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Abstract 

This paper is a highly personal and subjective account of 
how the language of statecharts came into being. The main 
novelty of the language is in being a fully executable visual 
formalism intended for capturing the behavior of complex 
real-world systems, and an interesting aspect of its history 
is that it illustrates the advantages of theoreticians 
venturing out into the trenches of the real world, "dirtying 
their hands" and working closely with the system's 
engineers.  The story is told in a way that puts statecharts 
into perspective and discusses the role of the language in 
the emergence of broader concepts, such as visual 
formalisms in general, reactive systems, model-driven 
development, model executability and code generation.  
 

 

1. Introduction 
The invitation to write a paper on statecharts for this 

conference on the history of programming languages 
produces mixed feelings of pleasant apprehension. Pleasant 
because being invited to write this paper means that 
statecharts are considered to be a programming language. 
They are executable, compilable and analyzable, just like 
programs in any “real” programming language, so that 
what we have here is not "merely" a specification language 
or a medium for requirements documentation.  The 
apprehension stems from the fact that writing a historical 
paper about something you yourself were heavily involved 
in is hard; the result is bound to be very personal and 
idiosyncratic, and might sound presumptuous. In addition 
to accuracy, the paper must also try to be of interest to 
people other than its author and his friends... 

The decision was to take the opportunity to put the 
language into a broader perspective and, in addition to 
telling its "story", to discuss some of the issues that arose 
around it. An implicit claim here is that whatever specific 
vices and virtues statecharts possess, their emergence 
served to identify and solidify a number of ideas that are of 
greater significance than one particular language.  

Some of these ideas are the general notion of a visual 
formalism, the identification of the class of reactive 
systems and the arguments for its significance and special 
character, the notion of model-based development, of 
which the UML is one of the best-known products, the 
concept of model executability and evidence of its 
feasibility, whereby high-level behavioral models 
(especially graphical ones) can and should be executed just 
like conventional computer programs, and the related 
concept of full code generation, whereby these high-level 
models are translated ― actually, compiled down ― into 
running code in a conventional language. The claim is not 
that none of these concepts was ever contemplated before 
statecharts, but rather that they became identified and 
pinpointed as part and parcel of the work on statecharts, 
and were given convincing support and evidence as a result 
thereof. 

2. Pre-1982 
I am not a programming languages person. In fact, the 

reader might be surprised to learn that the only 
programming languages I know reasonably well are PL/I 
and Basic…. I also enjoyed APL quite a bit at the time. 
However, even in classical languages like Fortran, 
PASCAL or C, not to mention more modern languages like 
C++ and Java, I haven't really done enough programming 
to be considered any kind of expert. Actually, nothing 
really qualifies me as a programming language researcher 
or developer. Prior to statecharts I had published in 
programming language venues, such as POPL, the ACM 
Symposium on Principles of Programming Languages, but 
the papers were about principles and theory, not about 
languages…. They mostly had to do with the logics of 
programs, their expressive power and axiomatics, and their 
relevance to correctness and verification.  

In 1977, while at MIT working on my PhD, I had the 
opportunity to take a summer job at a small company in 
Cambridge, MA, called Higher Order Software (HOS), 
owned and run by Margaret Hamilton and Saydean Zeldin. 
They had a method for specifying software that took the 
form of trees of functions ― a sort of functional 
decomposition if you will ― that had to adhere to a set of 
six well-formedness axioms [HZ76]. We had several 
interesting discussions, sometimes arguments, one of which 
had to do with verification. When asked how they 
recommend that one verify the correctness of a system 
described using their method, the answers usually related to 
validating the appropriateness of the syntax. When it came 
to true verification, i.e., making sure that the system does 
what you expect it to, what they were saying in a nutshell 
was, "Oh, that's not a problem at all in our method because 
we don’t allow programs that do not satisfy their 
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requirements."  In other words, they were claiming to have 
"solved" the issue of verification by virtue of disallowing 
incorrect programs in the language. Of course, this only 
passes the buck:  The burden of verifying correctness now 
lies with the syntax checker...  

This attitude towards correctness probably had to do 
with the declarative nature of the HOS approach, whereas 
had they constructed their method as an executable 
language the verification issue could not have been side-
tracked in this way and would have had to be squarely 
confronted. Still, the basic tree-like approach of the HOS 
method was quite appealing, and was almost visual in 
nature. As a result, I decided to see if the technical essence 
of this basic idea could be properly defined, hopefully 
resulting in a semantically sound, and executable, language 
for functions, based on an and/or functional decomposition. 
The "and" was intended as a common generalization of 
concurrency and sequentiality (you must do all these 
things) and the "or" a generalization of choice and 
branching (you must do at least one of these things). This 
was very similar to the then newly introduced notion of 
alternation, which had been added to classical models of 
computation in the theory community by Chandra, Kozen 
and Stockmeyer [CKS81] and about which I recall having 
gotten very excited at the time. Anyway, the result of this 
effort was a paper titled And/Or Programs: A New 
Approach to Structured Programming, presented in 1979 at 
an IEEE conference on reliable software (it later appeared 
in final form in ACM TOPLAS) [H79&80].  

After the presentation at the conference, Dr. Jonah 
Lavi (Loeb) from the Israel Aircraft Industries (IAI) 
wanted to know if I was planning to return to Israel (at the 
time I was in the midst of a postdoctoral position ― doing 
theory ― at IBM's Yorktown Heights Research Center), 
and asked if I'd consider coming to work for the IAI. My 
response was to politely decline, since the intention was 
indeed to return within a year or so, but to academia to do 
research and teaching. This short conversation turned out to 
be crucial to the statechart story, as will become clear 
shortly. 

3. December 1982 to mid 1983: The Avionics 
Motivation 
We cut now to December 1982. At this point I had 

already been on the faculty of the Weizmann Institute of 
Science in Israel for two years. One day, the same Jonah 
Lavi called, asking if we could meet. In the meeting, he 
described briefly some severe problems that the engineers 
at IAI seemed to have, particularly mentioning the effort 
underway at IAI to build a home-made fighter aircraft, 
which was to be called the Lavi (no connection with 
Jonah's surname). The most difficult issues came up, he 
said, within the Lavi's avionics team. Jonah himself was a 
methodologist who did not work on a particular project; 
rather, he was responsible within the IAI for evaluating and 
bringing in software engineering tools and methods. He 
asked whether I would be willing to consult on a one-day-
per-week basis, to see whether the problems they were 
having could be solved. 

In retrospect, that visit turned out to be a real turning 
point for me. Moreover, luck played an important part too, 

since I feel that Jonah Lavi had no particular reason to 
prefer me to any other computer scientist, except for the 
coincidence of his happening to have heard that lecture on 
and/or programs a few years earlier. Whatever the case, I 
agreed to do the consulting, having for a long time 
harbored a never-consummated dream, or "weakness", for 
piloting, especially fighter aircraft.  

And so, starting in December 1982, for several 
months, Thursday became my consulting day at the IAI. 
The first few weeks of this were devoted to sitting down 
with Jonah, in his office, trying to understand from him 
what the issues were. After a few such weeks, having learnt 
a lot from Jonah, whose broad insights into systems and 
software were extremely illuminating, I figured it was time 
to become exposed to the real project and the specific 
difficulties there. In fact, at that point I hadn't yet met the 
project's engineers at all. An opportunity for doing so 
arrived, curiously enough, as a result of a health problem 
that prevented Jonah from being in the office for a few 
weeks, so that our thinking and talking had to be put on 
hold. The consulting days of that period were spent, 
accompanied by Jonah's able assistant Yitzhak Shai, 
working with a select group of experts from the Lavi 
avionics team, among whom were Akiva Kaspi and Yigal 
Livne.  

These turned out to be an extremely fruitful few 
weeks, during which I was able to get a more detailed first-
hand idea about the problem and to take the first steps in 
proposing a solution. We shall get to that shortly, but first 
some words about avionics.  

An avionics system is a great example of what Amir 
Pnueli and I later identified as a reactive system [HP85]. 
The aspect that dominates such a system is its reactivity; its 
event-driven, control-driven, event-response nature, often 
including strict time constraints, and often exhibiting a 
great deal of parallelism. A typical reactive system is not 
particularly data intensive or calculation-intensive. So what 
is/was the problem with such systems?  In a nutshell, it is 
the need to provide a clear yet precise description of what 
the system does, or should do. Specifying its behavior is 
the real issue. 

Here is how the problem showed up in the Lavi. The 
avionics team had many amazingly talented experts. There 
were radar experts, flight control experts, electronic 
warfare experts, hardware experts, communication experts, 
software experts, etc. When the radar people were asked to 
talk about radar, they would provide the exact algorithm 
the radar used in order to measure the distance to the target. 
The flight control people would talk about the 
synchronization between the controls in the cockpit and the 
flaps on the wings. The communications people would talk 
about the formatting of information traveling through the 
MuxBus communication line that runs lengthwise along the 
aircraft. And on and on. Each group had their own 
idiosyncratic way of thinking about the system, their own 
way of talking, their own diagrams, and their own 
emphases.  

Then I would ask them what seemed like very simple 
specific questions, such as: "What happens when this 
button on the stick is pressed?" In way of responding, they 
would take out a two-volume document, written in 
structured natural language, each volume containing 
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something like 900 or 1000 pages. In answer to the 
question above, they would open volume B on page 389, at 
clause 19.11.6.10, where it says that if you press this 
button, such and such a thing occurs. At which point 
(having learned a few of the system's buzzwords during 
this day-a-week consulting period) I would say: "Yes, but 
is that true even if there is an infra-red missile locked on a 
ground target?" To which they would respond: "Oh no, in 
volume A, on page 895, clause 6.12.3.7, it says that in such 
a case this other thing happens." This to-and-fro Q&A 
session often continued for a while, and by question 
number 5 or 6 they were often not sure of the answer and 
would call the customer for a response (in this case some 
part of the Israeli Air Force team working with the IAI on 
the aircraft's desired specification). By the time we got to 
question number 8 or 9 even those people often did not 
have an answer! And, by the way, one of Jonah Lavi’s 
motivations for getting an outside consultant was the 
bothersome fact that some of the IAI's subcontractors 
refused to work from these enormous documents, claiming 
that they couldn't understand them and were in any case not 
certain that they were consistent or complete. 

In my naïve eyes, this looked like a bizarre situation, 
because it was obvious that someone, eventually, would 
make a decision about what happens when you press a 
certain button under a certain set of circumstances. 
However, that person might very well turn out to be a low-
level programmer whose task it was to write some code for 
some procedure, and who inadvertently was making 
decisions that influenced crucial behavior on a much higher 
level. Coming, as I did, from a clean-slate background in 
terms of avionics (which is a polite way of saying that I 
knew nothing about the subject matter…), this was 
shocking. It seemed extraordinary that this talented and 
professional team did have answers to questions such as 
"What algorithm is used by the radar to measure the 
distance to a target?", but in many cases did not have the 
answers to questions that seemed more basic, such as 
"What happens when you press this button on the stick 
under all possible circumstances?".  

In retrospect, the two only real advantages I had over 
the avionics people were these: (i) having had no prior 
expertise or knowledge about this kind of system, which 
enabled me to approach it with a completely blank state of 
mind and think of it any which way; and (ii) having come 
from a slightly more mathematically rigorous background, 
making it somewhat more difficult for them to convince me 
that a two-volume, 2000 page document, written in 
structured natural language, was a complete, 
comprehensive and consistent specification of the system's 
behavior. 

In order to make this second point a little more 
responsibly, let us take a look at an example taken from the 
specification of a certain chemical plant. It involves a tiny 
slice of behavior that I searched for tediously in this 
document (which was about 700 pages long). I found this 
particular piece of behavior mentioned in three different 
places in the document. The first is from an early part, on 
security, and appeared around page 10 of the document: 

 
 

Section 2.7.6: Security 
“If the system sends a signal hot then send a 
message to the operator.” 

Later on, in a section on temperatures, which was around 
page 150 of the document, it says: 

Section 9.3.4: Temperatures
“If the system sends a signal hot and T >600, 
then send a message to the operator.” 

The real gem was in the third quote, which occurred 
somewhere around page 650 of the document, towards the 
end, in a section devoted to summarizing some critical 
aspects of the system. There it says the following: 

Summary of critical aspects
“When the temperature is maximum, the system 
should display a message on the screen, unless no 
operator is on the site except when T <600.” 

Despite being educated as a logician, I've never really 
been able to figure out whether the third of these is 
equivalent to, or implies, any of the previous two… But 
that, of course, is not the point. The point is that these 
excerpts were obviously written by three different people 
for three different reasons, and that such large documents 
get handed over to programmers, some more experienced 
than others, to write the code. It is almost certain that the 
person writing the code for this critical aspect of the 
chemical plant will produce something that will turn out to 
be problematic in the best case ― catastrophic in the worst. 
In addition, keep in mind that these excerpts were found by 
an extensive search through the entire document to try find 
where this little piece of behavior was actually mentioned.  
Imagine our programmer having to do that repeatedly for 
whatever parts of the system he/she is responsible for, and 
then to make sense of it all. 

The specification documents that the Lavi avionics 
group had produced at the Israel Aircraft Industries were 
no better; if anything, they were longer and more complex, 
and hence worse, which leads to the question of how such 
an engineering team should specify behavior of such a 
system in a intuitively clear and mathematically rigorous 
fashion. These two characteristics, clarity and rigor, will 
take on special importance as our story unfolds.  

4. 1983: Statecharts Emerging  
Working with the avionics experts every Thursday for 

several weeks was a true eye-opener. At the time there was 
no issue of inventing a new programming language. The 
goal was to try to find, or to invent for these experts, a 
means for simply saying what they seemed to have had in 
their minds anyway. Despite the fact that the simple "what 
happens" questions get increasingly more complicated to 
answer, it became very clear that these engineers knew a 
tremendous amount about the intended behavior of the 
system. They understood it, and they had answers to many 
of the questions about behavior. Other questions they 
hadn't had the opportunity to think about properly because 
the information wasn't well organized in their documents, 
or even, for that matter, in their minds. The goal was to 
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find a way to help take the information that was present 
collectively in their heads and put it on paper, so to speak, 
in a fashion that was both well organized and accurate.  

Accordingly, the work progressed in the following 
way. A lot of time was spent getting them to talk; I kept 
asking questions, prodding them to state clearly how the 
aircraft behaves under certain sets of circumstances. 
Example: "What are the radar's main activities in air-
ground mode when the automatic pilot is on?"   They 
would talk and we would have discussions, trying to make 
some coherent sense of the information that piled up. 

I became convinced from the start that the notion of a 
state and a transition to a new state was fundamental to 
their thinking about the system. (This insight was 
consistent with some of the influential work David Parnas 
had been doing for a few years on the A-7 avionics 
[HKSP78].) They would repeatedly say things like, "When 
the aircraft is in air-ground mode and you press this button, 
it goes into air-air mode, but only if there is no radar locked 
on a ground target at the time". Of course, for anyone 
coming from computer science this is very familiar: what 
we really have here is a finite-state automaton, with its state 
transition table or state transition diagram.  Still, it was 
pretty easy to see that just having one big state machine 
describing what is going on would be fruitless, and not 
only because of the number of states, which, of course, 
grows exponentially in the size of the system. Even more 
important seemed to be the pragmatic point of view, 
whereby a formalism in which you simply list all possible 
states and specify all the transitions between them is 
unstructured and non-intuitive; it has no means for 
modularity, hiding of information, clustering, and 
separation of concerns, and was not going to work for the 
kind of complex behavior in the avionics system. And if 
you tried to draw it visually you’d get spaghetti of the 
worst kind. It became obvious pretty quickly that it could 
be beneficial to come up with some kind of structured and 
hierarchical extension of the conventional state machine 
formalism.  

So following an initial attempt at formalizing parts of 
the system using a sort of  temporal logic-like notation (see 
Fig. 1)1, I resorted to writing down the state-based 
behavior textually, in a kind of structured dialect made up 
on the fly that talked about states and their structure and the 
transitions between them. However, this dialect was 
hierarchical: inside a state there could be other states, and if 
you were in this state, and that event occurred, you would 
leave the current state and anything inside it and enter that 
other state, and so on. Fig. 2 shows an early example, from 
somewhere in early 1983, of one of these structured state 
protocols, or statocols, taken from my messy, scribbled 
IAI notebook.  

As this was going on, things got increasingly 
complicated. The engineers would bring up additional 
pieces of the avionics behavior, and after figuring out how 
the new stuff related to the old, I would respond by 
extending the state-based structured description, often 
having to enrich the syntax in real time... When things got 
                                                                 
1 Because of the special nature and size of some of the figures, I 

have placed them all at the end of the text, before the 
references. 

a little more complicated, I would doodle on the side of the 
page to explain visually what was meant; some of this is 
visible on the right-hand side of Fig. 2.  I clearly recall the 
first time I used visual encapsulation to illustrate to them 
the state hierarchy, and an arrow emanating from the higher 
level to show a compound "leave-any-state-inside" 
transition; see the doodling in Fig. 2 and the more orderly 
attempts in Fig. 3.  And I also remember the first time I 
used side-by-side adjacency for orthogonal (concurrent) 
state components, denoted ― after playing with two or 
three possible line styles ― by a dashed line; see Fig. 4. 
However, it is important to realize that, at the time, these 
informal diagrams were drawn in order to explain what the 
nongraphical state protocols meant. The text was still the 
real thing and the diagrams were merely an aid.  

After a few of these meetings with the avionics 
experts, it suddenly dawned on me that everyone around 
the table seemed to understand the back-of-napkin style 
diagrams a lot better and related to them far more naturally. 
The pictures were simply doing a much better job of setting 
down on paper the system's behavior, as understood by the 
engineers, and we found ourselves discussing the avionics 
and arguing about them over the diagrams, not the 
statocols. Still, the mathematician in me argued thus: "How 
could these doodled diagrams be better than the real 
mathematical-looking artifact?" (Observe Fig. 2 again, to 
see the two options side by side.) So it really took a leap of 
faith to be able to think: "Hmmm… couldn't the pictures be 
turned into the real thing, replacing, rather than 
supplementing, the textual structured programming-like 
formalism?" And so, over a period of a few weeks the 
scales tipped in favor of the diagrams. I gradually stopped 
using the text, or used it only to capture supplementary 
information inside the states or along transitions, and the 
diagrams became the actual specification we were 
constructing; see Figs. 5–9.  

Of course, this had to be done in a responsible way, 
making sure that the emerging pictures were not just 
pictures; that they were not just doodling. They had to be 
rigorous, based on precise mathematical meaning. You 
couldn't just throw in features because they looked good 
and because the avionics team seemed to understand them. 
Unless the exact meaning of an intended feature was given, 
in any allowed context and under any allowed set of 
circumstances, it simply couldn't be considered.  

This was how the basics of the language emerged. I 
chose to use the term statecharts for the resulting 
creatures, which was as of 1983 the only unused 
combination of "state" or "flow" with "chart" or "diagram". 

5. On the Language Itself  
Besides a host of other constructs, the two main ideas 

in statecharts are hierarchy and orthogonality, and these 
can be intermixed on all levels: You start out with classical 
finite-state machines (FSMs) and their state transition 
diagrams, and you extend them by a semantically 
meaningful hierarchical substating mechanism and by a 
notion of orthogonal simultaneity. Both of these are 
reflected in the graphics themselves, the hierarchy by 
encapsulation and the orthogonality by adjacent portions 
separated by a dashed line. Orthogonal components can 
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cooperate and know about each other by several means, 
including direct sensing of the state status in another 
component or by actions. The cooperation mechanism ― 
within a single statechart I should add ― has a 
broadcasting flavor.  

Transitions become far more elaborate and rich than 
in conventional FSMs. They can start or stop at any level 
of the hierarchy, can cross levels thereof, and in general 
can be hyperedges, since both sources and targets of 
transitions can contain sets of states. In fact, at any given 
point in time a statechart will be in a vector, or 
combination, of states, whose length is not fixed. Exiting 
and entering orthogonal components on the various levels 
of the hierarchy continuously changes the size of the state 
vector.  Default states generalize start states, and they too 
can be level-crossing and of hyperedge nature. And the 
language has history connectors, conditions, selection 
connectors, and more. A transition can be labeled with an 
event and optionally also with a parenthesized condition, as 
well as with Mealy-like outputs, or actions. (Actions can 
also occur within states, in the Moore style.) 

The fact that the technical part of the statecharts story 
started out with and/or programs is in fact very relevant. 
Encapsulated substates represent OR (actually this is XOR; 
exclusive or), and orthogonality is AND. Thus, a 
minimalist might view statecharts as a state-based language 
whose underlying structuring mechanism is simply that of 
classical alternation [CKS81]. Figs. 9 and 10 exemplify this 
connection by showing a state hierarchy for a part of the 
Lavi avionics statecharts and then the and/or tree I used to 
explain to the engineers in a different way what was 
actually going on. 

In order to make this paper a little more technically 
informative, I will now carry out some self-plagiarism, 
stealing and then modifying some of the figures and 
explanations of the basic features of the language from the 
original statechart paper [H84&87].  However, the reader 
should not take the rest of this section as a tutorial on the 
language, or as a language manual. It is extremely 
informal, and extremely partial. I am also setting it in 
smaller font, and slightly indented, so that you can skip it 
completely if you want.   For more complete accounts, 
please refer to [H84&87, HN89&96, HP91, HK04]. 

 

 In way of introducing the state hierarchy, consider Fig. 
11(i). It shows a very simple four-state chart. Notice, 
however, that event β takes the system to state B from either 
A or C, and also that δ takes the system to D from either of 
these. Thus, we can cluster A and C into a new superstate, 
E, and replace the two β transitions and the two δ ones by a 
single transition for each, as in Fig. 11(ii). The semantics of 
E is then the XOR of A and C; i.e., to be in state E one must 
be either in A or in C, but not in both. Thus E is really an 
abstraction of A and C, and its outgoing β and δ arrows 
capture two common properties of A and C; namely, that β 
leads from them to B and δ to D. The decision to have 
transitions that leave a superstate denote transitions leaving 
all substates turns out to be highly important, and is one of 
the main ways statecharts economize in the number of 
arrows.  

Fig. 11 might also be approached from a different angle: 
first we might have decided upon the simple situation of Fig. 

11(iii) and then state E could have been refined to consist of 
A and C, yielding Fig. 11(ii). Having decided to make this 
refinement, however, the transitions entering E in Fig. 
11(iii), namely, α, δ and γ, become underspecified, as they 
do not say which of A or C is to be entered. This can be 
remedied in a number of ways. One is to simply extend them 
to point directly to A or C, as with the α-arrow entering A 
directly in Fig. 11(ii). Another is to use multi-level default 
entrances, as we now explain. 

Fig. 11(i) has a start arrow pointing to state A. In finite 
automata this means simply that the automaton starts in state 
A.  In statecharts this notion is generalized to that of a 
default state, which, in the context of Fig. 11 is taken to 
mean that as far as the 'outside' world is concerned A is the 
default state among A, B, C and D: if we are asked to enter 
one of these states but are not told which one to enter, the 
system is to enter A. In Fig. 11(i) this is captured in the 
obvious way, but in Fig. 11(ii) it is more subtle. The default 
arrow starts on the (topological) outside of the superstate E 
and enters A directly. This does not contradict the other 
default arrow in Fig. 11(ii), which is (topologically) wholly 
contained inside E and which leads to C. Its semantics is that 
if we somehow already entered E, but inside E we are not 
told where to go, the inner default is C, not A. This takes 
care of the two otherwise-underspecified transitions entering 
(and stopping at the borderline of) state E, those labeled δ 
and γ, emanating from B and D, respectively, and which 
indeed by Fig. 11(i) are to end up in C, not in A. Thus, Figs. 
11(i) and 11(ii) are totally equivalent in their information, 
whereas Fig. 11(iii) contains less information and is thus an 
abstraction. 

Besides the default entrance, there are other special ways 
to enter states, including conditional entries, specified by a 
circled C, and history entrances, specified by a circled H. 
The latter is particularly interesting, as it allows one to 
specify entrance to the substate most recently visited within 
the state in question, and thus caters for a (theoretically very 
limited, but in practice useful) kind of memory. In both of 
these, the connector's location within the state hierarchy has 
semantic significance.  

So much for the hierarchical XOR decomposition of 
states. The second notion is the AND decomposition, 
capturing the property that, being in a state, the system must 
be in all of its components. The notation used in statecharts 
is the physical partitioning of a state box (called blob in 
[H88]) into components, using dashed lines. 

Figure 12(i) shows a state Y consisting of AND 
components A and D, with the property that being in Y 
entails being in some combination of B or C with E, F or G. 
We say that Y is the orthogonal product of A and D. The 
components A and D are no different conceptually from any 
other superstates; they can have defaults, substates, internal 
transitions, etc.  Entering Y from the outside, in the absence 
of any additional information (like the τ entrance on the 
right hand side of Fig. 12(ii)), is actually entering the 
combination (B,F), as a result of the default arrows that lead 
to B and F. If event α then occurs, it transfers B to C and F 
to G simultaneously, resulting in the new combined state 
(C,G). This illustrates a certain kind of synchronicity: a 
single event causing two simultaneous happenings. If, on the 
other hand, μ occurs at (B, F) it affects the D component 
only, resulting in (B,E). This, in turn, illustrates a certain 
kind of independence, since the transition is the same 
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whether, in component A, the system happens to be in B or 
in C. Both behaviors are part of the orthogonality of A and 
D, which is the term used in statecharts to describe the AND 
decomposition. Later we shall discuss the difference 
between orthogonality and concurrency, or parallelism. 

Fig. 12(ii) shows the same orthogonal state Y, but with 
some transitions to and from it. As mentioned, the τ entrance 
on the right enters (B,F), but the λ entrance, on the other 
hand, overrides D's default by entering G directly. But since 
one cannot be in G alone, the system actually enters the 
combination (B,G), using A's default. The split ξ entrance on 
the top of Fig. 12(ii) illustrates an explicit indication as to 
which combination is to be entered, (B, E) in this case. The 
γ-event enters a history connector in the area of D, and 
hence causes entrance to the combination of B (A's default) 
with the most recently visited state in D. As to the exits in 
Fig. 12(ii), the ω-event causes an exit from C combined with 
any of the three substates of D ─ again a sort of 
independence property. Had the ω arrow been a merging 
hyper-edge (like the ξ one, but with the direction reversed) 
with C and, say, G, as its sources, it would have been a 
direct specification of an exit from (C,G) only. The most 
general kind of exit is the one labeled χ on the left hand side 
of the figure, which causes control to leave A×D 
unconditionally.  

Fig. 13(i) is the conventional AND-free equivalent of 
Fig. 12(i), and has six states because the components of Fig. 
12(i) contain two and three. Clearly, if these had a thousand 
states each, the resulting "flat" product version would have a 
million states. This, of course, is the root of the exponential 
blow-up in the number of states, which occurs when 
classical finite state automata or state diagrams are used, and 
orthogonality is our way of avoiding it. (This last comment 
assumes, of course, that we are specifying using the state-
based language alone, not embedded in objects or tasks, etc.)  
Note that the "in G" condition attached to the β-transition 
from C in Fig. 12(i) has the obvious consequence in Fig. 
13(i): the absence of a β-transition from (C,E). Fig 13(ii) 
adds to this the ω and χ exiting transitions of Fig. 12(ii), 
which now show up as rather messy sets of three and six 
transitions, respectively.   

Fig. 14 illustrates the broadcast nature of inter-statechart 
communication. If after entering the default (B,F,J) event φ 
occurs, the statechart moves to (C,G,I), since the φ in 
component H triggered the event α, which causes the 
simultaneous moves from B to C in component A and from 
F to G in D. Now, if at the next stage a ψ occurs, I moves 
back to J, triggering β, which causes a move from C to B, 
triggering γ, which in turn causes a move from G to F. Thus, 
ideally in zero time (see Section 10), the statechart goes in 
this second step from (C,G,I) back to (B,F,J). 

As mentioned above, the language has several additional 
features, though the notions of hierarchy and orthogonality 
are perhaps its two most significant ones. Besides language 
features, there are also several interesting semantic issues 
that arise, such as how to deal with nondeterminism, which 
hasn't been illustrated here at all, and synchronicity.  
References [HN89&96, HP91, HK04] have lots of 
information on these, and Sections 6 and 10 of this paper 
discuss some of them too.   

So much for the basics of the language. 

6. Comments on the Underlying Philosophy 
When it comes to visuality, encapsulation and side-

by-side adjacency are topological notions, just like edge 
connectivity, and are therefore worthy companions to 
edges in hierarchical extensions of graphs. Indeed, I 
believe that topology should be used first when designing a 
graphical language and only then one should move on to 
geometry. Topological features are a lot more fundamental 
than geometric ones, in that topology is a more basic 
branch of mathematics than geometry in terms of 
symmetries and mappings. One thing being inside another 
is more basic than it being smaller or larger than the other, 
or than one being a rectangle and the other a circle. Being 
connected to something is more basic than being green or 
yellow or being drawn with a thick line or with a thin line. 
I think the brain understands topological features given 
visually much better than it grasps geometrical ones. The 
mind can see easily and immediately whether things are 
connected or not, whether one thing encompasses another, 
or intersects it, etc. See the discussion on higraphs [H88] 
in Section 8.   

Why this emphasis on topology, you may ask?  Well, 
I’ve always had a (positive) weakness for this beautiful 
branch of mathematics.  I love the idea of an “elastic 
geometry”, if one is allowed a rather crude definition of it; 
the fact that two things are the same if the one can be 
stretched and squeezed to become the other. I remember 
being awed by Brouwer’s fixed-point theorem, for 
example, and the Four-Color problem (in 1976 becoming 
the Four-Color Theorem). In fact, I started my MSc work 
in algebraic topology before moving over to theoretical 
computer science. This early love definitely had an 
influence on the choices made in designing statecharts. 

Statecharts are not exclusively visual/diagrammatic. 
Their non-visual parts include, for example, the events that 
cause transitions, the conditions that guard against taking 
transitions and actions that are to be carried out when a 
transition is taken. For these, as mentioned earlier, 
statecharts borrow from both the Moore and the Mealy 
variants of state machines (see [HU79], in allowing actions 
on transitions between states or on entrances to or exits 
from states, as well as conditions that are to hold 
throughout the time the system is in a state. Which 
language should be used for these nongraphical elements is 
an issue we will discuss later.  

Of course, the hierarchy and orthogonality constructs 
are but abbreviations and in principle can be eliminated: 
Encapsulation can be done away with simply by flattening 
the hierarchy and writing everything out explicitly on the 
low level, and orthogonality (as Figs. 12 and 13 show) can 
be done away with by taking the Cartesian product of the 
components of the orthogonal parts of the system. This 
means that these features do not strictly add expressive 
power to FSMs, so that their value must be assessed by 
"softer" criteria, such as naturalness and convenience, and 
also by the size of the description: Orthogonality provides a 
means for achieving an exponential improvement in 
succinctness, in both upper- and lower-bound senses 
[DH88, DH94]. 

A few words are in line here regarding the essence of 
orthogonality. Orthogonal state-components in statecharts 
are not the same as concurrent or parallel components of 
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the system being specified. The intention in having 
orthogonality in a statechart is not necessarily to represent 
the different parts of the system, but simply to help 
structure its state space, to help arrange the behavior in 
portions that are conceptually separate, or independent, or 
orthogonal. The word 'conceptually' is emphasized here 
because what counts is whatever is in the mind of the 
"statifier" ― the person carrying out the statechart 
specification.  

This motivation has many ramifications. Some people 
have complained about the broadcast communication 
mechanism of statecharts because it's quite obvious that 
you do not always want to broadcast things to an entire 
system. One response to this is that we are talking about the 
mechanism for communication between the orthogonal 
parts of the statechart, between its "chunks" of state-space, 
if you will, not between the components ― physical or 
software components ― of the actual system. The 
broadcasting is one of the means for sensing in one part of 
the state space what is going on in another part. It does not 
necessarily reflect an actual communication in the real 
implementation of the system. So, for example, if you want 
to say on a specification level that the system will only 
move from state A to state B if the radar is locked on a 
target, then that is exactly what you'll say, without having 
to worry about how state A will get to know what the radar 
is doing. This is true whether or not the other state 
component actually represents a real thing, such as the 
radar, or whether it is a non-tangible state chunk, such as 
whether the aircraft is in air-air mode or in air-ground 
mode. On this kind of level of abstraction you often really 
want to be able to sense information about one part of the 
specification in another, without having to constantly deal 
with implementation details.  

A related response to the broadcasting issue is that no 
one is encouraged to specify a single statechart for an 
entire system.2  Instead, as discussed in Sections 7 and 9, 
one is expected to have specified some breakup of the 
system itself, into functions, tasks, objects, etc., and to have 
a statechart (or code) for each of these. In this way, the real 
concurrency, the real separate pieces of the system, occur 
on a level higher than the statecharts, which in turn are 
used to specify the behavior of each of these pieces. If 
within a statechart the behavior is sufficiently complex to 
warrant orthogonal components, then so be it. In any case, 
the broadcast mechanism is intended to take effect only 
within a single statechart, and has nothing to do with the 
real communication mechanism used for the system itself.  

By the way, some of the people who have built tools 
to support statecharts have chosen to leave orthogonality 
out of the language altogether, claiming that statecharts 
don't need concurrency since concurrency is present 
anyway between the objects of the system... Notable 
among these is the ObjectTime tool, which later evolved 
into RoseRT.  My own opinion is that orthogonality is 
probably the most significant and powerful feature of the 
language, but also the most complex aspect of statecharts to 
                                                                 
2  This is said despite the fact that in the basic paper on statecharts 

[H84&87], to be discussed later, I used a single statechart to 
describe an entire system, the Citizen digital-watch. That was 
done mainly for presentational reasons. 

deal with. So, the decision to leave it out is often made 
simply to render the task of building a tool that much 
easier… 

Let us return briefly to the two key adjectives used 
earlier, namely "clear" and "precise", which underlie the 
choice of the term visual formalism [H84&87,H88]. 
Concerning clarity, the aphorism that a picture is worth a 
thousand words is something many people would agree 
with, but it requires caution. Not everything can be 
visualized; not everything can be depicted visually in a way 
that is clear and fitting for the brain. (This is related to the 
discussion above about topology versus geometry.) For 
some mysterious reason, the basic graphics of statecharts 
seemed from the very start to vibe well with the avionics 
engineers at the IAI. They were very fast in grasping the 
hierarchy and the orthogonality, the high- and low-level 
transitions and default entries, and so forth.  

Interestingly, the same seemed to apply to people 
from outside our small group. I recall an anecdote from 
somewhere in late 1983, in which in the midst of one of the 
sessions at the IAI the blackboard contained a rather 
complicated statechart that specified the intricate behavior 
of some portion of the Lavi avionics system. I don't quite 
remember now, but it was considerably more complicated 
than the statecharts in Figs. 7–9. There was a knock on the 
door and in came one of the air force pilots from the 
headquarters of the project. He was a member of the 
"customer" requirements team, so he knew all about the 
intended aircraft (and eventually he would probably be able 
to fly one pretty easily too…), was smart and intelligent, 
but he had never seen a state machine or a state diagram 
before, not to mention a statechart. He stared for a moment 
at this picture on the blackboard, with its complicated mess 
of blobs, blobs inside other blobs, colored arrows splitting 
and merging, etc., and asked "What's that?" One of the 
members of the team said "Oh, that's the behavior of the 
so-and-so part of the system, and, by the way, these 
rounded rectangles are states, and the arrows are transitions 
between states". And that was all that was said. The pilot 
stood there studying the blackboard for a minute or two, 
and then said, "I think you have a mistake down here, this 
arrow should go over here and not over there"; and he was 
right.   

For me, this little event was significant, as it really 
seemed to indicate that perhaps what was happening was 
"right", that maybe this was a good and useful way of 
doing things. If an outsider could come in, just like that, 
and be able to grasp something that was pretty complicated 
but without being exposed to the technical details of the 
language or the approach, then maybe we are on the right 
track. Very encouraging.  

So much for clarity and visuality.  As to precision and 
formality, later sections discuss semantics and supporting 
tools in some detail, but for now it suffices to say that one 
crucial aspect that was central to the development of the 
language from day one was executability. Being able to 
actually execute the specification of the Lavi's behavior 
was paramount in my mind, regardless of the form this 
specification ended up taking. I found it hard to imagine 
the usefulness of a method for capturing behavior that 
makes it possible merely to say some things about 
behavior, to give snippets of the dynamics, observations 
about what happens or what could happen, or to provide 
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some disconnected or partially connected pieces of 
behavior. The whole idea was that if you build a statechart, 
or a collection of statecharts, everything has to be rigorous 
enough to be run, to be executable, just like software 
written in any old (or new…) programming language. 
Whether the execution is carried out in an interpreter mode 
or in a compiler mode is a separate issue, one to which 
we'll return later on. The main thing is that executability 
was a basic, not-to-be-compromised, underlying concern 
during the process of designing the language.  

This might sound strange to the reader from his/her 
present vantage point, but back in 1983 system-
development tools did not execute models at all, something 
else we shall return to later. Thus, turning the doodling into 
a language and then adding features to it had to be done 
with great care. You had to have a full conception of what 
each syntactically allowed combination of features in the 
language means, in terms of how it is to be executed under 
any set of circumstances. 

7. 1984–1986: Building a Tool 
Once the basics of the language were there, it seemed 

natural to want to build a tool that would have the ability 
not only to draw, or prepare, statecharts but also to execute 
them. Besides having to deal with the operational semantics 
of graphical constructs, such a tool would have to deal with 
the added complication of statecharts over and above 
classical finite-state machines: A typical snapshot of a 
statechart in operation contains not just a single state, but 
rather a vector, or an array, of states, depending on which 
orthogonal components the chart is in at the moment. Thus, 
this vector is flexible, given the basic maxim of the 
language, which is that states can be structured with a 
mixture of hierarchy and orthogonality and that transitions 
can go between levels. The very length of the vector of 
states changes as behavior progresses.  

In a discussion with Amir Pnueli in late 1983, we 
decided to take on a joint PhD student and build a tool to 
support statecharts and their execution. Amir was, and still 
is, a dear colleague at the Weizmann Institute and  had also 
been my MSc thesis supervisor 8-9 years earlier. Then, at 
some point, a friend of ours said something like, "Oh fine, 
you guys will build your tool in your academic setting, and 
you'll probably write some nice academic papers about it." 
And then he added, "You see, if this statechart stuff is just 
another idea, then whatever you do will not make much 
difference anyway, but if it has the potential of becoming 
useful in the real world then someone else is going to build 
a commercial tool around it; they will be the ones who get 
the credit, they will make the money and the impact, and 
you guys will be left behind". This caused us to rethink our 
options, a process that resulted in the founding of a 
company in Israel in April 1984, by the name of AdCad, 
Ltd. The two main founders were the brothers Ido and Hagi 
Lachover, and Amir Pnueli and I joined in too. The other 
three had previously owned a software company involved 
in totally different kinds of systems, but in doing so had 
acquired the needed industrial experience. The company 
was re-formed in 1987 as a USA entity, called I-Logix, 

Inc., and AdCad became its R&D branch, renamed as I-
Logix Israel, Ltd.3

By 1986 we had built a tool for statecharts called 
Statemate. At the heart of a Statemate model was a 
functional decomposition controlled by statecharts. The 
user could draw the statecharts and the model's other 
artifacts, could check and analyze them, could produce 
documents from them, and could manage their 
configurations and versions. However, most importantly, 
Statemate could fully execute them. It could also generate 
from them, automatically, executable code; first in Ada and 
later also in C.  

Among the other central figures during that period 
were Rivi Sherman and Michal Politi. In fact, it was in 
extensive discussions with Rivi, Michal and Amir that we 
were able to figure out how to embed statecharts into the 
broader framework that would capture the structure and 
functionality of a large complex system. To this end, we 
came up with the diagrammatic language that was used in 
Statemate for the hierarchical functional structuring of the 
model, which we called activity-charts. An activity-chart 
is an enriched kind of hierarchical data-flow diagram, 
where the semantics of arrows is the possible flow of 
information between the incident functions (which are 
called activities). Each activity could be associated with a 
controlling statechart (or with code), which would also be 
responsible for inter-function communication and 
cooperation. Statemate also enabled you to specify the 
actual structure of the system, using module-charts, which 
specify the real components in the implementation of the 
system and their connections.  In this way, the tool 
supported a three-way model-based development 
framework for systems: structure, functionality and 
behavior.   

Statemate is considered by many to be the first real-
world tool to carry out true model executability and full 
code generation. I think it is not a great exaggeration to 
claim that the ideas underlying Statemate were really the 
first serious proposal for model-driven system 
development. These ideas were perhaps somewhat before 
their time, but were of significance in bringing about the 
eventual change in attitude that I think permeates modern-
day software engineering. The recent UML effort and its 
standardization by the OMG (see Section 10) can be 
viewed a subsequent important step in steering software 
and systems engineering towards model-driven 
development. 

Setting up the links between the statecharts and the 
activity-charts turned out to be very challenging, requiring 
among other things that we enrich the events, conditions 
and actions in the statecharts so that they could relate to the 
starting and stopping of activities, the use of variables and 
data types, time-related notions, and much more.  After 
working all this out and completing the first version of 
Statemate in early 1986, we came across the independent 

                                                                 
3 I-Logix survived as a private stand-alone company for 22 long 

years, amid the many dips in high-tech. In recent years I 
maintained a very inactive and low-profile connection with the 
company, until it was acquired by Telelogic in March 2006. As 
of the time of writing I have no connection with either. 
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work of Ward and Mellor [WM85] and Hatley and Pirbhai 
[HP87], who also linked a functional decomposition with a 
state-based language (theirs was essentially conventional 
FSMs). It was very satisfying to see that many of the 
decisions about linking up the two were common to all 
three approaches. Several years later, Michal Politi and I 
sat down to write up a detailed report about the entire 
Statemate language set, which appeared as a lengthy 
technical report from I-Logix [HP91]. It took several years 
more for us to turn this into a fully fledged book [HP96]. 

Statemate had the ability to link the model to a GUI 
mockup of the system under development (or even to the 
real system hardware). Executability of the model could be 
done directly or by using the generated code, and could be 
carried out in many ways with increasing sophistication. 
You could execute the model interactively (with the user 
playing the role of the system's environment), in batch 
mode (reading in external events from files), or in 
programmed mode. Just as one example, you could use 
breakpoints and random events to help set up and control a 
complex execution from which you could gather the results 
of interest. In principle, you could thus set Statemate up to 
"fly the aircraft" for you, and then come in the following 
day and find out what had happened. See [H92] for a more 
detailed discussion of model execution possibilities.  

During the two years of the development of 
Statemate, Jonah Lavi from the IAI and his team were also 
very instrumental. They served as a highly useful beta site 
for the tool and also participated in making some of the 
decisions around its development. Jonah's ideas were 
particularly influential in the decision to have module-
charts be part of Statemate.  

Over the years, I-Logix built a number of additional 
tools, notable among which was a version of Statemate for 
hardware design, in which the statecharts were translated 
into a high-level hardware-description language. Much 
later, in the mid-1990's, we built the Rhapsody tool, based 
on object-oriented statecharts, about which we will have 
more to say in Section 9.  

In the early years of I-Logix, I tried hard ― but failed 
― to convince the company's management to produce a 
cheap (or free) version of Statemate for use by students. 
My feeling was that students of programming and software 
engineering should have at their disposal a simple tool for 
drawing and executing statecharts, connected to a GUI, so 
that they could build running applications easily using 
visual formalisms. This could have possibly expedited the 
acceptance of statecharts in industry. Instead, since 
Statemate was the only serious statechart tool around but 
was so very expensive, many small companies, university 
teachers and students simply couldn't afford it. Things have 
changed, however, and companies building such tools, 
including I-Logix, typically have special educational deals 
and/or simplified versions that can be downloaded free 
from the internet. 

8. The Woes of Publication 
In November 1983, I wrote an internal document at 

the IAI (in Hebrew), titled "Foundations of the State-Based 
Approach to The Description of System Operation (see 
Figs. 15-16), which contained an initial account of 

statecharts. At the time, my take was that this was but a 
nice visual way to describe states and transitions of more 
complex behavior than could be done conveniently with 
finite-state diagrams. I felt that the consulting job at IAI 
had indeed been successful, resulting, as it were, in 
something of use to the engineers of the Lavi avionics 
project. I had given no thought to whether this was indeed 
particularly new or novel, believing that anyone seriously 
working with state machines for real-world systems was 
probably doing something very similar. It seemed too 
natural to be new. After all, hierarchy, modularity and 
separation of concerns were engrained in nearly everything 
people were writing about and developing for the 
engineering of large systems.   

Then one day, in a routine conversation with Amir 
Pnueli (this preceded the conversation reported above that 
resulted in our co-founding AdCad/I-Logix), he asked me, 
out of curiosity, what exactly I was doing at the Aircraft 
Industries on Thursdays. So I told him a little about the 
avionics project and the problem of specifying behavior, 
and then added something about proposing what seemed to 
be a rather natural extension of finite-state diagrams. He 
said that it sounded interesting and asked to see what the 
diagrams looked like. So I went to the blackboard (actually, 
a whiteboard; see the photo in Fig.17, taken a few months 
later) and spent some time showing him statecharts. He 
said something to the effect that he thought this was nice 
and interesting, to which I said, "Maybe, but I'm certain 
that this is how everyone works". He responded by saying 
that he didn't think so at all and proceeded to elaborate 
some more. Now, although we were both theoreticians, he 
had many more years of experience in industry (e.g., as 
part of the company he was involved in with the Lachover 
brothers), and what he said seemed convincing. After that 
meeting it made sense to try to tell the story to a broader 
audience, so I decided to write a "real" paper and try to get 
it published in the computer science literature.  

The first handwritten version was completed in mid-
December of 1983 (see Fig. 18). In this early version the 
word statification was used to denote the process of 
preparing a statechart description of a system. The paper 
was typed up, then revised somewhat (including the title) 
and was distributed as Technical Report CS84-05 of our 
Department at the Weizmann Institute in February of 1984 
[H84&87]; see Fig. 19. 

The process leading to the eventual publication of this 
paper is interesting in its own right. For almost two years, 
from early 1984 until late 1985, I repeatedly submitted it to 
what seemed to be the most appropriate widely read venues 
for such a topic. These were, in order, Communications of 
the ACM, IEEE Computer and IEEE Software. The paper 
was rejected from all three of these journals. In fact, from 
IEEE Computer it was rejected twice ― once when 
submitted to a special issue on visual languages and once 
when submitted as a regular paper. My files contain quite 
an interesting collection of referee reports and editors' 
rejection letters. Here are some of the comments therein: 

 

"I find the concept of statecharts to be quite interesting, but 
unfortunately only to a small segment of our readership. I 
find the information presented to be somewhat innovative, 
but not wholly new. I feel that the use of the digital watch 
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example to be useful, but somewhat simple in light of what 
our readership would be looking for." 

"The basic problem […] is that […] the paper does not 
make a specific contribution in any area." 

"A research contribution must contain 'new, novel, basic 
results'. A reviewer must certify its 'originality, significance, 
and accuracy'. It must contain 'all technical information 
required to convince other researchers in the area that the 
results are valid, verifiable and reproducible'. I believe that 
you have not satisfied these requirements." 

"I think your contribution is similar to earlier 
contributions." 

 "The paper is excellent in technical content; however, it is 
too long and the topic is good only for a very narrow 
audience." 

 "I doubt if anyone is going to print something this long." 
Indeed, the paper was quite long; it contained almost 

50 figures. The main running example was my Citizen 
Quartz Multi-Alarm digital wristwatch (see Fig. 20), which 
was claimed in the rejection material by some to be too 
simple an example for illustrating the concepts and by 
others to be far too detailed for a scientific article… Some 
claimed that since the paper was about the much studied 
finite-state machine formalism it could not contain 
anything new or interesting… 

One must understand that in the mid-1980s there was 
only scant support for visual languages.  Visual 
programming in the classical sense had not really 
succeeded; it was very hard to find ways to visualize 
nontrivial algorithmic systems (as opposed to visualizing 
the dynamic running of certain algorithms on a particular 
data structure), and the only visual languages that seemed 
to be successful in system design were those intended to 
specify structure rather than behavior. Flowcharts, of 
course, were a failure in that most people used them to help 
explain the real thing, which was the computer program. 
There was precious little real use of flowcharts as a 
language that people programmed in and then actually 
executed. In terms of languages for structure, there were 
structure diagrams and structure charts, hierarchical tree-
like diagrams, and so on. The issue of a visual language 
with precise semantics for specifying behavior was not 
adequately addressed at all.  Petri nets were an exception 
[R85], but except for some telecommunication applications 
they did not seem to have caught on widely in the real 
world. My feeling was that this had mainly to do with the 
lack of adequate support in Petri nets for hierarchical 
specification of behavior.  

The state of the art on diagrammatic languages at the 
time can be gleaned from the book by Martin and McClure 
titled Diagramming Techniques for Analysts and 
Programmers [MM85]. This book discussed many visual 
techniques, but little attention was given to the need for 
solid semantics and/or executability. Curiously, this book 
could have helped convince people that visual languages 
should not be taken seriously as means to actually program 
a system the way a standard programming language can.  

Coming back to the statecharts paper, the inability to 
get it published was extremely frustrating. Interestingly, 
during the two years of repeated rejections, new printings 
of the 1984 technical report had to be prepared, to address 
the multitude of requests for reprints. This was before the 
era of the internet and before papers were sent around 
electronically. So here was a paper that no one wanted to 
publish but that so many seemed to want to read... I revised 
the paper twice during that period, and the title changed 
again, to the final "Statecharts: A Visual Formalism for 
Complex Systems". Eventually, two and half years later, in 
July 1987, the paper was published in the theoretical 
journal Science of Computer Programming [H84&87]. 
That happened as a result of Amir Pnueli, who was one of 
its editors, seeing the difficulties I was having and 
soliciting the paper for the journal.4  

In the revisions of the paper carried out between 1984 
and 1987, some small sections and discussions that 
appeared in earlier versions were removed. One topic that 
appeared prominently in the original versions and was later 
toned down, appearing only in a very minimalistic way in 
the final paper, was the idea of having states contain state 
protocols, or statocols. These were to include information 
about the behavior that was not present in the charts 
themselves. The modern term for this kind of information 
behavior is the action language, i.e., the medium in which 
you write your events, conditions, actions, etc. The 
question of whether the action language should be part of 
the specification language itself or should be taken to be a 
subset of a conventional programming language is the 
subject of a rather heated debate that we will return to later.   

A few additional papers on statecharts were written 
between 1984 and 1987. One was the paper written jointly 
with Pnueli on reactive systems [HP85]. It was born 
during a plane trip that we took together, flying to or from 
some conference. We were discussing the special nature of 
the kinds of systems for which languages like statecharts 
seemed particularly appropriate. At some point I 
complained about the lack of a special term to denote them, 
to which he responded by saying he thought such systems 
should be termed reactive. "Bingo", I said, "we have a new 
term”! Interestingly, this paper (which also contained a few 
sections describing statecharts) was written about two years 
after the original statecharts paper, but was published (in a 
NATO conference proceedings) a year earlier…  

Another paper written during that period was actually 
published without any trouble at all, in the 
Communications of the ACM [H88]. It concentrates on the 
graphical properties of the statecharts language, 
disregarding the intended semantics of nodes as dynamic 
                                                                 
4 A note on the title page of the published version states that the 
paper was "Received December 1984, Revised July 1986". The 
first of these is an error – probably made in the typesetting stage – 
since submission to Pnueli was made in December 1985.  By the 
way, this story of the repeated rejections of the paper would not 
be as interesting were it not for the fact that in the 20 years or so 
since its publication it has become quite popular. According to 
Citeseer, it has been for several years among the top handful of 
most widely quoted papers in computer science, measured by 
accumulated citations since publication (in late 2002 it was in the 
second place on the list). 
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states and edges as transitions. The paper defined a 
higraph to be the graphical artifact that relates to a directed 
graph just as a statechart relates to a finite-state diagram.5 
The idea was to capture the notions of hierarchy, 
orthogonality, multilevel and multinode transitions, 
hyperedges, and so on, in a pure set-theoretic framework. It 
too contains material on statecharts (and a simplified 
version of the digital-watch example) and since it appeared 
in a journal with a far broader readership than Science of 
Computer Programming it is often used as the de facto 
reference to statecharts. 

The third paper that should be mentioned here was on 
the semantics of statecharts [HPSR87]. It was written 
jointly with the "semantics group" ― the people involved 
in devising the best way to implement statecharts in 
Statemate ― and provided the first formal semantics of the 
language. However, some of the basic decisions we made 
in that paper were later changed in the design of the tool, as 
discussed in Section 10.  

Another paper was the one written on the Statemate 
tool itself [H+88&90], co-authored by the entire Statemate 
team at Ad-Cad/I-Logix.  Its appeal, I think, goes beyond 
the technical issue of showing how statecharts can be 
implemented (the lack of which several of the referees of 
the basic statecharts paper complained about). In 
retrospect, as mentioned earlier, it set the stage for and 
showed the feasibility of the far broader concepts of 
model-driven development, true model executability and 
full code generation. These are elaborated upon in a later, 
more philosophical paper, "Biting the Silver Bullet" [H92], 
which also contained a rebuttal of Fred Brooks' famous 
"No Silver Bullet" paper [B87]. 

 
To close this section, an unfortunate miscalculation 

with regards to publication should be admitted. This was 
my failure to write a book about the language early on. As 
mentioned in the previous section, it was only in 1996 that 
the book with Michal Politi on Statemate was published 
[HP96]. This was definitely a mistake. I did not realize that 
most engineers out there in the real world rarely have the 
time or inclination to read papers, and even if they do they 
very rarely take something in a paper seriously enough to 
become part of the their day-to-day practice. One has to 
write a book, a popular book. I should have written a 
technical book on statecharts, discussing the language in 
detail, using many examples, describing the tool we already 
had that supported it, and carefully working out and 
describing the semantics too. This could have helped 
expose the language to a broader audience a lot earlier. 

9. 1994–1996:  The Object-Oriented Version 
In the early 1990s Eran Gery, who at the time was 

(and still is) one of the key technical people at I-Logix, 
became very interested in object-oriented modeling. As it 
turned out, several people, including Jim Rumbaugh and 
                                                                 
5 A sub-formalism of higraphs, which contains hierarchy and 

multi-level transitions has been called compound graphs 
[MS88,SM91]. 

 

Grady Booch, had written about the use of statecharts in 
object-oriented analysis and design; see, e.g., [B94, 
RBPEL91, SGW94]. It was Eran's opinion that their work 
left some issues that still had to be dealt with in more 
detail; for example, the semantics of statecharts were not 
worked out properly, as were the details of some of the 
dynamic connections with the objects. Also, they had not 
built a tool such as Statemate for this particular, more 
modern, OO approach. In the terminology of the present 
paper, their version of the language was not (yet) 
executable. 

Despite being well aware of object-oriented 
programming and the OO programming languages that 
existed at the time, I was not as interested in or as familiar 
with this work on OO modeling as was Eran. Once 
Statemate had been designed and its initial versions built, 
the implementational issues that arose were being dealt 
with adequately by the I-Logix people, and I was spending 
most of my time on other topics of research. Eran did some 
gentle prodding to get me involved, and we ended up 
taking a much closer look at the work of Booch, Rumbaugh 
and others. This culminated in a 1996 paper, "Executable 
Object Modeling with Statecharts", in which we defined 
object-oriented statecharts, an OO version of the 
language, and worked out the way we felt the statecharts 
should be linked up with objects and executed [HG96&97]. 
One particular issue was the need for two modes of 
communication between objects, direct synchronous 
invocation of methods and asynchronous queued events. 
There were also many other aspects to be carefully thought 
out that were special to the world of objects, such as the 
creation and destroying of objects and multithreaded 
execution. The main structuring mechanism is that of a 
class in a class diagram (or an object instance in an object 
model diagram), each of which can be associated with a 
statechart. A new copy of the statechart is spawned 
whenever a new instance of the class is created. See Fig. 21 
for two examples of statecharts taken from that paper.  

In the paper we also outlined a new tool for 
supporting all of this, which I-Logix promptly started to 
build, called Rhapsody. Eran championed and led the 
entire Rhapsody development effort at I-Logix, and he still 
does.  

 
And so we now have two basic tools for statecharts ― 

Statemate, which is not object-oriented and is intended 
more for systems people and for mixed hardware/software 
systems, and Rhapsody, which is intended more for 
software systems and is object-oriented in nature. One 
important difference between the tools, which we shall 
elaborate upon in Section 10, is that the semantics of 
statecharts in Statemate is synchronous and in Rhapsody it 
is, by and large, asynchronous. Another subtle but 
significant difference is reflected in the fact that Statemate 
was set up to execute statecharts directly, in an interpreter 
mode that is separate from the code generator. In contrast, 
the model execution in Rhapsody is carried out solely by 
running the code generated from the model. Thus, 
Rhapsody could be thought of as representing a high-level 
programming language that is compiled down into 
runnable code. Except, of course, that the statechart 
language is a level higher than classical programming 
languages, in that the translation from it was made into 
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C++, Java or C, etc.  Another important difference is that a 
decision was made to make the action language of 
Rhapsody be a subset of the target programming language. 
So you would draw statecharts in Rhapsody and the events 
and actions specified along transitions and in states, etc., 
are fragments of, say, C++ or Java. (The action language in 
Fig. 21, for example, is C++.) These differences really turn 
Rhapsody into more of a high-level programming tool than 
a system-development tool. See also the discussion on the 
UML in Section 10. 

There are now several companies that build tools that 
support statecharts. There are also many variants of the 
language. One of the most notable early tools is 
ObjecTime, built by Bran Selic and Paul Ward and others. 
This tool later became RoseRT, from Rational Corp. 
StateRover is another statechart tool, built by my former 
student, Doron Drusinsky. Finally, Stateflow is a statechart 
tool embedded in Matlab (which is used widely by people 
interested in control systems); its statecharts can be 
effortlessly linked to Matlab's other modeling and analysis 
tools. 

It is worth viewing the implementation issue in a 
slightly broader perspective. In the early 1980s, essentially 
none of the tools offered for system development using 
graphical languages were able to execute models or 
generate running code. If one wants to be a bit sarcastic 
about it, these so-called CASE tools (the acronym standing 
for computer-aided software engineering) were not much 
more than good graphic editors, document generators, 
configuration managers, etc. It would not be much of an 
exaggeration to say that pre-1986 modeling tools were 
reminiscent of support tools for a programming language 
with lot of nice features but with no compiler (or 
interpreter). You could write programs, you could look at 
them, you could print them out, you could ask all kind of 
queries such as "list all the integer variables starting with 
D", you could produce documents, you could do automatic 
indentation, and many other niceties; everything except run 
the programs!  

Of course, in the world of complex systems, tools that 
do these kinds of things − checking for the consistency of 
levels and other issues related to the validity of the syntax, 
offering nice graphic abilities for drawing and viewing the 
diagrams, automatically generating documents according to 
pre-conceived standards, and so on − are very important. 
Although these features are crucial for the process of 
building a large complex system, I was opposed to the hype 
and excitement that in pre-1986 years tended to surround 
such tools. My take was that the basic requirement of a tool 
for developing systems that are dynamic in nature is the 
ability not only to describe the behavior, but also to analyze 
it and execute it dynamically. This philosophy underlies the 
notion of a visual formalism, where the language is to be 
both diagrammatic and intuitive in nature, but also 
mathematically rigorous, with a well-defined semantics 
sufficient to enable tools to be built around it that can carry 
out dynamic analysis, full model execution and the 
automatic generation of running code; see [H92]. 

10. On Semantics 
It is worth dwelling on the issue of semantics of 

statecharts. In a letter from Tony Hoare after he read the 
1984 technical report on statecharts, he said very simply 
that the language "badly needs a semantics". He was right. 
I was overly naïve at the time, figuring that writing a paper 
that explained the basics of the language's operation and 
then building a tool that executes statecharts and generates 
code from them would be enough. This approach took its 
cue from programming language research, of course, where 
people invent languages, describe them in the literature and 
then build compilers for them. That this was naïve is a 
consequence of the fact that there are several very subtle 
and slippery issues around the semantics of any concurrent 
language − statecharts included. These not only have to be 
decided upon when one builds a tool, something we 
actually took great pains to do properly when designing 
Statemate, but they also have to be written up properly for 
the scientific community involved in the semantics of 
languages.  

In retrospect, what we didn't fully realize in those 
early years was how different statecharts were from 
previous specification languages for real-time embedded 
systems − for better or for worse. We knew that the 
language had to be both executable and easily 
understandable by many different kinds of people who 
hadn't received any training in formal semantics. But at the 
same time, as a team wanting to build a tool, we also had to 
demonstrate quickly to our sponsors, the first being IAI, 
that ours was an economically viable idea; so we were 
under rather great time pressure. Due to the high level of 
abstraction of statecharts, we had to resolve several rather 
deep semantical problems that apparently hadn't been 
considered before in the literature, at least not in the 
context of building a real-world tool intended for large and 
complex systems. What we didn't know was that some of 
these very issues were being investigated independently, 
around the same time, by various leading French 
researchers, including Gérard Berry, Nicholas Halbwachs 
and Paul le Guernic (who later coined the French phrase 
L'approche synchrone, "the synchronous approach", for 
their kind of work). 

In actuality, during the 1984-6 period of designing 
Statemate, we did not do such a clean and swift job of 
deciding on the semantics. We had dilemmas regarding 
several semantic issues, a couple of which were 
particularly crucial and central. One had to do with whether 
a step of the system should take zero time or more, and 
another had to do with whether the effects of a step are 
calculated and applied in a fixpoint-like manner in the 
same step, or are to take effect only in the following one.  
The two issues are essentially independent; one can adopt 
any of the four combinations. Here is not the proper place 
to explain the subtlety of the differences, but the first issue, 
for example, has to do with whether or not you adopt the 
pure synchrony hypothesis, generally attributed to Berry, 
whereby steps take zero time [BG92]. Of course, these 
questions have many consequences in terms of how the 
language operates, whether events can interfere with chain 
reactions triggered by other events, how time itself is 
modeled, and how time interleaves with the discrete event 
dynamics of the system.  
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During that period the main people who were sitting 
around the table discussing this were Amir Pnueli, Rivi 
Sherman, Janette Schmidt, Michal Politi and myself, and 
for some time we used the code names Semantics A and B 
for the two main approaches we were seriously 
considering. Both semantics were synchronous in the sense 
of [BG92] and differed mainly in the second issue above. 
The paper we published in 1987 was based on Semantics B 
[HPSR87], but we later adopted semantics A for the 
Statemate tool itself, which was rather confusing to people 
coming from outside of our group.  In 1989, Amnon 
Naamad and I wrote a technical report that described the 
semantics adopted in Statemate [HN89&96], i.e., 
Semantics A, where the effects of a step are accumulated 
and are then carried out in the following step. At the time, 
we did not think that this report was worth publishing ― 
naiveté again ― so for several years it remained an internal 
I-Logix document.  

In any case, the statecharts of Statemate really 
constitute a synchronous language [B+03], and in that 
respect they are similar to other, non visual languages in 
this family, such as Berry's Esterel [BG92], Lustre 
[CPHP87] and Signal [BG90].  

At that time, a number of other researchers started to 
look at statechart semantics, some being motivated by our 
own ambivalence about the issue and by the fact that the 
implemented semantics was not published and hence not 
known outside the Statemate circle. For example, in an 
attempt to evaluate the different semantics for statecharts, 
Huizing, Gerth and de Roever proved one of them to have 
the desirable property of being fully abstract [HGdR88]. As 
the years went by, many people defined variants of the 
statechart language, sometimes dropping orthogonality, 
which they deemed complicated, and often adding some 
features or making certain modifications. There were also 
several papers published that attempted to provide formal, 
machine-readable semantics for the language, and others 
that described other tools built around variants thereof.  

An attempt to summarize the situation was carried out 
by von der Beeck, who tried to put some order into the 
multitude of semantics of statecharts that were being 
published. The resulting paper [vB94] claimed implicitly 
that statecharts is not really a well-defined language 
because of these many different semantics (it listed about 
twenty such). Interestingly, while [vB94] reported on the 
many variants of the language with the many varying 
semantics, it did not report on what should probably have 
been considered at the time the "official" semantics of the 
language. This is the semantics we defined and adopted in 
1986-7 when building Statemate [HN89&96]; the one I 
talked about and demonstrated in countless lectures and 
presentations in the preceding 8 years, but, unfortunately, 
the only one not published at the time in the widely-
accessible open literature…  

Around the same time another paper was published, 
by Nancy Leveson and her team [LHHR94], in which they 
took a close look at yet another statecharts semantics paper, 
written by Pnueli and Shalev [PS91]. The Pnueli/Shalev 
paper provided a denotational fixpoint semantics for 
statecharts and elegantly showed its equivalence to a 
certain operational semantics of the language. Leveson and 
her group did not look at the Statemate tool either and, like 
von der Beeck, had not seen our then-unpublished 

technical report [HN89&96]. The Leveson et al paper was 
very critical of statecharts, going so far as to hint that the 
language is unsafe and should not be used, the criticism 
being based to a large extent on anomalies that they 
claimed could surface in systems based on the semantics of 
[PS91].  

It seems clear that had a good book about statecharts 
been available early on, including its semantics and its 
Statemate implementation, some of this could have been 
avoided. At the very least we should have published the 
report on the Statemate semantics. It was only after seeing 
[vB94, LHHR94] and becoming rather alarmed by the 
results of our procrastination that we did just that, and the 
paper was finally published in 1996 [HN89&96].   

As to the semantic issues themselves, far more 
important than the differences between the variants of pre-
OO statecharts themselves, as reported upon in [vB94], is 
the difference between the non-object-oriented and the 
object-oriented versions of the language, as discussed 
above. The main semantic difference is in synchronicity.  
Statemate statecharts, i.e., the version of the language 
based on functional decomposition, is a synchronous 
language, whereas Rhapsody statecharts, i.e., the object-
oriented version thereof, is an asynchronous one. There are 
other substantial differences in modes of communication 
between objects, and there are the issues that arise from the 
presence of dynamic objects and their creation and 
destruction, inheritance, object composition, 
multithreading, and on and on. All these have to be dealt 
with when one devises an object-oriented version of such a 
language and builds a tool like Rhapsody, which supports 
both the objects and their structure and the statecharts and 
code that drive their behavior.  

In the object-oriented realm, a similar publication sin 
was committed, waiting far too long to publish the 
semantics of statecharts in Rhapsody. Only very recently, 
together with Hillel Kugler, did we finally publish a paper 
(analogous to [HN89&96]) that gives the semantics of 
statecharts as adopted in Rhapsody and describes the 
differences between these two subtly different versions of 
the language [HK04]. 

This section on semantics cannot be completed 
without mentioning the unified modeling language, the 
UML; see [RJB99,UML]. As the reader probably well 
knows, Rumbaugh and Booch, together with Ivar Jacobson, 
got together to form the technical core team of the 
impressive UML effort, which was later standardized by 
the object management group (OMG). Although the UML 
features many graphical languages, many of them have not 
been endowed with satisfactorily rigorous semantics. The 
heart of the UML − what many people refer to as its 
driving behavioral kernel − is the (object-oriented variant 
of the) statecharts language; see Section 9. In the late 1990s 
Eran Gery and I took part in helping this team define the 
intended meaning of statecharts in the UML. This had the 
effect of making UML statecharts very similar to what we 
had already implemented in Rhapsody.  

In fact, currently the two main executable tools for 
UML-based languages are Rhapsody and RoseRT; the 
latter, as mentioned above, is a derivative of the earlier 
ObjecTime tool, and implements a sublanguage of 
statecharts: for example, it does not support orthogonal 
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state components.6 There are other differences between 
these two tools that the present paper cannot cover. Also, 
the issue of whether the action language should be the 
target programming language, as in Rhapsody, or whether 
there should be an autonomous action language is still 
raging in full force and the UML jury is not yet in on this 
issue.  

See the recent [HR04], with its whimsical title 
"What's the Semantics of 'Semantics'?", for a manifesto 
about the subtle issues involved in defining the semantics 
of languages for reactive systems, with special emphasis 
put on the UML. 

11. Biological Modeling with Statecharts 
In terms of usage of statecharts, the language appears 

to be used very widely in computer embedded and 
interactive systems, e.g., in the aerospace and automotive 
industries, in telecommunication and medical 
instrumentation, in control systems, and so on. However, 
one of the more interesting developments involves 
statecharts also being used in non-conventional areas, such 
as modeling biological systems and health-care processes.  

Starting in the mid-1980s I had often claimed that 
biological systems should be viewed as systems the way we 
know them in the world of computing, and biological 
modeling should be attempted using languages and tools 
constructed for reactive systems, such as statecharts. One 
modest attempt to do so was made by a student in our 
department, Billie Sandak, around 1989. This work was not 
carried out to completion, and the topic was picked up 
about ten years later by another student, Naaman Kam, co-
supervised by Irun Cohen, a colleague of mine from the 
Weizmann Institute's Immunology department. The 
resulting work (written up in [KCH01]) started a flurry of 
activity, and by now several serious efforts have been made 
on using statecharts to model biological systems. This 
includes one particularly extensive effort of modeling T 
cell development in the thymus gland, done with our 
student Sol Efroni [EHC03], and others involving, e.g., the 
pancreas [SeCH06] and the lymph node [SwCH06]. The 
thymus model, for example, contains many thousands of 
complex objects, each controlled by a very large and 
complicated statechart, and has resulted in the discovery of 
several properties of the system in question; see the recent 
[EHC07]. Figs. 22 and 23 show, respectively, the front-end 
of this model and a schematic rendition of parts of the 
statechart of a single cell. Figs. 24 and 25 show more 
detailed parts of some of the statecharts from the thymus 
model during execution. 

One of the notions that we came up with during our 
work on the thymus model is reactive animation 
[EHC05]. The idea is to be able to specify systems for 
which the front end requires something more than a GUI 
― specifically, systems that require true animation. A good 
example would be a traffic or radar system with many 

                                                                 
6 By the way, Rational's most popular tool, Rational Rose, cannot 

execute models or produce executable code. In that respect it 
suffers from the same central weakness afflicting the pre-1986 
CASE tools. 

elements and targets, such as cars or aircraft, being created, 
moving in and out of the scene, traveling around, growing 
and shrinking in size, changing and getting destroyed, etc. 
Under normal circumstances, this kind of system would 
have to be programmed using the script language supported 
by an animation system. Reactive animation allows one to 
use a state-of-the-art reactive system tool, such as 
Statemate or Rhapsody, linked up directly and smoothly 
with an animation tool.  The T cell model of [EHC03, 
EHC07] was built using statecharts in Rhapsody, linked up 
with the Flash animation tool, and the two work together 
very nicely. Reactive animation is used extensively also in 
the pancreas and lymph node models [SeCH06, SwCH06]. 

12. Miscellaneous 
This section discusses some related topics that came 

up over the years. One is the notion of overlapping states, 
whereby you want the and/or state hierarchy in statecharts 
to be a directed graph, not a tree. This possibility, and the 
motivation for it, was already mentioned in the earliest 
documents on statecharts; see Fig. 26. In work with an 
MSc student, H.-A. Kahana, the details of how overlapping 
could be defined were worked out [HK92].  We found that 
the issue was pretty complicated since, e.g., overlapping 
can be intermixed not only with the substate facet of the 
hierarchy but also with orthogonal components. We 
actually concluded that the complications might outweigh 
the benefits of implementing the feature.  

Although the basic idea is very natural, it appears that 
such an extension is not yet supported in any of the 
statechart tools. Incidentally, this does not prevent people 
from thinking that overlapping is a simple matter, since it is 
tempting to think only of simple cases, like that of Fig. 26. 
Some people have approached me and asked "Why doesn't 
your tool allow me to draw one state overlapping the other? 
Why don't you simply tell it not to give me the error 
message when I try to do this in the graphic editor?"  Of 
course, underlying such questions is the naïve assumption 
that if you can draw a picture of something, and it seems to 
make sense to you, then there is no problem making it part 
of the language… I often use this exchange to illustrate the 
difference between what many people expect of a visual 
language and what a real visual formalism is all about; see 
the discussion on "the doodling phenomenon" in [HR04].  

An additional topic is that of hybrid systems. It is 
very natural to want to model systems that have both 
discrete and continuous aspects to them. In discussions and 
presentations on statecharts in the 1980s, I often talked 
about the possibility of using techniques from control 
theory and differential equations to model the activities 
occurring within states in a statechart, but never actually 
did any work on the idea. Many years later the notion of a 
hybrid (discrete and continuous) system was put forward 
by several people, and today there is an active community 
doing deep research in the area.  Many models of hybrid 
systems are essentially finite-state machines, often rendered 
using statecharts that are intermixed with techniques for 
specifying continuous aspects of a system, such as various 
kinds of differential equations.  

The other idea I have been trying to peddle for years 
but have done nothing much about is to exploit the 
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structure of the behavior given in statecharts to aid in the 
verification of the modeled system. The philosophy behind 
this is as follows. We all know that verification is hard, yet 
there are techniques that work pretty well in practice, such 
as those based on model checking. However, common 
verification techniques do not exploit the hierarchical 
structure or modularity that such models very often have. 
Now, assume that someone has already made the effort of 
preparing a statechart-based description of a complex 
system, and has gone to great pains in order to structure the 
statecharts nicely to form a hierarchy with multilevel 
orthogonal components. There should probably be a way to 
exploit the reasons for the decisions made in this 
structuring process in carrying out the verification. Perhaps 
the way to do it is to try to get more information from the 
"statifier", i.e., the person preparing the statecharts, about 
the knowledge he or she used in the structuring. For 
example, just as we expect someone writing a program 
with a loop to be able to say more about the invariant and 
convergent properties of that loop, so should we expect 
someone breaking a system's state space into orthogonal 
components, or deciding to have a high-level state 
encompass several low-level states, to be able to say 
something about the independent or common properties of 
these pieces of the behavior.  

There has actually been quite a lot of work on the 
verification (especially model checking) of hierarchical 
state machines, and the availability of various theoretical 
results on the possibility (or lack thereof) of obtaining 
significant savings in the complexity of verifying 
concurrent state machines. There are also some tools that 
can model-check statecharts. However, my feeling is that 
the jury is not in yet regarding whether one can adequately 
formalize this user-provided information and use it 
beneficially in the verification process.  

Finally, I should mention briefly the more recent work 
with colleagues and students, which can be viewed as 
another approach, to visual formalisms for complex 
systems. It has to do with scenario-based specification. 
The statechart approach is intra-object, in that ultimately 
the recommendation is to prepare a statechart for each 
object of the system (or for each task, function, component, 
etc., whatever artifacts your system will be composed of). 
Of course, the statecharts are to also contain information 
about the communication between the objects, and one 
could build special controlling statecharts to concentrate on 
these aspects; however, by and large, the idea of finite-state 
machines in general, and statecharts in particular, is to 
provide a way for specifying the behavior of the system per 
object in an intra-object fashion. The more recent work has 
to do with scenario-based, inter-object specification. The 
idea is to concentrate on specifying the behavior between 
and among the objects (or tasks, functions, components, 
etc.). The main lingua franca for describing the behavior of 
the system would have to be a language for specifying 
communication and collaboration between the objects. This 
became feasible with the advent of live sequence charts 
(or LSCs, for short) in work joint with Werner Damm in 
1999; see [DH99&01]. Later, with my student Rami 
Marelly, a means for specifying such behavior directly 
from a GUI was worked out, called play-in, as well as a 

means for executing the behavior, called play-out, and the 
entire setup and associated methods have been 
implemented in a tool called the Play-Engine; see [HM03].  

We have also built mechanisms to bridge between the 
two approaches, so that one can connect one or more Play-
Engines with other tools, such as Rhapsody (see 
[BHM04]).  In this way, one can specify part of the 
behavior of the system by sequence charts in a scenario-
based, inter-object, fashion, and other objects can be 
specified using statecharts, or even code, in an intra-object 
fashion. 

13. Conclusions 
In summary, it would seem that one of the most 

interesting aspects of this story of statecharts in the making 
is in the fact that the work was not done by an academic 
researcher sitting in his/her ivory tower, inventing 
something and trying to push it down the engineers' throats. 
Rather, it was done by going into the lion's den, so to 
speak, working in industry and with the people in industry. 
This is consistent with the saying that "the proof of the 
pudding is in the eating".  

Other things crucial to the success of a language and 
an approach to system-development are good supporting 
tools and excellent colleagues. In my own personal case, 
both the IAI engineers and the teams at AdCad/I-Logix 
who implemented the Statemate tool and then the 
Rhapsody tool were an essential and crucial part of the 
work.  And, of course, a tremendous amount of luck is 
necessary, especially, as in this case, when the ideas 
themselves are not that deep and not that technically 
difficult.  

I still believe that almost anyone could have come up 
with statecharts, given the right background, being exposed 
to the right kinds of problems and being surrounded by the 
right kinds of people. 
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Figure 1.  Page from the IAI notes (early 1983; with some Hebrew) showing the first attempt at helping 
specify the Lavi avionics, using a temporal logic-like formalization.  
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Figure 2.  Page from the IAI notes (early 1983; with some Hebrew) showing parts of the Lavi avionics 
behavior using "statocols", the second attempt ― a kind of structured state-transition protocol language. 
Note the graphical "doodling" on the right hand side, which was done to help clarify things to the 
engineers, and which quickly evolved into statecharts. 
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Figure 3.  Page from the IAI notes (mid-1983; in Hebrew) showing a first attempt at deciding on 
graphical/topological elements to be used in the hierarchy of states. Note the use of the term default as a 
generalization to hierarchical states of the notion of a start state from automata theory.  
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Figure 4.  Page from the IAI notes (mid-1983) showing the first rendition of orthogonal state 
components. Note the hesitation about what style of separation lines to use. 

 

5-19



 
 

Figure 5.  Page from the IAI notes (mid-1983). Constructs shown include hyper-edges, nested 
orthogonality, transitions that reset a collection of states (chart on right). Note the use of Cartesian 
products of sets of states (top) to capture the meaning of orthogonality, and the straightforward algebraic 
notation for transitions between state vectors (bottom third of page, on right).  
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Figure 6.  Page from the IAI notes (mid-1983) showing some initial statechart attempts for the Lavi 
avionics. Note the nested orthogonality (top left) and the inter-level transitions (bottom). 
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Figure 7.  Page from the IAI notes (mid-1983; events in Hebrew) showing a relatively "clean" draft of 
the top levels of behavior for the main flight modes of the Lavi avionics. These are A/A (air-air), A/G 
(air-ground), NAV (automatic navigation) and ON GRD (on ground). Note the early use of a history 
connector in the A/G mode. 
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Figure 8.  Page from the IAI notes (mid-1983) showing the inner statechart specification of the A/A 
(air-air) mode for the Lavi avionics. 
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Figure 9.  Page from the IAI notes (late 1983) showing multiple-level orthogonality in a complex 
portion of the Lavi avionics. Most of the orthogonal components on all levels here are not tangible 
components of the system, but rather exhibit a natural way of conceptually breaking up the state space. 
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Figure 10.  Page from the IAI notes (late 1983) showing an and/or tree rendition of (part of) the state 
hierarchy in Fig. 9. 
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Figure 11.  Illustrating hierarchy in statecharts: multi-level states, transitions, default entrances, 
refinement and abstraction. 
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Figure 12.  Orthogonality in statecharts, with and without out exits from and entrances to other states. 
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Figure 13.   "Flattened" orthogonality-free versions of the two parts of Fig. 12, minus the external 
entrances in 12(ii). (These are really the Cartesian products.) 
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Figure 14.  Broadcasting within a single statechart. 
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Figure 15.  Page from the IAI notes (late 1983; in Hebrew) showing part of the draft of the internal IAI 
document reporting on the results of the consulting. Note the first use of the term statecharts (top line). 
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Figure 16.  Page 10 of the internal IAI document (December 1983; in Hebrew). The bottom figure 
shows some of the high-level states of the Lavi avionics, including on the left (in Hebrew…) A/A, A/G, 
NAV and GRD. 
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Figure 17.  Explaining statecharts (early 1984). Note the temporal logic on the bottom right. 
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Figure 18.  Front page of the first draft of the basic statecharts paper (Dec. 14, 1983). Note the "TEχ 
please" instruction to the typist/secretary; the original title (later changed twice), the use of the word 
“stratification” for the act of specifying with statecharts (later dropped), and the assertion that the 
language "is being implemented at the Weizmann Institute" (later changed). 
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Figure 19.  Front page of the technical report version of the basic statecharts paper (February 1984). 
Note the revised title (later changed again…). 
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Figure 20.  Hand-drawn draft of the Citizen watch statechart  (late 1984), as sent to our graphics 
draftsman for professional drawing. 
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Figure 21.  Two object-oriented statecharts for a railcar example, taken from [HG96&97]. Note the C++ 
action language. 
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Figure 22.  Front end (in Flash) of a model of T cell development in the thymus (from [EHC03]). 
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Figure 23.  Schematics of parts of the statechart of a single cell from the T cell model shown in Fig. 21 
(from [EHC03]). 
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Figure 24.  Snapshot of the first few levels of the statechart of a single cell from the T cell model of 
[EHC03], shown during execution on Rhapsody. The purple states (thick-lined, if you are viewing this 
in B&W) are the ones the system is in at the moment. 
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Figure 25.  Snapshot of the statechart of the object dealing with the interaction between a potential T 
cell and an epithelial cell in the model of [EHC03], shown during execution on Rhapsody. The purple 
states (thick-lined, if you are viewing this in B&W) are the ones the system is in at the moment. 
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Figure 26.  Page from the IAI notebook (late 1983) showing the use of overlapping states, which were 
never implemented. 
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