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In implementation verification, we check that an implementation is correct with respect to a specifica
tion by checkingwhether the behaviors of a transition system thatmodels the program’s implementation
correlate with the behaviors of a transition system that models its specification In this paper, we in-
vestigate the effect of concurrency on the complexity of implementation verification We consider
trace-based and tree-based approaches to the verificatio of concurrent transition systems, with and
without fairness. Our results show that in almost all cases the complexity of the problem is exponen-
tially harder than that of the sequential case. Thus, as in the model-checking verificatio methodology,
the state-explosion problem cannot be avoided. C© 2002 Elsevier Science (USA)

1. INTRODUCTION

While program verificatio has always been desirable but never easy, the advent of concurrent pro-
gramming has made it significantl more necessary and difficult We distinguish between two main
methodologies for formal verification The firs is temporal-logic model checking. Here, we verify the
correctness of a programwith respect to a desired behavior by checking whether a state-transition graph
that models the program satisfie a temporal-logic formula that specifie constraints on its behavior. The
second methodology is implementation verification. Here, we check that an implementation is correct
with respect to a specificatio by checking whether the behaviors of a state-transition graph that models
the program’s implementation correlate with the behaviors of a state-transition graph that models its
specification
The complexity of model checking is well known. For example, in the case of the temporal logics LTL

and CTL, model checking can be carried out in space that is polynomial in n logm, where n is the length
of the formula and m is the size of the graph modeling the program [LP85, VW94, KVW00]. Keeping
in mind that the formulas are usually small, it seems that model checking is easy and tractable. It suffers,
however, acutely from the so-called state-explosion problem. In a concurrent setting, the program under
consideration is typically the parallel composition of many processes, which implies that the size of the
program graph is the product of the sizes of the graphs modeling the underlying processes. Accordingly,
the model-checking problem for concurrent programs can be solved in space that is polynomial in nm,
where n is the length of the formula and m is the sum of the sizes of the graphs modeling the processes.
Can we do better than this? Can we model-check a concurrent program and avoid the state-explosion
problem? Unfortunately, the answer is no. Indeed, model checking of concurrent programs for LTL and

1 A preliminary version of this work appeared in the proceedings of the 8th Conference on Concurrency Theory.
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CTL is PSPACE-complete even for a f xed formula [VW94, KVW00]. Hence, in the worst case we
might need to traverse the exceedingly large state space introduced by the parallel composition. Coping
with the state-explosion problem is one of the most important issues in computer-aided verif cation and
is the subject of much active research (cf. [CGP99]).
What about implementation verif cation? Is the state-explosion problem unavoidable there too? This

is the subject of our work. We f rst describe implementation verif cation in more detail. Consider an
implementation and a specif cation. Both describe possible behaviors of the program, but the implemen-
tation is more concrete than the specif cation, or, equivalently, the specif cation is more abstract than the
implementation (cf. [AL91]). This basic notion suggests a top-down method for design development,
called hierarchical refinement (cf. [LS84, Kur94]): Starting with a highly abstract specif cation, we
construct a sequence of behavior descriptions, each of which refers to its predecessor as a specif cation,
and is thus less abstract than the predecessor. At each stage the current implementation is verif ed to
satisfy its specif cation. The last description in the sequence contains no abstractions and constitutes
the f nal implementation.
There are several ways of def ning what it means for an implementation to satisfy a specif cation.

The two main ones are trace-based and tree-based. The former requires each computation of the
implementation to correlate with some computation of the specif cation, and the latter requires each
computation tree embodied in the implementation to correlate with some computation tree embodied
in the specif cation. The exact notion of correct implementation then depends on how we interpret
correlation. Numerous proposals for this have been made and studied in the literature [Hen85, Mil89,
AL91]. In this paper we adopt a simple interpretation, taking correlation to mean equivalence with
respect to the variables joint to the implementation and the specif cation. One justif cation for this
is the fact that the more concrete implementation is typically def ned over a wider set of variables
than the more abstract specif cation. With this interpretation, trace-based verif cation corresponds to
establishing containment [Kur94] and tree-based verif cation corresponds to establishing simulation
[Mil71].
We model concurrent programs (and hence implementations and specif cations) by what we shall

call concurrent transition systems. The basic motivation for this comes from the statecharts of [Har87],
which can be viewed as f nite automata with both concurrency and hierarchy, though for simplicity we
eliminate the hierarchy here. A concurrent transition system consists of components, which model the
program’s underlying processes. (The analogous parts of a statechart are called orthogonal components
in [Har87].) Each component is a state-transition graph. Its states correspond to the possible positions of
the process it models, and each state is labeled with the events that occur, or hold, in the corresponding
position. The transitions of the graph correspond to the possible steps of the process, with branches
representing nondeterminism. To model the cooperation of processes during execution, the transitions
are made conditional and can depend on the states of the other components. This approach to modeling
concurrency, called bounded cooperative concurrency in [Har89, DH94], is the dominating one in
research on formal methods applicable to distributed systems (cf. [Kur94]).
A concurrent transition system with a single component models a program with no concurrency, and

we call it a sequential transition system. By [DH94], a concurrent transition system can be translated
into a sequential transition system with an exponential blow up in size. Indeed, it is the size of this
sequential system that is referred to in current analyses of the complexity of verif cation. The question
we want to address here is whether the exponential blow up that hides in these analyses can be avoided
if the program to be verif ed is concurrent.
Before we turn to this question, let us review some known results for the implementation verif cation

of sequential transition systems (for full details, see Section 2.3). These results raise interesting issues
concerning the relative merits of trace-based vs tree-based verif cation. When we compare expressive
power, for example, the tree-based approach is stronger, in the sense that while simulation implies
containment, the opposite direction is not true [Mil80]. When we compare the two approaches from
a complexity-theoretic point of view, the picture is controversial. We examine the complexity of the
containment and the simulation problems in four different ways:

1. The joint complexity of containment and simulation. This measure considers the complexity in
terms of both the implementation and the specif cation. The joint complexity of simulation is PTIME-
complete [Mil80, BGS92], whereas that of containment is PSPACE-complete [SVW87].
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2. The implementation complexity of containment and simulation. This measure considers the
complexity in terms of the implementation, assuming the specif cation is f xed. Since the implementation
is typically much larger than the specif cation, this measure is of particular interest. The implementation
complexity of simulation is PTIME-complete, whereas that of containment is NLOGSPACE-complete
[KV98]. So, according to this measure, containment is easier than simulation.

3. The joint complexity of fair containment and fair simulation. When we consider fair transi-
tion systems [MP92], which enable the description of behaviors that satisfy both liveness and safety
properties, containment and simulation are revised to consider only the fair computations of the im-
plementation and the specif cation. The resulting problems of fair containment and fair simulation
[BBLS92, ASB+94, GL94] are both PSPACE-complete [KV98].

4. The implementation complexity of fair containment and fair simulation. Here, the advantage
of the trace-based approach reappears. Indeed, the implementation complexity of fair simulation stays
PSPACE-complete, whereas that of fair containment is NLOGSPACE-complete [KV98].

We address the question about the power of concurrency in program verif cation by examining the
four measures when applied to concurrent transition systems. We f rst def ne containment and simu-
lation with respect to such systems, and then consider the joint complexity and the implementation
complexity of detecting their presence. We then turn to def ning fair-containment and fair-simulation
with respect to concurrent transition systems, and study their complexities too, employing uncondi-
tional, weak, and strong fairness (also known as impartiality, justice, and compassion, respectively)
[LPS81, MP92].
The complexity of checking relations between an implementation and a specif cation of concurrent

systems is studied also in [SHRS96] and [Rab92, Rab97]. In [Rab92, Rab97], Rabinovich considers
a parallel composition of labeled transition systems with silent transitions and hiding of actions. He
shows that the problem of checking whether two systems are equivalent is PSPACE-complete for the
trace-based approach and is EXPTIME-complete for the tree-based approach. The results in [SHRS96]
extend these in [Rab92, Rab97] by considering the tree-based approach for transition systems with
no hiding, yet it shows only a PSPACE lower bound. Our setting is more general than the one in
[Rab92, Rab97], and our results are tighter than those in [SHRS96].
Before saying a little more about the results themselves, we clarify what we feel are the paper’s

two main contributions. First, it continues the study of implementation verif cation in [Mil80, BGS92,
KV98]. Unlike these papers, our complexity analysis addresses the state-explosion issue explicitly, by
taking the size to be that of the concurrent systems themselves and not their sequential equivalents. In
addition, our work continues the study of the power of bounded cooperative concurrency undertaken in
[Har89, DH94, HH94, HRV90]. The results in these papers show that cooperative concurrency exhibits
inherent exponential power. The power criteria considered there are succinctness of f nite automata
and pushdown automata, and the effect of the succinctness gap on the diff culty of reasoning about
transition systems on a propositional level. In the present paper, the power criteria is the complexity of
the verif cation problem.
Our results strengthen the observations in [Har89,DH94,KV98]. Specif cally, the question ofwhether

the exponential nature of concurrency carries over to the verif cation problem is answered in the af-
f rmative. We show that verifying concurrent transition systems is exponentially harder than verifying
sequential transition systems, and thus the state-explosion problem cannot be avoided. This result
is robust: It is independent of the verif cation approach and the fairness constraint under considera-
tion, and remains valid when we consider implementation complexity too. In particular, we show that
the fair-containment and fair-simulation problems for concurrent transition systems are EXPSPACE-
complete. These results join those of [KV98] in questioning the computational superiority of tree-based
verif cation.2
One exception to the inherent exponential power of cooperative concurrency is the fair-simulation

problem for strongly fair transition systems. While the implementation complexity of the problem is

2 While it is not hard to extend the trace-based approach to account for fairness, it is not so obvious how to do it in the tree-based
approach. Several proposals for fair bisimulation can be found in the literature. In this paper, we study the earliest def nition,
of [GL94]. The alternative def nition of [HKR97] is based on games, and the complexity of checking game simulation is only
polynomial.
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PTIME-complete for sequential transition systems [KV98], we show that it is PSPACE-complete (rather
than EXPTIME-complete) for concurrent transition systems. The reason for this anomaly is the fact that
translating a strongly fair concurrent system into a sequential one indeed involves an exponential blow
up in the number of states, but involves no such blow up in the size of the fairness condition. Evidently,
it is the size of the fairness condition that is the dominant factor when reasoning about strongly fair
transition systems. This suggests that strong fairness is the preferable fairness condition to use when
specifying concurrent programs. Not only is it the most expressive condition, but it also suffers less
than the others from the state-explosion problem.

2. PRELIMINARIES

2.1. Fair Concurrent Transition Systems

A fair nondeterministic transition system with bounded concurrency (concurrent transition sys-
tem, for short) is a tuple S = 〈O, S1, . . . , Sn〉 consisting of a f nite set O of observable events and
n components S1, . . . , Sn for some n ≥ 1. Each component Si is a tuple 〈Oi , Wi , W 0

i , δi , Li , αi 〉,
where:

• Oi ⊆ O is a set of local observable events. The O j are not necessarily pairwise disjoint; hence,
observable events may be shared by several components. We require that O = ⋃n

j=1O j .
• Wi is a f nite set of states, and we require that the W j be pairwise disjoint. Also, we let

W = ⋃n
j=1W j .

• W 0
i ⊆ Wi is the set of initial states.

• δi ⊆ Wi ×B(W )× Wi is a transition relation, where B(W ) denotes the set of all Boolean
propositional formulas over W .

• Li :Wi → 2Oi is a labeling function that labels each state with a set of local observable events.
The intuition is that Li (w) are the events that occur, or hold, in w.

• αi is a fairness condition. We def ne three types of fairness conditions shortly. We require all
the αi ’s to be of the same type, which we refer to as the type of S.

Since states are labeled with sets of elements from O , we refer to � = 2O as the alphabet of S.
While each component of S has its local observable events and its own states and transitions, these
transitions depend not only on the component’s current state but also on the current states of the other
components. Also, as we shall now see, the labels of the components are required to agree on shared
observable events.
A configuration of S is a tuple c = 〈w1, w2, . . . , wn, σ 〉 ∈ W1 × W2 × · · · × Wn × �, satisfying

Li (wi )= σ ∩ Oi for all 1≤ i ≤ n. Thus, a conf guration describes the current state of each of the
components, as well as the set of observable events labeling these states. The requirement on σ

implies that these labels are consistent; i.e., for any Si and Sj , and for each o ∈ Oi ∩ O j , either
o ∈ Li (wi )∩ L j (w j ) (in which case, o ∈ σ ) or o �∈ Li (wi )∪ L j (w j ) (in which case, o �∈ σ ). For a
conf guration c = 〈w1, w2, . . . , wn, σ 〉, we term 〈w1, w2, . . . , wn〉 the global state of c, and we term σ

the label of c, and denote it by L(c). A conf guration is initial if for all 1≤ i ≤ n, we have wi ∈ W 0
i . We

use C to denote the set of all conf gurations of a given system S, and C0 to denote the set of all its initial
conf gurations. We also use c[i] to refer to Si ’s state in c.
For a propositional formula θ inB(W ) and a global state p = 〈w1, w2, . . . , wn〉, we say that p satisfies

θ if assigning true to states in p and false to states not in p makes θ true. For example, s1 ∧ (t1 ∨ t2),
with s1 ∈ W1 and {t1, t2} ⊆ W2, is satisf ed by every global state in which S1 is in state s1 and S2 is in
either t1 or t2. We shall sometimes write disjunctions as sets, so that the above formula can be written
{s1} ∧ {t1, t2}. Formulas in B(W ) that appear in transitions are called conditions. If θ is equivalent to
true in the transition 〈w, θ, w′〉, we say that it is unconditional.
Given two conf gurations c = 〈w1, w2, . . . , wn, σ 〉 and c′ = 〈w′

1, w
′
2, . . . , w

′
n, σ

′〉, we say that c′ is
a successor of c in S, and write succS(c, c′), if for all 1≤ i ≤ n there is 〈wi , θi , w

′
i 〉 ∈ δi such that

〈w1, w2, . . . , wn〉 satisf es θi . In other words, a successor conf guration is obtained by simultaneously
applying to all the components a transition that is enabled in the current conf guration. Note that by
requiring that successors are indeed conf gurations, we are saying that transitions can only lead to states
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satisfying the consistency criterion, to the effect that they agree on the labels for shared observable
events.3
Given a conf guration c, a c-computation of S is an inf nite sequence π = c0, c1, . . . of conf gurations

such that c0 = c and for all i ≥ 0wehave succS(ci , ci+1).A computation of S is a c-computation for some
c ∈ C0. The computation c0, c1, . . . generates the inf nite trace ρ ∈ �ω, def ned by ρ = L(c0) · L(c1) . . . .
Sometimes we want to exclude computations of S that do not meet some fairness criteria. This is
particularly essential when we model concurrent programs and want to rule out computations that do
not meet certain scheduling criteria. In order to determine whether a computation π is fair, we refer
to the sets of states that each of the components visits inf nitely often along π . For each 1≤ i ≤ n, let
Inf (π, i) denote the set of states that Si visits inf nitely often. That is,

Inf (π, i) = {w ∈ Wi : for inf nitely many j ≥ 0,we have c j [i] = w}.
Note that the set Inf (π, i) considers only the states of Si and does not refer to the global states visited
along π . For example, it might be that all 1 ≤ i ≤ n have somewi ∈ Inf (π, i) and still no conf guration
in π has the global state 〈w1, . . . , wn〉. The way we refer to Inf (π, i) depends on the fairness condition
of S. Several types of fairness conditions are studied in the literature. We consider here three:

• Unconditional fairness (or impartiality), where for all components Si we have αi ⊆ 2Wi , and
π is fair iff for all 1 ≤ i ≤ n and for every set G ∈ αi , we have Inf (π, i) ∩ G �= ∅.

• Weak fairness (or justice), where αi ⊆ 2Wi × 2Wi , and π is fair iff for all 1 ≤ i ≤ n and for
every pair 〈G, B〉 ∈ αi , we have that Inf (π, i) ∩ (Wi\G) = ∅ implies Inf (π, i) ∩ B �= ∅.

• Strong fairness (or fairness), where αi ⊆ 2Wi × 2Wi , and π is fair iff for all 1≤ i ≤ n and for
every pair 〈G, B〉 ∈ αi , we have that Inf (π, i) ∩ G �= ∅ implies Inf (π, i) ∩ B �= ∅.
In addition, we consider nonfair concurrent transition systems; i.e., concurrent transition systems in
which all the computations are fair. For simplicity,wedenote components of nonfair concurrent transition
system by the quintuplet Si = 〈Oi , Wi , W 0

i , δi , Li 〉, leaving αi out.
We use T (Sc) to denote the set of all traces generated by fair c-computations, and the trace set T (S)

of S is then def ned as
⋃

c∈C0
T (Sc). In this way, each concurrent transition system S def nes a subset

of �ω. We say that S accepts a trace ρ if ρ ∈ T (S). Also, we say that S is empty if T (S)= ∅; i.e., S
has no fair computation, and that S is universal if T (S)= �ω; i.e., every trace in �ω is generated by
some fair computation of S. Note that for a nonfair concurrent transition system S, the trace set T (S)
contains all traces ρ ∈ �ω for which there exists a computation π with L(π )= ρ.
The size of a concurrent transition system S is the sum of the sizes of its components. Symbolically,

|S| = |S1| + · · · + |Sn|. Here, for a component Si = 〈Oi , Wi , W 0
i , δi , Li , αi 〉, we def ne |Si | = |Oi | +

|Wi | + |δi | + |Li | + |αi |, where |δi | =
∑

〈w,θ,w′〉∈δi
|θ |, |Li | = |Oi | · |Wi |, and |αi | is the sum of the

cardinalities of the sets in αi . Clearly, S can be stored in space O(|S|).
When S has a single component, we say that it is a sequential transition system. Note that the

transition relation of a sequential transition system can be really viewed as a subset of W × W and that
a conf guration of a sequential transition system is simply a labeled state.

EXAMPLE 2.1. We construct a nonfair concurrent transition system S as a binary counter; it counts up
to 2n in base 2 using n components. Given n, let S = 〈{bit1, . . . , bitn}, S1, . . . , Sn〉, where Si = 〈{biti },
{w0

i , w
1
i }, {w0

i }, δi , Li 〉, with δi and Li def ned as follows:

• δi = {〈w0
i , θi , w

0
i 〉, 〈w0

i , ¬θi , w
1
i 〉, 〈w1

i , θi , w
1
i 〉, 〈w1

i , ¬θi , w
0
i 〉}, where θi = ∨

j<i w0
j . Note that

θ1 ≡ false. Thus, S1 corresponds to the least signif cant bit of the counter and always alternates between
w0
1 and w1

1. The component Si , for i > 1, switches between w0
i and w1

i whenever all the Sj with j < i
are in their w1

j states. Otherwise, Si stays in its current state.
• For every Si , we set Li (w0

i ) = ∅ and Li (w1
i ) = {biti }.

3 This requirement could obviously have been imposed implicitly in the transition relation, by disallowing in the δi any tuples
〈w, θ, w′〉 for which θ holds when the states of some of the components are mutually inconsistent. Since we always want the com-
ponents to agree on the labeling of shared observable events,we have set up our def nitions of conf gurations and successors tomake
this requirement explicit. Technically, imposing the requirement in the transition relation could be done by replacing each condi-
tion θ by θ ∧ϕ, where ϕ ∈ B(W ) is satisf ed in a global state exactly when the states of all its components are mutually consistent.
The length of ϕ is linear in |W | and |O|, so that the explicit requirement does not involve a substantial decrease in succinctness.
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The single initial trace induced by the system S is

(∅ · {bit1} · {bit2} · {bit2, bit1} · {bit3} · {bit3, bit1} · {bitn, binn−1, . . . , bit1})ω.

Note that although S has n components, its size is quadratic in n. Indeed, the size of each transition
relation δi is O(i). However, we can def ne a slightly more sophisticated version of this system that is
of size O(n). Each component Si has four states, corresponding to the possible values of both the i th
bit of the counter and the i th carry bit. The conditions in the transitions in δi then refer only to the states
of Si−1 and are of a constant size. Indeed, the new i th bit and carry bit depend only on the current i th
and (i − 1)th bits and carry bits.

2.2. Trace-Based and Tree-Based Implementations

The problems that formalize correct trace-based and tree-based implementations of a system are
containment and simulation, respectively. Once we add fairness to the systems, the corresponding
problems are fair containment and fair simulation. These problems are def ned below with respect to
two concurrent transition systems S = 〈O, S1, . . . , Sn〉 and S′ = 〈O ′, S′

1, . . . , S′
m〉with O ⊇ O ′ and with

possibly different numbers of components. For technical convenience, we assume that O = O ′ and that
S and S′ have the same type of fairness conditions.4

2.2.1. Containment and Fair Containment

The fair-containment problem for S and S′ is to determine whether T (S) ⊆ T (S′). That is, whether
every trace accepted by S is also accepted by S′. When S and S′ are nonfair, we call the problem
containment. If T (S) ⊆ T (S′), we say that S′ contains S and we write S ⊆ S′.

2.2.2. Simulation

While containment refers only to the set of computations of S and S′, simulation refers also to the
branching structure of the systems. Let c and c′ be conf gurations of S and S′, respectively. A relation
H ⊆ C × C ′ is a simulation relation from 〈S, c〉 to 〈S′, c′〉 iff the following conditions hold [Mil71].

1. H (c, c′).
2. For all conf gurations a ∈ C and a′ ∈ C ′ with H (a, a′), we have L(a)= L(a′).
3. For all conf gurations a ∈ C and a′ ∈ C ′ with H (a, a′) and for every conf guration b ∈ C such

that succS(a, b), there exists a conf guration b′ ∈ C ′ such that succS′ (a′, b′) and H (b, b′).

A simulation relation H is a simulation from S to S′ iff for every c ∈ C0 there exists c′ ∈ C ′
0

such that H (c, c′). If there exists a simulation from S to S′, we say that S simulates S′ and we write
S � S′. Intuitively, it means that the system S′ has more behaviors than the system S. In fact, every tree
embodied in S is also embodied in S′. The simulation problem is, given S and S′, to determine whether
S � S′.

2.2.3. Fair Simulation

Let H ⊆ C × C ′ be a relation over the conf gurations of S and S′. It is convenient to extend H to
also relate computations of S and S′. For two computations π = c0, c1, . . . in S and π ′ = c′

0, c′
1, . . . in

S′, we say that H (π, π ′) holds iff H (ci , c′
i ) holds for all i ≥ 0. For a pair 〈c, c′〉 ∈ C × C ′, we say that

〈c, c′〉 is good in H iff for every fair c-computation π in S, there exists a fair c′-computation π ′ in S′,
such that H (π, π ′).
Let c and c′ be conf gurations in S and S′, respectively. A relation H ⊆ C × C ′ is a fair-simulation

relation from 〈S, c〉 to 〈S′, c′〉 iff the following conditions hold [GL94].

4 Our results hold also for the general cases. Taking, for each σ ∈ 2O , the letter σ ∩ O ′ instead of the letter σ adjusts all our
algorithms to the case O ⊃ O ′. Also, when S and S′ have different types of fairness conditions, the type of S is dominant, and
the complexity of the problem is the same as in the case where both systems have fairness conditions of S’s type.
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FIG. 1. S ⊆ S′ but S �� S′.

1. H (c, c′).
2. For all conf gurations a ∈ C and a′ ∈ C ′ with H (a, a′), we have L(a)= L(a′).
3. For all conf gurations a ∈ C and a′ ∈ C ′ with H (a, a′), the pair 〈a, a′〉 is good in H .

A relation H is a fair simulation from S to S′ iff for every c ∈ C0 there exists c′ ∈ C ′
0 such that H

is a fair simulation from 〈S, c〉 to 〈S, c′〉. If there exists a simulation from S to S′, we say that S fairly
simulates S′ and we write S � S′. Intuitively, it means that the concurrent transition system S′ has more
fair behaviors than the concurrent transition system S. The fair-simulation problem is, given S and S′,
to determine whether S � S′.
It is easy to see that simulation implies containment. That is, if S � S′, then S ⊆ S′. The opposite,

however, is not true. In Fig. 1 we present two transition systems S and S′ such that the trace sets of both
transition systems is a · b · (cω + dω). As such, S ⊆ S′, but still, S does not simulate S′. Indeed, no state
of S′ can be paired, by any H , to the state labeled b of S [Mil80].
We say that two concurrent transition systems S and S′ are equivalent if they fairly simulate each

other; thus S � S′ and S′ � S. Note that equivalent systems agree on their trace sets.

THEOREM 2.2. Every concurrent transition system S can be translated into an equivalent sequential
transition system of the same type and of size 2O(|S|).

Proof. Drusinsky andHarel prove the theoremwith respect to automata,where the observable events
are input to the machine and where equivalence is def ned as agreement on the trace set [DH94]. Yet,
their proof holds also for transition systems with our def nition of equivalence (mutual simulation), as
follows. Consider a concurrent transition system S with n components. The state space of its equivalent
sequential transition system S′ is the Cartesian product of the state sets of the n components (this
would be W1 × W2 × · · · × Wn in the notation used earlier). Thus, each state of S′ corresponds to
a conf guration of S. Accordingly, the transition relation of S′ coincides with the relation succS over
the conf gurations of S. We now need to def ne the fairness condition of S′ so that a computation of
S′ is fair iff the corresponding computation of S is fair. Let α′ be such that for all 1 ≤ i ≤ n, every
set G ∈ αi (pair 〈G, B〉 ∈ αi ) induces the set W1 × · · · × Wi−1 × G × Wi+1 × · · · × Wn (the pair
〈W1 × · · · × Wi−1 × G × Wi+1 × · · · × Wn, W1 × · · · × Wi−1 × B × Wi+1 × · · · × Wn〉, respectively)
in α′. It is easy to see that S and S′ agree on their trace sets, that they simulate each other, and that the
size of S′ is at most exponential in that of S.

In the rest of this paper we examine the traced-based and the tree-based approaches from a complexity-
theoretic point of view. We consider and compare the complexity of the four problems. The different
levels of abstraction in the implementation and the specif cation are ref ected in their sizes. The imple-
mentation is typically much larger than the specif cation and it is the size of the implementation that is
the computational bottleneck. Therefore, of particular interest to us is the implementation complexity
of these problems; i.e., the complexity of checking whether S ⊆ S′ and S � S′, in terms of the size of
S, assuming S′ is f xed.

2.3. Verif cation of Sequential Transition Systems

We mention here some known results on the verif cation of sequential transition systems.
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THEOREM 2.3 [SVW87, VW94, KV98].

1. The containment problem for sequential transition systems is PSPACE-complete.

2. The implementation complexity of containment for sequential transition systems is
NLOGSPACE-complete.

THEOREM 2.4 [Mil80, BGS92, KV98].

1. The simulation problem for sequential transition systems is PTIME-complete.

2. The implementation complexity of simulation for sequential transition systems is PTIME-
complete.

THEOREM 2.5 [SVW87, VW94, KV98].

1. The fair-containment problem for sequential transition systems is PSPACE-complete.

2. The implementation complexity of fair-containment for sequential transition systems is
NLOGSPACE-complete for unconditionally fair and weakly fair systems, and is PTIME-complete for
strongly fair systems.

THEOREM 2.6 [KV98].

1. The fair-simulation problem for sequential transition systems is PSPACE-complete.

2. The implementation complexity of fair-simulation for sequential transition systems is PTIME-
complete.

It follows that, when comparing the trace-based and the tree-based approaches to verif cation from
a complexity-theoretic point to view, there is no clear advantageous approach. While the joint com-
plexity of simulation is lower than that of containment, it is containment that has lower implementation
complexity. In addition, fair containment and fair simulation have the same joint complexity, with fair
containment having lower implementation complexity for the case of unconditionally fair and weakly
fair transition systems.

3. THE CONTAINMENT PROBLEM

In this section we consider the complexity of the containment problem for concurrent transition
systems. Our results coincide with those in [Rab97], where the systems under consideration generate
only f nite traces and may hide actions.

THEOREM 3.1. The containment problem for concurrent transition systems is EXPSPACE-complete.

Proof. Membership in EXPSPACE follows from Theorems 2.2 and 2.3.
To prove hardness, we carry out a reduction from deterministic exponential-space-bounded Turing

machines. Given a Turing machine T of exponential space complexity s(n), we denote by� an alphabet
for encoding T (the alphabet� and the encoding are def ned later).We then construct a transition system
ST over the alphabet�∪{$}, for some$ �∈ �, such that (i) the size of ST is linear in |T | and in log s(n), and
(ii)�ω+(�∗ · $ω) ⊆ T (ST ) iff T does not accept the empty tape. The crucial point is that using bounded
concurrency, we can handle the exponential size of the tape by log s(n) components that count to s(n).
We assume,without loss of generality, that once T reaches a f nal state it loops there forever. Typically,

the transition system ST accepts all traces in �ω and accepts a trace w · $ω ∈ �∗ · $ω if either

1. w is not an encoding of a pref x of a legal computation of T over the empty tape,
2. w is an encoding of a pref x of a legal computation of T over the empty tape, but, within this

pref x, the computation still has not reached a f nal state, or
3. w is an encoding of a pref x of a legal, but rejecting, computation of T over the empty tape.

Thus, ST rejects a trace w · $ω iff w encodes a pref x of a legal accepting computation of T over the
empty tape and the computation has already reached a f nal state. Hence, ST accepts all traces in�∗ · $ω

iff T does not accept the empty tape.
Now to the details of the construction. Let T = 〈�, Q, !→, q0, Facc, Frej〉, where � is the alphabet,

Q is the set of states, and !→: (Q × �)→ (Q × � × {L , R}) is the transition function. We write
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(q, a) !→ (q ′, b, �) for !→ (q, a) = (q ′, b, �), with the meaning that when in state q and reading a in
the current tape cell, T moves to state q ′, writes b in the current tape cell and moves its head one cell to
the left or right, depending on �. Finally, q0 is T ’s initial state, Facc ⊆ Q is the set of f nal accepting
states, and Frej ⊆ Q is the set of f nal rejecting states.
We encode a conf guration of T by a string in #�∗(Q × �)�∗ of the form #γ1γ2 . . . (q, γi ) . . . γs(n).

The meaning of this is that the j th cell, for 1 ≤ j ≤ s(n), is labeled γ j , T is in state q, and its head points
to the i th cell. Thus, if we denote the empty cell by β, then T ’s initial conf guration is #(q0, β)β . . . β

(with s(n)− 1 occurrences of β).
We encode a computation of T by a sequence of conf gurations, which is really a word over � =

{#} ∪ � ∪ (Q × �). Let #σ1 . . . σs(n)#σ ′
1 . . . σ ′

s(n) be two successive conf gurations of T in such a sequence.
(Here, each σi is in�.) If we set σ0 = σs(n)+1 = # and consider a triple 〈σi−1, σi , σi+1〉, for 1 ≤ i ≤ s(n),
it is clear that the transition function of T prescribes σ ′

i . In addition, along the encoding of the entire
computation, # must repeat exactly every s(n)+1 letters. Let next(σi−1, σi , σi+1) denote our expectation
for σ ′

i . That is, with the γ ’s denoting elements of �, we have:

• next(γi−1, γi , γi+1) = next(#, γi , γi+1) = next(γi−1, γi , #) = γi .

• next((q, γi−1), γi , γi+1) = next((q, γi−1), γi , #) =
{
γi if (q, γi−1) !→ (q ′, γ ′

i−1, L)
(q ′, γi ) if (q, γi−1) !→ (q ′, γ ′

i−1, R)
• next(γi−1, (q, γi ), γi+1) = next(#, (q, γi ), γi+1) = next(γi−1, (q, γi ), #) = γ ′

i , where (q, γi ) !→
(q ′, γ ′

i , �).5

• next(γi−1, γi , (q, γi+1)) = next(#, γi , (q, γi+1)) =
{
γi if (q, γi+1) !→ (q ′, γ ′

i+1, R)
(q ′, γi ) if (q, γi+1) !→ (q ′, γ ′

i+1, L)
• next(σs(n), #, σ ′

1) = #.

A necessary and suff cient condition for a trace to encode a legal computation of T on the empty tape
is that it starts with the initial conf guration and consecutive conf gurations are compatible with next .
Now for the construction of ST . For traces in �∗ · $ω, we set up one of ST ’s components, S1, to

check that the trace encodes a legal computation. For that, S1 checks whether the f rst conf guration
is the initial conf guration and whether the trace is compatible with next . In order to check whether
the f rst conf guration is the initial conf guration, ST simply compares the f rst s(n) + 1 letters with
#(q0, β)β . . . β. In order to check compatibility with next , S1 uses nondeterminism to guess where
there is a violation of next . Thus, S1 guesses a triple (σi−1, σi , σi+1) ∈ �3, guesses a position in the
trace, checks whether the three letters to be read starting at this position are indeed σi−1, σi , and σi+1,
and checks whether next(σi−1, σi , σi+1) is not the letter appearing s(n) + 1 letters later. In order to
count to s(n)+ 1, the component S1 cooperates with the log s(n) other components, whose only task is
to perform this count (as described in Example 2.1). Once S1 sees a violation of the initial conf guration
or of next , it goes to a sink labeled $. This takes care of traces of the form w · $ω ∈ �∗ · $ω, for which
w is not an encoding of a pref x of a legal computation of T over the empty tape. In order to handle
the two other types of w that should be accepted, S1 may move to the sink labeled $ also as long as no
conf guration with a f nal state (one with q ∈ Facc ∪ Frej ) is found in the input and after a conf guration
with a f nal rejecting state (one with q ∈ Frej ) is found in the input. In addition, S1 accepts all traces in
�ω (say, by having |�| additional initial states arranged in a clique). It is easy to see that |ST | is linear
in |T | and in log s(n).
Now, we construct S to be a concurrent transition system that generates the language�ω + (�∗ · $ω).

In fact, S can be easily taken to be a sequential transition system with |�| + 1 states. It follows that T
does not accept the empty tape iff S ⊆ ST .

The reduction we present in the proof of Theorem 3.1 considers a simple implementation and an
elaborated specif cation. We now show that the specif cation is indeed the dominant factor of the con-
tainment problem. Fixing it, the problem becomes signif cantly easier. Still, traversing the exponentially
big state space of the implementation cannot be avoided.

THEOREM 3.2. The implementation complexity of containment for concurrent transition systems is
PSPACE-complete.

5 We assume that T ’s head does not “fall” from the right or the left boundaries of the tape. Thus, the case where i = 1 and
(q, γi ) !→ (q ′, γ ′

i , L) and the dual case where i = s(n) and (q, γi ) !→ (q ′, γ ′
i , R) are not possible.
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Proof. Membership in PSPACE follows from Theorems 2.2 and 2.3. For the lower bound, we prove
that the emptiness problem for concurrent transition systems is already PSPACE-hard. For that, we carry
out a reduction from deterministic polynomial-space-bounded Turing machines. We show that given a
deterministic Turing machine T of polynomial space complexity s(n), it is possible to build, using a
logarithmic amount of space, a concurrent transition system ST of size O(s(n)) such that ST is empty
if and only if T does not accept the empty tape.
Let T = 〈�, Q, !→, q0, Facc, Frej〉 be a deterministic Turing machine def ned as in the proof of

Theorem3.1. The system ST has s(n) components, one for each tape cell that is used. For all 1 ≤ i ≤ s(n),
the component Si = 〈Oi , Wi , W 0

i , δi , Li 〉 is def ned as follows:
• Oi = ∅.
• Wi = (((Q\Frej )× �)∪ �)× {i}. A state of the form (q, a, i) indicates that T is in state q and

its head is at the i th cell, whose contents is a. A state of the form (a, i) indicates that the contents of
the i th cell is a but the head is not at that cell.

• Each transition (q, a) !→ (q ′, b, �) of T , with q ′ �∈ Frej , induces the following transitions
in δi .

—An unconditional transition from (q, a, i) to (b, i); i.e., 〈(q, a, i), true, (b, i)〉 ∈ δi . This
transition corresponds to the head moving from cell i to cell i + 1 or i − 1.

—A transition from every (z, i) ∈ � × {i} to (q ′, z, i), with condition def ned as follows:
∗ If � = R, then the current state of Si−1 is (q, a, i − 1); i.e., if � = R, then 〈(z, i), {(q, a,

i − 1)}, (q ′, z, i)〉 ∈ δi . (Thus, the condition is the single proposition “(q, a, i − 1)”.)
∗ If � = L , then the current state of Si+1 is (q, a, i + 1); i.e., if � = L , then 〈(z, i), {(q, a,

i + 1)}, (q ′, z, i)〉 ∈ δi .

This transition corresponds to the head moving from cell number i + 1 or i − 1 to cell number i .
In addition, we have a transition in δi from every (z, i) ∈ � × {i} to (z, i), with a condition stating

that the head is not moving now to the i th cell. Let W i
R be the set of states (q, a, i − 1) in Wi−1 such

that (q, a) !→ (q ′, b, R) is a transition of T for some q ′ and b. In a dual way, let W i
L be the set of

states (q, a, i + 1) in Wi+1 such that (q, a) !→ (q ′, b, L) is a transition of T for some q ′ and b. Then,
〈(z, i), ¬(W i

R ∪ W i
L ), (z, i)〉 ∈ δi . (Recall that we use sets like W i

R and W i
L to stand for disjunctions in

our condition formulas.)

• W 0
i , the set of initial states of Si , is a singleton that corresponds to the initial contents of the

i th cell. Thus, W 0
i = {(q0, β, 1)} for i = 1, and W0 = {(β, i)} for 1 < i ≤ s(n).

• The function Li labels all states with ∅.
Since T is deterministic, the system ST proceeds in a deterministic fashion, which corresponds to the

single computation of T on the empty tape. To see this, observe that each reachable conf guration of ST

has exactly one component Si which is in a state in Q × � × {i}. Thus, each reachable conf guration of
ST corresponds to a conf guration of T . Also, a transition in ST from conf guration c to c′ corresponds
to the single possible transition of T from its conf guration corresponding to c to the one corresponding
to c′. Since states in Frej × � × {i} are not reachable in Wi , the system ST gets stuck whenever T
moves to a f nal rejecting state. So, if T rejects the empty tape, then ST is empty. In addition, if T
accepts the empty tape, then, as T loops in its f nal state, ST accepts the trace ∅ω. Hence, T rejects the
empty tape iff ST is empty.

In view of the known PSPACE lower bound for emptiness in communicating f nite state machines
[Koz77], our PSPACE lower bound here is not surprising. Note, however, that the bound in [Koz77]
does not directly imply our bound here, since concurrent transition systems generate infinite traces.

4. THE SIMULATION PROBLEM

Establishing simulation involves only local checks.One could hope that locality circumvents the state-
explosion problem. We show here that while locality neutralizes the dominance of the specif cation,
an exponential blow-up in the implementation cannot be avoided. Moreover, the branching nature of
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simulation can be used to encode alternation, making the implementation complexity of simulation
higher than that of containment.

THEOREM 4.1. The simulation problem for concurrent transition systems is EXPTIME-complete.

Proof. Membership in EXPTIME follows from Theorems 2.2 and 2.4. To prove hardness in
EXPTIME, we carry out a reduction from alternating linear-space-bounded Turing machines, proved
to be EXPTIME-hard in [CKS81]. Similar to the construction in the proof of Theorem 3.2, we show
that there exists a f xed concurrent transition system S′, such that, given an alternating Turing machine
T of space complexity s(n), it is possible to build, using a logarithmic amount of space, a concurrent
transition system ST of size O(s(n)) such that ST � S′ if and only if T accepts the empty tape.
Consider an alternating Turing machine T = 〈�, Qu, Qe, !→, q0, Facc, Frej 〉, where the four sets of

states, Qu, Qe, Facc, and Frej are disjoint and contain the universal, the existential, the accepting,
and the rejecting states, respectively. We denote their union (the set of all states) by Q. Our model
of alternation prescribes that !→⊆ Q × � × Q × � × {L , R, H} has a binary branching degree, is
universal in its even-numbered steps, and is existential in its odd-numbered ones. (H means that the
head of T stays on the same cell.) Thus, !→ is really a subset of (Qe × � × Qu × � × {L , R, H}) ∪
(Qu × � × Qe × � × {L , R, H}). In particular, q0 ∈ Qe. When a universal or an existential state of T
branches into two states, we distinguish between the left and the right branches. Accordingly, we use
(q, a) !→ 〈(ql , bl , �l), (qr , br , �r )〉 to indicate that when T is in state q ∈ Qu ∪Qe reading input symbol
a, it branches to the left with (ql , bl , �l) and to the right with (qr , br , �r ). (Note that the directions left
and right here have nothing to do with the movement direction of the head; these are determined by �l

and �r .) We term ql the ↙-child of q and qr its ↘-child. Finally, we assume that once T reaches a
f nal state, it loops there forever in a deterministic fashion. Accordingly, we use (q, a) !→ (q, a, H ) to
indicate that when T is in state q ∈ Facc ∪ Frej reading symbol a, it stays in the same conf guration.
The possible computations of T onw induce an AND-OR graph, whose nodes are T ’s conf gurations.

We say that a node corresponds to state q if T ’s state in the node’s conf guration is q. With each node in
the graph we associate an acceptance value in {0, 1} as follows. Nodes that correspond to states in Facc

(respectively, Frej ) have acceptance value 1 (respectively, 0). The acceptance value of an AND-node
(which corresponds to a universal state) is the minimum of the acceptance values of its two children,
and that of an OR-node (which corresponds to an existential state) is the maximum of the acceptance
values of its two children.
We now construct the f xed transition system S′. The intention is for S′ to embody all possible AND-

OR graphs that may be induced by accepting computations of all alternating Turing machines (using the
model of alternation just described). The system S′ has a single component (thus, it is really a sequential
transition system), whose 20 states “model” such machines as follows:

• Eight states model the Turing machine’s universal states. Each of these states matches an entry
in the truth table of the operatorAND, adornedwith a direction, either↙ or↘, and a f ag∧ that indicates
that this is a universal state. Thus, if for simplicity we leave out the commas separating the elements, the
universal internal states of S′ are 〈∧000 ↙〉, 〈∧010 ↙〉, 〈∧100 ↙〉, 〈∧111 ↙〉, 〈∧000 ↘〉, 〈∧010 ↘〉,
〈∧100 ↘〉, and 〈∧111 ↘〉.

• Eight states model the Turing machine’s existential states. These match the entries of the truth
table of OR, adorned with a direction and a f ag ∨. Thus, the existential internal states of S′ are
〈∨000 ↙〉, 〈∨011 ↙〉, 〈∨101 ↙〉, 〈∨111 ↙〉, 〈∨000 ↘〉, 〈∨011 ↘〉, 〈∨101 ↘〉, and 〈∨111 ↘〉.

• Four states model the Turing machine’s f nal states. Each of these is a Boolean value, adorned
with a direction. Thus, the final states of S′ are 〈0 ↙〉, 〈1 ↙〉, 〈0 ↘〉, and 〈1 ↘〉.
The intuition is that an internal state 〈∗, l, r, val, d〉 corresponds to a state of the Turing machine

with the following properties: Its left child has acceptance value l, its right child has acceptance value
r , its own acceptance value is, therefore, val, and it can be only a d-child of other states. Similarly, a
f nal state 〈val, d〉 corresponds to a f nal state of the Turing machine with acceptance value val (that is,
if val = 1 then the state is in Facc and if val = 0 then it is in Frej ) that can be only a d-child of other
states.
Accordingly, the transitions in S′ from an internal state 〈∗, l, r, val, d〉 cover all the possible ways that

l and r can be acceptance values of the left and right children, respectively. Thus, we have transitions
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from 〈∗, l, r, val, d〉 to another statew = 〈∗′, l ′, r ′, val′, d ′〉 iffw is an internal state of the opposite type
(i.e., either ∗ = ∧ and ∗′ = ∨, or vice versa) or w = 〈val′, d ′〉 is a f nal state, and, in both cases, either
val′ = l and d ′ =↙, or val′ = r and d ′ =↘. For example, the internal state 〈∧100 ↙〉 has transitions
to states 〈∨011 ↙〉, 〈∨101 ↙〉, 〈∨111 ↙〉, 〈∨000 ↘〉, 〈1 ↙〉, and 〈0 ↘〉. It has transitions from all
states 〈∨, l, r, val, d〉 with l = 0. In addition, the f nal states have self loops.
The set of observable events of S′ is {↙, ↘, 0, 1}. We label an internal state by ↙ or ↘ according

to its direction element. For example, the node 〈∧100 ↙〉 is labeled {↙}. We label a f nal state by its
value and direction. For example, the node 〈1 ↘〉 is labeled {1, ↘}. We def ne the initial states of S′ to
be the internal existential states with val = 1.
This completes the def nition of S′. Clearly, its size is f xed.
Given a particular alternating Turingmachine T , we now def ne the system ST such that ST ≤ S′ iff T

accepts the empty tape. In general, the construction of ST is similar to that in the proof of Theorem 3.2.
The main difference is that while T there was deterministic, T here is alternating, and it branches in
each of its transitions. Therefore, moving from conf guration to conf guration we must take extra care to
ensure that either all components move according to the left branch or all components move according
to the right branch.
Let T = 〈�, Qu, Qe, !→, q0, Facc, Frej 〉 be an s(n)-space-bounded alternating Turing machine as de-

scribed above. The concurrent transition system ST has s(n) components, one for each tape cell. For
each 1 ≤ i ≤ s(n), the component Si = 〈Oi , Wi , W 0

i , δi , Li 〉 is def ned as follows:
• Oi = {↙, ↘, 0, 1}. Thus, Oi = O , and the sets of observable events are thus independent of i .

As we shall see below, the events ↙ and ↘ guarantee that all components move according to the same
branch.

• Wi = ((Q × �) ∪ �)× {↙, ↘} × {i}. A state of the form (q, a, d, i) is called a head-content
state; it indicates that T is in state q, the head is at cell i , whose content is a, and q was reached by
taking a d branch. A state of the form (a, d, i) is called a content state; it indicates that the content of
cell i is a, the head is not at cell i , and if the previous state of Si was a head-content state then the
current state has become a content state as a result of taking a d branch. For both types of states, we call
d the direction element. The direction element of a content state is determined once there is a transition
from some head-content state to it. The direction element is guaranteed to maintain the directionality
of the branch taken in this transition only for the next conf guration. Later, this direction element may
be changed.

• ST ’s transitions are induced by the transitions of T as follows (in the following description we
ignore the borderline cases of i = 1 or i = s(n), which are essentially the same but require a little more
attention).

—Each transition (q, a) !→ 〈(ql , bl , �l), (qr , br , �r )〉of T induces the following transitions in δi :
1. Unconditional transitions that correspond to the head moving from cell i to cell i + 1 or

i − 1. These transitions also determine the direction element of the new state of Si . For d ∈ {↙, ↘},
we have

〈(q, a, d, i), true, (bl , ↙, i)〉 ∈ δi and 〈(q, a, d, i), true, (br , ↘, i)〉 ∈ δi .

2. Transitions that correspond to the head moving from cell i +1 or i −1 to cell i , as a result
of taking a left branch. This includes a transition from every state (z, d, i) ∈ � × {↙, ↘} × {i} to the
state (ql , z, ↙, i), with the following conditions:

∗ If�l = R, then the current state of Si−1 must be (q, a, d ′, i −1) for some d ′ ∈ {↙, ↘};
i.e., if �l = R, then

〈(z, d, i), {(q, a, ↙, i − 1), (q, a, ↘, i − 1)}, (ql , z, ↙, i)〉 ∈ δi .

∗ If�l = L , then the current state of Si+1 must be (q, a, d ′, i +1) for some d ′ ∈ {↙, ↘};
i.e., if �l = L , then

〈(z, d, i), {(q, a, ↙, i + 1), (q, a, ↘, i + 1)}, (ql , z, ↙, i)〉 ∈ δi .
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3. Dual transitions that correspond to the head moving from cell i + 1 or i − 1 to cell i , as a
result of taking a right branch. This includes a transition from every state (z, d, i) ∈ � × {↙, ↘} × {i}
to the state (qr , z, ↘, i), with the following conditions:

∗ If�r = R, then the current state of Si−1 must be (q, a, d ′, i −1) for some d ′ ∈ {↙, ↘};
i.e., if �r = R, then

〈(z, d, i), {(q, a, ↙, i − 1), (q, a, ↘, i − 1)}, (qr , z, ↘, i)〉 ∈ δi .

∗ If�r = L , then the current state of Si+1 must be (q, a, d ′, i +1) for some d ′ ∈ {↙, ↘};
i.e., if �r = L , then

〈(z, d, i), {(q, a, ↙, i + 1), (q, a, ↘, i + 1)}, (qr , z, ↘, i)〉 ∈ δi .

—For each transition (q, a) !→ (q, a, H ) of T , and for all d ∈ {↙, ↘}, we have an unconditional
transition that corresponds to looping in the f nal state q; i.e.,

〈(q, a, d, i), true, (q, a, d, i)〉 ∈ δi .

—In addition, we have transitions that correspond to “passive” cells; that is, cells to which
or from which the head does not move. We allow these cells to change their direction elements, so
they can adjust themselves to the new conf gurations, both the one that corresponds to taking the left
branch and the one that corresponds to taking the right branch. This includes transitions from each state
(z, d, i) ∈ � × {↙, ↘} × {i} to states (z, d ′, i) for d ′ ∈ {↙, ↘}, with the condition that if a d ′ branch
is currently taken, the head is not moving to cell i . For this, we def ne the following four sets of states
for each 1 ≤ i ≤ s(n):

∗ W i
Rl is the set of states (q, a, d, i − 1) in Wi−1 for which there is a transition (q, a) !→

〈(ql , bl , R), (qr , br , �r )〉 of T for some ql , bl , qr , br and �r . Thus, whenever Si−1 is in a state in W i
Rl ,

then in the conf guration obtained by taking the left branch, the component Si is in a head-content state.
The other three sets are def ned in a dual way.

∗ W i
Rr is the set of states (q, a, d, i − 1) in Wi−1 for which there is a transition (q, a) !→

〈(ql , bl , �l), (qr , br , R)〉 of T for some ql , bl , qr , br , and �l .
∗ W i

Ll is the set of states (q, a, i + 1) in Wi+1 for which there is a transition (q, a) !→
〈(ql , bl , L), (qr , br , �r )〉 of T for some ql , bl , qr , br and �r .

∗ W i
Lr is the set of states (q, a, d, i + 1) in Wi+1 for which there is a transition (q, a) !→

〈(ql , bl , �l), (qr , br , L)〉 of T for some ql , bl , qr , br , and �l .

Now,

〈
(z, d, i), ¬(

W i
Rl ∪ W i

Ll

)
, (z, ↙, i)

〉 ∈ δi and
〈
(z, d, i), ¬(

W i
Rr ∪ W i

Lr

)
, (z, ↘, i)

〉 ∈ δi .

Note that when the head is not moving to or from cell i , the component Si can change its direction
element.

• The set of initial states of Si is a singleton that corresponds to the initial content of cell i
with (the arbitrarily chosen) direction element ↙. Thus, this set will be {(q0, β, ↙, 1)} for i = 1, and
{(β, ↙, i)} for 1< i ≤ s(n).

• The labeling function Li is def ned as follows:
—↙∈ Li (w) iff w ∈ ((Q × �) ∪ �)× {↙} × {i}.
—↘∈ Li (w) iff w ∈ ((Q × �) ∪ �)× {↘} × {i}.
—0 ∈ Li (w) iff w ∈ Frej × � × {↙, ↘} × {i}.
—1 ∈ Li (w) iff w ∈ Facc × � × {↙, ↘} × {i}.
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We claim that the unwinding of the system ST corresponds to the AND-OR graph induced by the
possible computations of T on the empty tape. To see this, observe that each reachable conf gura-
tion of ST has exactly one component Si in a head-content state. All other components are in content
states. It is true that often two components can move into head-content states, but then, by the def-
inition of δi , they will have different direction elements, which implies, by the def nition of Li , that
there will be disagreement on the labeling of ↙ and ↘. Thus, each reachable conf guration of ST

corresponds to a legal conf guration of T . Also, each conf guration of ST corresponds to either a uni-
versal or an existential state of T (in which case it has exactly two possible successors, one for each
possible branch) or corresponds to a f nal state of T (in which case it has one possible successor and
is labeled by either 0 or 1). Accordingly, we term the conf gurations of ST universal, existential, or
f nal.
For the formal proof, let us def ne the depth of a conf guration c of ST as the length of the longest

path from c to a f nal conf guration. Thus, for a f nal conf guration c we have depth(c)= 0 and for
a universal or an existential conf guration with two successors cl and cr , we have depth(c)= 1 +
max{depth(cl), depth(cr )}. Let H be a simulation relation from ST to S′. We prove that for every
conf guration c of ST the following hold.

• If depth(c) = 0 and H (c, w), for some state w of S′, then w = 〈val, d〉 and the acceptance
value of c is val.

• If depth(c) ≥ 1 and H (c, w), for some statew of S′, thenw = 〈∗, l, r, val, d〉 and the acceptance
value of c is val.

The proof proceeds by induction on depth(c). Consider f rst the case depth(c) = 0. Then, c is a f nal
conf guration. Let H (c, w). Since only f nal conf gurations of ST and f nal states of S′ are labeled by
elements in {0, 1}, it must be that w is a f nal state; that is, w = 〈val, d〉. In addition, the def nition
of the labels in ST and S′ implies that the acceptance value of c is val, and we are done. Assume
now that the claim holds for all conf gurations of depth at most i . Let c be such that depth(c)= i + 1
and let H (c, w). Then, c must be either a universal or an existential conf guration, and again, by the
def nition of the labels in ST and S′, it must be that w is an internal state; that is, w = 〈∗, l, r, val, d〉.
By the way we model alternation, T starts in an existential state and alternates every step. Also, by
the def nition of S′, its initial states can only be internal existential states. Consequently, H can relate
existential conf gurations of ST only to existential internal states of S′, and similarly for universal
states. Consider the case where c is a universal conf guration. By the def nition of simulation, for every
successor c′ of c in ST there exists a successor w′ of w in S′ such that H (c′, w′). We know that c
has two successors, cl and cr . Let wl and wr be the states of S′ with H (cl , wl) and H (cr , wr ). Note
that the states wl and wr may be f nal or internal states. In both cases, however, their “full names”
contain vall and valr , respectively, such that, by the induction hypothesis, the acceptance value of cl

is vall and the acceptance value of cr is valr . By the def nition of S′ we have val =AND(vall , valr ).
Also, the acceptance value of c is the minimum of the acceptance values of cl and cr . Hence, the
acceptance value of c is val and we are done. The case where c is an existential conf guration is
similar.
We can now prove formally that T accepts the empty tape iff ST � S′. Assume f rst that ST � S′.

Then, there exists a simulation relation H from ST to S′. Since the initial conf guration of ST corresponds
to the initial conf guration of T , and since the initial states of S′ are those with val = 1, then, by the
above claim, the acceptance value of the initial conf guration of T is 1. Therefore, T accepts the empty
tape.
For the other direction, assume that T accepts the empty tape. Consider a relation H from the states

of ST to the states of S′ in which H (c, 〈val, d〉) holds for a f nal conf guration c iff val is the acceptance
value of c and d ∈ L(c), and in which H (c, 〈∗, l, r, val, d〉) holds for a universal or an existential con-
f guration c iff ∗ is the type of c, l is the acceptance value of the ↙-child of c, r is the acceptance value
of the ↘-child of c, val is the acceptance value of c, and L(c)= {d}. We prove that H is a simulation
relation from ST to S; thus ST � S′. Consider a conf guration c of ST with H (c, w). We have to show
that for every successor c′ of c there exists a successor w′ of w such that H (c′, w′). Consider f rst the
case where c is a f nal conf guration. Then, by the def nition of ST , which loops in its f nal conf gura-
tions, the conf guration c has a single successor c′ with c′ = c. By the def nition of H , the state w is a
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f nal state. As such, it has, by the def nition of S′, a single successor w′ with w′ = w. Hence, H (c′, w′).
Consider now the case where c is a universal conf guration. By the def nition of H , the state w is of
the form 〈∧, l, r, val, d〉, where l is the acceptance value of the ↙-child of c, r is the acceptance value
of the ↘-child of c, val is the acceptance value of c, and L(c)= {d}. By the def nition of ST , the
conf guration c has as successors two conf gurations cl and cr . Consider the conf guration cl . Note
that ↙∈ L(cl). We distinguish between two cases. First, if cl is a f nal conf guration, let wl =
〈vall , ↙〉 be a successor of w for which vall is the acceptance value of cl . Second, if cl is an ex-
istential conf guration (note that cl cannot be a universal conf guration), let wl = 〈∨, ll , rl , vall , ↙〉
be a successor of w for which ll is the acceptance value of the ↙-child of cl , rl is the acceptance
value of the ↘-child of cl , and vall is the acceptance value of cl . By the def nition of S′, such
a successor wl exists in both cases. Also, by the def nition of H , we have H (cl , wl) and we are
done. The proof for the conf guration cr and for the case where c is an existential conf guration are
similar.

THEOREM 4.2. The implementation complexity of simulation for concurrent transition systems is
EXPTIME-complete.

Proof. Membership in EXPTIME follows from Theorem 4.1. Since the transition system S′ used
there is f xed, the proof of Theorems 4.1 provides an EXPTIME lower bound also for the implementation
complexity of the simulation problem.

5. THE FAIR-CONTAINMENT AND THE FAIR-SIMULATION PROBLEMS

So far, we saw that when we consider nonfair transition systems, verif cation of concurrent transition
systems is exponentially harder than verif cation of sequential transition systems. We now turn to
consider fair transition systems.

THEOREM 5.1. The fair-containment problem for concurrent transition systems is EXPSPACE-
complete.

Proof. Membership in EXPSPACE follows from Theorems 2.2 and 2.5. Hardness in EXPSPACE
follows from Theorem 3.1.

Theorem 5.1 shows that, as in the case of sequential transition systems, the trace-based approach
to verif cation extends to fair systems at no cost. Indeed, the complexities of containment and fair
containment coincide. An exception to this phenomenon is strongly fair transition systems. By
Theorem 2.5, the implementation complexity of fair containment for strongly fair systems is higher
than the implementation complexity of containment. We now show that strongly fair transition systems
are exceptional also in their concurrent behavior: The implementation complexity of fair containment
for concurrent strongly fair systems is not exponentially harder than that of sequential strongly fair
systems.

THEOREM 5.2. The implementation complexity of the fair-containment problem for concurrent tran-
sition systems is PSPACE-complete.

Proof. Hardness in PSPACE follows from Theorem 3.2. For unconditionally fair and weakly fair
concurrent transition systems, membership in PSPACE follows fromTheorems 2.2 and 2.5. For strongly
fair systems, a straightforward application of Theorems 2.2 and 2.5 results in an algorithm with ex-
ponential running time. To get the PSPACE bound, we suggest the following algorithm. Let S and S′

be strongly fair concurrent transition systems, and let D be a strongly fair sequential transition sys-
tem equivalent to S. For each component Si of S, let ki and mi denote the number of states and the
number of pairs in the fairness condition of Si , respectively. Assume that S has n components. Then,
following the construction described in the proof of Theorem 2.2, the system D has k = k1 · k2 . . . kn

states and m = m1 + m2 + · · · + mk pairs in its fairness condition. By [KV98], we can translate D
to an unconditionally fair sequential transition system U with k · 2O(m) states. Thus, the size of U is
exponential in the size of S. We can also translate S′ to an unconditionally fair sequential transition
systemU ′ (this also involves an exponential blow up, which, as S′ is f xed, is irrelevant to our proof). By
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Theorem2.5, checking the containment ofU inU ′ can be done nondeterministically in space logarithmic
in U , thus polynomial in S, and we are done.

THEOREM 5.3. The fair-simulation problem for concurrent transition systems is in EXPTIME. For
strongly fair concurrent systems, it is EXPSPACE-complete.

Proof. Membership in EXPSPACE follows from Theorems 2.6 and 2.2. To prove hardness in
EXPSPACE for strongly fair systems, we do a reduction from exponential-space-bounded Turing ma-
chines. Our reduction is similar to the reduction described in [KV98] for proving a lower bound to
the fair-simulation problem for sequential transition systems. The only change is that while there the
Turing machines are polynomial-space bounded, yielding a PSPACE lower bound, here the machines
are exponential-space bounded, yielding an EXPSPACE lower bound. Using bounded concurrency,
we can handle the exponential size of the tape by log s(n) components that count to s(n). The details of
the reduction are given below.
For a set O of observable events (with � = 2O ), let S� be the sequential transition system

〈O, �, �, � × �, L�, ∅〉, where for all σ ∈ � we have L�(σ )= σ . That is, each state in S� is as-
sociated with a letter σ ∈ � and T (Sσ

�)= σ · �ω. It is easy to see that the system S� is universal (recall
that a system S is universal if T (S)= �ω). Therefore, a concurrent transition system S over O is uni-
versal iff S� ⊆ S. It is not true, however, that S is universal iff S� � S. While S� � S implies that
S� ⊆ S and thus, that S is universal, it may be that S is universal and still there is no fair simulation
from S to S� . A necessary and suff cient condition for the existence of such a simulation is that each
conf guration c of S satisf es T (Sc)= L(c) · �ω. Then, a relation that maps a state σ of S� to all the
conf gurations of S that are labeled with σ is a fair simulation.
Given a Turing machine T of exponential space complexity s(n) (the machine T is given as a tuple

as described in the proof of Theorem 3.1), let T ′ be as follows. Whenever T reaches an accepting
conf guration, T ′ “cleans” the tape and starts from the beginning (i.e., empty tape and initial state
at the left end of the tape). Thus, T accepts the empty tape iff T ′ has an inf nite computation, in
which case it visits the initial conf guration inf nitely often. Let � be the alphabet for encoding T ′.
We def ne a strongly fair concurrent transition system S′

T such that S� � S′
T iff T does not accept the

empty tape.
We f rst def ne a concurrent transition system ST as the union of two concurrent transition systems S1T

and S2T with the following behaviors. Reading a trace ρ, the transition system S1T checks for a violation
of the transition relation of T ′ in ρ (by guessing a violation of next). If S1T sees a violation, it goes
to an accepting sink. The details of the construction of S1T are similar to these described in the proof
of Theorem 3.1. As there, one component of S1T checks the trace. For that, it cooperates with other
log s(n) components that only perform the counting required for checking compatibility with next .
Reading a trace ρ, the transition system S2T checks for occurrence of the initial conf guration of T in
ρ. If S2T sees the initial conf guration in a strict suff x of ρ, it goes to a rejecting sink. Since the initial
conf guration starts with # and has no other # in it, it is easy to check its occurrence. Therefore, S2T
can be def ned as a sequential transition relation. Consequently, assuming the state spaces of S1T and
S2T are disjoint, it is easy to def ne the union of S1T and S2T . (E.g., by adding to each component of the
transition system S1T a copy of S2T , def ning the initial set of the component to be the union of the initial
sets of itself and those of S2T , and def ning its fairness condition to be the union of its pairs and the pairs
in S2T ).
It follows that the transition system ST accepts a trace ρ if ρ violates next or never visits the initial

conf guration, except possibly as the f rst conf guration. Thus, ST does not accept a trace ρ iff ρ does
not violate next and it visits the initial conf guration of T in some strict suff x of it. Therefore, ST is
universal iff T does not accept the empty tape. Indeed, since T ′ revisits the initial conf guration iff T
reaches an accepting conf guration, a trace not accepted by ST corresponds to an accepting computation
of T on the empty tape, and vice versa.
Wewant, however, more than universality test. Wewant to def ne a transition system S′

T in such a way
that if it is indeed universal, then for each of its conf gurations c, we have T (S′c

T )= L(c) · �ω. Then,
recall, it is true that S′

T is universal iff S� � S′
T . Let Si = 〈Oi , Wi , W 0

i , δi , Li , αi 〉 be a component of
ST . We assume that δi ∩ (Wi × W 0

i )= ∅. Thus, for all components Si of ST , no computation of ST visits
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states from W 0
i more than once (this can be easily achieved by duplicating states in W 0

i that are visited
more than once). We def ne the components S′

i of the transition system S′
T by adding to each component

Si of ST transitions from all states to all the initial states, with the requirement that these transitions
can be taken only f nitely often. Accordingly, S′

i = 〈Oi , Wi , w
0
i , δi ∪ (Wi × W 0

i ), Li , αi ∪ 〈W 0
i , ∅〉〉. Let

C ′ and C ′
0 be the sets of conf gurations and initial conf gurations of S′

T , respectively. We claim the
following:

(1) S′
T is universal iff for each σ ∈ �, there exists c0 ∈ C ′

0 with L(c0)= σ and for each c ∈ C ′

we have T (S′c
T )= L(c) · �ω.

(2) ST is universal iff S′
T is universal.

We start with Claim (1). First, if for each σ ∈ � there exists c0 ∈ C ′
0 with L(c0)= σ , and for

each c ∈ C ′ we have T (S′c
T )= L(c) · �ω, then clearly T (S′

T )= �ω; thus ST is universal. For the other
direction, consider some trace ρ ∈ �ω. Let σ be the f rst letter in ρ. By the assumption, there exists
c0 ∈ C ′

0 with L(c0)= σ . In addition, as T (S′c0
T )= σ ·�ω, we have that ρ ∈ T (S′c0

T ). Hence, ρ is accepted
by S′

T . Since ρ may be any trace in �ω, it follows that S′
T is universal.

We now prove Claim (2). Clearly, every computation π of ST is a computation in S′
T . Since no

component of ST visits its initial set more than once along a computation, adding the pair 〈W 0
i , ∅〉

to the acceptance conditions αi , we still have that if π is fair in ST then it is also fair in S′
T . Hence,

T (ST ) ⊆ T (S′
T ), and therefore, if ST is universal, so is S′

T . Assume now that ST is not universal. Consider
a trace ρ not accepted by ST . Recall that ρ does not violate next and it visits the initial conf guration of
T in some strict suff x of it. In other words, ρ is of the form yx where y is a pref x not violating next and
x is an inf nite computation of T ′ (the initial conf guration of T is the f rst conf guration encoded in x).
An inf nite computation of T ′ visits the initial conf guration inf nitely often. Therefore, all the suff xes
of ρ are of that special form! Hence, if ρ is not accepted by ST , all its suff xes are also not accepted by
ST . We show that this implies that ρ is not accepted by S′

T too. Assume, by way of contradiction, that
ρ is accepted by S′

T . Let π = c0, c1, . . . be a fair computation of S′
T with L(π )= ρ. By the acceptance

conditions of the components of S′
T , there exists k ≥ 0 such that for all j > k, and for all components

S′
i , we have c j [i] �∈ W 0

i . Hence, for all j ≥ k, we have succST (c j , c j+1). Therefore, the computation
π k = ck, ck+1, . . . is a fair computation in ST , and the trace L(π k) is accepted by ST , contradicting the
fact it is a suff x of a trace not accepted by ST .
As discussed above, Claims (1) and (2) now imply that S� � S′

T iff ST is universal; thus S� � S′
T iff

T does not accept the empty tape. Since the fairness conditions of S� and S′
T can be specif ed in terms

of either unconditional, weak, or strong fairness, we are done.
THEOREM 5.4. The implementation complexity of the fair-simulation problem for concurrent transi-

tion systems is EXPTIME-complete.

Proof. Membership in EXPTIME follows from Theorems 2.6 and 2.2. Hardness in EXPTIME
follows from Theorem 4.2.

6. DISCUSSION

Our results are illustrated by the cube f gures below, in the style of [Har89,DH94].All the complexities
denote tight bounds (an exception is the EXPSPACE lower bound for fair simulation, which was
proved only for strongly fair systems). We use J to denote joint complexity (and its omission to
denote implementation complexity), F to denote fair transition systems (and its omission to denote
nonfair ones), and C to denote concurrent transition systems (and its omission to denote sequential
ones). A bold arrow represents an exponential gap between the complexity classes, a dashed arrow
represents a transition from a certain space-complexity class to the same time-complexity class, and a
dotted line represents a transition from a certain time-complexity class to the space-complexity class it
subsumes.
This paper considered the upper planes of the boxes. The vertical bold arrows illustrate the state-

explosion problem, which is unavoidable. The protruding vertex on the lower level of the containment
cube illustrates the anomaly of the strong fairness condition.
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How robust are our results? Examining our lower-bound proofs, one can observe that they employ
only a very humble kind of cooperation between the components. Indeed, in all the reductions, the
conditions used in the transitions of a certain component Si refer only to states of the components Si−1
and Si+1. This suggests that a very weak, and local, model of concurrency is suff cient in order to cause
the state-explosion problem. In particular, our results hold for the concurrency models presented in CSP
and CCS.
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