A COMPLETE AXIOMATIC SYSTEM FOR PROVING DEDUCTIONS ABOUT RECURSIVE PROGRAMS

David Harel *
Massachusetts Institute of Technology, Cambridge,MA 82139

Amir Pnueli
Tel-Aviv University, Tel-Aviv, lsrael

and

Jonathan Stavi
Bar-l1an University, Ramat-Gan,lsrael

Abstract,

Denoting a version of Hoare's system for
proving partial correctness of recursive programs
by H, we present an extension D uhich may be thought
of as Hu {a,v,3,V1 U lf-l. including the rules of
H, four special purpose rules and inverse rules to
thoge of Hoare. D is shoun to be a complete system
(in Cook’s sense) for proving deductions of the
form 4,....0, I o over a language, the uff's
of which are assertions in some assertion language
L and partial correctness specifications of the
form plalq. All valid formulae of L are taken as
axioms of D. It is shoun that D is sufficient for
proving partial correctness, total correctness and
program equivalence as uell as other important
properties of programs, the proofs of which are
impossible in H. The entire presentation is worked
out in the framework of nondeterministic programs
employing iteration and mutually recursive
procedures,

L. Introduction.

The axiomatic method of specifying
semantics of programs, as given by Hoare ({181, {111
and also {12]) lends itself very successfully to a
specific goal, namely that of proving partial
correctness of specific programs. A convenient
description of the method employs an assertion
language L and a formal proof system H having as
axioms all logically valid formulae of L. A proof
of a partial correctness specification e: plalq
where p,q are uff’s inbL , is carried out in H by
composing « from more primitive program segments,
starting from a finite number of assumptions in L.
A uell knoun result is that the conventional Hoare
system and its variants are complete if L is strong

* The work of this author uas partially
suppor ted by NSF under contract MCS76-18461.

249

enough to express all needed assertions. Various
definitions of this strength are expressiveness

of L (Cook({3]), or tidiness of all programs
(Pratt(15]). Cook[3] showed that first order
arithmetic is expressive, thus proving completeness
of H for this important special case of L. Extensions
of Hoare's system to cover recursion and mutual
recursion have also been proved complete under
similar conditions (see Gorelick[7], Harel et

al(91).

A suitable such system H can in fact be
thought of as a formal system for proving the
correctness of deductions of the form
Olreees0 I plalg under the restriction that
each of the ¢, is a procedure declaration or a
formula of L. Houever, uwhen considering general
deductions of the form oy,...,0, L 4
{uhere the @, may also be partial correctness
specificationsg), it is easy to come up with
semantically valid deductions which cannot be
derived in H. Tuo examples are

1) p{if r then a glge 8 filq
E plif -r then B else « filq
2) plalq , ricdq & pvrialq

{a rule which, uhile being underivable in H,
can be shoun to be superfluous for any
concrete proof of partial correctness,
lIgarashi et al[12]).

These examples illustrate the absense (in H)
of mechanisms for (1) extracting information from
a specification plalq about parts of a {(uhere o is
a complex program segment), and (2) combining the
information given in different specifications about

the same program segment. H can be seen to be
complete only for "simple" deductions, in wuhich the
antecedents o, include for each given a, at

most one specification of the form plalq, and all
such «’'s are simple specifications consisting of a
single assignment or ¢alj statement, or a single
program segment variable (P5Y), uhich is a symbol
standing for an arbitrary program segment.

In Section Il we present our system D uhich
is an extension of Hoare's system, and in Section
111 shou that D is aound and complete for anu
deduction (¢;,...,0, Fp o iff @1,c.c,0, k a),
that is, o can be proved in D from assumptions
Tioeoestp, iff ¢ is true in every model satisfying
Cloeres@, o Here the o, can themselves be any
partial correctness specifications.

The completensss result is shoun by proving
a series of more reatricted theorems, hoiding for
successively richer subsystems of D , thus clarifying
the whole process and also achieving a side effect
of Indicating the precise role in D played by its
important components.

A variety of properties of programs can be
proved using D, and the completeness result ensures
us that uhen L is expressive (e.g. in arithmetic),

a proof exists for each valid such property. The
folloning possibilities are described in Section 1V:

(i) proving the partial correctenss of a given
program,

{1i) proving the total correctness of a given
program,

(i11) proving the (strong) equivalence of programs,

(iv) establishing derived rules,

(v} carrying out modular proofs of program
correctness given properties of segments of
the program,

{vi) simplifying complex program segments and

establishing valid program transformations.

Schematically speaking, D uili consist of a
suitable version of H for composing the conclusion of
the deduction, four rules (a,v,3,Y) for collecting
information about unspecified progran segments, and
a "mirror image" of H containing inverse rules for
decomposing complex program segments appearing
among the premises. D, having the flavour of a
natural deduction system, has all valid formulae of
L as axioms.

250

11, The System,
Suntax

The alphabet £ contains symbols for
individual constants and variables, functions and
predicates, connectives and operators, L=L(Z) is a
logical language uith equality over T (having at
least the pouer of the first order language over
Z). A yell-formed formula of L will be called a
logical wuff (L-uff). P=P(Z) is a programming language

over T, uith the following syntax:

<statement>::=<elementary action> | <procedure call> |
<gtatement>;<statement> |
lf<boolean>then<statement>elsecstatement>fi |
uhile<boolean>do<statement>gd

<declaration>: s m<procedure name>(<name parameter list>,
<value parameter |ist>)proc<statement>end .

An glementary action is a non deterministic
assignment of the form grex'Alx, %' u)
reading:®assign to x some x' such that A holds".
This will usually be abbreviated as Alx,u), where x
is the vector of variables which can be modified by
A, and y is the vector of additional variables upon
uhich the assignment might depend. When R is of the
form x'=t{x,y), A is the conventional assignment
statement.

A procedure call is a statement of the form
call Pix,t), uhere P is a procedurs name, x is a
vaector of actual name parameters (variables), and t
is @ vector of actual value parameters (terms). The
x’'s are assumed to be distinct and the t's to be
independant of the x’s.

A hoglean is a quantifier-free L-nff,

A P-segment uill simply be a statement in
P. We extend £ to £’ by adding a set of new symbols
(RI‘RZ"", which stand for arbitrary
P-segments, and are therefore called program-seament
variables (PSV's). The programming ianguage P’ is
an extension of P obtained by allouwing statements
of the form Rl(g.u). where x and y have a meaning
similar to that given in the elementary actions.
Note that the difference betueen a PSY and an
elementary action is that for the latter we are
given a formula defining its effect. Similarly, the
difference betueen a PSV and a procedure call is
that the latter may have an explicit declaration.

-Me uill use alx,u) to denote an arbitrary

P’-segment such that x is the vector of all
modifiable variables of o, and y consists of all
other variables appearing in o.

A gpecification is a construct ¢ of the form
ot plx,u,y) lalg,wlqlx,q,v), where p and g
are L-uffs and o is a P'-segment. Here the elements
of y are said to be the free variables of the
specification ¢. Where no confusion can arise we uill
occasionaly omit the y's and regard the u as
consisting of all the variables appearing in the
specification not assigned to in a. A specification
plalg is aimple if a« is a PSY, an elementary action
or a call statement (gimple statements).

The formulae of our language W (called W-uff’s) are

(1) L-uffs,
(2) specifications,
(3) declarations.

(Note that W-uffs cannot be combined by logical
connectives.)

Semantics

An jnterpretation of a set T of W-uffs
is a tuple I-<D|z|8,1.'v0,akoe1'°"OEm>$

where 0 is a nonempty domain, & is an
interpretation of all individuals (including
constants and free variables), function and
predicate symbolsg of L, each Bi(;.g’.u) is a
relation for a PSY Ri(g.u) appearing in I, and each
Ei(g.g'.ul is a relation for a procedure Pi

that appears in I', but does not have a corresponding
declaration inT. ﬁi and Ei describe the

effect of the P’--segments R[and ;all?l
respectively, under [.

We nou show how an interpretation I assigns
truth values to li-uffs. An L-uff is assigned a
truth value by | in the standard way. A program
segment alx,y) all of whose procedure calls are
interpreted (see below), is interpreted under | as
a relation p In the follouing way (relational
notation from e.y. deBakker and Meertens(1]):

For an elementary action A Pp" E

{the interpretation & gives to A),
For a PSV R, pni = B,
For a procedure P, ’nalJP; = B

Pasp = Pafg:

Pit r then o glse B £i " "Pa U " Pp:

x
Puhiter dpaod ™ (rpa) r.

251

Using this definition, We are nou able to
assign relations to the procedure calls uwhich have
corresponding body declarations in I'. The relations
assigned to these procedures are the least fixpoint
relations solving the system of mutually recursive
procedure declarations in T (here too we will refer
to this interpretation of such P as P). We now have
an interpretation under 1 for each P’-gegment in I'.

A specification plx,y,y) {a(x,ualx,u,y} is
true under 1 if Vi, ulp(x,u,¥)np, x,x",u) > qlx’,u,y))
Is true (note that the free variables y have been
assigned by I).

A set T of W-uffs is defined to be irye under
an interpretation I of I', if all non-declaration
formulae of T are true in I, I is called a model of I'.

A tuple S-(Ul....cn.c) where o is
not a declaration, is called a valid deduction
{uritten Tlreeeslp Ee), ifeo is true
in any interpretation | of S which is a model of
(11,....cn}.

We denote a P’-segment « containing the
statements ;311?1(31.11).....;all?n(zn.jn)
by a(”;all?l“,....“;alan"). and the elementary
action xeex’ (¢(x,t)o9(x’,1)) by [¢,9) (x,1).

We nou present our system D. The basic
statements to be proved in D are deductions of the
form T } o where T is a set of W-uffs, and
¢ a non-declaration W-uff. Our inference rules are
ruje-schemata in which a,8,... stand for arbitrary
P’-segments and p,q,... for arbitrary L-uffs.

AXIONS
Al Lo
where p is any logically valid L-uff.,
A2 Twole
where ¢ is not a declaration.
A3 Frame axiom

F oply talx,udlply)

where y and x are disjoint.

D8 Substitution

BULES OF INFERENCE
T F plx,u) lalx,u)lglx,w)
L1 Introduction (a)
T Fpz.w lal(z, W alz,0)
j o o
S uhere Z is disjoint from y and is free for x
l‘.cz F o in p and q.
L2 Modus Ponens T pix,w lalx,ulqix,w
{b)
Fybey . Thaoy T F plx,) {alx, Y qglx, t)
T o where t is a vector of terms which is free

for 4 in p and q, and does not depend on x.

uhere p and q are L-uffs.
07 Recursion

L3 Deduction
T(lg,9]) | ¢lallp,)iy

r, r
___’ij and _.'-_'iq_ T("callP") , P proc al"calIP")end I ¢igallPly

T+ poa T.pka {(Here T'([$,¢]1) is T with the slementary
action [¢,¢#]1(z,1) substituted for occurencies of
gallP(z,t). A clarification of rule O7 appears at
the end of the Section.)

where p and q are L-uffs,

D1 Elementary Action

v D8 -rut
Tk pixu,WAR(x,x",u) > qlx’,u,y) A-rule

T+ plg,u,v) Alx, W tqlx,u.y) T'hpldgy,....T} plaa,

n28
02 Consequence n
TEplat A q
TrFpis, Thslar, T rog i=l
Tk plalq D9 v-rule
03 Composition Ik pyladq,....T b plaig
n20
Tkplals ; T | siglqg
n
T F plaspiq r l-'vlyzol fal g
04 Conditional
(08 and D9 reduce to T } pla} true and
Tl paritiq, Tk pa-~riglq I' | falselalq respectively when n=8),
Tk plif r then a else B filq D10 V-rule
DS Iteration T} plaig
Tk pariadp T | pia} (VYylq
T | piyhtie r do « gdipa~r u not free in p or I', and does not appear in «.

252

D11 3-rule
Tk pladq
Tl Quiplalg

u not free in q, and does not appear in .

D12 Inverse Eiementary Action
I, plx,u,Y)nA(x, %",y > qlx’,u,¥) o
I, plxuv) A, ulqlx,u,¥) F o
D13 Inverse Composition

I, pladd, ABlqF @

T, plisBliq } o

where A does not appear in any other
component of the rule.

Note that D13 (and similarly for the other inverse

rules) is an indirect way of expressing the more
natural

T | plaflq

T I iplair A AiB)q)

the conclusion of uhich is unfortunately not well
formed in W.

D14 Inverse Conditional
T, parlalg , pa-riglag b o
I, plit r then o glse § fila } @
D1S Inverse Iteration

T, poh, Mrfald, M-rog } &

I, plghiler doa odiql @

Hhere)\ does not appear in any other
component of the rule.

253

D16 Inverse Recursion

T, , $alB,)N o

T("gal{P") , P proc «{"callP"lend o«

where 8§ and \ do not appear in any other
component of the rule.

A proof in D is a sequence of deductions
TI koo, i=l,2,... , whers any line
{i.e. deduction) is an axiom or is derived from
previous lines by one of the inference rules. A
deduction T | & is said to be darivable In
D (uritten T Fp o) if it is a line of a

proof in D.

Our formulation of D7 employs the
substitution of [¢,¢] for "callP" in the proof
of the body «. This corresponds to the familiar
notion of assuming ¢ {callPl¢¥ when proving .
Employing the same substitution for the premises
used in proving «, provides us with a concise uay
of constructing a recursion rule for mutually
recursive procedures which avoids refering to all n
procedures (as is done in [7) and (3]). In order to
i Hustrate the way in which D7 (and similarly D16)
is used, consider two procedures Pl and P2' with
declarations Pi proc u'('galiPl".'nalle')gng
1sis2, A framework for a proof of a
gallPl-apeciflcation is:

) F ‘2‘“2((‘1"1]‘[‘2"2]))*2’

2) PZ proc “2”‘1"1]'"931 IPZ")EQQ
k ‘2 ‘c.a.l_Lleiz.

(3) P, proc «y(le;,#y),"callP,")end
k ‘1 wl([‘lpfllvﬁ.i.u.PZ”*lo

F ‘1 ‘Gﬁ.Ll.’ﬁ’"y

Lines (2) and (4) are proved using 07 with
an empty T, and T consisting of the Pz-declaratlon
respectively.

The follouing (standardly verified) fact
is very useful in proving deductions involving
unspecified program segments:

Substitution Theorem - 1f T bp @, and I'" and ¢’
are obtained by replacing all occurencies of a PSY
R by an arbitrary P’-segment in T and &, then

Frpe'. &

111, Results,

One of our basic assumptions throughout, is
that the language L is expressive (Cook[3]). This
means that for each P-segment a in the context of a
given set of declarations, it is possible to
express as an L-uff the relation Py computed by
o, .8, L has constructs pouerful enough to express
the %, U, composition and fixpoint operators. A
special important case of an expressive language is
(as pointed out by Cook) first order arithmetic.

Atl subsystems considered in this section
have Al-A3 as axioms, L1-L3 as logical rules and
differ only in their D-rules.

Consider the system DI uhich consists of
rules D1-DS. DI is a version of the usual Hoare
system for proving partial corectness of programs
with regular control structure, and for it ue have
the following result (proved e.g. in (1,3,9,15)):

Iheorem 1 - I¢ Oirees,0, are L-uffs, then

cl.....cn‘hv iff ’1"""n"Dl" 1

Consider D2 consisting of D1-D7. This is an
extension of Hoare's method to deal with mutually
recursive procedures. A proof of Theorem 2 can be
found for similar versions in Harel et al (9] or
Gorelick(7].

Iheorem 2 - If 0psees,a, are L-uffs or -

procedure declarations, then

Orreees@, ko iff OrreeesO kp2 @ - B

We nou consider. D3 which consists of rules
D1-D6 and D8-D12...

Iheorem 3 - If Gpreess@, are L-uffs or

simple specifications, then
Tireeesly, ko iff Covess@p Flﬁ! o .

(Note - In this and the follouing theorems
we omit the proofs of the soundness direction. The
reader is urged to convince himself that the rules
are indeed sound, a rigorous proof of this would be
based on Scott's induction principie in a standard
way. Rather, the proofs presented are designed to
demonstrate the completeness direction In a
constructive manner).

254

Proof - Given a valid deduction
M @p,een0 k ¢ ue reduce the problem
as follous:

(1) The absence of procedure declarations
among the premises means that each call statement
can be regarded as a neu PSV. This follouws from the
arbitrary interpretations both PSV's and gall’s can
take on, in a model of Tirevespe

(2) Use rule D12 to replace every
elementary-statement specification pi{Alq by an
L-uff, (Here, as well as at other points in the
paper, We describe the natural order of the
derivation. Formally, this application of rule D12,
for example, appears at the end of the proof in D.
Never theless, we may think of this stage as being
first in the derivation process.) We are left uith
premises consisting of PSY-specifications of the
form p{Rlq, and L-uffs. Denote by £ the conjunction
of the latter. Formally, £ can be derived by using D8
uith the identity program and p=irue.

(3) If @ is an L-uff then the validity of
the deduction W is equivaient to the validity of
some L-uff. This can be seen by considering an
interpretation in uhich each PSY is assigned the
empty relation. In this case ail specification
premises hold and therefore we must have
7 k ¢, which is equivalent to the validity of
£5¢, which in turn is an axiom in Al. Using L2,

o is obtained.

(4) Employing a similar argument with an
interpretation assigning the empty relation to all
PSY's not appearing in ¢, we can omit any
PSY-specification for a PSV not appearing in
o. We are nou left with a situation of the form

T, Rl-specifications yeees Rk—epeclficatlons
[p(u(Rl....,Rk))q

where o is a P'-segment involving PSV's
Rl""’Rk‘ Denote the specification

premiges by I'. These premises contain all available
information about Rl....,Rk. We therefore

construct for each lsi<k an "approximation from
above" “Ri to the relation computed by Ri'

ey will be an L-uff which can easily be

seén to be true in any model of T , and hence in any
model of {r,I''. This is the sense in which it is

an approximation. We will simplify notation by
refering to the case uhere k=1 and to Ry as R, with
the understanding that the following can be done

for all k PSV's for any k.

Assume that T' is the set
p.{x,u,v) R{x,ulg.(x,u,vy} 1sjsm. This can
be brought about by using D6 and co!lecting free
variables in y. Define

m
Hplx,x’ o ul=Vy A (p, (x,u,v¥5q; (x",u,¥))
j=l
Clearly Bp serves to "collect information" about the
PSV R.
Define AR as the elementary action
gﬁcg'yn(g.g'.u). Obviously ”AR'“R'
From the way AR was defined, it is clear that for
svery j ue have kp IAR}q..
Thue under {he substitution that
replaces the PSY R by the P-segment AR. every
interpretation satisfying r also eatisfies I' , and
therefore also satisfies p(a(AR))q. Hence
vk p(«(AR)lq. and by Theorem 1 there exists a proof

(x) rtpy pla(AR))q.

Without loss of generality (having in mind
the standard techniques used in proving Theorem 1,
in e.g.(1,3,9,15]), ue may assume that in the
process of proving the deduction (%) in DI, the
strongest consequent approach was adopted, in which
every subderivation of a simple AR-specification is
preceeded by a derivation of a specification of the
form elAp) soup for some s, where for s(x,u)
and uR(n.g'.u) we define
aopn(n.g)-Hg'(s(a’,u)ApR(;'.n.u)). (See e.g. [11).

1f Wwe nou manage to replace every such
subproof by a proof in D3 of s{Rlsepp from
assumptions T and substitute R for AR elseuhere,
then this modified proof of (x) serves as our proof
of T,r FIIS pla(R}}q. Indeed this can be

done using the following four derived rules of D3:

D8° AA-rule
T pl(alql..... T pn(a}qn
n208
n n
Tk A p|lal A g
jul inl
09' w-rule
T plla)ql..... re pn(alqn
nzB
n n
'k v pilal v aq;
=l i=1
018° VVY-rule

255

Ttk pladqg

T (Yuplal (Yylg
y not free in T, and doss not appear in a.
D11* J3-rule

TFplalg

T Qpta (g
y does not appear in o.
Nou (for any s) replace every subproof of
a(AR)aopR in the proof of (x) by:
TFpjeuwdop (guy) Rixwip, (0, ¥150; (e u.y)
for every lsjsm. (Use A3 with ~pj(5’.u.1). and D8°)

It V!(PJ(&'.!.L-!)DP](&-Q.!” {R(x,u)}

Vyip j (x', W ¥)oq j (x,u,¥)) (018*)
m
TFsix',wan Vx(pj(a’.u.xbpj(n.u.y.” Rix,ul!?
j=1

n
- slx’,ula AVz(pj(x'.u.quj(x.u.xn
i=1

(Use A3 uith s(x’,u), and D039°)

m
Tk 3x (slx ,ula A Vl(pj(&'.u.xlbpj(a.u.x)))lR(a,u)l
j=1

»
Ix’ (s(x’,u)A AVltpj(5'.u.1)3qj(5.u.1))) 011*)
j=1

m
T b alx,ulodx’ (slx’,ulA A Vzipj(a’.u.xbpj(x.u.x)”
j=1

(Al and L1)

) gl s(u.u)(R(g.u)l(s-pnl(a.u) 02). []

We remark here that restricting the premises
to have no free variables not appearing in a (i.e.
no y), makes possible a different proof of Theorem
3 vhich does not use rules D18-Di1.

We nou consider D4 consisting of D1-D11.

Iheorem &4 - If @)reees@, are L-uffs, simple
specifications or declarations for procedure names
not appearing in these simple specifications (but
possibly in ¢, and in other declarations), then

”1“”""*’ iff ’lgooo.’n '-D4¢.

Proof - Assume given us Opreeerdy E o,
Wwith procedure declarations Pl Rroc o; end
1<ism, among the premises. D4 illustrates the extra
feature of call's (in ¢) to procedures with given
bodies, thus forcing the use of D7. We will find a
similar approximation “Pi for each such

procedure. As before regard each gall to a
procedure other than the Pi's as a new PSY. We nou
construct [for every PSY R, and as abovs,
substitute AR for each appearance of R in u. Denote
the resulting modified body of P, by ai

and modified & by ¢’.

This suystem of m PSV-free declarations nou
gives rise to a teast-fixpoint solution, in the
form of m relations. Denote the L-uff equivalents
to these retations by ”P‘ 1<ism. Define

AP to be the elementary action 5rg'<up.(5.g'.yp.
i

(For clarity throughout this proof we omit indices
of x,x’ and y.). Denoting as before by £ and I’

the L-uff and specification premises respectively,
ue now observe that any interpretation | satisfying
7 , satisfies (substituted) I'. Recalling

the definition of the relation that | assigns to
each P‘. we have v k ¢'’, where o'’ is

o’ further modified by substituting APi for

QﬂllP‘. 1sism. Therefore there exists a proof

(%x) rkpy o’

Denoting the declaration premises of w by II, we uill
obtain a proof of w in D4 by first replacing (in
the proof of (xx))subproofs of r F[), s(Aplla-uPi

by proofs of ¢, Flﬁ# e(g§|lP‘)s-pP.,
]
and then dealing with PSY's as in Theorem 3. We
will really show hou xe=x,{callP.} (x5, %,u)
g i"Mp, g
can be derived in D4 from ¢ and I, where Xy

is a vector of neu symbols, Easy applications of
A3,08° and O11® will give "5311P1’3°”Pi°

He prove that II,r bpg x=xgicallP lup (xg.x.u)
i

by induction on m. For m21 assume that if Il contains
w-1 declarations Py,...,P, ; (denoted o1y,
then for every lsism-1

256

{m-1)
" e kpy kg lcallPilup lxg.x.u).

Given H(M). consider the first m-1
declarations with AP substituted for ";alle'
m

(denote this by B™ 1) (A,)). It 1s not ditficult
m
to see that

k K'EB(QM(APM)}“PM(Kﬁ’&'u)'

and hence by Theorem 3

T .ln-ga(gallPiluPi(xo.g,g) 1<i<m-1)

P[X} 5950{gm(APm)lqu(ga.g.u).

Houever by the inductive hypothesis, for every 1sism-1

{m-1)
r., 1 (Apm) kD4 x-xgl;a.l_tl’,lupi(xa.x.w..

We therefore have

(m-1)
v, 0 (Apm) kD4 x-gatgm(APm))npm(ae.a.u).
and applying rule D7 ue obtain

r, n(l’ll) '-D4 &.!a(;j_upm}“Pm(laoloﬂ)- l

The process described in the last tuo
theorems can be summarized as a process for
"composing" a complex conclusion from simple
premises. MWe now begin the process of
"decomposing" complex premises.

Consider DS, consisting of rules D1-D15.

Iheorem 5 - If Opseees@, are as in Theorem &
without the requirement that specifications be
simple, then

LOERRERL ko Iff Tireensd, "DS o .

Broof - All non-simple specifications among the
premises are decomposed using rules D12-D15 (see
remark after Theorem 6) to obtain oniy simple
specifications (the validity of the deduction
implies that the new suymbols introduced at this
stage will disappear in the process of deriving
o). Theorem 4 can nou be applied. []

Our main result is
Iheorem § -

Clreens0, bo ift Tloeeesly l-Dc .

Proof - The only neu feature here is the
possibility of having gal] statements among the
specification premises, with given declarations
(implying that their "meaning" is fixed, and they
can no longer be regarded as PSV's). Rule D16 is
applied to all such procedures, effectively getting
rid of the call’s, and "trading" them in for neu
body~specifications., The situation is now precisely
that described in the hypothesis of Theorem 5. Here
too the validity of the original deduction implies
that the neu symbois § and A (standing for the
least fixpoints) will disappear in the derivation
process. |]

Note the decompose-collect-compose symmetry
of the entire derivation process described in the
above theorems:

(1) "trade" gall’s for bodies

(2) decompose bodies and premises
(3) collect PSY information

(4} compose bodies

(S) "trade" bodies for gall's

(6) compose conclusion,

As remarked above, step (2) shous up in a
formal proof as the composition of the premises.
This is a consequence of the deductive character of
D, the decomposed premises being "carried along"
throughout the derivation and composed towards the
end. However, we prefer to regard this step as
"decomposition" because it is usually carried out
first in a manner similar to subgoaling. A glance
at the proof in the Appendix might help clarify
this remark.

We remark here that restricting L to be
first order can destroy the completeness, as shoun
in [9], a result uwhich reminds one of (and in fact
subsumes, and as such provides a new proof of)
Wands result [16]. This result and the rather
obvious fact that if L is weak second order then it
is expressive, should now be clarified by the
hiararchy result appearing in (8].

257

1Y, The Poner of D,

We uill try to be slightly more specific
about our claims as to what can be done in D,

(i) (partial correctness) Given a program
(Pl....,Pn.u) consisting of n declarations and a
statement «, and some L-uffs Trvess Ty
a proof that the program is partially correct uith
respect to p and g, assuming the r; are true,
is carried out simply by proving in D

Pl""'Pn' Tireeesty F plalg

(ii) (total correctness), Given a program
and L-uffs as in (i), a proof that « is totally
correct assuming the L-uffs true, can be carried out
by proving in D

ProesesPafiseeesry,
p X, W AN W e W -glx,u,0) kY, ul-Aix,ul).
Another way is by using constant symbole
(a,k) and proving in D

Pl,....Pn,fi.--..fm.

P(ﬁ'hol’ ' (a-b.)'(&ou) ‘a(lou))"q(ﬁoun!) "' .f_a.Ll!-

We uish to clarify this someuhat suprising
result as related to the commonly accepted view
that termination of programs with loops or
recursion must employ some form of induction on a
well founded set. The fact is that the induction
has been buried deep in L, and its utilization is
no longer the concern of the user of D. Rather, an
inductive argument might be handy when the valid
formulae (taken by us as axioms Al) are to be
proved in L. We illustrate this point. Take L to be
the fanguage of arithmetic, and prove that
a: yhile x>8 do xex-1 od is totally correct with
respect to pix): x28 and q(x): x=8, Subgoaling
(using the second formulation above}, we obtain the
deduction azf , x=alal-x=8 | fajgse. Applications
of D15 and D12 yield a28 , Yx{x=adA(x)) ,

V¥x (A (%) Ax<Bo-x=0) , VYx(A(x)ax>85A(x-1)) | false.

This, in turn, is equivalent to proving

(320 AYx(x=adA(x)) A ¥x(A(x)Ax-x=B) A

Y (A () Ax>BoA(x~1))) > false, a valid L-uff

(and hence an axiom of D), which can easity be proved
in arithmetic using an induction axiom.

Another complete formal system in which
total correctness can be proved is that introduced
by Pratt(15] and proved complete in Harel et al(81.
Pratt’s approach is to formulate a uniform

induction principle explicitly in the system, in
the form of a rule which is analogous to D5, and
uhich composes a specification about the loop dual
to partial correctness. In D, the dual to D5 is D15
{similarly for recursive calls), which merely
"breaks up" the loop, providing all the information
the loop specification carries with it, and leaves
the rest to the logic of the underlying |anguage.

G {equivaience) Take programs

(Pl.....Pn.a). L PERRRR Y O B

Thalr strong equivalence (see Mannall4l),
can be proved in D by proving

PP””%JPHH%.IMHFSWA
uhere § and A\ ares a new predicate symbols, and

proving the dual (uith o and B exchanged).
example the reader might care to prove

For

U P proc it pix) ghen x«f(x); callP; callP else
xex f1 end, T proc if p(x) then xef{x); calll glse
xex £i end, $(x) fcal IPIA{x)] | 8(x) {cal ITIn(x)

and its dual (a proof of this equivalence is given
in the Appendix}, or

$(x,y) lyhile rix) do xefix) gggghllg s{y) do
yea(y) odiatn,y) F 80x,y) fyhjle rix)vsly)
do if rix) then x«f(x) glesa yegly) fi odia(x,y)

and its duai. (In both examples we urite the
elementary action with relation x"=f{x) as xefi(x).)

(iv) (derived rules). Here we make use of
a8 meta-theorem which states that if Opreeesly ko,
then the following is a valid inference rule of D:

Tk cl.....r [L

The
For example proving

pAra>s , pa-rogq , taros , ta-rogq , sialt
F plphile r do « gdiq

in D, establishes the corresponding derived rule.
(v} (modular proofs). Take as a premiss

anything previousiy established and prove the
desired conclusion as a consequent. Sometimes it

is possible to denote the established segment by a
PSV and make the premises simple, this having the
effect of shortening the proof and adding to its
clarity.

{vi) (simplification and transformations)
Using D, it is possible to validate general program
transformations. Once a sufficient set of
transformations has been established, this set can
then be ueed to simp!ify, develop and synthesize
correct programs. (See (2], [4], [6] and [13] for the
use of such sets). Alternatively D can be part of a
program development system in which the user may
create and validate his oun transformations and
apply them immediately to verified program
segments.

Some simple examples of such transformations are

p{if r then « glse a filq } pialq

plyhile -p do « odi Blg | piflq

pllf r then « gigsa B £filg
F pilf -r then 8 glge o filq

Other examples are transformations for
recursion removal (Seel2]).

YI, Conclugion.

We have presented a complete system D, in
which (besides providing for other important but
somewhat less spectacular possibilities) equivalencs
and partial as well as total correctness of
programs can be proved.

The notion of proof from assumptions can be
regarded as a natural and important extension of
the better knoun notion of proofs of program
correctness using Hoare-1ike systems. If one
chooses to take the vieu that Hoare's method
esgentially "cheats" by reducing the problem of
proving a partial correctness specification to that
of proving a formula of L, then ue might say that
D extends the "cheating” too, and reduces the
problem of proving a deduction over partial
correctness specifications to that of proving a
deduction in L, and therefore requires a slightly
stronger logical component than is needed in

Hoare’s system. The proofs of soundness and
‘completeness of D reduce to the traditional
proofs of the same for Hoare's system when D

is stripped of its extra features. The relationship
can be schematically seen by viewing D in the
following plictorial way:

D - Hu iav,3,vt y H?
N N

A
|
] i decompose
|
|

collect

compose

Appendix,

We shou hou to prove the equivalence of the
follouwing two procedures:

P proc if pix) then x~f(x); callP; callP elge xex £i
end, and
T proc if pix) then xef(x}; galll elge xex fi end.

We make use of the following derived rule

Tk pladg , Tk rilp,glls

I'k rials
Oefine T as the set lya-pos , yapixefx}),
Aiy,811p , nily, 8118, ¢ily,81}¢).

We refer to the declaration of P as P groc...end,
and similarly for T.

(1) T, truetly,81}-p I yApixefxi) hyp.
(2) T, truelly,8l}-p F Ay, 81} hyp.
Q@) I, truefly,81)-p I truelly,81}-p hyp.
4) T, truelly,81t-p | My, 81lpn~p D2,08(2,3)
(8) T, truelly,81}-p | uily,8118 hyp.
(6) T, trueily,8l}-p I

VY, ' (g Aly(x)o8(x")) > 8{x")) 012
(7Y T, truelly,81)-p F unly>8) > 8 AL, L2(nith x"=x)
8 I, trueily,$1}-p , u,-p,v F (ya-p)ob hyp.,L1
ar ’ I.I:SLQ.”?.'”"P y Py ke

L2(we also use L3, and D8 with the
empty program to create a conjunction
of the hypotheses)

(1) I, trueily,81}-p, u,~p F yo8 L3

259

(A1 r, truelly,81}-p, s,~p b+ § 13,L2(7,18)
(12) T, trueily,81}-p I (ur-plod L.3(and D8)
(13) T, truefly,811=p |k Aily,81}8 D2(4,12)
(14) T , truelly,81)-p b ynpixe-fx; [y,81}8 D3(1,13)
(15) T, truelly,81}-p | ya-pixexi8 hyp.,01
(16) I' , trugily,81)-p |

yiif p then xefx; [y,8) glse xex £j}8

04(14,15)

(17) T proc...end , T, truelly,81}-p } ylcallTis D7
(18) T prog...end ,» I' , truelly,81}-p | ¢ily, 81}y hyp.
(19) T proc...end , I' , trueily,81}~p | ¢icallTiy OR
(20) T prog...end ,v{if p then xefx; [y,81; [y,8)

glse xex fild , ¢ily,81}¢ , truelly,81l-p
F ¢lcallTly hyp.,012,013,D14
(21) T proc...end , P proc...end , ¢{callPly,
trueicaliPl-p | ¢icallTly D16
(22) T prog...end , P proc...end , ¢icallPiy |
trueicaliPl-p (This is proved from
P proc...end as a standard partial
correctness proof. We omit the details.)
(23) T proc...end , P proc...end , ¢icaliPié F
¢lcallTiy L2(21,22).

This establishes one direction. The other
is very similar and uses I's{ yA~p>d , ynpixefxi) ,
ANy, 8118 , ¢lly,8]1)¢ }. Ue now also
need another fact about a call to T besides
truefly,81}-p. The new fact is needed in order to
show that the second call to P leaves x unchanged.
A suitable specification (uhich is proved as in
line (22) above) I8 xwva-p(x) {[y,81}x=v, where v
is free. We omit the details of this direction.

Acknouledgements.

We wish to thank Nachum Dershouwitz for
suggestions following a detailed reading of a
previous version of the paper. The first author
benefited from many related discussions with
Yaughan R. Pratt.

BEFERENCES

(1} J. W. de Bakker and L. G. L. T, Meertens,
"On the Completeness of the Inductive Assertion
Method", Journal of Computer & System Sciences, 11,
323-357, (1975).

(21 R. M. Burstall and J. Darlington, "Some
Transformations for Developing Recursive Programs®,
Proc. International Conference on Reliable ’
Software, LA Calif., (1975).

(3] S. A, Cook, "Soundness and Completeness of
an Axiom System for Program Verification",TR-35

(a revision of "Axiomatic and Interpretive
Semantics for an Algol Fragment", TR-79, (197%5)),
Dept. of Computer Science, University of Toronto,
Canada, (1976).

(4 J. Darlington, "Application of Program
Transformation to Program Synthesis", Proving and
Improving Programs, Colloques Iria, (1975).

[5) R. W. Floyd, "Assigning Meaning to
Programs”, In J.T.Schuartz (ed.)Mathematical
Aspects of Computer Science, Proceedings Sump. in
Appl. Math. 19, Prov. R.l., American Mathematical
Society, 19-32 (1967).

e} S. L. Gerhart, "Correctness-Preserving
Program Transformations”, Proc. of the 2nd
Symposium on Principlies of Programming Languages,
Palo Alto, Calif., (1975).

7 G. A. Gorelick, "A Complete Axiomatic
System for Proving Assertions about Recursive and
Non-Recursive Programs", TR-75, Dept. of Computer
Science, Univ. of Toronto (1975).

t)] D. Hare!, A. R. Meyer and V. R. Pratt,
"Computability and Completeness in Logics of
Programs", Proceedings of 9th Annual ACM Symp. on
Theory of Computing, (1977).

91 D. Harel, A. Pnueli and J. Stavi,
"Completeness Issues for Inductive Assertions and
Hoare's Method", Technical Report, Dept. of
Mathematical Sciences, Tel-Aviv Univ., lerael
(1976).

(18} C. A. R. Hoare, "An Axiomatic Basis for
Computer Programming", CACM 12, 576-588 (1989).

1111 C. A. R. Hoare, "Procedures and Parameters:
An Axiomatic Approach", In E. Engeler (ed.}, Suymp.
on Semantics of Algorithmic Languages, LNM 188,
Berlin, Springer, 162-116 (1971).

(121 S. Igarashi, R.L. London and D.C. Luckham,
"Automatic Program Verification Is A Logical Basis

and its Implementation”, Acta Informatica 4,
145-182 (1975).

{13) 0. E. Knuth, "Structured Programming with
Goto Statements", Computing Surveys, Vol 6, No 4,
pp.261-301, (1974).

[14) 2. Manna, "Mathematical Theory of
Computation", McGraw Hill, (1974).

260

{15] V. R. Pratt, "Semantical Considerations on
Floyd-Hoare Logic", Proceedings 17th Symp. on
Found. of Computer Science, Houston, Texas 189-121,
(1976).

(16) M. Wand, "A Neuw Incompleteness Result for
Hoare's System", Proceedings 8th ACM Symp. Theory
of Computing, 87-91 (1976).

