It is natural to then prove a discretization theorem, i.e., a statement
that transfers a nonembeddability theorem from a continuous object to its finite nets, with
control on their cardinality. This general scheme was used several times in the literature,
especially in connection to applications of embedding theory to computer science; see for
example [20], where Bourgain’s discretization theorem plays an explicit role, and also, in
a different context, [9]. The latter example deals with the Heisenberg group rather than
Banach spaces, the discretization in question being of an infinitary nonembeddability theo-
rem of Cheeger and Kleiner [8]. It would be of interest to study the analogue of Bourgain’s
discretization theorem in the context of Carnot groups. This can be viewed as asking for a
quantitative version of a classical theorem of Pansu [21]. In the special case of embeddings
of the Heisenberg group into Hilbert space, a different approach was used in [2] to obtain a
sharp result of this type.

Remark 1.3. A Banach space Z is said to be finitely representable in a Banach space Y if
there exists K ∈ [1,∞) such that for every finite dimensional subspace X ⊆ Z there exists an
injective linear operator T : X → Y satisfying ‖T‖·‖T−1‖ 6 K. A theorem of Ribe [22] states
that if Z and Y are uniformly homeomorphic, i.e., there exists a homeomorphism f : Z → Y
such that both f and f−1 are uniformly continuous, then Z is finitely representable in Y
and vice versa. This rigidity phenomenon suggests that isomorphic invariants of Banach
spaces which are defined using statements about finitely many vectors are preserved under
uniform homemorphisms, and as such one might hope to reformulate them in a way that is
explicitly nonlinear, i.e., while only making use of the metric structure and without making
any reference to the linear structure. Once this (usually nontrivial) task is achieved, one
can hope to transfer some of the linear theory of Banach spaces to the context of general
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metric spaces. This so called “Ribe program” was put forth by Bourgain in [6]; a research
program that attracted the work of many mathematicians in the past 25 years, and has had
far reaching consequences in areas such as metric geometry, theoretical computer science, and
group theory. The argument that we presented for the positivity of δX↪→Y (ε) implies Ribe’s
rigidity theorem. Indeed, it is a classical observation [10] that if f : Z → Y is a uniform
homeomorphism then it is bi-Lipschitz for large distances, i.e., for every d ∈ (0,∞) there
exists L ∈ (0,∞) such that L−1‖x− y‖Z 6 ‖f(x)− f(y)‖Y 6 L‖x− y‖Z whenever x, y ∈ Z
satisfy ‖x − y‖Z > d. Consequently, if X ⊆ Z is a finite dimensional subspace then d-nets
in rBX embed into Y with distortion at most L2 for every r > d. By rescaling, the same
assertion holds for δ-nets in BX for every δ ∈ (0, 1). Hence X admits a linear embedding
into Y with distortion is at most 2L2. For this reason, in [7] Bourgain calls his discretization
theorem a quantitative version of Ribe’s finite representability theorem. Sufficiently good
improved lower bounds on δX↪→Y (ε) are expected to have impact on the Ribe program.

2. The strategy of the proof of Theorem 1.1

From now on (X, ‖ · ‖X) will be a fixed n-dimensional normed space (n > 1), with unit
ball BX = {x ∈ X : ‖x‖X 6 1} and unit sphere SX = {x ∈ X : ‖x‖X = 1}. We will
identify X with Rn, and by John’s theorem [16] we will assume without loss of generality
that the standard Euclidean norm ‖ · ‖2 on Rn satisfies

∀ x ∈ X, 1√
n
‖x‖2 6 ‖x‖X 6 ‖x‖2. (5)

Fix ε, δ ∈ (0, 1/8) and let Nδ be a fixed δ-net in BX . We also fix D ∈ (1,∞), a Banach
space (Y, ‖ · ‖Y ), and a mapping f : Nδ → Y satisfying

∀ x, y ∈ Nδ,
1

D
‖x− y‖X 6 ‖f(x)− f(y)‖Y 6 ‖x− y‖X . (6)

By translating f , we assume without loss of generality that f(Nδ) ⊆ 2BY . Our goal will

be to show that provided δ is small enough, namely δ 6 e−(D/ε)Cn , there exists an injective
linear operator T : X → Y satisfying ‖T‖ · ‖T−1‖ 6 (1 + 12ε)D.

The first step is to construct a mapping F : Rn → Y that is a Lipschitz almost-extension
of f , i.e., it is Lipschitz and on Nδ it takes values that are close to the corresponding values of
f . The statement below is a refinement of a result of Bourgain [7]. The proof of Bourgain’s
almost extension theorem has been significantly simplified by Begun [4], and our proof of
Lemma 2.1 below follows Begun’s argument; see Section 3.

Lemma 2.1. If δ < ε
4n

then there exists a mapping F : Rn → Y that is differentiable almost

everywhere on Rn, is differentiable everywhere on 1
2
BX , and has the following properties.

• F is supported on 3BX .
• ‖F (x)− F (y)‖Y 6 6‖x− y‖X for all x, y ∈ Rn.
• ‖F (x)− F (y)‖Y 6 (1 + ε) ‖x− y‖X for all x, y ∈ 1

2
BX .

• ‖F (x)− f(x)‖Y 6 9nδ
ε

for all x ∈ Nδ.
In what follows, the volume of a Lebesgue measurable set A ⊆ Rn will be denoted vol(A).

For t ∈ (0,∞) the Poisson kernel Pt : Rn → [0,∞) is given by

Pt(x) =
cnt

(t2 + ‖x‖2
2)

n+1
2

,
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where cn is the normalization factor ensuring that
∫
Rn Pt(x)dx = 1. Thus cn = Γ

(
n+1

2

)
/π

n+1
2 ,

as computed for example in [23, Sec. X.3]. We will use repeatedly the standard semigroup
property Pt ∗ Ps = Pt+s, where as usual f ∗ g(x) =

∫
Rn f(y)g(y − x)dx for f, g ∈ L1(Rn).

Assume from now on that δ < ε
4n

and fix a mapping F : Rn → Y satisfying the conclusion
of Lemma 2.1. We will consider the evolutes of F under the Poisson semigroup, i.e., the
functions Pt∗F : Rn → Y given by Pt∗F (x) =

∫
Rn Pt(y−x)F (y)dy. Our goal is to show that

there exists t0 ∈ (0,∞) and x ∈ Rn such that the derivative T = (Pt0 ∗F )′(x) is injective and
satisfies ‖T‖ · ‖T−1‖ 6 (1 + 10ε)D. Intuitively, one might expect this to happen for every
small enough t, since in this case Pt ∗ F is close to F , and F itself is close to a bi-Lipschitz
map when restricted to the δ-net Nδ. In reality, proving the existence of t0 requires work;
the existence of t0 will be proved by contradiction, i.e., we will show that it cannot not exist,
without pinpointing a concrete t0 for which (Pt0 ∗ F )′(x) has the desired properties.

Lemma 2.2. Let µ be a Borel probability measure on SX . Fix R,A ∈ (0,∞) and m ∈ N.
Then there exists t ∈ (0,∞) satisfying

A

(R + 1)m+1
6 t 6 A, (7)

such that∫
SX

∫
Rn
‖∂a(Pt∗F )(x)‖Y dxdµ(a) 6

∫
SX

∫
Rn
‖∂a(P(R+1)t∗F )(x)‖Y dxdµ(a)+

6vol(3BX)

m
. (8)

Proof. If (8) fails for all t satisfying (7) then for every k ∈ {0, . . . ,m+ 1} we have∫
SX

∫
Rn

∥∥∂a (PA(R+1)k−m−1 ∗ F
)

(x)
∥∥
Y
dxdµ(a)

>

∫
SX

∫
Rn

∥∥∂a (PA(R+1)k−m ∗ F
)

(x)
∥∥
Y
dxdµ(a) +

6vol(3BX)

m
. (9)

By iterating (9) we get the estimate∫
SX

∫
Rn

∥∥∂a (PA(R+1)−m−1 ∗ F
)

(x)
∥∥
Y
dxdµ(a)

>

∫
SX

∫
Rn

∥∥∂a (PA(R+1) ∗ F
)

(x)
∥∥
Y
dxdµ(a) +

6(m+ 1)vol(3BX)

m
. (10)

At the same time, since F is differentiable almost everywhere and 6-Lipschitz, for every
a ∈ SX we have ‖∂aF‖Y 6 6 almost everywhere. Since F is supported on 3BX , it follows
that∫

Rn

∥∥∂a (PA(R+1)−m−1 ∗ F
)

(x)
∥∥
Y
dx =

∫
Rn

∥∥(PA(R+1)−m−1 ∗ ∂aF
)

(x)
∥∥
Y
dx

6
∫
Rn

∫
Rn
PA(R+1)−m−1(x− y)‖∂aF (y)‖Y dxdy =

∫
3BX

‖∂aF (y)‖Y dy 6 6vol(3BX). (11)

If we integrate (11) with respect to µ, then since µ is a probability measure we obtain a
contradiction to (10) �
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In order to apply Lemma 2.2, we will contrast it with the following key statement (proved
in Section 4), which asserts that the directional derivatives of Pt ∗ F are large after an
appropriate averaging.

Lemma 2.3. Assume that t ∈ (0, 1/2], R ∈ (0,∞) and δ ∈ (0, ε/(4n)) satisfy

δ 6
εt log(7/t)

2
√
n

6
ε4

6n5/2(80D)2
, (12)

and
720n3/2D2 log(7/t)

ε2
6 R 6

ε

32t
√
n
. (13)

Then for every x ∈ 1
8
BX and a ∈ SX we have

(‖∂a(Pt ∗ F )‖Y ∗ PRt) (x) >
1− ε
D

. (14)

We record one more (simpler) fact about the evolutes of F under the Poisson semigroup.

Lemma 2.4. Assume that 0 < t < ε
25
√
n

. Then for every x, y ∈ 1
4
BX we have

‖Pt ∗ F (x)− Pt ∗ F (y)‖Y 6 (1 + 2ε)‖x− y‖X .

With the above tools at hand, we will now show how to conclude the proof of Theorem 1.1.
It will then remain to prove Lemma 2.1 (in Section 3), Lemma 2.3 (Section 4) and Lemma 2.4
(also in Section 4).

Proof of Theorem 1.1. Assume that δ ∈ (0, 1) satisfies

δ 6
( ε

cD

)12n(cD/ε)n+1

, (15)

where c = 300 (this is an overestimate for the ensuing calculation). Fix an (ε/D)-net F in
SX with |F| 6 (3D/ε)n (for the existence of nets of this size, see e.g. [1, Lem. 12.3.1]). Let
µ be the uniform probability measure on F . Define

A =
( ε

cD

)5n

, R =

(
cD

ε

)4n

− 1, m =

⌊(
cD

ε

)n+1
⌋
− 1. (16)

Apply Lemma 2.2 with the above parameters, obtaining some t ∈ (0,∞) satisfying( ε

cD

)12n(cD/ε)n+1

6 t 6
( ε

cD

)5n

, (17)

such that∑
a∈F

∫
Rn
‖∂a(Pt ∗ F )(x)‖Y dx 6

∑
a∈F

∫
Rn
‖∂a(P(R+1)t ∗ F )(x)‖Y dx+

6|F|vol(3BX)

m
. (18)

One checks that for δ satisfying (15), R as in (16), and any t satisfying (17), inequalities (12)
and (13) are satisfied. Thus the conclusion (14) of Lemma 2.3 holds true for all a ∈ SX and
x ∈ 1

8
BX .

Note that by convexity we have for every a ∈ SX and almost every x ∈ Rn,

‖∂a(P(R+1)t ∗ F )(x)‖Y = ‖ (PRt ∗ (∂a(Pt ∗ F ))) (x)‖Y 6 (‖∂a(Pt ∗ F )‖Y ∗ PRt) (x).
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Thus ‖∂a(Pt ∗ F )‖Y ∗ PRt − ‖∂a(P(R+1)t ∗ F )‖Y > 0, so we may use Markov’s inequality as
follows.

vol

({
x ∈ 1

8
BX : (‖∂a(Pt ∗ F )‖Y ∗ PRt) (x)− ‖∂a(P(R+1)t ∗ F )(x)‖Y >

ε

D

})
6

D

ε

(∫
Rn

(
(‖∂a(Pt ∗ F )‖Y ∗ PRt) (x)− ‖∂a(P(R+1)t ∗ F )(x)‖Y

)
dx

)
=

D

ε

(∫
Rn
‖∂a(Pt ∗ F )(x)‖Y dx−

∫
Rn
‖∂a(P(R+1)t ∗ F )(x)‖Y dx

)
. (19)

Hence,

vol

({
x ∈ 1

8
BX : ∃a ∈ F , (‖∂a(Pt ∗ F )‖Y ∗ PRt) (x)− ‖∂a(P(R+1)t ∗ F )(x)‖Y >

ε

D

})
(19)

6
D

ε

(∑
a∈F

∫
Rn
‖∂a(Pt ∗ F )(x)‖Y dx−

∑
a∈F

∫
Rn
‖∂a(P(R+1)t ∗ F )(x)‖Y dx

)
(18)

6
D

ε
· 6|F|vol(3BX)

m
(16)

6
12D

ε

(
3D

ε

)n ( ε

cD

)n+1

(24)nvol

(
1

8
BX

)
=

6n

25n+1
vol

(
1

8
BX

)
< vol

(
1

8
BX

)
.

Consequently, there exists x ∈ 1
8
BX satisfying

∀a ∈ F , (‖∂a(Pt ∗ F )‖Y ∗ PRt) (x)− ‖∂a(P(R+1)t ∗ F )(x)‖Y <
ε

D
. (20)

But we already argued that (14) holds as well, so (20) implies that

∀a ∈ F , ‖∂a(P(R+1)t ∗ F )(x)‖Y >
1− 2ε

D
. (21)

Note that by (16) and (17) we have (R + 1)t 6 (ε/(cD))n < ε/ (25
√
n). Hence, if we define

T = (P(R+1)t∗F )′(x) then by Lemma 2.4 we have ‖T‖ 6 1+2ε. By (21), ‖Ta‖Y > (1−2ε)/D
for all a ∈ F . For z ∈ SX take a ∈ F such that ‖z − a‖X 6 ε/D. Then,

‖Tz‖ > ‖Ta‖ − ‖T‖ · ‖z − a‖X >
1− 2ε

D
− (1 + 2ε)

ε

D
>

1− 4ε

D
.

Hence T is invertible and ‖T−1‖ 6 D/(1−4ε). Thus ‖T‖·‖T−1‖ 6 1+2ε
1−4ε

D 6 (1+12ε)D. �

3. Proof of Lemma 2.1

We will use the following lemma of Begun [4].

Lemma 3.1. Let K ⊆ Rn be a convex set and fix τ, η, L ∈ (0,∞). Assume that we are
given a mapping h : K + τBX → Y satisfying ‖h(x) − h(y)‖Y 6 L (‖x− y‖X + η) for all
x, y ∈ K + τBX . Define H : K → Y by

H(x) =
1

τnvol(BX)

∫
τBX

h(x− y)dy.

8



Then ‖H(x)−H(y)‖Y 6 L
(
1 + nη

2τ

)
‖x− y‖X for all x, y ∈ K.

We refer to [4] for an elegant proof of Lemma 3.1. The deduction of Lemma 2.1 from
Lemma 3.1 is via the following simple partition of unity argument. Let {φp : Rn → [0, 1]}p∈Nδ
be a family of smooth functions satisfying

∑
p∈Nδ φp(x) = 1 for all x ∈ BX and φp(x) = 0

for all (p, x) ∈ Nδ × Rn with ‖x − p‖X > 2δ. A standard construction of such functions
can be obtained by taking a smooth ψ : Rn → [0, 1] which is equals 1 on BX and vanishes
outside 2BX , and defining ψp(x) = ψ((x − p)/δ) for (p, x) ∈ Nδ × Rn. If we then write

Nδ = {p1, p2, . . . , pN}, define φp1 = ψp1 and φpj = ψpj
∏j−1

i=1 (1 − ψpi) for j ∈ {2, . . . , N}.
Then

∑
p∈Nδ φp = 1−

∏
p∈Nδ(1− ψp) = 1 on BX since every x ∈ BX satisfies ‖x− p‖X 6 δ

for some p ∈ Nδ.
Now define g : BX → Y by g(x) =

∑
p∈Nδ φp(x)f(p). Setting β(t) = max{0, 2 − t} for

t ∈ [0,∞), consider the mapping h : Rn → Y given by

h(x) =

{
g(x) if x ∈ BX ,
β(‖x‖X)g (x/‖x‖X) if x ∈ Rn rBX .

(22)

Observe that if x, y ∈ BX then

h(x)− h(y) = g(x)− g(y) =
∑

p∈Nδ∩(x+2δBX)

φp(x)f(p)−
∑

q∈Nδ∩(y+2δBX)

φq(y)f(q)

=
∑

p∈Nδ∩(x+2δBX)
q∈Nδ∩(y+2δBX)

φp(x)φq(y) [f(p)− f(q)] .

This identity implies that

∀x, y ∈ BX , ‖h(x)− h(y)‖Y 6 ‖x− y‖X + 4δ (23)

If x ∈ BX and y ∈ Rn rBX then using f(Nδ) ⊆ 2BY and the fact that β is 1-Lipschitz,

‖h(x)− h(y)‖Y 6
∥∥∥∥g(x)− g

(
y

‖y‖X

)∥∥∥∥
Y

+ (1− β(‖y‖X))

∥∥∥∥g( y

‖y‖X

)∥∥∥∥
Y

(23)

6

∥∥∥∥x− y

‖y‖X

∥∥∥∥
X

+ 4δ + (‖y‖X − 1) sup
p∈Nδ
‖f(p)‖Y 6 ‖x− y‖X + 3(‖y‖X − 1) + 4δ.

Since ‖y‖X − 1 6 ‖x− y‖X + ‖x‖X − 1 6 ‖x− y‖X , it follows that

∀x ∈ BX ,∀y ∈ Rn rBX , ‖h(x)− h(y)‖Y 6 4(‖x− y‖X + δ). (24)

If x, y ∈ Rn rBX then

‖h(x)−h(y)‖Y 6
∥∥∥∥g( x

‖x‖X

)
− g

(
y

‖y‖X

)∥∥∥∥
Y

β(‖x‖)+
∥∥∥∥g( y

‖y‖X

)∥∥∥∥
Y

|β(‖x‖X)− β(‖y‖X)|

(23)

6

∥∥∥∥ x

‖x‖X
− y

‖y‖X

∥∥∥∥
X

+ 4δ + 2 ‖x− y‖X 6 4(‖x− y‖X + δ). (25)

Set τ = 2nδ/ε ∈ (0, 1/2) and define for x ∈ Rn,

F (x) =
1

τnvol(BX)

∫
τBX

h(x− y)dy. (26)

9



It follows from the definition (22) that h is differentiable almost everywhere on Rn. Since h
is differentiable on BX r SX and τ ∈ (0, 1/2), it follows from (26) that F is differentiable
almost everywhere on Rn, and is differentiable everywhere on 1

2
BX . Clearly F is supported

on (2 + τ)BX ⊆ 3BX , i.e., the first assertion of Lemma 2.1 holds. Due to (23), (24), (25),
an application of Lemma 3.1 with K = Rn, L = 4 and η = δ shows that F is 4 (1 + ε/2)-
Lipschitz on Rn, proving the second assertion of Lemma 2.1. Due to (23), an application of
Lemma 3.1 with K = (1−τ)BX shows that F is (1 + ε)-Lipschitz on (1−τ)BX ⊇ 1

2
BX . This

establishes the third assertion of Lemma 2.1. To prove the fourth assertion of Lemma 2.1,
fix x ∈ Nδ. Then,

‖F (x)− h(x)‖Y 6
1

τnvol(BX)

∫
τBX

‖h(x− y)− h(x)‖Y dy
(23)∧(24)

6 4(τ + δ). (27)

Also,

‖h(x)− f(x)‖Y 6
∑
p∈Nδ

‖f(x)− f(p)‖Y φp(x) 6 max
p∈Nδ∩(x+2δBX)

‖f(x)− f(p)‖Y 6 2δ. (28)

Recalling that τ = 2nδ/ε, the fourth assertion on Lemma 2.1 follows from (27) and (28). �

4. Proof of Lemma 2.4 and Lemma 2.3

We will need the following standard estimate, which holds for all r, t ∈ (0,∞).∫
Rnr(rBX)

Pt(x)dx 6
t
√
n

r
. (29)

To check (29), letting sn−1 denote the surface area of the unit Euclidean sphere Sn−1, and
recalling that Pt(x) = t−nP1(x/t), we have∫

‖x‖X>r
Pt(x)dx

(5)

6
∫
‖x‖2>r

Pt(x)dx =

∫
‖x‖2>r/t

P1(x)dx

= cnsn−1

∫ ∞
r/t

sn−1

(1 + s2)
n+1
2

ds 6 cnsn−1

∫ ∞
r/t

ds

s2
=
cnsn−1t

r
.

It remains to recall that cn = Γ
(
n+1

2

)
/π

n+1
2 and sn−1 = nπ

n
2 /Γ

(
n
2

+ 1
)

(see e.g. [3, Sec. 1]),

and, using Stirling’s formula, to obtain the estimate cnsn−1 6
√

2n/π.
Another standard estimate that we will use is that for every y ∈ Rn we have∫

Rn
|Pt(x)− Pt(x+ y)| dx 6

√
n‖y‖2

t
. (30)

Since Pt(x) = t−nP1(x/t) it suffices to check (30) when t = 1. Now,∫
Rn
|P1(x)− P1(x+ y)| dx =

∫
Rn

∣∣∣∣∫ 1

0

〈∇P1(x+ sy), y〉ds
∣∣∣∣ dx 6 ‖y‖2

∫
Rn
‖∇P1(x)‖2 dx

= (n+1)cn‖y‖2

∫
Rn

‖x‖2

(1 + ‖x‖2
2)

n+3
2

dx = (n+1)cnsn−1‖y‖2

∫ ∞
0

rn

(1 + r2)
n+3
2

dr = cnsn−1‖y‖2,

where we used the fact that the derivative of rn+1/(1 + r2)
n+1
2 equals (n+ 1)rn/(1 + r2)

n+3
2 .

The required estimate (30) now follows from Stirling’s formula.
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Proof of Lemma 2.4. We have,

‖Pt ∗ F (x)− Pt ∗ F (y)‖Y 6
∫
Rn
Pt(z)‖F (x− z)− F (y − z)‖Y dz

(∗)
6

(
(1 + ε)

∫
1
4
BX

Pt(z)dz + 6

∫
Rnr( 1

4
BX)

Pt(z)dz

)
‖x− y‖X

(29)

6
(
1 + ε+ 24t

√
n
)
‖x− y‖X ,

where in (∗) we used the fact that F is (1 + ε)-Lipschitz on 1
2
BX and 6-Lipschitz on Rn. �

Lemma 4.1. For every t ∈ (0, 1/2] and every x ∈ BX we have

‖Pt ∗ F (x)− F (x)‖Y 6 8
√
nt log

(
7

t

)
.

Proof. Since F is supported on 3BX ,

‖Pt ∗ F (x)− F (x)‖Y

6
∫
x+3BX

‖F (y − x)− F (x)‖Y Pt(y)dy + ‖F (x)‖Y
∫
y∈Rnr(x+3BX)

Pt(y)dy. (31)

Since F is 6-Lipschitz and it vanishes outside 3BX , we have ‖F (x)‖Y 6 18. Moreover, if
‖y − x‖X > 3 then ‖y‖X > ‖x− y‖X − ‖x‖X > 2, and therefore

‖F (x)‖Y
∫
y∈Rnr(x+3BX)

Pt(y)dy 6 18

∫
Rnr(2BX)

Pt(y)dy
(29)

6 9t
√
n. (32)

To bound the first term in the right hand side of (31) note that if ‖y − x‖X 6 3 then
‖y‖2 6

√
n‖y‖X 6 4

√
n. Moreover, ‖F (y − x)− F (x)‖X 6 6‖y‖X 6 6‖y‖2. Hence,∫

x+3BX

‖F (y − x)− F (x)‖Y Pt(y)dy 6 6

∫
‖y‖264

√
n

‖y‖2Pt(y)dy

= 6t

∫
‖y‖26 4

√
n
t

‖y‖2P1(y)dy = 6tcnsn−1

∫ 4
√
n
t

0

sn

(1 + s2)
n+1
2

ds (33)

Direct differentiation shows that the maximum of sn/(1 + s2)
n+1
2 is attained when s =

√
n,

and therefore sn/(1 + s2)
n+1
2 6 min{1/

√
en, 1/s} for all s ∈ (0,∞). Hence,∫ 4

√
n
t

0

sn

(1 + s2)
n+1
2

ds 6 1 +

∫ 4
√
n
t

√
en

ds

s
= 1 + log

(
4

t
√
e

)
. (34)

The required result now follows from substituting (32), (33), (34) into (31), and using the
fact that t 6 1/2 and cnsn−1 6

√
n. �

Proof of Lemma 2.3. Define

Θ =
100D

√
nt log(7/t)

ε
. (35)
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For w, y ∈ 1
2
BX let p, q ∈ Nδ ∩ (1

2
BX) satisfy ‖p − w‖X , ‖q − y‖Y 6 2δ. Assume that

‖w−y‖X > Θ. Using the third and fourth assertions of Lemma 2.1, together with Lemma 4.1,
we have

‖(Pt ∗ F )(w)− (Pt ∗ F )(y)‖Y > ‖f(p)− f(q)‖Y − ‖F (p)− f(p)‖Y − ‖F (q)− f(q)‖Y
−‖F (w)− F (p)‖Y − ‖F (y)− F (q)‖Y − ‖(Pt ∗ F )(w)− F (w)‖Y − ‖(Pt ∗ F )(y)− F (y)‖Y

(6)

>
‖p− q‖Y

D
− 18nδ

ε
− 4(1 + ε)δ − 16

√
nt log

(
7

t

)
>
‖w − y‖X − 4δ

D
− 18nδ

ε
− 4(1 + ε)δ − 16

√
nt log

(
7

t

)
>

1− ε/3
D

‖w − y‖X , (36)

where (36) uses the assumptions ‖w − y‖X > Θ and (12).
Note that the second inequality in (12) implies that Θ 6 1/4. Therefore, since ‖a‖X = 1

it follows from (36) that for every z ∈ 1
4
BX ,

1− ε/3
D

Θ 6 ‖Pt ∗ F (z + Θa)− Pt ∗ F (z)‖Y

=

∥∥∥∥∫ Θ

0

∂a(Pt ∗ F )(z + sa)ds

∥∥∥∥
Y

6
∫ Θ

0

‖∂a(Pt ∗ F )(z + sa)‖Y ds. (37)

Since in the statement of Lemma 2.3 we are assuming that ‖x‖X 6 1/8,

1

Θ

∫ Θ

0

∫
Rn
‖∂a(Pt ∗ F )(x+ sa− y)‖Y PRt(y)dyds

(37)

>
1− ε/3
D

∫
1
8
BX

PRt(y)dy

(29)

>
1− ε/3
D

(
1− 8Rt

√
n
) (13)

>
(1− ε/3)(1− ε/4)

D
>

1− 7ε/12

D
. (38)

Since F is 6-Lipschitz, ‖∂aF‖Y 6 6 almost everywhere, and therefore ‖∂a(Pt ∗ F )‖Y 6 6
almost everywhere. Hence,∫ Θ

0

∫
Rn
‖∂a(Pt ∗ F )(x− y)‖Y (PRt(y + sa)− PRt(y)) dyds

6 6

∫ Θ

0

∫
Rn
|PRt(y + sa)− PRt(y)| dyds

(30)

6
6
√
n‖a‖2

Rt
· Θ2

2

(5)

6
3nΘ2

Rt

(13)∧(35)

6
5εΘ

12D
. (39)

We can now conclude the proof of Lemma 2.3 as follows.

(‖∂a(Pt ∗ F )‖Y ∗ PRt) (x) =
1

Θ

∫ Θ

0

∫
Rn
‖∂a(Pt ∗ F )(x+ sa− y)‖Y PRt(y)dyds

− 1

Θ

∫ Θ

0

∫
Rn
‖∂a(Pt ∗ F )(x− y)‖Y (PRt(y + sa)− PRt(y)) dyds

(38)∧(39)

>
1− ε
D

. �

5. Proof of Theorem 1.2

The following general lemma will be used later; compare to [17, Prop. 1].
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Lemma 5.1. Let (V, ‖ · ‖V ) be a Banach space and U = (Rn, ‖ · ‖U) be an n-dimensional
Banach space. Assume that g : BU → V is continuous and everywhere differentiable on the
interior of BU . Then ∥∥∥∥ 1

vol(BU)

∫
BU

g′(u)du

∥∥∥∥
U→V

6 n‖g‖L∞(SU ). (40)

Proof. Fix y ∈ Rn with ‖y‖2 = 1. Let Py⊥ : Rn → y⊥ denote the orthogonal projection onto
the hyperplane y⊥. For every u ∈ Py⊥(BU) there are unique au, bu ∈ R satisfying au 6 bu
and ‖u+ auy‖U = ‖u+ buy‖U = 1. Hence,∥∥∥∥ 1

vol(BU)

∫
BU

g′(u)(y)du

∥∥∥∥
V

=

∥∥∥∥∥ 1

vol(BU)

∫
P
y⊥ (BU )

∫ bu

au

d

ds
g(u+ sy)dsdu

∥∥∥∥∥
V

=

∥∥∥∥∥ 1

vol(BU)

∫
P
y⊥ (BU )

(g(u+ buy)− g(u+ auy)) du

∥∥∥∥∥
V

6 2‖g‖L∞(SU ) ·
voln−1(Py⊥(BU))

vol(BU)
.

Therefore, in order to prove (40) it suffices to show that voln−1(Py⊥(BU)) 6 n‖y‖Uvol(BU)/2.
This is the same as vol(K) 6 vol(BU), where K is the convex hull of Py⊥(BU)∪{±y/‖y‖U},
i.e., K is the union of the two cones with base Py⊥(BU) and cusp ±y/‖y‖U . For u ∈ Py⊥(BU)
let cu ∈ [1,∞) be the largest c ∈ [1,∞) for which cu ∈ Py⊥(BU). Then

K =
⋃

u∈P
y⊥ (BU )

(
u+

[
− cu − 1

cu‖y‖U
,
cu − 1

cu‖y‖U

]
y

)
. (41)

Recalling the definition of au above, by the definition of cu we have cuu+acuuy ∈ SU . Hence,
since ±y/‖y‖U ∈ BU , by convexity we know that the points

1

cu
(cuu+ acuuy) +

(
1− 1

cu

)
y

‖y‖U
and

1

cu
(cuu+ acuuy)−

(
1− 1

cu

)
y

‖y‖U
are both in BU . Consequently, by convexity again, we have that⋃

u∈P
y⊥ (BU )

(
u+

[
acuu
cu
− cu − 1

cu‖y‖U
,
acuu
cu

+
cu − 1

cu‖y‖U

]
y

)
⊆ BU . (42)

Since, by Fubini, the volume of the left hand side of (42) equals the volume of the right hand
side of (41), we conclude the desired estimate vol(K) 6 vol(BU). �

Fix ε, δ ∈ (0, 1/2) and let Nδ be a δ-net in BX ⊆ Rn. Fixing also D ∈ (1,∞), assume that
f : Nδ → Y satisfies ‖x − y‖X/D 6 ‖f(x) − f(y)‖Y 6 ‖x − y‖X for all x, y ∈ Nδ. Define
Z = span (f(Nδ)). Thus Z is a finite dimensional subspace of Y . Assume that

δ 6
ε2

30n2D
. (43)

Since consequently δ < ε/(4n), there exists F : X → Z that is differentiable everywhere on
1
2
BX and satisfies the conclusion of Lemma 2.1. Let ν be the normalized Lebesgue measure

on 1
2
BX and define a linear operator T : X → L∞(ν, Z) by

(Ty)(x) = F ′(x)(y). (44)
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Since F is (1 + ε)-Lipschitz on 1
2
BX we have the operator norm bound

‖T‖X→L∞(ν,Z) 6 1 + ε.

Theorem 1.2 will therefore be proven once we show that for all y ∈ X we have

1− ε
D
‖y‖X 6 ‖Ty‖L1(ν,Z) =

1

vol
(

1
2
BX

) ∫
1
2
BX

‖F ′(x)(y)‖Y dx. (45)

To prove (45), let J : X → `∞ be a linear isometric embedding. By the nonlinear Hahn-
Banach theorem (see e.g. [5, Ch. 1]) there exists a mapping G : Z → `∞ satisfying

∀x ∈ Nδ, G(f(x)) = J(x) (46)

and G is D-Lipschitz; we are extending here the mapping J ◦
(
f−1|f(Nδ)

)
: f(Nδ)→ `∞ while

preserving its Lipschitz constant. By convolving G with a smooth bump function whose
integral on Y equals 1 and whose support has a small diameter, we can find H : Z → `∞
with Lipschitz constant at most D and satisfying

∀z ∈ F (BX), ‖H(z)−G(z)‖`∞ 6
nDδ

ε
. (47)

Define a linear operator S : L1(ν, Z)→ `∞ by setting for h ∈ L1(ν, Z),

Sh =

∫
1
2
BX

H ′(F (x))(h(x))dν(x). (48)

Since H is D-Lipschitz and ν is a probability measure, we have the operator norm bound

‖S‖L1(ν,Z)→`∞ 6 D. (49)

By the chain rule, for every y ∈ X we have

ST (y)
(44)∧(48)

=

∫
1
2
BX

H ′(F (x))(F ′(x)(y))dν(x) =

∫
1
2
BX

(H ◦ F )′ (x)(y)dν(x). (50)

Note that if y ∈ Nδ then

‖H(F (y))− Jy‖`∞
(46)
= ‖H(F (y))−G(f(y))‖`∞
6 ‖H(F (y))−G(F (y))‖`∞ + ‖G(F (y))−G(f(y))‖`∞

(47)

6
nDδ

ε
+D‖F (y)− f(y)‖Y

6
nDδ

ε
+D · 9nδ

ε
6

10nDδ

ε
, (51)

where in the penultimate inequality in (51) we used the fact that ‖F (y) − f(y)‖Y 6 9nδ/ε
for all y ∈ Nδ, due to Lemma 2.1. If x ∈ 1

2
BX then there exists y ∈ Nδ ∩

(
1
2
BX

)
satisfying

‖x− y‖X 6 2δ. Using the fact that H ◦ F is (1 + ε)D-Lipschitz on 1
2
BX , it follows that

‖H(F (x))− Jx‖`∞ 6 ‖H(F (y))− Jy‖`∞ + ‖H(F (x))−H(F (y))‖`∞ + ‖Jx− Jy‖`∞
(51)

6
10nDδ

ε
+ (1 + ε)D · 2δ + 2δ 6

15nDδ

ε
. (52)
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By Lemma 5.1 with V = `∞, ‖ · ‖U = 2‖ · ‖X and g = H ◦ F − J , it follows from (52) that

‖ST − J‖X→`∞
(50)
=

∥∥∥∥∥
∫

1
2
BX

(H ◦ F )′(x)dν(x)− J

∥∥∥∥∥
X→`∞

6
30n2Dδ

ε

(43)

6 ε. (53)

It follows that for all y ∈ X,

D‖Ty‖L1(ν,Z)

(49)

> ‖STy‖`∞ > ‖Jy‖`∞ − ‖ST − J‖X→`∞ · ‖y‖X
(53)

> (1− ε)‖y‖X .

This concludes the proof of (45), and hence the proof of Theorem 1.2 is complete. �
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