
Statecharts in the Making: A Personal Account

David Harel
The Weizmann Institute of Science

Rehovot, ISRAEL 76100
dharel@weizmann.ac.il

Abstract

This paper is a highly personal and subjective account of
how the language of statecharts came into being. The main
novelty of the language is in being a fully executable visual
formalism intended for capturing the behavior of complex
real-world systems, and an interesting aspect of its history
is that it illustrates the advantages of theoreticians
venturing out into the trenches of the real world, "dirtying
their hands" and working closely with the system's
engineers. The story is told in a way that puts statecharts
into perspective and discusses the role of the language in
the emergence of broader concepts, such as visual
formalisms in general, reactive systems, model-driven
development, model executability and code generation.

1. Introduction
The invitation to write a paper on statecharts for this

conference on the history of programming languages
produces mixed feelings of pleasant apprehension. Pleasant
because being invited to write this paper means that
statecharts are considered to be a programming language.
They are executable, compilable and analyzable, just like
programs in any “real” programming language, so that
what we have here is not "merely" a specification language
or a medium for requirements documentation. The
apprehension stems from the fact that writing a historical
paper about something you yourself were heavily involved
in is hard; the result is bound to be very personal and
idiosyncratic, and might sound presumptuous. In addition
to accuracy, the paper must also try to be of interest to
people other than its author and his friends...

The decision was to take the opportunity to put the
language into a broader perspective and, in addition to
telling its "story", to discuss some of the issues that arose
around it. An implicit claim here is that whatever specific
vices and virtues statecharts possess, their emergence
served to identify and solidify a number of ideas that are of
greater significance than one particular language.

Some of these ideas are the general notion of a visual
formalism, the identification of the class of reactive
systems and the arguments for its significance and special
character, the notion of model-based development, of
which the UML is one of the best-known products, the
concept of model executability and evidence of its
feasibility, whereby high-level behavioral models
(especially graphical ones) can and should be executed just
like conventional computer programs, and the related
concept of full code generation, whereby these high-level
models are translated ― actually, compiled down ― into
running code in a conventional language. The claim is not
that none of these concepts was ever contemplated before
statecharts, but rather that they became identified and
pinpointed as part and parcel of the work on statecharts,
and were given convincing support and evidence as a result
thereof.

2. Pre-1982
I am not a programming languages person. In fact, the

reader might be surprised to learn that the only
programming languages I know reasonably well are PL/I
and Basic…. I also enjoyed APL quite a bit at the time.
However, even in classical languages like Fortran,
PASCAL or C, not to mention more modern languages like
C++ and Java, I haven't really done enough programming
to be considered any kind of expert. Actually, nothing
really qualifies me as a programming language researcher
or developer. Prior to statecharts I had published in
programming language venues, such as POPL, the ACM
Symposium on Principles of Programming Languages, but
the papers were about principles and theory, not about
languages…. They mostly had to do with the logics of
programs, their expressive power and axiomatics, and their
relevance to correctness and verification.

In 1977, while at MIT working on my PhD, I had the
opportunity to take a summer job at a small company in
Cambridge, MA, called Higher Order Software (HOS),
owned and run by Margaret Hamilton and Saydean Zeldin.
They had a method for specifying software that took the
form of trees of functions ― a sort of functional
decomposition if you will ― that had to adhere to a set of
six well-formedness axioms [HZ76]. We had several
interesting discussions, sometimes arguments, one of which
had to do with verification. When asked how they
recommend that one verify the correctness of a system
described using their method, the answers usually related to
validating the appropriateness of the syntax. When it came
to true verification, i.e., making sure that the system does
what you expect it to, what they were saying in a nutshell
was, "Oh, that's not a problem at all in our method because
we don’t allow programs that do not satisfy their

Permission to make digital/hard copy of part of this work for personal or
classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication, and its date of appear, and notice is
given that copying is by permission of the ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee. Permission may be
requested from the Publications Dept., ACM, Inc., 2 Penn Plaza, New
York, NY 11201-0701, USA, fax:+1(212) 869-0481,
permissions@acm.org
©2007 ACM 978-1-59593-766-7/2007/06-ART5 $5.00
DOI 10.1145/1238844.1238849
http://doi.acm.org/10.1145/1238844.1238849

5-1

requirements." In other words, they were claiming to have
"solved" the issue of verification by virtue of disallowing
incorrect programs in the language. Of course, this only
passes the buck: The burden of verifying correctness now
lies with the syntax checker...

This attitude towards correctness probably had to do
with the declarative nature of the HOS approach, whereas
had they constructed their method as an executable
language the verification issue could not have been side-
tracked in this way and would have had to be squarely
confronted. Still, the basic tree-like approach of the HOS
method was quite appealing, and was almost visual in
nature. As a result, I decided to see if the technical essence
of this basic idea could be properly defined, hopefully
resulting in a semantically sound, and executable, language
for functions, based on an and/or functional decomposition.
The "and" was intended as a common generalization of
concurrency and sequentiality (you must do all these
things) and the "or" a generalization of choice and
branching (you must do at least one of these things). This
was very similar to the then newly introduced notion of
alternation, which had been added to classical models of
computation in the theory community by Chandra, Kozen
and Stockmeyer [CKS81] and about which I recall having
gotten very excited at the time. Anyway, the result of this
effort was a paper titled And/Or Programs: A New
Approach to Structured Programming, presented in 1979 at
an IEEE conference on reliable software (it later appeared
in final form in ACM TOPLAS) [H79&80].

After the presentation at the conference, Dr. Jonah
Lavi (Loeb) from the Israel Aircraft Industries (IAI)
wanted to know if I was planning to return to Israel (at the
time I was in the midst of a postdoctoral position ― doing
theory ― at IBM's Yorktown Heights Research Center),
and asked if I'd consider coming to work for the IAI. My
response was to politely decline, since the intention was
indeed to return within a year or so, but to academia to do
research and teaching. This short conversation turned out to
be crucial to the statechart story, as will become clear
shortly.

3. December 1982 to mid 1983: The Avionics
Motivation
We cut now to December 1982. At this point I had

already been on the faculty of the Weizmann Institute of
Science in Israel for two years. One day, the same Jonah
Lavi called, asking if we could meet. In the meeting, he
described briefly some severe problems that the engineers
at IAI seemed to have, particularly mentioning the effort
underway at IAI to build a home-made fighter aircraft,
which was to be called the Lavi (no connection with
Jonah's surname). The most difficult issues came up, he
said, within the Lavi's avionics team. Jonah himself was a
methodologist who did not work on a particular project;
rather, he was responsible within the IAI for evaluating and
bringing in software engineering tools and methods. He
asked whether I would be willing to consult on a one-day-
per-week basis, to see whether the problems they were
having could be solved.

In retrospect, that visit turned out to be a real turning
point for me. Moreover, luck played an important part too,

since I feel that Jonah Lavi had no particular reason to
prefer me to any other computer scientist, except for the
coincidence of his happening to have heard that lecture on
and/or programs a few years earlier. Whatever the case, I
agreed to do the consulting, having for a long time
harbored a never-consummated dream, or "weakness", for
piloting, especially fighter aircraft.

And so, starting in December 1982, for several
months, Thursday became my consulting day at the IAI.
The first few weeks of this were devoted to sitting down
with Jonah, in his office, trying to understand from him
what the issues were. After a few such weeks, having learnt
a lot from Jonah, whose broad insights into systems and
software were extremely illuminating, I figured it was time
to become exposed to the real project and the specific
difficulties there. In fact, at that point I hadn't yet met the
project's engineers at all. An opportunity for doing so
arrived, curiously enough, as a result of a health problem
that prevented Jonah from being in the office for a few
weeks, so that our thinking and talking had to be put on
hold. The consulting days of that period were spent,
accompanied by Jonah's able assistant Yitzhak Shai,
working with a select group of experts from the Lavi
avionics team, among whom were Akiva Kaspi and Yigal
Livne.

These turned out to be an extremely fruitful few
weeks, during which I was able to get a more detailed first-
hand idea about the problem and to take the first steps in
proposing a solution. We shall get to that shortly, but first
some words about avionics.

An avionics system is a great example of what Amir
Pnueli and I later identified as a reactive system [HP85].
The aspect that dominates such a system is its reactivity; its
event-driven, control-driven, event-response nature, often
including strict time constraints, and often exhibiting a
great deal of parallelism. A typical reactive system is not
particularly data intensive or calculation-intensive. So what
is/was the problem with such systems? In a nutshell, it is
the need to provide a clear yet precise description of what
the system does, or should do. Specifying its behavior is
the real issue.

Here is how the problem showed up in the Lavi. The
avionics team had many amazingly talented experts. There
were radar experts, flight control experts, electronic
warfare experts, hardware experts, communication experts,
software experts, etc. When the radar people were asked to
talk about radar, they would provide the exact algorithm
the radar used in order to measure the distance to the target.
The flight control people would talk about the
synchronization between the controls in the cockpit and the
flaps on the wings. The communications people would talk
about the formatting of information traveling through the
MuxBus communication line that runs lengthwise along the
aircraft. And on and on. Each group had their own
idiosyncratic way of thinking about the system, their own
way of talking, their own diagrams, and their own
emphases.

Then I would ask them what seemed like very simple
specific questions, such as: "What happens when this
button on the stick is pressed?" In way of responding, they
would take out a two-volume document, written in
structured natural language, each volume containing

5-2

something like 900 or 1000 pages. In answer to the
question above, they would open volume B on page 389, at
clause 19.11.6.10, where it says that if you press this
button, such and such a thing occurs. At which point
(having learned a few of the system's buzzwords during
this day-a-week consulting period) I would say: "Yes, but
is that true even if there is an infra-red missile locked on a
ground target?" To which they would respond: "Oh no, in
volume A, on page 895, clause 6.12.3.7, it says that in such
a case this other thing happens." This to-and-fro Q&A
session often continued for a while, and by question
number 5 or 6 they were often not sure of the answer and
would call the customer for a response (in this case some
part of the Israeli Air Force team working with the IAI on
the aircraft's desired specification). By the time we got to
question number 8 or 9 even those people often did not
have an answer! And, by the way, one of Jonah Lavi’s
motivations for getting an outside consultant was the
bothersome fact that some of the IAI's subcontractors
refused to work from these enormous documents, claiming
that they couldn't understand them and were in any case not
certain that they were consistent or complete.

In my naïve eyes, this looked like a bizarre situation,
because it was obvious that someone, eventually, would
make a decision about what happens when you press a
certain button under a certain set of circumstances.
However, that person might very well turn out to be a low-
level programmer whose task it was to write some code for
some procedure, and who inadvertently was making
decisions that influenced crucial behavior on a much higher
level. Coming, as I did, from a clean-slate background in
terms of avionics (which is a polite way of saying that I
knew nothing about the subject matter…), this was
shocking. It seemed extraordinary that this talented and
professional team did have answers to questions such as
"What algorithm is used by the radar to measure the
distance to a target?", but in many cases did not have the
answers to questions that seemed more basic, such as
"What happens when you press this button on the stick
under all possible circumstances?".

In retrospect, the two only real advantages I had over
the avionics people were these: (i) having had no prior
expertise or knowledge about this kind of system, which
enabled me to approach it with a completely blank state of
mind and think of it any which way; and (ii) having come
from a slightly more mathematically rigorous background,
making it somewhat more difficult for them to convince me
that a two-volume, 2000 page document, written in
structured natural language, was a complete,
comprehensive and consistent specification of the system's
behavior.

In order to make this second point a little more
responsibly, let us take a look at an example taken from the
specification of a certain chemical plant. It involves a tiny
slice of behavior that I searched for tediously in this
document (which was about 700 pages long). I found this
particular piece of behavior mentioned in three different
places in the document. The first is from an early part, on
security, and appeared around page 10 of the document:

Section 2.7.6: Security
“If the system sends a signal hot then send a
message to the operator.”

Later on, in a section on temperatures, which was around
page 150 of the document, it says:

Section 9.3.4: Temperatures
“If the system sends a signal hot and T >600,
then send a message to the operator.”

The real gem was in the third quote, which occurred
somewhere around page 650 of the document, towards the
end, in a section devoted to summarizing some critical
aspects of the system. There it says the following:

Summary of critical aspects
“When the temperature is maximum, the system
should display a message on the screen, unless no
operator is on the site except when T <600.”

Despite being educated as a logician, I've never really
been able to figure out whether the third of these is
equivalent to, or implies, any of the previous two… But
that, of course, is not the point. The point is that these
excerpts were obviously written by three different people
for three different reasons, and that such large documents
get handed over to programmers, some more experienced
than others, to write the code. It is almost certain that the
person writing the code for this critical aspect of the
chemical plant will produce something that will turn out to
be problematic in the best case ― catastrophic in the worst.
In addition, keep in mind that these excerpts were found by
an extensive search through the entire document to try find
where this little piece of behavior was actually mentioned.
Imagine our programmer having to do that repeatedly for
whatever parts of the system he/she is responsible for, and
then to make sense of it all.

The specification documents that the Lavi avionics
group had produced at the Israel Aircraft Industries were
no better; if anything, they were longer and more complex,
and hence worse, which leads to the question of how such
an engineering team should specify behavior of such a
system in a intuitively clear and mathematically rigorous
fashion. These two characteristics, clarity and rigor, will
take on special importance as our story unfolds.

4. 1983: Statecharts Emerging
Working with the avionics experts every Thursday for

several weeks was a true eye-opener. At the time there was
no issue of inventing a new programming language. The
goal was to try to find, or to invent for these experts, a
means for simply saying what they seemed to have had in
their minds anyway. Despite the fact that the simple "what
happens" questions get increasingly more complicated to
answer, it became very clear that these engineers knew a
tremendous amount about the intended behavior of the
system. They understood it, and they had answers to many
of the questions about behavior. Other questions they
hadn't had the opportunity to think about properly because
the information wasn't well organized in their documents,
or even, for that matter, in their minds. The goal was to

5-3

find a way to help take the information that was present
collectively in their heads and put it on paper, so to speak,
in a fashion that was both well organized and accurate.

Accordingly, the work progressed in the following
way. A lot of time was spent getting them to talk; I kept
asking questions, prodding them to state clearly how the
aircraft behaves under certain sets of circumstances.
Example: "What are the radar's main activities in air-
ground mode when the automatic pilot is on?" They
would talk and we would have discussions, trying to make
some coherent sense of the information that piled up.

I became convinced from the start that the notion of a
state and a transition to a new state was fundamental to
their thinking about the system. (This insight was
consistent with some of the influential work David Parnas
had been doing for a few years on the A-7 avionics
[HKSP78].) They would repeatedly say things like, "When
the aircraft is in air-ground mode and you press this button,
it goes into air-air mode, but only if there is no radar locked
on a ground target at the time". Of course, for anyone
coming from computer science this is very familiar: what
we really have here is a finite-state automaton, with its state
transition table or state transition diagram. Still, it was
pretty easy to see that just having one big state machine
describing what is going on would be fruitless, and not
only because of the number of states, which, of course,
grows exponentially in the size of the system. Even more
important seemed to be the pragmatic point of view,
whereby a formalism in which you simply list all possible
states and specify all the transitions between them is
unstructured and non-intuitive; it has no means for
modularity, hiding of information, clustering, and
separation of concerns, and was not going to work for the
kind of complex behavior in the avionics system. And if
you tried to draw it visually you’d get spaghetti of the
worst kind. It became obvious pretty quickly that it could
be beneficial to come up with some kind of structured and
hierarchical extension of the conventional state machine
formalism.

So following an initial attempt at formalizing parts of
the system using a sort of temporal logic-like notation (see
Fig. 1)1, I resorted to writing down the state-based
behavior textually, in a kind of structured dialect made up
on the fly that talked about states and their structure and the
transitions between them. However, this dialect was
hierarchical: inside a state there could be other states, and if
you were in this state, and that event occurred, you would
leave the current state and anything inside it and enter that
other state, and so on. Fig. 2 shows an early example, from
somewhere in early 1983, of one of these structured state
protocols, or statocols, taken from my messy, scribbled
IAI notebook.

As this was going on, things got increasingly
complicated. The engineers would bring up additional
pieces of the avionics behavior, and after figuring out how
the new stuff related to the old, I would respond by
extending the state-based structured description, often
having to enrich the syntax in real time... When things got

1 Because of the special nature and size of some of the figures, I

have placed them all at the end of the text, before the
references.

a little more complicated, I would doodle on the side of the
page to explain visually what was meant; some of this is
visible on the right-hand side of Fig. 2. I clearly recall the
first time I used visual encapsulation to illustrate to them
the state hierarchy, and an arrow emanating from the higher
level to show a compound "leave-any-state-inside"
transition; see the doodling in Fig. 2 and the more orderly
attempts in Fig. 3. And I also remember the first time I
used side-by-side adjacency for orthogonal (concurrent)
state components, denoted ― after playing with two or
three possible line styles ― by a dashed line; see Fig. 4.
However, it is important to realize that, at the time, these
informal diagrams were drawn in order to explain what the
nongraphical state protocols meant. The text was still the
real thing and the diagrams were merely an aid.

After a few of these meetings with the avionics
experts, it suddenly dawned on me that everyone around
the table seemed to understand the back-of-napkin style
diagrams a lot better and related to them far more naturally.
The pictures were simply doing a much better job of setting
down on paper the system's behavior, as understood by the
engineers, and we found ourselves discussing the avionics
and arguing about them over the diagrams, not the
statocols. Still, the mathematician in me argued thus: "How
could these doodled diagrams be better than the real
mathematical-looking artifact?" (Observe Fig. 2 again, to
see the two options side by side.) So it really took a leap of
faith to be able to think: "Hmmm… couldn't the pictures be
turned into the real thing, replacing, rather than
supplementing, the textual structured programming-like
formalism?" And so, over a period of a few weeks the
scales tipped in favor of the diagrams. I gradually stopped
using the text, or used it only to capture supplementary
information inside the states or along transitions, and the
diagrams became the actual specification we were
constructing; see Figs. 5–9.

Of course, this had to be done in a responsible way,
making sure that the emerging pictures were not just
pictures; that they were not just doodling. They had to be
rigorous, based on precise mathematical meaning. You
couldn't just throw in features because they looked good
and because the avionics team seemed to understand them.
Unless the exact meaning of an intended feature was given,
in any allowed context and under any allowed set of
circumstances, it simply couldn't be considered.

This was how the basics of the language emerged. I
chose to use the term statecharts for the resulting
creatures, which was as of 1983 the only unused
combination of "state" or "flow" with "chart" or "diagram".

5. On the Language Itself
Besides a host of other constructs, the two main ideas

in statecharts are hierarchy and orthogonality, and these
can be intermixed on all levels: You start out with classical
finite-state machines (FSMs) and their state transition
diagrams, and you extend them by a semantically
meaningful hierarchical substating mechanism and by a
notion of orthogonal simultaneity. Both of these are
reflected in the graphics themselves, the hierarchy by
encapsulation and the orthogonality by adjacent portions
separated by a dashed line. Orthogonal components can

5-4

cooperate and know about each other by several means,
including direct sensing of the state status in another
component or by actions. The cooperation mechanism ―
within a single statechart I should add ― has a
broadcasting flavor.

Transitions become far more elaborate and rich than
in conventional FSMs. They can start or stop at any level
of the hierarchy, can cross levels thereof, and in general
can be hyperedges, since both sources and targets of
transitions can contain sets of states. In fact, at any given
point in time a statechart will be in a vector, or
combination, of states, whose length is not fixed. Exiting
and entering orthogonal components on the various levels
of the hierarchy continuously changes the size of the state
vector. Default states generalize start states, and they too
can be level-crossing and of hyperedge nature. And the
language has history connectors, conditions, selection
connectors, and more. A transition can be labeled with an
event and optionally also with a parenthesized condition, as
well as with Mealy-like outputs, or actions. (Actions can
also occur within states, in the Moore style.)

The fact that the technical part of the statecharts story
started out with and/or programs is in fact very relevant.
Encapsulated substates represent OR (actually this is XOR;
exclusive or), and orthogonality is AND. Thus, a
minimalist might view statecharts as a state-based language
whose underlying structuring mechanism is simply that of
classical alternation [CKS81]. Figs. 9 and 10 exemplify this
connection by showing a state hierarchy for a part of the
Lavi avionics statecharts and then the and/or tree I used to
explain to the engineers in a different way what was
actually going on.

In order to make this paper a little more technically
informative, I will now carry out some self-plagiarism,
stealing and then modifying some of the figures and
explanations of the basic features of the language from the
original statechart paper [H84&87]. However, the reader
should not take the rest of this section as a tutorial on the
language, or as a language manual. It is extremely
informal, and extremely partial. I am also setting it in
smaller font, and slightly indented, so that you can skip it
completely if you want. For more complete accounts,
please refer to [H84&87, HN89&96, HP91, HK04].

 In way of introducing the state hierarchy, consider Fig.
11(i). It shows a very simple four-state chart. Notice,
however, that event β takes the system to state B from either
A or C, and also that δ takes the system to D from either of
these. Thus, we can cluster A and C into a new superstate,
E, and replace the two β transitions and the two δ ones by a
single transition for each, as in Fig. 11(ii). The semantics of
E is then the XOR of A and C; i.e., to be in state E one must
be either in A or in C, but not in both. Thus E is really an
abstraction of A and C, and its outgoing β and δ arrows
capture two common properties of A and C; namely, that β
leads from them to B and δ to D. The decision to have
transitions that leave a superstate denote transitions leaving
all substates turns out to be highly important, and is one of
the main ways statecharts economize in the number of
arrows.

Fig. 11 might also be approached from a different angle:
first we might have decided upon the simple situation of Fig.

11(iii) and then state E could have been refined to consist of
A and C, yielding Fig. 11(ii). Having decided to make this
refinement, however, the transitions entering E in Fig.
11(iii), namely, α, δ and γ, become underspecified, as they
do not say which of A or C is to be entered. This can be
remedied in a number of ways. One is to simply extend them
to point directly to A or C, as with the α-arrow entering A
directly in Fig. 11(ii). Another is to use multi-level default
entrances, as we now explain.

Fig. 11(i) has a start arrow pointing to state A. In finite
automata this means simply that the automaton starts in state
A. In statecharts this notion is generalized to that of a
default state, which, in the context of Fig. 11 is taken to
mean that as far as the 'outside' world is concerned A is the
default state among A, B, C and D: if we are asked to enter
one of these states but are not told which one to enter, the
system is to enter A. In Fig. 11(i) this is captured in the
obvious way, but in Fig. 11(ii) it is more subtle. The default
arrow starts on the (topological) outside of the superstate E
and enters A directly. This does not contradict the other
default arrow in Fig. 11(ii), which is (topologically) wholly
contained inside E and which leads to C. Its semantics is that
if we somehow already entered E, but inside E we are not
told where to go, the inner default is C, not A. This takes
care of the two otherwise-underspecified transitions entering
(and stopping at the borderline of) state E, those labeled δ
and γ, emanating from B and D, respectively, and which
indeed by Fig. 11(i) are to end up in C, not in A. Thus, Figs.
11(i) and 11(ii) are totally equivalent in their information,
whereas Fig. 11(iii) contains less information and is thus an
abstraction.

Besides the default entrance, there are other special ways
to enter states, including conditional entries, specified by a
circled C, and history entrances, specified by a circled H.
The latter is particularly interesting, as it allows one to
specify entrance to the substate most recently visited within
the state in question, and thus caters for a (theoretically very
limited, but in practice useful) kind of memory. In both of
these, the connector's location within the state hierarchy has
semantic significance.

So much for the hierarchical XOR decomposition of
states. The second notion is the AND decomposition,
capturing the property that, being in a state, the system must
be in all of its components. The notation used in statecharts
is the physical partitioning of a state box (called blob in
[H88]) into components, using dashed lines.

Figure 12(i) shows a state Y consisting of AND
components A and D, with the property that being in Y
entails being in some combination of B or C with E, F or G.
We say that Y is the orthogonal product of A and D. The
components A and D are no different conceptually from any
other superstates; they can have defaults, substates, internal
transitions, etc. Entering Y from the outside, in the absence
of any additional information (like the τ entrance on the
right hand side of Fig. 12(ii)), is actually entering the
combination (B,F), as a result of the default arrows that lead
to B and F. If event α then occurs, it transfers B to C and F
to G simultaneously, resulting in the new combined state
(C,G). This illustrates a certain kind of synchronicity: a
single event causing two simultaneous happenings. If, on the
other hand, μ occurs at (B, F) it affects the D component
only, resulting in (B,E). This, in turn, illustrates a certain
kind of independence, since the transition is the same

5-5

whether, in component A, the system happens to be in B or
in C. Both behaviors are part of the orthogonality of A and
D, which is the term used in statecharts to describe the AND
decomposition. Later we shall discuss the difference
between orthogonality and concurrency, or parallelism.

Fig. 12(ii) shows the same orthogonal state Y, but with
some transitions to and from it. As mentioned, the τ entrance
on the right enters (B,F), but the λ entrance, on the other
hand, overrides D's default by entering G directly. But since
one cannot be in G alone, the system actually enters the
combination (B,G), using A's default. The split ξ entrance on
the top of Fig. 12(ii) illustrates an explicit indication as to
which combination is to be entered, (B, E) in this case. The
γ-event enters a history connector in the area of D, and
hence causes entrance to the combination of B (A's default)
with the most recently visited state in D. As to the exits in
Fig. 12(ii), the ω-event causes an exit from C combined with
any of the three substates of D ─ again a sort of
independence property. Had the ω arrow been a merging
hyper-edge (like the ξ one, but with the direction reversed)
with C and, say, G, as its sources, it would have been a
direct specification of an exit from (C,G) only. The most
general kind of exit is the one labeled χ on the left hand side
of the figure, which causes control to leave A×D
unconditionally.

Fig. 13(i) is the conventional AND-free equivalent of
Fig. 12(i), and has six states because the components of Fig.
12(i) contain two and three. Clearly, if these had a thousand
states each, the resulting "flat" product version would have a
million states. This, of course, is the root of the exponential
blow-up in the number of states, which occurs when
classical finite state automata or state diagrams are used, and
orthogonality is our way of avoiding it. (This last comment
assumes, of course, that we are specifying using the state-
based language alone, not embedded in objects or tasks, etc.)
Note that the "in G" condition attached to the β-transition
from C in Fig. 12(i) has the obvious consequence in Fig.
13(i): the absence of a β-transition from (C,E). Fig 13(ii)
adds to this the ω and χ exiting transitions of Fig. 12(ii),
which now show up as rather messy sets of three and six
transitions, respectively.

Fig. 14 illustrates the broadcast nature of inter-statechart
communication. If after entering the default (B,F,J) event φ
occurs, the statechart moves to (C,G,I), since the φ in
component H triggered the event α, which causes the
simultaneous moves from B to C in component A and from
F to G in D. Now, if at the next stage a ψ occurs, I moves
back to J, triggering β, which causes a move from C to B,
triggering γ, which in turn causes a move from G to F. Thus,
ideally in zero time (see Section 10), the statechart goes in
this second step from (C,G,I) back to (B,F,J).

As mentioned above, the language has several additional
features, though the notions of hierarchy and orthogonality
are perhaps its two most significant ones. Besides language
features, there are also several interesting semantic issues
that arise, such as how to deal with nondeterminism, which
hasn't been illustrated here at all, and synchronicity.
References [HN89&96, HP91, HK04] have lots of
information on these, and Sections 6 and 10 of this paper
discuss some of them too.

So much for the basics of the language.

6. Comments on the Underlying Philosophy
When it comes to visuality, encapsulation and side-

by-side adjacency are topological notions, just like edge
connectivity, and are therefore worthy companions to
edges in hierarchical extensions of graphs. Indeed, I
believe that topology should be used first when designing a
graphical language and only then one should move on to
geometry. Topological features are a lot more fundamental
than geometric ones, in that topology is a more basic
branch of mathematics than geometry in terms of
symmetries and mappings. One thing being inside another
is more basic than it being smaller or larger than the other,
or than one being a rectangle and the other a circle. Being
connected to something is more basic than being green or
yellow or being drawn with a thick line or with a thin line.
I think the brain understands topological features given
visually much better than it grasps geometrical ones. The
mind can see easily and immediately whether things are
connected or not, whether one thing encompasses another,
or intersects it, etc. See the discussion on higraphs [H88]
in Section 8.

Why this emphasis on topology, you may ask? Well,
I’ve always had a (positive) weakness for this beautiful
branch of mathematics. I love the idea of an “elastic
geometry”, if one is allowed a rather crude definition of it;
the fact that two things are the same if the one can be
stretched and squeezed to become the other. I remember
being awed by Brouwer’s fixed-point theorem, for
example, and the Four-Color problem (in 1976 becoming
the Four-Color Theorem). In fact, I started my MSc work
in algebraic topology before moving over to theoretical
computer science. This early love definitely had an
influence on the choices made in designing statecharts.

Statecharts are not exclusively visual/diagrammatic.
Their non-visual parts include, for example, the events that
cause transitions, the conditions that guard against taking
transitions and actions that are to be carried out when a
transition is taken. For these, as mentioned earlier,
statecharts borrow from both the Moore and the Mealy
variants of state machines (see [HU79], in allowing actions
on transitions between states or on entrances to or exits
from states, as well as conditions that are to hold
throughout the time the system is in a state. Which
language should be used for these nongraphical elements is
an issue we will discuss later.

Of course, the hierarchy and orthogonality constructs
are but abbreviations and in principle can be eliminated:
Encapsulation can be done away with simply by flattening
the hierarchy and writing everything out explicitly on the
low level, and orthogonality (as Figs. 12 and 13 show) can
be done away with by taking the Cartesian product of the
components of the orthogonal parts of the system. This
means that these features do not strictly add expressive
power to FSMs, so that their value must be assessed by
"softer" criteria, such as naturalness and convenience, and
also by the size of the description: Orthogonality provides a
means for achieving an exponential improvement in
succinctness, in both upper- and lower-bound senses
[DH88, DH94].

A few words are in line here regarding the essence of
orthogonality. Orthogonal state-components in statecharts
are not the same as concurrent or parallel components of

5-6

the system being specified. The intention in having
orthogonality in a statechart is not necessarily to represent
the different parts of the system, but simply to help
structure its state space, to help arrange the behavior in
portions that are conceptually separate, or independent, or
orthogonal. The word 'conceptually' is emphasized here
because what counts is whatever is in the mind of the
"statifier" ― the person carrying out the statechart
specification.

This motivation has many ramifications. Some people
have complained about the broadcast communication
mechanism of statecharts because it's quite obvious that
you do not always want to broadcast things to an entire
system. One response to this is that we are talking about the
mechanism for communication between the orthogonal
parts of the statechart, between its "chunks" of state-space,
if you will, not between the components ― physical or
software components ― of the actual system. The
broadcasting is one of the means for sensing in one part of
the state space what is going on in another part. It does not
necessarily reflect an actual communication in the real
implementation of the system. So, for example, if you want
to say on a specification level that the system will only
move from state A to state B if the radar is locked on a
target, then that is exactly what you'll say, without having
to worry about how state A will get to know what the radar
is doing. This is true whether or not the other state
component actually represents a real thing, such as the
radar, or whether it is a non-tangible state chunk, such as
whether the aircraft is in air-air mode or in air-ground
mode. On this kind of level of abstraction you often really
want to be able to sense information about one part of the
specification in another, without having to constantly deal
with implementation details.

A related response to the broadcasting issue is that no
one is encouraged to specify a single statechart for an
entire system.2 Instead, as discussed in Sections 7 and 9,
one is expected to have specified some breakup of the
system itself, into functions, tasks, objects, etc., and to have
a statechart (or code) for each of these. In this way, the real
concurrency, the real separate pieces of the system, occur
on a level higher than the statecharts, which in turn are
used to specify the behavior of each of these pieces. If
within a statechart the behavior is sufficiently complex to
warrant orthogonal components, then so be it. In any case,
the broadcast mechanism is intended to take effect only
within a single statechart, and has nothing to do with the
real communication mechanism used for the system itself.

By the way, some of the people who have built tools
to support statecharts have chosen to leave orthogonality
out of the language altogether, claiming that statecharts
don't need concurrency since concurrency is present
anyway between the objects of the system... Notable
among these is the ObjectTime tool, which later evolved
into RoseRT. My own opinion is that orthogonality is
probably the most significant and powerful feature of the
language, but also the most complex aspect of statecharts to

2 This is said despite the fact that in the basic paper on statecharts

[H84&87], to be discussed later, I used a single statechart to
describe an entire system, the Citizen digital-watch. That was
done mainly for presentational reasons.

deal with. So, the decision to leave it out is often made
simply to render the task of building a tool that much
easier…

Let us return briefly to the two key adjectives used
earlier, namely "clear" and "precise", which underlie the
choice of the term visual formalism [H84&87,H88].
Concerning clarity, the aphorism that a picture is worth a
thousand words is something many people would agree
with, but it requires caution. Not everything can be
visualized; not everything can be depicted visually in a way
that is clear and fitting for the brain. (This is related to the
discussion above about topology versus geometry.) For
some mysterious reason, the basic graphics of statecharts
seemed from the very start to vibe well with the avionics
engineers at the IAI. They were very fast in grasping the
hierarchy and the orthogonality, the high- and low-level
transitions and default entries, and so forth.

Interestingly, the same seemed to apply to people
from outside our small group. I recall an anecdote from
somewhere in late 1983, in which in the midst of one of the
sessions at the IAI the blackboard contained a rather
complicated statechart that specified the intricate behavior
of some portion of the Lavi avionics system. I don't quite
remember now, but it was considerably more complicated
than the statecharts in Figs. 7–9. There was a knock on the
door and in came one of the air force pilots from the
headquarters of the project. He was a member of the
"customer" requirements team, so he knew all about the
intended aircraft (and eventually he would probably be able
to fly one pretty easily too…), was smart and intelligent,
but he had never seen a state machine or a state diagram
before, not to mention a statechart. He stared for a moment
at this picture on the blackboard, with its complicated mess
of blobs, blobs inside other blobs, colored arrows splitting
and merging, etc., and asked "What's that?" One of the
members of the team said "Oh, that's the behavior of the
so-and-so part of the system, and, by the way, these
rounded rectangles are states, and the arrows are transitions
between states". And that was all that was said. The pilot
stood there studying the blackboard for a minute or two,
and then said, "I think you have a mistake down here, this
arrow should go over here and not over there"; and he was
right.

For me, this little event was significant, as it really
seemed to indicate that perhaps what was happening was
"right", that maybe this was a good and useful way of
doing things. If an outsider could come in, just like that,
and be able to grasp something that was pretty complicated
but without being exposed to the technical details of the
language or the approach, then maybe we are on the right
track. Very encouraging.

So much for clarity and visuality. As to precision and
formality, later sections discuss semantics and supporting
tools in some detail, but for now it suffices to say that one
crucial aspect that was central to the development of the
language from day one was executability. Being able to
actually execute the specification of the Lavi's behavior
was paramount in my mind, regardless of the form this
specification ended up taking. I found it hard to imagine
the usefulness of a method for capturing behavior that
makes it possible merely to say some things about
behavior, to give snippets of the dynamics, observations
about what happens or what could happen, or to provide

5-7

some disconnected or partially connected pieces of
behavior. The whole idea was that if you build a statechart,
or a collection of statecharts, everything has to be rigorous
enough to be run, to be executable, just like software
written in any old (or new…) programming language.
Whether the execution is carried out in an interpreter mode
or in a compiler mode is a separate issue, one to which
we'll return later on. The main thing is that executability
was a basic, not-to-be-compromised, underlying concern
during the process of designing the language.

This might sound strange to the reader from his/her
present vantage point, but back in 1983 system-
development tools did not execute models at all, something
else we shall return to later. Thus, turning the doodling into
a language and then adding features to it had to be done
with great care. You had to have a full conception of what
each syntactically allowed combination of features in the
language means, in terms of how it is to be executed under
any set of circumstances.

7. 1984–1986: Building a Tool
Once the basics of the language were there, it seemed

natural to want to build a tool that would have the ability
not only to draw, or prepare, statecharts but also to execute
them. Besides having to deal with the operational semantics
of graphical constructs, such a tool would have to deal with
the added complication of statecharts over and above
classical finite-state machines: A typical snapshot of a
statechart in operation contains not just a single state, but
rather a vector, or an array, of states, depending on which
orthogonal components the chart is in at the moment. Thus,
this vector is flexible, given the basic maxim of the
language, which is that states can be structured with a
mixture of hierarchy and orthogonality and that transitions
can go between levels. The very length of the vector of
states changes as behavior progresses.

In a discussion with Amir Pnueli in late 1983, we
decided to take on a joint PhD student and build a tool to
support statecharts and their execution. Amir was, and still
is, a dear colleague at the Weizmann Institute and had also
been my MSc thesis supervisor 8-9 years earlier. Then, at
some point, a friend of ours said something like, "Oh fine,
you guys will build your tool in your academic setting, and
you'll probably write some nice academic papers about it."
And then he added, "You see, if this statechart stuff is just
another idea, then whatever you do will not make much
difference anyway, but if it has the potential of becoming
useful in the real world then someone else is going to build
a commercial tool around it; they will be the ones who get
the credit, they will make the money and the impact, and
you guys will be left behind". This caused us to rethink our
options, a process that resulted in the founding of a
company in Israel in April 1984, by the name of AdCad,
Ltd. The two main founders were the brothers Ido and Hagi
Lachover, and Amir Pnueli and I joined in too. The other
three had previously owned a software company involved
in totally different kinds of systems, but in doing so had
acquired the needed industrial experience. The company
was re-formed in 1987 as a USA entity, called I-Logix,

Inc., and AdCad became its R&D branch, renamed as I-
Logix Israel, Ltd.3

By 1986 we had built a tool for statecharts called
Statemate. At the heart of a Statemate model was a
functional decomposition controlled by statecharts. The
user could draw the statecharts and the model's other
artifacts, could check and analyze them, could produce
documents from them, and could manage their
configurations and versions. However, most importantly,
Statemate could fully execute them. It could also generate
from them, automatically, executable code; first in Ada and
later also in C.

Among the other central figures during that period
were Rivi Sherman and Michal Politi. In fact, it was in
extensive discussions with Rivi, Michal and Amir that we
were able to figure out how to embed statecharts into the
broader framework that would capture the structure and
functionality of a large complex system. To this end, we
came up with the diagrammatic language that was used in
Statemate for the hierarchical functional structuring of the
model, which we called activity-charts. An activity-chart
is an enriched kind of hierarchical data-flow diagram,
where the semantics of arrows is the possible flow of
information between the incident functions (which are
called activities). Each activity could be associated with a
controlling statechart (or with code), which would also be
responsible for inter-function communication and
cooperation. Statemate also enabled you to specify the
actual structure of the system, using module-charts, which
specify the real components in the implementation of the
system and their connections. In this way, the tool
supported a three-way model-based development
framework for systems: structure, functionality and
behavior.

Statemate is considered by many to be the first real-
world tool to carry out true model executability and full
code generation. I think it is not a great exaggeration to
claim that the ideas underlying Statemate were really the
first serious proposal for model-driven system
development. These ideas were perhaps somewhat before
their time, but were of significance in bringing about the
eventual change in attitude that I think permeates modern-
day software engineering. The recent UML effort and its
standardization by the OMG (see Section 10) can be
viewed a subsequent important step in steering software
and systems engineering towards model-driven
development.

Setting up the links between the statecharts and the
activity-charts turned out to be very challenging, requiring
among other things that we enrich the events, conditions
and actions in the statecharts so that they could relate to the
starting and stopping of activities, the use of variables and
data types, time-related notions, and much more. After
working all this out and completing the first version of
Statemate in early 1986, we came across the independent

3 I-Logix survived as a private stand-alone company for 22 long

years, amid the many dips in high-tech. In recent years I
maintained a very inactive and low-profile connection with the
company, until it was acquired by Telelogic in March 2006. As
of the time of writing I have no connection with either.

5-8

work of Ward and Mellor [WM85] and Hatley and Pirbhai
[HP87], who also linked a functional decomposition with a
state-based language (theirs was essentially conventional
FSMs). It was very satisfying to see that many of the
decisions about linking up the two were common to all
three approaches. Several years later, Michal Politi and I
sat down to write up a detailed report about the entire
Statemate language set, which appeared as a lengthy
technical report from I-Logix [HP91]. It took several years
more for us to turn this into a fully fledged book [HP96].

Statemate had the ability to link the model to a GUI
mockup of the system under development (or even to the
real system hardware). Executability of the model could be
done directly or by using the generated code, and could be
carried out in many ways with increasing sophistication.
You could execute the model interactively (with the user
playing the role of the system's environment), in batch
mode (reading in external events from files), or in
programmed mode. Just as one example, you could use
breakpoints and random events to help set up and control a
complex execution from which you could gather the results
of interest. In principle, you could thus set Statemate up to
"fly the aircraft" for you, and then come in the following
day and find out what had happened. See [H92] for a more
detailed discussion of model execution possibilities.

During the two years of the development of
Statemate, Jonah Lavi from the IAI and his team were also
very instrumental. They served as a highly useful beta site
for the tool and also participated in making some of the
decisions around its development. Jonah's ideas were
particularly influential in the decision to have module-
charts be part of Statemate.

Over the years, I-Logix built a number of additional
tools, notable among which was a version of Statemate for
hardware design, in which the statecharts were translated
into a high-level hardware-description language. Much
later, in the mid-1990's, we built the Rhapsody tool, based
on object-oriented statecharts, about which we will have
more to say in Section 9.

In the early years of I-Logix, I tried hard ― but failed
― to convince the company's management to produce a
cheap (or free) version of Statemate for use by students.
My feeling was that students of programming and software
engineering should have at their disposal a simple tool for
drawing and executing statecharts, connected to a GUI, so
that they could build running applications easily using
visual formalisms. This could have possibly expedited the
acceptance of statecharts in industry. Instead, since
Statemate was the only serious statechart tool around but
was so very expensive, many small companies, university
teachers and students simply couldn't afford it. Things have
changed, however, and companies building such tools,
including I-Logix, typically have special educational deals
and/or simplified versions that can be downloaded free
from the internet.

8. The Woes of Publication
In November 1983, I wrote an internal document at

the IAI (in Hebrew), titled "Foundations of the State-Based
Approach to The Description of System Operation (see
Figs. 15-16), which contained an initial account of

statecharts. At the time, my take was that this was but a
nice visual way to describe states and transitions of more
complex behavior than could be done conveniently with
finite-state diagrams. I felt that the consulting job at IAI
had indeed been successful, resulting, as it were, in
something of use to the engineers of the Lavi avionics
project. I had given no thought to whether this was indeed
particularly new or novel, believing that anyone seriously
working with state machines for real-world systems was
probably doing something very similar. It seemed too
natural to be new. After all, hierarchy, modularity and
separation of concerns were engrained in nearly everything
people were writing about and developing for the
engineering of large systems.

Then one day, in a routine conversation with Amir
Pnueli (this preceded the conversation reported above that
resulted in our co-founding AdCad/I-Logix), he asked me,
out of curiosity, what exactly I was doing at the Aircraft
Industries on Thursdays. So I told him a little about the
avionics project and the problem of specifying behavior,
and then added something about proposing what seemed to
be a rather natural extension of finite-state diagrams. He
said that it sounded interesting and asked to see what the
diagrams looked like. So I went to the blackboard (actually,
a whiteboard; see the photo in Fig.17, taken a few months
later) and spent some time showing him statecharts. He
said something to the effect that he thought this was nice
and interesting, to which I said, "Maybe, but I'm certain
that this is how everyone works". He responded by saying
that he didn't think so at all and proceeded to elaborate
some more. Now, although we were both theoreticians, he
had many more years of experience in industry (e.g., as
part of the company he was involved in with the Lachover
brothers), and what he said seemed convincing. After that
meeting it made sense to try to tell the story to a broader
audience, so I decided to write a "real" paper and try to get
it published in the computer science literature.

The first handwritten version was completed in mid-
December of 1983 (see Fig. 18). In this early version the
word statification was used to denote the process of
preparing a statechart description of a system. The paper
was typed up, then revised somewhat (including the title)
and was distributed as Technical Report CS84-05 of our
Department at the Weizmann Institute in February of 1984
[H84&87]; see Fig. 19.

The process leading to the eventual publication of this
paper is interesting in its own right. For almost two years,
from early 1984 until late 1985, I repeatedly submitted it to
what seemed to be the most appropriate widely read venues
for such a topic. These were, in order, Communications of
the ACM, IEEE Computer and IEEE Software. The paper
was rejected from all three of these journals. In fact, from
IEEE Computer it was rejected twice ― once when
submitted to a special issue on visual languages and once
when submitted as a regular paper. My files contain quite
an interesting collection of referee reports and editors'
rejection letters. Here are some of the comments therein:

"I find the concept of statecharts to be quite interesting, but
unfortunately only to a small segment of our readership. I
find the information presented to be somewhat innovative,
but not wholly new. I feel that the use of the digital watch

5-9

example to be useful, but somewhat simple in light of what
our readership would be looking for."

"The basic problem […] is that […] the paper does not
make a specific contribution in any area."

"A research contribution must contain 'new, novel, basic
results'. A reviewer must certify its 'originality, significance,
and accuracy'. It must contain 'all technical information
required to convince other researchers in the area that the
results are valid, verifiable and reproducible'. I believe that
you have not satisfied these requirements."

"I think your contribution is similar to earlier
contributions."

 "The paper is excellent in technical content; however, it is
too long and the topic is good only for a very narrow
audience."

 "I doubt if anyone is going to print something this long."
Indeed, the paper was quite long; it contained almost

50 figures. The main running example was my Citizen
Quartz Multi-Alarm digital wristwatch (see Fig. 20), which
was claimed in the rejection material by some to be too
simple an example for illustrating the concepts and by
others to be far too detailed for a scientific article… Some
claimed that since the paper was about the much studied
finite-state machine formalism it could not contain
anything new or interesting…

One must understand that in the mid-1980s there was
only scant support for visual languages. Visual
programming in the classical sense had not really
succeeded; it was very hard to find ways to visualize
nontrivial algorithmic systems (as opposed to visualizing
the dynamic running of certain algorithms on a particular
data structure), and the only visual languages that seemed
to be successful in system design were those intended to
specify structure rather than behavior. Flowcharts, of
course, were a failure in that most people used them to help
explain the real thing, which was the computer program.
There was precious little real use of flowcharts as a
language that people programmed in and then actually
executed. In terms of languages for structure, there were
structure diagrams and structure charts, hierarchical tree-
like diagrams, and so on. The issue of a visual language
with precise semantics for specifying behavior was not
adequately addressed at all. Petri nets were an exception
[R85], but except for some telecommunication applications
they did not seem to have caught on widely in the real
world. My feeling was that this had mainly to do with the
lack of adequate support in Petri nets for hierarchical
specification of behavior.

The state of the art on diagrammatic languages at the
time can be gleaned from the book by Martin and McClure
titled Diagramming Techniques for Analysts and
Programmers [MM85]. This book discussed many visual
techniques, but little attention was given to the need for
solid semantics and/or executability. Curiously, this book
could have helped convince people that visual languages
should not be taken seriously as means to actually program
a system the way a standard programming language can.

Coming back to the statecharts paper, the inability to
get it published was extremely frustrating. Interestingly,
during the two years of repeated rejections, new printings
of the 1984 technical report had to be prepared, to address
the multitude of requests for reprints. This was before the
era of the internet and before papers were sent around
electronically. So here was a paper that no one wanted to
publish but that so many seemed to want to read... I revised
the paper twice during that period, and the title changed
again, to the final "Statecharts: A Visual Formalism for
Complex Systems". Eventually, two and half years later, in
July 1987, the paper was published in the theoretical
journal Science of Computer Programming [H84&87].
That happened as a result of Amir Pnueli, who was one of
its editors, seeing the difficulties I was having and
soliciting the paper for the journal.4

In the revisions of the paper carried out between 1984
and 1987, some small sections and discussions that
appeared in earlier versions were removed. One topic that
appeared prominently in the original versions and was later
toned down, appearing only in a very minimalistic way in
the final paper, was the idea of having states contain state
protocols, or statocols. These were to include information
about the behavior that was not present in the charts
themselves. The modern term for this kind of information
behavior is the action language, i.e., the medium in which
you write your events, conditions, actions, etc. The
question of whether the action language should be part of
the specification language itself or should be taken to be a
subset of a conventional programming language is the
subject of a rather heated debate that we will return to later.

A few additional papers on statecharts were written
between 1984 and 1987. One was the paper written jointly
with Pnueli on reactive systems [HP85]. It was born
during a plane trip that we took together, flying to or from
some conference. We were discussing the special nature of
the kinds of systems for which languages like statecharts
seemed particularly appropriate. At some point I
complained about the lack of a special term to denote them,
to which he responded by saying he thought such systems
should be termed reactive. "Bingo", I said, "we have a new
term”! Interestingly, this paper (which also contained a few
sections describing statecharts) was written about two years
after the original statecharts paper, but was published (in a
NATO conference proceedings) a year earlier…

Another paper written during that period was actually
published without any trouble at all, in the
Communications of the ACM [H88]. It concentrates on the
graphical properties of the statecharts language,
disregarding the intended semantics of nodes as dynamic

4 A note on the title page of the published version states that the
paper was "Received December 1984, Revised July 1986". The
first of these is an error – probably made in the typesetting stage –
since submission to Pnueli was made in December 1985. By the
way, this story of the repeated rejections of the paper would not
be as interesting were it not for the fact that in the 20 years or so
since its publication it has become quite popular. According to
Citeseer, it has been for several years among the top handful of
most widely quoted papers in computer science, measured by
accumulated citations since publication (in late 2002 it was in the
second place on the list).

5-10

states and edges as transitions. The paper defined a
higraph to be the graphical artifact that relates to a directed
graph just as a statechart relates to a finite-state diagram.5
The idea was to capture the notions of hierarchy,
orthogonality, multilevel and multinode transitions,
hyperedges, and so on, in a pure set-theoretic framework. It
too contains material on statecharts (and a simplified
version of the digital-watch example) and since it appeared
in a journal with a far broader readership than Science of
Computer Programming it is often used as the de facto
reference to statecharts.

The third paper that should be mentioned here was on
the semantics of statecharts [HPSR87]. It was written
jointly with the "semantics group" ― the people involved
in devising the best way to implement statecharts in
Statemate ― and provided the first formal semantics of the
language. However, some of the basic decisions we made
in that paper were later changed in the design of the tool, as
discussed in Section 10.

Another paper was the one written on the Statemate
tool itself [H+88&90], co-authored by the entire Statemate
team at Ad-Cad/I-Logix. Its appeal, I think, goes beyond
the technical issue of showing how statecharts can be
implemented (the lack of which several of the referees of
the basic statecharts paper complained about). In
retrospect, as mentioned earlier, it set the stage for and
showed the feasibility of the far broader concepts of
model-driven development, true model executability and
full code generation. These are elaborated upon in a later,
more philosophical paper, "Biting the Silver Bullet" [H92],
which also contained a rebuttal of Fred Brooks' famous
"No Silver Bullet" paper [B87].

To close this section, an unfortunate miscalculation

with regards to publication should be admitted. This was
my failure to write a book about the language early on. As
mentioned in the previous section, it was only in 1996 that
the book with Michal Politi on Statemate was published
[HP96]. This was definitely a mistake. I did not realize that
most engineers out there in the real world rarely have the
time or inclination to read papers, and even if they do they
very rarely take something in a paper seriously enough to
become part of the their day-to-day practice. One has to
write a book, a popular book. I should have written a
technical book on statecharts, discussing the language in
detail, using many examples, describing the tool we already
had that supported it, and carefully working out and
describing the semantics too. This could have helped
expose the language to a broader audience a lot earlier.

9. 1994–1996: The Object-Oriented Version
In the early 1990s Eran Gery, who at the time was

(and still is) one of the key technical people at I-Logix,
became very interested in object-oriented modeling. As it
turned out, several people, including Jim Rumbaugh and

5 A sub-formalism of higraphs, which contains hierarchy and

multi-level transitions has been called compound graphs
[MS88,SM91].

Grady Booch, had written about the use of statecharts in
object-oriented analysis and design; see, e.g., [B94,
RBPEL91, SGW94]. It was Eran's opinion that their work
left some issues that still had to be dealt with in more
detail; for example, the semantics of statecharts were not
worked out properly, as were the details of some of the
dynamic connections with the objects. Also, they had not
built a tool such as Statemate for this particular, more
modern, OO approach. In the terminology of the present
paper, their version of the language was not (yet)
executable.

Despite being well aware of object-oriented
programming and the OO programming languages that
existed at the time, I was not as interested in or as familiar
with this work on OO modeling as was Eran. Once
Statemate had been designed and its initial versions built,
the implementational issues that arose were being dealt
with adequately by the I-Logix people, and I was spending
most of my time on other topics of research. Eran did some
gentle prodding to get me involved, and we ended up
taking a much closer look at the work of Booch, Rumbaugh
and others. This culminated in a 1996 paper, "Executable
Object Modeling with Statecharts", in which we defined
object-oriented statecharts, an OO version of the
language, and worked out the way we felt the statecharts
should be linked up with objects and executed [HG96&97].
One particular issue was the need for two modes of
communication between objects, direct synchronous
invocation of methods and asynchronous queued events.
There were also many other aspects to be carefully thought
out that were special to the world of objects, such as the
creation and destroying of objects and multithreaded
execution. The main structuring mechanism is that of a
class in a class diagram (or an object instance in an object
model diagram), each of which can be associated with a
statechart. A new copy of the statechart is spawned
whenever a new instance of the class is created. See Fig. 21
for two examples of statecharts taken from that paper.

In the paper we also outlined a new tool for
supporting all of this, which I-Logix promptly started to
build, called Rhapsody. Eran championed and led the
entire Rhapsody development effort at I-Logix, and he still
does.

And so we now have two basic tools for statecharts ―

Statemate, which is not object-oriented and is intended
more for systems people and for mixed hardware/software
systems, and Rhapsody, which is intended more for
software systems and is object-oriented in nature. One
important difference between the tools, which we shall
elaborate upon in Section 10, is that the semantics of
statecharts in Statemate is synchronous and in Rhapsody it
is, by and large, asynchronous. Another subtle but
significant difference is reflected in the fact that Statemate
was set up to execute statecharts directly, in an interpreter
mode that is separate from the code generator. In contrast,
the model execution in Rhapsody is carried out solely by
running the code generated from the model. Thus,
Rhapsody could be thought of as representing a high-level
programming language that is compiled down into
runnable code. Except, of course, that the statechart
language is a level higher than classical programming
languages, in that the translation from it was made into

5-11

C++, Java or C, etc. Another important difference is that a
decision was made to make the action language of
Rhapsody be a subset of the target programming language.
So you would draw statecharts in Rhapsody and the events
and actions specified along transitions and in states, etc.,
are fragments of, say, C++ or Java. (The action language in
Fig. 21, for example, is C++.) These differences really turn
Rhapsody into more of a high-level programming tool than
a system-development tool. See also the discussion on the
UML in Section 10.

There are now several companies that build tools that
support statecharts. There are also many variants of the
language. One of the most notable early tools is
ObjecTime, built by Bran Selic and Paul Ward and others.
This tool later became RoseRT, from Rational Corp.
StateRover is another statechart tool, built by my former
student, Doron Drusinsky. Finally, Stateflow is a statechart
tool embedded in Matlab (which is used widely by people
interested in control systems); its statecharts can be
effortlessly linked to Matlab's other modeling and analysis
tools.

It is worth viewing the implementation issue in a
slightly broader perspective. In the early 1980s, essentially
none of the tools offered for system development using
graphical languages were able to execute models or
generate running code. If one wants to be a bit sarcastic
about it, these so-called CASE tools (the acronym standing
for computer-aided software engineering) were not much
more than good graphic editors, document generators,
configuration managers, etc. It would not be much of an
exaggeration to say that pre-1986 modeling tools were
reminiscent of support tools for a programming language
with lot of nice features but with no compiler (or
interpreter). You could write programs, you could look at
them, you could print them out, you could ask all kind of
queries such as "list all the integer variables starting with
D", you could produce documents, you could do automatic
indentation, and many other niceties; everything except run
the programs!

Of course, in the world of complex systems, tools that
do these kinds of things − checking for the consistency of
levels and other issues related to the validity of the syntax,
offering nice graphic abilities for drawing and viewing the
diagrams, automatically generating documents according to
pre-conceived standards, and so on − are very important.
Although these features are crucial for the process of
building a large complex system, I was opposed to the hype
and excitement that in pre-1986 years tended to surround
such tools. My take was that the basic requirement of a tool
for developing systems that are dynamic in nature is the
ability not only to describe the behavior, but also to analyze
it and execute it dynamically. This philosophy underlies the
notion of a visual formalism, where the language is to be
both diagrammatic and intuitive in nature, but also
mathematically rigorous, with a well-defined semantics
sufficient to enable tools to be built around it that can carry
out dynamic analysis, full model execution and the
automatic generation of running code; see [H92].

10. On Semantics
It is worth dwelling on the issue of semantics of

statecharts. In a letter from Tony Hoare after he read the
1984 technical report on statecharts, he said very simply
that the language "badly needs a semantics". He was right.
I was overly naïve at the time, figuring that writing a paper
that explained the basics of the language's operation and
then building a tool that executes statecharts and generates
code from them would be enough. This approach took its
cue from programming language research, of course, where
people invent languages, describe them in the literature and
then build compilers for them. That this was naïve is a
consequence of the fact that there are several very subtle
and slippery issues around the semantics of any concurrent
language − statecharts included. These not only have to be
decided upon when one builds a tool, something we
actually took great pains to do properly when designing
Statemate, but they also have to be written up properly for
the scientific community involved in the semantics of
languages.

In retrospect, what we didn't fully realize in those
early years was how different statecharts were from
previous specification languages for real-time embedded
systems − for better or for worse. We knew that the
language had to be both executable and easily
understandable by many different kinds of people who
hadn't received any training in formal semantics. But at the
same time, as a team wanting to build a tool, we also had to
demonstrate quickly to our sponsors, the first being IAI,
that ours was an economically viable idea; so we were
under rather great time pressure. Due to the high level of
abstraction of statecharts, we had to resolve several rather
deep semantical problems that apparently hadn't been
considered before in the literature, at least not in the
context of building a real-world tool intended for large and
complex systems. What we didn't know was that some of
these very issues were being investigated independently,
around the same time, by various leading French
researchers, including Gérard Berry, Nicholas Halbwachs
and Paul le Guernic (who later coined the French phrase
L'approche synchrone, "the synchronous approach", for
their kind of work).

In actuality, during the 1984-6 period of designing
Statemate, we did not do such a clean and swift job of
deciding on the semantics. We had dilemmas regarding
several semantic issues, a couple of which were
particularly crucial and central. One had to do with whether
a step of the system should take zero time or more, and
another had to do with whether the effects of a step are
calculated and applied in a fixpoint-like manner in the
same step, or are to take effect only in the following one.
The two issues are essentially independent; one can adopt
any of the four combinations. Here is not the proper place
to explain the subtlety of the differences, but the first issue,
for example, has to do with whether or not you adopt the
pure synchrony hypothesis, generally attributed to Berry,
whereby steps take zero time [BG92]. Of course, these
questions have many consequences in terms of how the
language operates, whether events can interfere with chain
reactions triggered by other events, how time itself is
modeled, and how time interleaves with the discrete event
dynamics of the system.

5-12

During that period the main people who were sitting
around the table discussing this were Amir Pnueli, Rivi
Sherman, Janette Schmidt, Michal Politi and myself, and
for some time we used the code names Semantics A and B
for the two main approaches we were seriously
considering. Both semantics were synchronous in the sense
of [BG92] and differed mainly in the second issue above.
The paper we published in 1987 was based on Semantics B
[HPSR87], but we later adopted semantics A for the
Statemate tool itself, which was rather confusing to people
coming from outside of our group. In 1989, Amnon
Naamad and I wrote a technical report that described the
semantics adopted in Statemate [HN89&96], i.e.,
Semantics A, where the effects of a step are accumulated
and are then carried out in the following step. At the time,
we did not think that this report was worth publishing ―
naiveté again ― so for several years it remained an internal
I-Logix document.

In any case, the statecharts of Statemate really
constitute a synchronous language [B+03], and in that
respect they are similar to other, non visual languages in
this family, such as Berry's Esterel [BG92], Lustre
[CPHP87] and Signal [BG90].

At that time, a number of other researchers started to
look at statechart semantics, some being motivated by our
own ambivalence about the issue and by the fact that the
implemented semantics was not published and hence not
known outside the Statemate circle. For example, in an
attempt to evaluate the different semantics for statecharts,
Huizing, Gerth and de Roever proved one of them to have
the desirable property of being fully abstract [HGdR88]. As
the years went by, many people defined variants of the
statechart language, sometimes dropping orthogonality,
which they deemed complicated, and often adding some
features or making certain modifications. There were also
several papers published that attempted to provide formal,
machine-readable semantics for the language, and others
that described other tools built around variants thereof.

An attempt to summarize the situation was carried out
by von der Beeck, who tried to put some order into the
multitude of semantics of statecharts that were being
published. The resulting paper [vB94] claimed implicitly
that statecharts is not really a well-defined language
because of these many different semantics (it listed about
twenty such). Interestingly, while [vB94] reported on the
many variants of the language with the many varying
semantics, it did not report on what should probably have
been considered at the time the "official" semantics of the
language. This is the semantics we defined and adopted in
1986-7 when building Statemate [HN89&96]; the one I
talked about and demonstrated in countless lectures and
presentations in the preceding 8 years, but, unfortunately,
the only one not published at the time in the widely-
accessible open literature…

Around the same time another paper was published,
by Nancy Leveson and her team [LHHR94], in which they
took a close look at yet another statecharts semantics paper,
written by Pnueli and Shalev [PS91]. The Pnueli/Shalev
paper provided a denotational fixpoint semantics for
statecharts and elegantly showed its equivalence to a
certain operational semantics of the language. Leveson and
her group did not look at the Statemate tool either and, like
von der Beeck, had not seen our then-unpublished

technical report [HN89&96]. The Leveson et al paper was
very critical of statecharts, going so far as to hint that the
language is unsafe and should not be used, the criticism
being based to a large extent on anomalies that they
claimed could surface in systems based on the semantics of
[PS91].

It seems clear that had a good book about statecharts
been available early on, including its semantics and its
Statemate implementation, some of this could have been
avoided. At the very least we should have published the
report on the Statemate semantics. It was only after seeing
[vB94, LHHR94] and becoming rather alarmed by the
results of our procrastination that we did just that, and the
paper was finally published in 1996 [HN89&96].

As to the semantic issues themselves, far more
important than the differences between the variants of pre-
OO statecharts themselves, as reported upon in [vB94], is
the difference between the non-object-oriented and the
object-oriented versions of the language, as discussed
above. The main semantic difference is in synchronicity.
Statemate statecharts, i.e., the version of the language
based on functional decomposition, is a synchronous
language, whereas Rhapsody statecharts, i.e., the object-
oriented version thereof, is an asynchronous one. There are
other substantial differences in modes of communication
between objects, and there are the issues that arise from the
presence of dynamic objects and their creation and
destruction, inheritance, object composition,
multithreading, and on and on. All these have to be dealt
with when one devises an object-oriented version of such a
language and builds a tool like Rhapsody, which supports
both the objects and their structure and the statecharts and
code that drive their behavior.

In the object-oriented realm, a similar publication sin
was committed, waiting far too long to publish the
semantics of statecharts in Rhapsody. Only very recently,
together with Hillel Kugler, did we finally publish a paper
(analogous to [HN89&96]) that gives the semantics of
statecharts as adopted in Rhapsody and describes the
differences between these two subtly different versions of
the language [HK04].

This section on semantics cannot be completed
without mentioning the unified modeling language, the
UML; see [RJB99,UML]. As the reader probably well
knows, Rumbaugh and Booch, together with Ivar Jacobson,
got together to form the technical core team of the
impressive UML effort, which was later standardized by
the object management group (OMG). Although the UML
features many graphical languages, many of them have not
been endowed with satisfactorily rigorous semantics. The
heart of the UML − what many people refer to as its
driving behavioral kernel − is the (object-oriented variant
of the) statecharts language; see Section 9. In the late 1990s
Eran Gery and I took part in helping this team define the
intended meaning of statecharts in the UML. This had the
effect of making UML statecharts very similar to what we
had already implemented in Rhapsody.

In fact, currently the two main executable tools for
UML-based languages are Rhapsody and RoseRT; the
latter, as mentioned above, is a derivative of the earlier
ObjecTime tool, and implements a sublanguage of
statecharts: for example, it does not support orthogonal

5-13

state components.6 There are other differences between
these two tools that the present paper cannot cover. Also,
the issue of whether the action language should be the
target programming language, as in Rhapsody, or whether
there should be an autonomous action language is still
raging in full force and the UML jury is not yet in on this
issue.

See the recent [HR04], with its whimsical title
"What's the Semantics of 'Semantics'?", for a manifesto
about the subtle issues involved in defining the semantics
of languages for reactive systems, with special emphasis
put on the UML.

11. Biological Modeling with Statecharts
In terms of usage of statecharts, the language appears

to be used very widely in computer embedded and
interactive systems, e.g., in the aerospace and automotive
industries, in telecommunication and medical
instrumentation, in control systems, and so on. However,
one of the more interesting developments involves
statecharts also being used in non-conventional areas, such
as modeling biological systems and health-care processes.

Starting in the mid-1980s I had often claimed that
biological systems should be viewed as systems the way we
know them in the world of computing, and biological
modeling should be attempted using languages and tools
constructed for reactive systems, such as statecharts. One
modest attempt to do so was made by a student in our
department, Billie Sandak, around 1989. This work was not
carried out to completion, and the topic was picked up
about ten years later by another student, Naaman Kam, co-
supervised by Irun Cohen, a colleague of mine from the
Weizmann Institute's Immunology department. The
resulting work (written up in [KCH01]) started a flurry of
activity, and by now several serious efforts have been made
on using statecharts to model biological systems. This
includes one particularly extensive effort of modeling T
cell development in the thymus gland, done with our
student Sol Efroni [EHC03], and others involving, e.g., the
pancreas [SeCH06] and the lymph node [SwCH06]. The
thymus model, for example, contains many thousands of
complex objects, each controlled by a very large and
complicated statechart, and has resulted in the discovery of
several properties of the system in question; see the recent
[EHC07]. Figs. 22 and 23 show, respectively, the front-end
of this model and a schematic rendition of parts of the
statechart of a single cell. Figs. 24 and 25 show more
detailed parts of some of the statecharts from the thymus
model during execution.

One of the notions that we came up with during our
work on the thymus model is reactive animation
[EHC05]. The idea is to be able to specify systems for
which the front end requires something more than a GUI
― specifically, systems that require true animation. A good
example would be a traffic or radar system with many

6 By the way, Rational's most popular tool, Rational Rose, cannot

execute models or produce executable code. In that respect it
suffers from the same central weakness afflicting the pre-1986
CASE tools.

elements and targets, such as cars or aircraft, being created,
moving in and out of the scene, traveling around, growing
and shrinking in size, changing and getting destroyed, etc.
Under normal circumstances, this kind of system would
have to be programmed using the script language supported
by an animation system. Reactive animation allows one to
use a state-of-the-art reactive system tool, such as
Statemate or Rhapsody, linked up directly and smoothly
with an animation tool. The T cell model of [EHC03,
EHC07] was built using statecharts in Rhapsody, linked up
with the Flash animation tool, and the two work together
very nicely. Reactive animation is used extensively also in
the pancreas and lymph node models [SeCH06, SwCH06].

12. Miscellaneous
This section discusses some related topics that came

up over the years. One is the notion of overlapping states,
whereby you want the and/or state hierarchy in statecharts
to be a directed graph, not a tree. This possibility, and the
motivation for it, was already mentioned in the earliest
documents on statecharts; see Fig. 26. In work with an
MSc student, H.-A. Kahana, the details of how overlapping
could be defined were worked out [HK92]. We found that
the issue was pretty complicated since, e.g., overlapping
can be intermixed not only with the substate facet of the
hierarchy but also with orthogonal components. We
actually concluded that the complications might outweigh
the benefits of implementing the feature.

Although the basic idea is very natural, it appears that
such an extension is not yet supported in any of the
statechart tools. Incidentally, this does not prevent people
from thinking that overlapping is a simple matter, since it is
tempting to think only of simple cases, like that of Fig. 26.
Some people have approached me and asked "Why doesn't
your tool allow me to draw one state overlapping the other?
Why don't you simply tell it not to give me the error
message when I try to do this in the graphic editor?" Of
course, underlying such questions is the naïve assumption
that if you can draw a picture of something, and it seems to
make sense to you, then there is no problem making it part
of the language… I often use this exchange to illustrate the
difference between what many people expect of a visual
language and what a real visual formalism is all about; see
the discussion on "the doodling phenomenon" in [HR04].

An additional topic is that of hybrid systems. It is
very natural to want to model systems that have both
discrete and continuous aspects to them. In discussions and
presentations on statecharts in the 1980s, I often talked
about the possibility of using techniques from control
theory and differential equations to model the activities
occurring within states in a statechart, but never actually
did any work on the idea. Many years later the notion of a
hybrid (discrete and continuous) system was put forward
by several people, and today there is an active community
doing deep research in the area. Many models of hybrid
systems are essentially finite-state machines, often rendered
using statecharts that are intermixed with techniques for
specifying continuous aspects of a system, such as various
kinds of differential equations.

The other idea I have been trying to peddle for years
but have done nothing much about is to exploit the

5-14

structure of the behavior given in statecharts to aid in the
verification of the modeled system. The philosophy behind
this is as follows. We all know that verification is hard, yet
there are techniques that work pretty well in practice, such
as those based on model checking. However, common
verification techniques do not exploit the hierarchical
structure or modularity that such models very often have.
Now, assume that someone has already made the effort of
preparing a statechart-based description of a complex
system, and has gone to great pains in order to structure the
statecharts nicely to form a hierarchy with multilevel
orthogonal components. There should probably be a way to
exploit the reasons for the decisions made in this
structuring process in carrying out the verification. Perhaps
the way to do it is to try to get more information from the
"statifier", i.e., the person preparing the statecharts, about
the knowledge he or she used in the structuring. For
example, just as we expect someone writing a program
with a loop to be able to say more about the invariant and
convergent properties of that loop, so should we expect
someone breaking a system's state space into orthogonal
components, or deciding to have a high-level state
encompass several low-level states, to be able to say
something about the independent or common properties of
these pieces of the behavior.

There has actually been quite a lot of work on the
verification (especially model checking) of hierarchical
state machines, and the availability of various theoretical
results on the possibility (or lack thereof) of obtaining
significant savings in the complexity of verifying
concurrent state machines. There are also some tools that
can model-check statecharts. However, my feeling is that
the jury is not in yet regarding whether one can adequately
formalize this user-provided information and use it
beneficially in the verification process.

Finally, I should mention briefly the more recent work
with colleagues and students, which can be viewed as
another approach, to visual formalisms for complex
systems. It has to do with scenario-based specification.
The statechart approach is intra-object, in that ultimately
the recommendation is to prepare a statechart for each
object of the system (or for each task, function, component,
etc., whatever artifacts your system will be composed of).
Of course, the statecharts are to also contain information
about the communication between the objects, and one
could build special controlling statecharts to concentrate on
these aspects; however, by and large, the idea of finite-state
machines in general, and statecharts in particular, is to
provide a way for specifying the behavior of the system per
object in an intra-object fashion. The more recent work has
to do with scenario-based, inter-object specification. The
idea is to concentrate on specifying the behavior between
and among the objects (or tasks, functions, components,
etc.). The main lingua franca for describing the behavior of
the system would have to be a language for specifying
communication and collaboration between the objects. This
became feasible with the advent of live sequence charts
(or LSCs, for short) in work joint with Werner Damm in
1999; see [DH99&01]. Later, with my student Rami
Marelly, a means for specifying such behavior directly
from a GUI was worked out, called play-in, as well as a

means for executing the behavior, called play-out, and the
entire setup and associated methods have been
implemented in a tool called the Play-Engine; see [HM03].

We have also built mechanisms to bridge between the
two approaches, so that one can connect one or more Play-
Engines with other tools, such as Rhapsody (see
[BHM04]). In this way, one can specify part of the
behavior of the system by sequence charts in a scenario-
based, inter-object, fashion, and other objects can be
specified using statecharts, or even code, in an intra-object
fashion.

13. Conclusions
In summary, it would seem that one of the most

interesting aspects of this story of statecharts in the making
is in the fact that the work was not done by an academic
researcher sitting in his/her ivory tower, inventing
something and trying to push it down the engineers' throats.
Rather, it was done by going into the lion's den, so to
speak, working in industry and with the people in industry.
This is consistent with the saying that "the proof of the
pudding is in the eating".

Other things crucial to the success of a language and
an approach to system-development are good supporting
tools and excellent colleagues. In my own personal case,
both the IAI engineers and the teams at AdCad/I-Logix
who implemented the Statemate tool and then the
Rhapsody tool were an essential and crucial part of the
work. And, of course, a tremendous amount of luck is
necessary, especially, as in this case, when the ideas
themselves are not that deep and not that technically
difficult.

I still believe that almost anyone could have come up
with statecharts, given the right background, being exposed
to the right kinds of problems and being surrounded by the
right kinds of people.

Acknowledgments
Extensive thanks are due to my many colleagues at

the Israel Aircraft Industries, at Ad-Cad/I-Logix and at The
Weizmann Institute. Some of these have been mentioned
and credited in the text itself, but I'd like to express
particularly deep gratitude to Jonah Lavi, Amir Pnueli,
Eran Gery, Rivi Sherman and Michal Politi. In addition,
Moshe Vardi, Willem de Roever and the HOPL III referees
made valuable comments on early versions of the paper.
The process of writing of this paper was supported in part by
the John von Neumann Center for the Development of Reactive
Systems at the Weizmann Institute, and by grants from Minerva
and the Israel Science Foundation.

 (Note: the References section appears after the figures)

5-15

Figure 1. Page from the IAI notes (early 1983; with some Hebrew) showing the first attempt at helping
specify the Lavi avionics, using a temporal logic-like formalization.

5-16

Figure 2. Page from the IAI notes (early 1983; with some Hebrew) showing parts of the Lavi avionics
behavior using "statocols", the second attempt ― a kind of structured state-transition protocol language.
Note the graphical "doodling" on the right hand side, which was done to help clarify things to the
engineers, and which quickly evolved into statecharts.

5-17

Figure 3. Page from the IAI notes (mid-1983; in Hebrew) showing a first attempt at deciding on
graphical/topological elements to be used in the hierarchy of states. Note the use of the term default as a
generalization to hierarchical states of the notion of a start state from automata theory.

5-18

Figure 4. Page from the IAI notes (mid-1983) showing the first rendition of orthogonal state
components. Note the hesitation about what style of separation lines to use.

5-19

Figure 5. Page from the IAI notes (mid-1983). Constructs shown include hyper-edges, nested
orthogonality, transitions that reset a collection of states (chart on right). Note the use of Cartesian
products of sets of states (top) to capture the meaning of orthogonality, and the straightforward algebraic
notation for transitions between state vectors (bottom third of page, on right).

5-20

Figure 6. Page from the IAI notes (mid-1983) showing some initial statechart attempts for the Lavi
avionics. Note the nested orthogonality (top left) and the inter-level transitions (bottom).

5-21

Figure 7. Page from the IAI notes (mid-1983; events in Hebrew) showing a relatively "clean" draft of
the top levels of behavior for the main flight modes of the Lavi avionics. These are A/A (air-air), A/G
(air-ground), NAV (automatic navigation) and ON GRD (on ground). Note the early use of a history
connector in the A/G mode.

5-22

Figure 8. Page from the IAI notes (mid-1983) showing the inner statechart specification of the A/A
(air-air) mode for the Lavi avionics.

5-23

Figure 9. Page from the IAI notes (late 1983) showing multiple-level orthogonality in a complex
portion of the Lavi avionics. Most of the orthogonal components on all levels here are not tangible
components of the system, but rather exhibit a natural way of conceptually breaking up the state space.

5-24

Figure 10. Page from the IAI notes (late 1983) showing an and/or tree rendition of (part of) the state
hierarchy in Fig. 9.

5-25

Figure 11. Illustrating hierarchy in statecharts: multi-level states, transitions, default entrances,
refinement and abstraction.

δ

δ

α

β

βμ

γ

δ

 α

μ

δ

β

δ

γ

BA

D C

A B

DC

α

δ

β

δ

γ

B

D

E

E

(i) (ii)

(iii)

5-26

Figure 12. Orthogonality in statecharts, with and without out exits from and entrances to other states.

Y

 A D

α β[in G]

 δ γ

μ

 α

B

C G

F

E

(i)

Y

 A D

α

 δ γ

μ

α

B

C G

F

E

χ

ω

ξ

β[in G]

(ii)

τ

λ

γ

H

5-27

Figure 13. "Flattened" orthogonality-free versions of the two parts of Fig. 12, minus the external
entrances in 12(ii). (These are really the Cartesian products.)

α

μ

δ

γ

α
β

δμ

α

α

B-E

B-F

B-G

C-E

C-F

C-G

δ

(i)

α

μ

δ

γ

αβ

δ

μ
α

α
B-E

B-F

B-G

C-E

C-F

C-G

δ

χ
χ

χ

χ

χ

ω

χ

ω
ω(ii)

5-28

.

Figure 14. Broadcasting within a single statechart.

φ/α

ψ/β

H

A D

I J

α

 δ γ

μ

B

C G

F

E

α

β/γ

5-29

Figure 15. Page from the IAI notes (late 1983; in Hebrew) showing part of the draft of the internal IAI
document reporting on the results of the consulting. Note the first use of the term statecharts (top line).

5-30

Figure 16. Page 10 of the internal IAI document (December 1983; in Hebrew). The bottom figure
shows some of the high-level states of the Lavi avionics, including on the left (in Hebrew…) A/A, A/G,
NAV and GRD.

5-31

Figure 17. Explaining statecharts (early 1984). Note the temporal logic on the bottom right.

5-32

Figure 18. Front page of the first draft of the basic statecharts paper (Dec. 14, 1983). Note the "TEχ
please" instruction to the typist/secretary; the original title (later changed twice), the use of the word
“stratification” for the act of specifying with statecharts (later dropped), and the assertion that the
language "is being implemented at the Weizmann Institute" (later changed).

5-33

Figure 19. Front page of the technical report version of the basic statecharts paper (February 1984).
Note the revised title (later changed again…).

5-34

Figure 20. Hand-drawn draft of the Citizen watch statechart (late 1984), as sent to our graphics
draftsman for professional drawing.

5-35

Figure 21. Two object-oriented statecharts for a railcar example, taken from [HG96&97]. Note the C++
action language.

5-36

Figure 22. Front end (in Flash) of a model of T cell development in the thymus (from [EHC03]).

5-37

Figure 23. Schematics of parts of the statechart of a single cell from the T cell model shown in Fig. 21
(from [EHC03]).

5-38

Figure 24. Snapshot of the first few levels of the statechart of a single cell from the T cell model of
[EHC03], shown during execution on Rhapsody. The purple states (thick-lined, if you are viewing this
in B&W) are the ones the system is in at the moment.

5-39

Figure 25. Snapshot of the statechart of the object dealing with the interaction between a potential T
cell and an epithelial cell in the model of [EHC03], shown during execution on Rhapsody. The purple
states (thick-lined, if you are viewing this in B&W) are the ones the system is in at the moment.

checkAffinity_TCR_peptide

negativeSelection

self_tcr_
compar

findTCR>

findSelf
Peptide
FromEpi
Cell

positiveSelection

findSelf
Peptide
From
Epi

self_tcr_
compare

findTCR>

state_37

otherEpicorticalEpi

checkMHC_

EpiClassII

No>Yes>

EpiClassI

No>Yes>

CD4Tcell CD8Tcell

state_36>

checkCo_

checkEpiAlive>

reportToEngine>

waiting>

reportMature>

reportNeglect>

reportNegative>

reportPositive>

deleteTheoryInstance>

C

CC

CC

evPositiveFailed

evPositive

evNeglect

evNegative

[else]

[(itsEpiCell.getEpi_type() == 2)
&& (itsTcell.getYlocation() <
50)]

[else]

[itsEpiCell.get
ClassType()
== 2]

[itsEpiCell.get
ClassType() ==
1]

[else]

evKillTheoryInstance

[(itsTcell.getCD8_R() ==
false) &&
(itsTcell.getCD4_R() ==
true)]

evCheckCD4or8
[(itsTcell.getCD8_R() ==
true) && (itsTcell.getCD4_
R() == false)]

evNoCo

evYesCo

evKillTheoryInstance

[(itsTcell.getCD8_R() ==
false) && (itsTcell.getCD4_
R() == false)]

evNo
evKillTheoryInstance

evYes

evKillTheoryInstance

5-40

Figure 26. Page from the IAI notebook (late 1983) showing the use of overlapping states, which were
never implemented.

5-41

References

[BHM04] D. Barak, D. Harel and R. Marelly, "InterPlay:
Horizontal Scale-Up and Transition to Design in Scenario-
Based Programming", Lectures on Concurrency and Petri Nets
(J. Desel, W. Reisig and G. Rozenberg, eds.), Lecture Notes in
Computer Science, Vol. 3098, Springer-Verlag, 2004, pp. 66–
86.

[B+03] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs,
P. Le Guernic and R. de Simone, "The Synchronous Languages
Twelve Years Later", Proc. of the IEEE 91 (2003), 64–83.

[BG90] A. Benveniste and P. Le Guernic, "Hybrid Dynamical
Systems Theory and the Signal Language", IEEE Trans. on
Automatic Control, AC-35 (1990), 535–546.

[BG92] G. Berry and G. Gonthier, "The Synchronous
Programming Language ESTEREL: Design, Semantics,
Implementation," Science of Computer Programming 19:2
(1992) 87–152.

[B94] G. Booch, Object-Oriented Analysis and Design with
Applications, Benjamin/Cummings, California, 1994.

[B87] F. P. Brooks, "No Silver Bullet: Essence and Accidents
of Software Engineering," IEEE Computer 20:4 (1987) 10–19.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice,
"Lustre: A Declarative Language for Programming Synchronous
Systems", Proc. 14th ACM Symp. on Principles of
Programming Languages, ACM Press, 1987, pp. 178–188.

[CKS81] A.K Chandra, D.C. Kozen and L.J. Stockmeyer,
"Alternation", Journal of the ACM 28:1 (1981), 114–133.

[DH99&01] W. Damm and D. Harel, "LSCs: Breathing Life
into Message Sequence Charts", Formal Methods in System
Design 19:1 (2001), 45–80. (Preliminary version in Proc. 3rd
IFIP Int. Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS '99) (P. Ciancarini, A. Fantechi
and R. Gorrieri, eds.), Kluwer Academic Publishers, 1999, pp.
293–312.)

[DH88] D. Drusinsky and D. Harel, "On the Power of
Cooperative Concurrency", Proc. Concurrency `88, Lecture
Notes in Computer Science, Vol. 335, Springer-Verlag, New
York, 1988, pp. 74–103.

[DH94] D. Drusinsky and D. Harel, "On the Power of Bounded
Concurrency I: Finite Automata", J. Assoc. Comput. Mach. 41
(1994), 517–539.

[EHC03] S. Efroni, D. Harel and I.R. Cohen, "Towards
Rigorous Comprehension of Biological Complexity: Modeling,
Execution and Visualization of Thymic T Cell Maturation",
Genome Research 13 (2003), 2485–2497.

[EHC05] S. Efroni, D. Harel and I.R. Cohen, "Reactive
Animation: Realistic Modeling of Complex Dynamic Systems",
IEEE Computer 38:1 (2005), 38–47.

[EHC07] S. Efroni, D. Harel and I.R. Cohen, "Emergent
Dynamics of Thymocyte Development and Lineage
Determination", PLOS Computational Biology 3:1 (2007), 127-
136.

[HZ76] M. Hamilton and S. Zeldin, "Higher Order Software: A
Methodology for Defining Software", IEEE Transactions on
Software Engineering SE-2:1 (1976), 9–36.

[H79&80] D. Harel, "And/Or Programs: A New Approach to
Structured Programming", ACM Trans. on Programming
Languages and Systems 2 (1980), 1–17. (Also Proc. IEEE
Specifications for Reliable Software Conf., pp. 80–90,
Cambridge, Massachusetts, 1979.)

[H84&87] D. Harel, "Statecharts: A Visual Formalism for
Complex Systems”, Science of Computer Programming 8
(1987), 231–274. (Preliminary version: Technical Report CS84-
05, The Weizmann Institute of Science, Rehovot, Israel,
February 1984.)

[H88] D. Harel, "On Visual Formalisms", Comm. Assoc.
Comput. Mach. 31:5 (1988), 514–530. (Reprinted in
Diagrammatic Reasoning (Chandrasekaran et al., eds.), AAAI
Press and MIT Press, 1995, pp. 235–271, and in High Integrity
System Specification and Design (Bowen and Hinchey, eds.),
Springer-Verlag, London, 1999, pp. 623–657.)

[H92] D. Harel, "Biting the Silver Bullet: Toward a Brighter
Future for System Development", IEEE Computer 25:1 (1992),
8–20.

[HG96&97] D. Harel and E. Gery, "Executable Object
Modeling with Statecharts", IEEE Computer 30:7 (1997), 31–
42. (Also in Proc. 18th Int. Conf. on Software Engineering,
IEEE Press, 1996, pp. 246–257.)

[HK92] D. Harel and H.-A. Kahana, "On Statecharts with
Overlapping", ACM Trans. on Software Engineering Method.
1:4 (1992), 399–421.

[HK04] D. Harel and H. Kugler, "The Rhapsody Semantics of
Statecharts (or, On the Executable Core of the UML)",
Integration of Software Specification Techniques for
Applications in Engineering, (H. Ehrig et al., eds.), Lecture
Notes in Computer Science, Vol. 3147, Springer-Verlag, 2004,
pp. 325–354.

[HKV02] D. Harel, O. Kupferman and M.Y. Vardi, "On the
Complexity of Verifying Concurrent Transition Systems",
Information and Computation 173 (2002), 143–161l.

[H+88&90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M.
Politi, R. Sherman, A. Shtul-Trauring and M. Trakhtenbrot,
"STATEMATE: A Working Environment for the Development
of Complex Reactive Systems", IEEE Trans. on Software
Engineering 16:4 (1990), 403–414. (Early version in Proc. 10th
Int. Conf. on Software Engineering, Singapore, April 1988, pp.
396–406. Reprinted in Software State-of-the-Art: Selected
Papers (DeMarco and Lister, eds.), Dorset House Publishing,
New York, 1990, pp. 322–338, and in Readings in

5-42

Hardware/Software Co-design (De Micheli, Ernst and Wolf,
eds.), Morgan Kaufmann, 2001, pp. 135–146.)

[HM03] D. Harel and R. Marelly, Come, Let's Play: Scenario-
Based Programming Using LSCs and the Play-Engine,
Springer-Verlag, 2003.

[HN89&96] D. Harel and A. Naamad, "The STATEMATE
Semantics of Statecharts", ACM Trans. on Software Engineering
Method. 5:4 (1996), 293–333. (Preliminary version appeared as
Technical Report, I-Logix, Inc., 1989.)

[HP85] D. Harel and A. Pnueli, "On the Development of
Reactive Systems", in Logics and Models of Concurrent Systems
(K. R. Apt, ed.), NATO ASI Series, Vol. F-13, Springer-Verlag,
New York, 1985, pp. 477–498.

[HPSR87] D. Harel, A. Pnueli, J. Schmidt and R. Sherman,
"On the Formal Semantics of Statecharts", Proc. 2nd IEEE
Symp. on Logic in Computer Science, Ithaca, NY, 1987, pp. 54–
64.

[HP91] D. Harel and M. Politi, The Languages of
STATEMATE, Technical Report, I-Logix, Inc., Andover, MA
(250 pp.), 1991.

[HP96] D. Harel and M. Politi, Modeling Reactive Systems
with Statecharts: The STATEMATE Approach, McGraw-Hill,
1998. (This book is no longer in print, but it can be downloaded
from my web page.)

[HR04] D. Harel and B. Rumpe, "Meaningful Modeling:
What's the Semantics of 'Semantics'?", IEEE Computer 37:10
(2004), 64–72.

[HP87] D. Hatley and I. Pirbhai, Strategies for Real-Time
System Specification, Dorset House, 1987.

[HKSP78] K.L. Heninger, J.W. Kallander, J.E. Shore and D.L.
Parnas, "Software Requirements for the A-7E Aircraft", NRL
Report 3876, November 1978, 523 pgs.

[HU79] J. E. Hopcroft and J. D. Ullman, Introduction to
Automata Theory, Languages and Computation, Addison-
Wesley, 1979.

[HGdR88] C. Huizing, R. Gerth and W.P. de Roever,
"Modeling Statecharts Behaviour in a Fully Abstract Way",
Proc. 13th Colloquium on Trees in Algebra and Programming
(CAAP '88), Lecture Notes in Computer Science, Vol. 299,
Springer-Verlag, 2004, pp. 271–294.

 [I-L] I-Logix, Inc. Products Web page, http://www.ilogix.com.

[KCH01] N. Kam, I.R. Cohen and D. Harel, "The Immune
System as a Reactive System: Modeling T Cell Activation with
Statecharts", Bull. Math. Bio., to appear. (Extended abstract in
Proc. Visual Languages and Formal Methods (VLFM'01), part

of IEEE Symp. on Human-Centric Computing (HCC'01), 2001,
pp. 15–22.)

[LHHR94] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth,
and J. D. Reese, "Requirements Specification for Process-
Control Systems”, IEEE Transactions on Software Engineering
20:9 (1994), 684–707.

[MM85] J. Martin and C. McClure, Diagramming Techniques
for Analysts and Programmers, Prentice-Hall, 1985.

[MS88] K. Misue and K. Sugiyama, “Compound graphs as
abstraction of card systems and their hierarchical drawing,”
Inform. Processing Soc., Japan, Research Report 88-GC-32-2,
1988, (in Japanese).

[PS91] A. Pnueli and M. Shalev, "What Is in a Step: On the
Semantics of Statecharts", Proc. Symp. on Theoret. Aspects of
Computer Software, Lecture Notes in Computer Science, Vol.
526, Springer-Verlag, 1991, pp. 244–264.

[R85] W. Reisig, Petri Nets: An Introduction, Springer-Verlag,
1985.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual, Addison-Wesley, 1999.

[RBPEL91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen, Object Oriented Modeling and Design,
Prentice-Hall, New York, 1991.

[SeCH06] Y. Setty, I.R. Cohen and D. Harel, in preparation,
2006.

[SM91] K. Sugiyama and K. Misue, “Visualization of
Structural Information: Automatic Drawing of Compound
Digraphs”, IEEE Trans. Systems, Man and Cybernetics 21:4
(1991), 876–892.

[SwCH06] N. Swerdlin, I.R. Cohen and D. Harel, "Towards an
in-silico Lymph Node: A Realistic Approach to Modeling
Dynamic Behavior of Lymphocytes", submitted, 2006.

[SGW94] B. Selic, G. Gullekson, and P. Ward, Real-Time
Object-Oriented Modeling, John Wiley & Sons, New York,
1994.

[UML] Documentation of the Unified Modeling Language
(UML), available from the Object Management Group (OMG),
http://www.omg.org.

[vB94] M. von der Beeck, "A Comparison of Statecharts
Variants", Proc. Formal Techniques in Real Time and Fault
Tolerant Systems, Lecture Notes in Computer Science, Vol. 863,
Springer-Verlag, 1994, pp. 128-148.

[WM85] P. Ward and S. Mellor, Structured Development for
Real-Time Systems, vols. 1–3, Yourdon Press, 1985.

5-43

http://www/ilogix.com
http://www.omg.org/

