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Abstract
It is shown that the span of {a;h; @ bje;}}_,, where {h;} is the Haar system in L,
and {e;} the canonical basis of ¢,, is well isomorphic to a well complemented subspace
of L,, 2 < p < o0o. As a consequence we get that there is a rearrangement of the
(initial segments of the) Haar system in L,, 2 < p < oo, any block basis of which is well
isomorphic to a well complemented subspace of L,.

1 Introduction

Recall that for the dyadic interval I = [Z;—nl, 2%) the Haar function h; is defined to be

ha(t) = +1, if t is in the left half of I,
M=\ -1, iftisin the right half of 1.

The usual order of the Haar system is the lexicographic order on {(n,i)}. The main motivation
of the present note comes from [MS] in which another useful order is defined: I < .J if either I
and J are disjoint and I is to left of J, or [ is contained in .J. This order is more correlated
with the order on the interval [0, 1] than the lexicographic order and as such is also natural. Its
drawback is that unlike the natural order it is not a well ordering on the infinite Haar system.
In [MS] it is proved that any block basis of (a finite piece of ) the Haar system in L,,, 2 < p < 00,
in this new order is equivalent, with constant depending only on p, to a sequence of the form
{a;h; ® be;} for some scalars {a;,b;} and some subsequence {h;} of the original Haar system.
Here e; denotes the unit vector basis of ¢, and @ an ¢, sum. This was used in [MS] to solve a
problem of [DS] by showing that there is an unconditional basic sequence in L, not equivalent
to the £, basis yet not containing block bases uniformly equivalent to the unit vector basis of
5.

The purpose of the present note is to prove that any sequence of the form {a;h; @ bie;}r_,
spans in L,, 2 < p < oo, a space well isomorphic to a well complemented subspace of L,. As
an immediate consequence one gets that any block basis of (a finite portion of) {h;} with the
order =< is well isomorphic to a well complemented subspace of L,. The question of whether
the span of any finite sequence of the form {a;h; @ b;e; }1_; is well isomorphic to £} is left open.

*Supported in part by ISF. The results here form part of the first author’s MSc thesis.



2 Preliminaries

In this section we gather a few known results that will be used in the sequel. We only present
a proof of one of them (Theorem 2.2) which was not well circulated before. The first theorem,
due to H.P. Rosenthal together with its proof (involving an inequality for p-th moments of sums
of independent random variables) proved to be an extremely useful result.

Theorem 2.1 ([R]) Let 2 < p < o0, let {fi}2, be a sequence of independent symmetric three
valued random variables, and let Y, denote their closed linear span in L,. Then the orthogonal
progection P from L, onto Y, is bounded by a constant K, depending only on p.

The next theorem appears only in [Sc|, we thus include its simple proof.

Theorem 2.2 Let {A,}2°, be a sequence of measurable subsets of [0,1] such that for every
i#j, AinA;=¢or A CAj or Aj C A;. Then the span of {r; ® xa,}2, is complemented
in L,([0,1]?), 1 < p < oo by means of the orthogonal projection. Moreover the norm of the
projection depends only on p. Here r; is the i-th Rademacher function and f®g(s,t) = f(s)g(t).

Proof: We shall need a result of E. Stein [St]: For every 1 < p < oo there is a constant A,, such
that for every increasing sequence of o-fields in [0,1]|, F; C F, C ..., and for every sequence
{fr}32, of functions in L,, we have:

|1 r) < AN 1), )

where Ex(f) is the conditional expectation of f with respect to Fy.
The proof of Stein’s result is simple so we sketch it as well: By Doob’s inequality,

Fsup [Ex(£)lll» < [l sup Bx(sup [ fil)ll, < Ayl sup | filllp-

Clearly also,
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and thus, by interpolation, we get (1) for 1 < p < 2. The case 2 < p < oo follows by duality.
To prove Theorem 2.2 it is enough to show that for every n and ¢4, . .. , i, there is a projection
from L,® L, = L,([0, 1]?) onto [r;, @ x 4,, ]J , with norm that doesn’t depend on n and iy, . .. ,,.

Since for each 41,... ,1%, there is a prOJectlon from L, ® L, onto [r;|;_; ® L, with norm that
doesn’t depend on 7y, ... ,,, it is enough to show existence of such a projection from [TZJ]]:1®L
onto [r;, ® xa;., ] . Given iy, ... ,i; we may assume without loss of generality that if 1 < k <

¢ < n then A ﬁ A = ¢ or A;, O A;,. Let F, be the o-field generated by A, ,..., A,
1<k <n. Then Fi g Fy C--- C F, and from the assumption above it is clear that A; is an
atom of F, for every 1 < k < n.

We define:

Pl ® L, ri, ® xa,, i



7=1 7=1 !
From the above it is clear that P is well defined and that it is a projection.
We are left to prove that ||P|| < K,, where K, depend only on p. From Khintchine’s
inequality we may conclude the existence of a constant B, which depends only on p, such that:

I3 @b, \,,%’H(; B ), ),
and
uzwm ~|( Zm )",
while .
I 1B, )", < ¢ Zl B, )P,
From this and from Steiri:s theorem the existence of the constant K, follows. [

The last result we state here is a theorem of Burkholder which in turn generalizes the
main inequality of [R] from the setting of independent random variables to that of martingale
differences.

Theorem 2.3 (/B]) Let 2 < p < oo and let {f;}52, be a martingale with respect to the in-
creasing sequence of o-fields {&;}2,. Then for d, = fni1 — fn, the martingale difference, we

have
HZ

where C), is a constant depending only on p.
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3 The main result
The main technical result here is the following theorem

Theorem 3.1 Let {h;}!_, be a subsequence of the Haar system {hr}rery (ordered in its natural
order). Let {g;}?_, be a sequence of functions on [0, 1] with the following properties:

1. g; is symmetric three valued random variable on [0,1] for alli=1,... n.
2. (suppg) N (55, 5% ) # ¢ < (supphe) N (5, 5% ) # ¢ =1,...,2Y, k=1,...,n

3. If (suppge) N (55, 3 ) # ¢ and (suppge) N (55, %) # ¢, 1,5 =1,...,2Y, k=1,... ,n,
then

(g, 1)) = My,
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4. Foreachj=1,...,2N {gl‘( i1 N)} are independent as random variable on the prob-
. 2N 72 i=1
ability space (JQ;NI, QLN) with normalized Lebesque measure.

Then the span of {g;}1, is well complemented in L,, p > 2, i.e., there is a projection P from
L, onto span {g;}-, whose norm depends only on p.

Proof: Assume, as we may that non of the g;-s is the zero function. For each i let j(i) be

such that (suppg;) N [7(;),\, L JQN] # ¢. We look at the o-field generated by the sets {(suppg;) —

j(;')N‘l}j:l and [0, QLN], and suppose that the atoms inside [0, QLN] are {A;}7, (m is a finite

positive number). We define y4;, Zk 0 XA (x — 5xk) and g;; = g; - X4, (some of the
gij, 3 = 1,...,m, can be the zero function, but this will not effect the argument bellow).
Then ZJ 19z1 gi, i =1,...,n. Define V= span{g;|i = 1,... ,n} and V} = span{g;  |i =
l,...,nj = 1,...,m} so that we have Vl DO V. By property 2 in the statement of the
theorem we have that the system {g;;}7-, 7=, satisfies the conditions of theorem 2.2 (Note
that {gi;}i, 7, has the same distribution as {r;; ® |g; ;|}i=; 7;), so we may conclude that
{9}y 7= is well complemented, which means that there is a projection P, from L, ([0, 1])
onto V} with norm depending only on p.

It is enough to show that we can find a good projection P, from V; onto V. Recall that for
each j the system { Ji(i5t k) }?:1 is composed of independent three valued symmetric random
variables (on the probability space (JQ;NI, 2LN)) So by applying the orthogonal projection P, ;
on each interval of the form (JQ;NI, QLN) j=1,...,2" we get, using Rosenthal’s theorem 2.1,

a bounded operator with norm depending only on p. We then define P, = Z iz Poj and it is
easy to check that P, is also bounded with the same bound.

The only thing still to check is that P, is indeed into V. That this is indeed the case follows
from the orthogonality of the P j-s. More precisely this follows from the following two facts:

1. Each g;; is a duplicate of one function (property 3).

2. When we project g; ; onto V' the only component that will not be sent to zero is that of
g; (this follows immediately from the fact that

(9igs gr) = /gi,j'gkdiv #0iff i =k) .

This concludes the proof of Theorem 3.1. ]

Remark: Inspecting the proof, it is easy to see that the Haar system was used here only
superficially, actually only the supports of the Haar functions play a role here. It is also easy
to see that these supports could be replaces by any sequence of subsets of [0,1], {4,}°2,,
satistying for every i # j, AiNA; =¢ or A, C A; or A; C A;.

Next we would like to show that any sequence of the form {a;h; ® b;e;}?_, is well equivalent
in L,, p > 2, to a sequence with the properties of the assumptions of Theorem 3.1. For this we
need the following proposition.



Proposition 3.2 Let {h;}", be a subsequence of the Haar system {hr}ier, (ordered in its
natural order). For every {a;}"_ |, {b;}", sequences of positive numbers, we can find a sequence
of functions {g; }™_, with the properties of Theorem 3.1 and with the following additional property

E(g;|€&) = aihi , gillh = af|L| + b7,

. . N
where I; = supph;, and &; is the o-field generated by {g1,... ,gi1} and {[JQ;NI, %N]}j:l Here
QLN is the size of the smallest of |I;| = |supph;|, i =1,... ,n.

The proof of the Proposition follows from the next lemma applied to each interval of the
form (55, 3%), ¢t = 1,...,2" inside supph;.

Lemma 3.3 Let a,b be positive numbers, and I € {2%, n=0,1,... ,N}. We can find ¢ > 0
and 0 < d < 55 such that the function f = cxjoq satisfies E(f*][0,5x]) = a2X[0,2+v] and

||f||§ = apQII\;l—Ibp

Proof: We need to solve the following two equations

10/226fv =a, de:% '
The solution is given by
c_(apubp)ﬁ _( a? 1 >p—2 1
a’l ’ arl + br 2N 7
and indeed d < 1/2%. ]

We are now ready to state and prove the main theorem

Theorem 3.4 Let2 < p < co. There exists a constant 0 < K, < oo such that if {a;}?—,, {bi}7-,
are two sequences of numbers and {h;}?_, is a subsequence of the Haar system (in its natural
order) then {a;h; ® bie;} |, spans a space isomorphic, with constant at most K,, to a K,
complemented subspace of L,. ({e;} is the canonical £, basis).

Proof: Using Proposition 3.2 we build the sequence {g;}" ;. We then have, (using Burkholder’s
theorem 2.3, say, although this can be easily avoided here)

n n
n n
= || D asaiha[y + D ol |orf”
=1 =1
n n n
1/2
1Y lowllas*h?) / [0+ el lasl 1L+ el lbil?
=1 =1 =1

p
p

H Z a;i(aih; @ bie;)
=1
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Using Burkholder’s theorem 2.3 again,
CP

I g2 = 1S laalPB(g21€0) (12 + 3 Ll il
=1 =1 =1

By Proposition 3.2, E(g7|€;) = |a;|*h7 and ||gi||} = |a;[?|L;| +[b;|” and thus {g;}, is equivalent,
with constant depending only on p, to {a;h; ® b;e;}?_,. Finally, by Theorem 3.1, the span of
{gi}7— is well complemented in L,,. u

Remark: Inspecting the proof of this theorem, and using the remark following the proof of
Theorem 3.1 it is easy to see that the Haar system could be replaced with any sequence of
the form {r; ® xa,} where {4;}°, is a sequence of subsets of [0, 1] satisfying for every i # j,
AinAj=¢or A C Ajor A; C A;. We do not dwell on it here because a more general fact
holds as is explained in the remark concluding this note.

Using this theorem and the main result of [MS] we get

Corollary 3.5 For every p > 2 there exists a constant K, < oo, such that for all N, every
block basis of {hr}rery (with respect to the order <) spans a space isomorphic, with constant
at most K, to a complemented subspace of L, with projection of norm at most K,.

There are two results proved after the distribution of a preliminary version of this work.

1. Paul Miiller extended the result here to the setting of the space VMO. Our case of L,
follows from this as well by interpolation, thus providing another proof of the main result
here. He also characterized the infinite dimensional spaces obtained: Each space spanned
by a sequence of the form {a;h; ® b;e;}°, is isomorphic to either L, or ¢,. The finite
version of this characterization is still open.

2. W.B. Johnson and the second named author observed that it follows from the results here
(and the method of proof of [Sc2|) that if {x;} is (finite or infinite) unconditional basic
sequence in L,, 2 < p < oo, spanning a well complemented subspace, then, for any set of
scalars {a;}, {z; ® a;e;} spans a space well isomorphic to a well complemented subspace
of L,. The constants of isomorphism and complementation depend only on p, the norm
of the projection onto span{z;} and the unconditionality constant of {z;}.
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