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The Gaussian Correlation Conjecture states that for any two symmetric� convex sets in

n�dimensional space and for any centered� Gaussian measure on that space� the measure

of the intersection is greater than or equal to the product of the measures� In this paper

we obtain several results which substantiate this conjecture� For example� in the standard

Gaussian case� we show there is a positive constant� c� such that the conjecture is true if

the two sets are in the Euclidean ball of radius c
p
n� Further we show that if for every

n the conjecture is true when the sets are in the Euclidean ball of radius
p
n� then it is

true in general� Our most concrete result is that the conjecture is true if the two sets are

	arbitrary
 centered ellipsoids�

Introduction� The standard Gaussian measure on IRn is given by its density�

�n�A� �
�

�	��n��

Z
A

e�jxj
��� dx�

A general mean zero Gaussian measure on IRn is a linear image of the standard Gaussian
measure�

Let Cn denote the collection of convex closed subsets of IRnwhich are symmetric about
the origin�

Conjecture C� For any n � �� if � is a mean zero� Gaussian measure on IRn� then for all
A�B � Cn�

��A � B� � ��A���B��

Recall that a function f � IRn � IR� is called quasi concave if for any r � IR the
set fx � IRn � f�x� � rg is convex� For such an f let A � f�x� t� � f�x� � tg and
At � fx � f�x� � tg� Then� At is convex and symmetric if f is symmetric and further�

f�x� �

Z �

�

IAt
�x� dt�

By Fubini
s theorem Conjecture �C� has the following functional version�
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Conjecture C�� Let f� g be non�negative� quasi�concave� and symmetric� Then

IE�n�f � g� � IE�n�f� � IE�n�g��

where IE�n�f� denotes the expectation of f with respect to �n�

It is� of course� enough to show conjecture �C� for symmetric and convex polytopes� Since
convex� symmetric polytopes are images of the unit cube ���� ��m in some possibly higher
dimensional space� IRm� under a linear map an easy integral transformation shows that
�C� is equivalent to the following conjecture �C��� which is stated in a more probabilistic
language�

Conjecture C��� If fXigni� are jointly Gaussian� mean zero random variables� and
� � k � n then�

P �max
i�n

jXij � �� � P �max
i�k

jXij � ��P � max
k�i�n

jXij � ���

According to Das Gupta� Eaton� Olkin� Perlman� Savage and Sobel �DEOPSS�� the
history of this problem prior to ��� starts with a paper of Dunnett and Sobel �DS� in
����� and after contributions by Dunn �Du� in ������ it culminated in papers of Khatri
�Kh� and �Sid�ak �Si��� both in ������ in which they independently obtained �C��� in the
case k � ��
Theorem �Khatri� �Sid�ak��Let fXigni� be jointly Gaussian� mean zero random variables�
Then

P �max
i�n

jXij � �� � P �jX�j � ��P � max
��i�n

jXij � ���

If a symmetric slab is de�ned to be a set of the form fx � IRn � j � x� u � j � �g for some
u � IRn� the theorem above is equivalent to
Theorem� If � is a mean zero Gaussian measure on IRn� A � Cn � and S is a symmetric
slab� then

��A � S� � ��A���S��

As a corollary of the theorems above� they obtained a result which solved the problem
studied by Dunnett and Sobel �DS� and Dunn �Du��

Corollary �Khatri� �Sid�ak��

P �max
i�n

jXij � �� �
n

�
i�

P �jXij � ���

Another important milestone for this problem was achieved by the work of L� D� Pitt
in ���� where the two dimensional case was settled� For an extensions of Pitt
s result see
�B��

Theorem ��Pi���For any A�B � C� ���A � B� � ���A����B� �

	



In �DEOPSS� and Gluskin �Gl� measures other than Gaussianmeasures are considered�
The problem can and has been attacked using measure theoretic� geometric and analytic
techniques�

In this note we present several partial results using some of these techniques� In
Proposition � �section �� we prove the conjecture for sets more general than sets having a
common �orthogonal unconditional� basis� Our main result� Theorem �� shows that the
conjecture holds for arbitrary centered ellipsoids in IRn�

In section 	� we show that the conjecture is true for �small enough� sets� We also
show� in Proposition � that the result holds �on the average�� It follows from the remark
following Proposition � that� if� in the statement of conjecture C� one puts the factor
	n�� on the left hand side� then the resulting statement is true� On the other hand� in
Proposition �� we prove that if one could replace the factor 	n�� with 	o	n
� then the
conjecture would follow�

We will need the following notations and concepts� In IRn the usual unit basis will
be denoted by e�� e�� ���en � j � j is the Euclidean norm� and � �� � � the scalar product
generated by j � j� Bn

� � fx � IRn � jxj � �g will be the Euclidean unit ball and Sn�� �
fx � IRn � jxj � �g its sphere� The orthogonal group on IRn� i�e� the set of real unitary
n	n matrices� will be denoted by O�n�� Lebesgue measure on IRn will be denoted by mn�

Section �� Geometrical restrictions�

By induction on the dimension it is easy to see that the conjecture is true if the convex
symmetric sets are ��unconditional with respect to the same orthogonal basis feigni� �i�e��
�x�� � � � � xn� � A 
� ��x�� � � � ��xn� � A�� Here we relax somewhat the geometrical
restrictions�

Proposition �� Let � be a product probability on IRn� If A�B � Cn satisfy�
�i� x � A � B �� xiei � A �B�i � n
�ii� for every pair of orthants� Q and Q�� ���A�Q����A�Q� �����B�Q����B �Q��� � ��
�in particular� if ��B � Q� are all equal��
Then� ��A � B� � ��A���B��

To prove this we need the following result� It can be found in �KR� and is related to a
result in �AD��

Theorem� ��KR� �� Let � be a product measure on IRn and let fi� � � i � �� be non�
negative functions on IRn satisfying�

f��x� � f��y� � f��x � y� � f��x � y��
Then Z

f�d� �
Z
f�d� �

Z
f�d� �

Z
f�d��

Proof of Proposition �� We shall �rst prove that the Karlin�Rinott theorem implies
that� for each orthant Q�

��� ��A � Q���B �Q� � ��Q���A �B � Q��

�



Let Q represent an orthant� say the �rst orthant� and let f� � IA�Q� f� � IB�Q� f� � IQ
and f� � IA�B�Q� To use the Karlin�Rinott theorem we need to show

x � A � Q� y � B � Q �� x � y � Q and x � y � A �B�
Without loss of generality we may assume that x and y are in the interiors of A � Q and
B �Q� respectively� We need to show that x � y � A�B� Assuming this were not true we
let w be the point in A�B �Q which is the closest to x�y� By the Pythagorean theorem�
wi � �x � y�i for every � � i � n� By �i�� the rectangular box R � fz � Q� zi � wi� ig
is contained in A � B� Let U be an open set such that x � U � A � Q and similarly V
an open set such that y � V � B �Q� w is an interior point of the convex hull of U and
R which is a subset of A� Similarly� w is an interior point of the convex hull of V and R
which is a subset of B� Hence w is an interior point of A � B � Q� Therefore� if x � y is
not already in A �B �Q� we reach a contradiction�

The Karlin�Rinott theorem now yields ���� Now apply �ii� in order to deduce that

	�n
X
Q�Q�

��A �Q���B �Q�� �
X
Q

��A �Q���B � Q��

which implies together with ��� the claim�

We now want to show the correlation conjecture for two ellipsoids �in arbitrary posi�
tion��

Theorem �� If A and B are centered ellipsoids in IRn� then �n�A �B� � �n�A��n�B��

From Proposition � it follows that �n�E �F � � �n�E��n�F � if E and F are ellipsoids
with the same axis� Using the rotational invariance of �n we would be able to deduce
Theorem 	 if we could show that for two ellipsoids E and F in the standard position�

i�e� E � fx � IRn � Pn
i�

x�
i

r�
i

� �g� and F � fx � IRn � Pn
i�

x�
i

��
i

� �g� the minimum
of �n�U�E� � F � over all U � O�n� is attained when U is some row permutation of the
identity� Actually this is true for all rotational invariant measures on IRn�

Theorem �� Let � be a rotation invariant measure on IRn� and let

E � fx � IRn �
nX
i�

x�i
r�i
� �g� and F � fx � IRn �

nX
i�

x�i
	�i
� �g

be two ellipsoids in standard position� Then the value of minf��U�F � �E� � U � O�n�g is
achieved for some row permutation P of the identity� in particular this means that P �F �
and E are ellipsoids with the same axis�

Proof� Using a standard perturbation argument we can and will make the following
assumptions�

Instead of considering the minimumof the mapping O�n� � U �� R
IE�U�x��IF �x� d��x�

we let f � ����� � ����� be a continuously di�erentiable function with f ��r� � � when�
ever r � �� de�ne for x � IRn �F �x� � f�jxj�F � where jxj�F �

Pn
i� x

�
i 
	

�
i and we assume

that U� � O�n� for which

�



Z
IE�U��x�� �F �x� d��x� � min

U�O	n


Z
IE�U�x�� �F �x� d��x��

We also assume that the radii r�� r�� � � � � rn of E and the radii 	�� 	�� � � � � 	n of F are
distinct� Finally� we will assume that � has a strictly positive density g�jxj� with respect
to mn�

In order to deduce the claim we will show that the matrix

UT
� �

�
B�
r���

� � �

r��n

�
CA � U�

is diagonal� Since the values r��i are distinct for i � �� 	 � � � n this would imply that U�

must be a row permutation of some diagonal matrix J which has only the values � or ��
in its diagonal� Since J�G� � G for any ellipsoid� we can assume that J is the identity�

We start with a variational argument� For i �� j in f�� 	� � � � � ng and � � IR� let V 	�

	i�j


be the matrix which acts on IRn in the following way� For x � �x�� � � � � xn� � IRn we set
V
	�

	i�j
�x� �� �x�� � � � � xi��� xi cos��xj sin�� xi��� � � � � xj��� xi sin� xj cos�� xj��� � � � � xn��

i�e� V
	�

	i�j
 acts on the two dimensional subspace of IR

n spanned by ei and ej as a rotation

by �� and on the orthogonal complement of that subspace� it is the identity�
Using the minimality of U� we deduce that

� �
�

��

�Z
IE�U��x�� �F �V

	�

	i�j
�x��g�jxj� dx

�
��

�

Z
IE�U��x��f

� �jxj�F �
�

��

�
�xi cos�� xj sin���

	�i
 
�xj cos� xi sin���

	�j

�
��

g�jxj� dx

�	�	��j � 	��i �
Z

xixjIE�U��x��f
��jxj�F �g�jxj� dx�

We �x i � n� and for x � �x�� � � � � xn� � IRn we let x	i
 � �x�� � � � � xi��� xi��� � � � � xn� �
IRn��� Since the 	i
s are distinct positive numbers we deduce that for any linear map
L � IRn�� � IR we have

�	�

Z
xiL�x

	i
�IE�U��x��f
��jxj�E �g�jxj� dx � ��

For j � n let uj be the j�th row of U� and u	j�s
 the s�th element of uj� For y � IRn��
we de�ne

L�y� ��

�
� nX
j�

u�	j�i

r
�
j

�
A
��

nX
j�

u	j�i


r�j
� u

	i

j � y � and

Q�y� ��

�
� nX
j�

u�	j�i

r
�
j

�
A
���
� nX
j�

� u
	i

j � y ��

r�j
� �
�
A �

�



For x � IRn we observe that the following equivalences hold�
U��x� � E


�
nX
j�

r��j �u	j�i
xi � u
	i

j � x	i
 ��� � �


� x�i

nX
j�

u�	j�i
r
��
j  	xi

nX
j�

u	j�i
r
��
j � u

	i

j � x	i
 �  

nX
j�

� u
	i

j � x	i
 �� r��j � �


� x�i  	xiL�x
	i
�  Q�x	i
� � �


� L��x	i
� � Q�x	i
� and jxi  L�x	i
�j �
q
L��x	i
��Q�x	i
��

We claim that L � �� Indeed� from the equivalences above and �	� we deduce that

� �

Z
fx�U�	x
�Eg

xiL�x
	i
�f ��jxj�F �g�jxj� dx

�

Z
L�	x�i�
�Q	x�i�


L�x	i
�

�Z �L	x�i�
�
p
L�	x�i�
�Q	x�i�


�L	x�i�
�
p
L�	x�i�
�Q	x�i�


xif
��jxj�F �g�jxj� dxi

�
dx	i
�

Since for �xed x	i
 the function xi �� xif
��jxj�F �g�jxj� is odd and positive if and only if xi

is negative we deduce that

Z �L	x�i�
�
p
L�	x�i�
�Q	x�i�


�L	x�i�
�
p
L�	x�i�
�Q	x�i�


xif
��jxj�F �g�jxj� dxi

is positive �respectively� negative� if and only if L�x	i
� is positive �respectively� negative��
Thus we deduce that

L�x	i
�

Z �L	x�i�
�
p
L�	x�i�
�Q	x�i�


�L	x�i�
�
p
L�	x�i�
�Q	x�i�


xif
��jxj�F �g�jxj� dxi

is positive if and only if L�x	i
� �� � and vanishes otherwise� Since Q��� � � the inequality
L��x	i
� � Q�x	i
� has solutions for a neighborhood of �� This forces L � �� Going back
to the de�nition of L we just showed that for  �� i the �th coordinate of

nX
j�

u	j�i


r�j
uj

vanishes� But� on the other hand this coordinate is equal to the element in the i�th row
and �th column of the product

UT
� �

�
B�
r���

� � �

r��n

�
CA � U��

�



Since i ��  are arbitrary elements of f�� � � � � ng this says that above product is a diagonal
matrix which �nishes the proof of the theorem�

While we do not know if C� holds for an arbitrary g and f � IE � whereE is an ellipsoid�
we show below that it does hold for f being a Gaussian density� and g log concave�

Proposition �� If g is a non�negative� symmetric� log�concave function on IRn and A is
a non�negative de�nite matrix� then

IE�
	
exp���

	
� Ax� x ��g�x�


 � IE�	exp���
	
� Ax� x ��



IE�
	
g�x�



�

Proof� It su!ces to assume that � � �n� Then�

IE�
	
exp���

	
� Ax� x ��g�x�



� �det�I  A������ IE�

	
g��I  A������x��



�

We now diagonalize �I  A����� with the unitary U � let h � g � U and use the fact
that � is rotation invariant to allow us to write

IE�
	
g��I  A������x��



� IE�

	
g��UUT �I  A�����UUT �x��



� IE�

	
h�D�x��



�

So in order to show that

IE�
	
exp���

	
� Ax� x ��g�x�


 � IE�	exp���
	
� Ax� x ��



IE�
	
g�x�



�

we need only show that
IE�
	
h�D�x��


 � E�

	
h�x�



�

Since I �D is a non�negative de�nite matrix� the result follows by a result of T� W� An�
derson �A��

Section �� Restriction on size�

We will make heavy use of the following concept from convex geometry� Recall that
a non�negative function f � IRn � IR� is called log�concave if for x� y � IRn and � � t � ��

f�tx  �� � t�y� � f�x�tf�y���t�

i�e log f is concave on its support�
Note that the indicator functions of convex sets are log�concave and that log�concave

functions are quasi�concave� We also will need the following deep result of Pr�ekopa and
Leindler�
Theorem��Le� and �Pr�� see also �BL��� If f is log�concave on IRnand � � k � n� then the
function g � IRk � IR � with

g�x�� � � � � xk� �

Z
IRn�k

f�x�� � � � � xk� z�� � � � � zn�k� dz

�



is also log concave�
Since h � A is log concave whenever h is log concave and A is linear� and since the

product of two log concave functions is also log concave the following Corollary follows
immediately�

Corollary� If f and g are log concave� so is y �� R
f�x  y�g�x� dx�

In order to get a glimpse of the mysterious power of the Pr�ekopa�Leindler result we
will use it in order to give a very short proof of the result of Khatri and �Sid�ak�

We �rst observe that the conjecture �C� and thus �C�� are trivially true in the case
n � �� Assume that S � fx � IRn � jx�j � sg and that A � Cn� For x� � IR�

f�x�� ��
R
Rn��

IA�x�� y� d�n���y�� Since the density of �n�� and IA are log concave
we deduce from �Le� and �Pr� that f is a log concave function on IR and thus

��A � S� �
Z
IR

I��s�s��x��f�x�� d���x�� � �����s� s�� � IE���f� � ��S� � ��A��

where the inequality follows from the one dimensional case�
Using the rotation on IRn 	 IRn given by �x� y� �� �x�yp

�
� x�yp

�
� leads to the following

observation�

Proposition �� If A�B � Cn� we have

�n�A� � �n�B� � �n�
p
	�A �B���n� �A  B�p

	
��

Proof� Using the rotational invariance of the measure �n � �n we get

��n�A 	B� �

Z
IA�x�IB�y� d�n�x� d�n�y�

�

Z
IA�

u vp
	
�IB�

v � up
	
��n�du��n�dv�

�

Z
�n��

p
	A � u� � �

p
	B  u���n�du��

Note that for u � IRn it follows that �p	A � u� � �p	B  u� is not empty if and only if
there exists a z � IRn for which z�up

�
� A and z�up

�
� B� Since that can only happen if u

lies in �A �B�

p
	 � �A  B�


p
	 we deduce that the integrand can only be non zero on

�A  B�

p
	�

Furthermore� the mapping u �� R
�n��

p
	A�u�� �p	B u���n�du� is log concave by the

Pr�ekopa�Leindler theorem� Since it is also symmetric� it is maximized at zero� Hence the

integral is bounded by �n�
p
	�A �B�� � �n� 	A�B
p

�
��

Remark� Note that for any measurable K � IRn and c � � it follows that �n�cK� �

�	���n��
R
IK�x
c� � e�jxj��� dx � cn�	���n��

R
IK�u� � e�c�juj��� du � cn�n�K�� Thus

Proposition � implies �n�A��n�B� � 	n���n�A �B� if A�B � Cn�

�



Using mn��� � �	��n���n���� we deduce the following corollaries�
Corollary 	� For A�B � Cn we have

�n�A �B� � �	��n��

mn�A  B�
�n�A��n�B��

Corollary 
� Suppose 	n is chosen so that m�		nBn
�� � �	��n��� �Note that 	n �

�p
	
�"��  

n

	
���n � �

	

r
n

e
��

Then� ��A �B� � ��A���B�� for all A�B � Cn with A�B � 	nBn
� �

In Corollary �� below we will show that� if we could replace the factor 	n by
p
n� then

the conjecture would follow� We �rst make the following observation which indicates that
it would be enough to show �C� approximately�

Proposition �� Assume that there is a sequence of positive numbers �cn� with

limn�� c
��n
n � �� so that �n�A�B� � cn�n�A��n�B�� for all n � IN and A�B � Cn� Then�

for all n � IN and A�B � Cn�

�n�A �B� � �n�A��n�B��

Proof� For each N consider AN � A 	 � � � 	A� and BN � The assumption gives�

�Nn �A �B� � �Nn�A
N �BN � � cNn �n�A��n�B��

Taking Nth roots� letting N �� and using the hypothesis� the result follows�
We now show that the conjecture holds on the average� This is true for more general

measures and more general sets�

Proposition �� Let m be the Haar measure on the orthogonal group O�n�� and let � be
a rotational invariant probability on IRn assume that A�B � IRn are two star shaped sets
with 	 being a center� i�e� for any � � Sn�� the set fr � � � r� � Ag is an interval� which
we will denote by A��

Then it follows that Z
O	n


��A � U�B�� dm�U� � ��A���B��

Proof� Since � is rotational invariant it is the image of some product probability ����n ���
being a probability on ������ under the map� Sn��	����� � ��� r� �� �r� We will also use
the fact that for any �� the measure �n is the image ofm under the map O�n� � U �� U�����
Finally we observe that for two star shaped sets A and B� with � being their center� and
for any two �� and �� we deduce that ���A� �B��� � min����A��� ��B���� � ���A�� ���B����





These observations allow us to make the following estimates�Z
O	n


��A � U�B�� dm�U� �
Z
Sn��

Z
Sn��

Z �

�

IA�
�r�IB

��
�r� d���r� d�n��� d�n��

��

�

Z
Sn��

Z
Sn��

���A� �B��� d�n��� d�n��
��

�
Z
Sn��

Z
Sn��

���A������B�� � d�n��� d�n��
��

�

Z
Sn��

���A�� d�n���

Z
Sn��

���B��� d�n��
�� � ��A���B��

which proves the claim�

Corollary �� For any r � � and any A � Cn�

�n�A � rBn
�� � �n�A��n�rB

n
� ��

Here is one example of how to use the above results�

Corollary ��� If for all n� �n�A �B� � �n�A��n�B� for all A�B � Cn for which A�B �p
nBn

� � then the inequality holds for all n and A�B � Cn�
Proof� For A�B � Cn� we have

�n�A �B� ��n�A �B �
p
nBn

�� � �n�A �
p
nBn

���n�B �pnBn
��

��n�A��n�B���n�
p
nBn

���

by Corollary ��� From the Central Limit Theorem we deduce�

�n�
p
nBn

�� � �n�

nX
i�

x�i � n� � �n�

Pn
i��x

�
i � ��p
n

� ��� �
	�

so the above Proposition applies with cn � �n�
p
nBn

���

Remark� In the above proof of Corollary ��� if c � �� one cannot substitute c
p
nBn

� forp
nBn

� �
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