
Executing Scenario-Based Specification with
Dynamic Generation of Rich Events

David Harel1, Guy Katz2, Assaf Marron1, Aviran Sadon3, and Gera Weiss3

1 Weizmann Institute of Science, Rehovot, Israel
2 The Hebrew University of Jerusalem, Jerusalem, Israel
3 Ben-Gurion University of the Negev, Be’er Sheva, Israel

Abstract. Scenario-Based Programming (SBP) is an approach to mod-
eling and running complex, event-based, system behavior by composing
narrower views of overall behavior. In this paper we introduce significant
extensions to the strict interfaces by which scenarios in existing SBP
frameworks specify what the system must, may, or must not do, and to
the mechanisms that execute these scenarios: (i) we allow events with a
multitude of variables and parameters; each event can become an entire
model, and each event selection can be the selection of a major section of
the new state of the system and the environment; (ii) we extend the basic
request/block SBP interfaces with a rich set of composable constraints
and functions, which can describe desired and undesired variable assign-
ments, where each constraint may relate to all variables or to just a subset
thereof ; (iii) we introduce a central, application-agnostic mechanism for
adding optimization to standard event selection; and (iv) we relate our
method to Null-Space Behavior (NSB) — a successful compositional ap-
proach in control theory. We demonstrate these language-independent
concepts through several use cases that are implemented in a variety of
languages and solvers.1

Keywords: Scenario-Based Programming, Behavioral Programming, Constraint
Solvers, SMT Solvers, NSB, Mathematica, MATLAB-Simulink, Z3, Python

1 INTRODUCTION

One of the key goals in Model Driven Engineering (MDE) is creating executable
models, which, on one hand, represent how engineers and other stakeholder con-
ceive a problem and a system, and, on the other hand, can be used directly
for automatic generation of system and environment behavior: for simulation,
for formal analysis, and for final production deployment. Scenario-Based Pro-
gramming (SBP) [16,40,45] tackles this challenge by offering dynamic, run-time,
composition of scenarios, each of which specifies a narrow facet of the system’s

1 This paper substantially extends the paper titled “On-the-Fly Construction of Com-
posite Events in Scenario-Based Modeling Using Constraint Solvers”, published in
Modelsward 2019 [48].



behavior, as might be described in a requirements document, resulting in cohe-
sive integrated system behavior. Individual scenarios describe both desired be-
haviors, which should be manifested in the system as a whole, and undesired (or
even forbidden) behaviors, which the system should avoid. The SBP principles
are general, i.e., language agnostic. They have been implemented in dedicated
frameworks, such as the Play-Engine and PlayGo for the visual language of Live
Sequence Charts (LSC) [39, 40] and ScenarioTools [22] for the textual Scenario
Modeling Language (SML). Furthermore, SBP has been implemented as libraries
in programming languages like Java [41], C++ [30], and JavsScript [4], and has
been amalgamated with the Statecharts visual formalism [53]. SBP has been suc-
cessfully used in modeling complex systems, including industrial manufacturing,
biological modeling, web-servers [30], cache coherence protocols [32], robotic con-
trollers [25], and in new approaches for intelligent software-development assistant
tools [32–34,52].

In this work, we expand SBP capabilities by allowing more expressive speci-
fication of each scenario’s view of the composite behavior, and richer techniques
for composing these views.

The principles of execution mechanisms used in current behavioral program-
ming tools are as follows. System and environment behavior is modeled as a
sequence of discrete events, each perhaps with one or two parameters (e.g., traf-
fic light turns green, vehicle starts moving, vehicle makes a 45◦ right turn); all
scenarios are run in parallel and are synchronized at predetermined points; at ev-
ery synchronization point each scenario declares a discrete set of events it would
like to see triggered, termed requested events, and a set of events it forbids from
being triggered, termed blocked events; the underlying SBP infrastructure then
selects for triggering a single event that is requested by at least one scenario and
is not blocked by any scenarios; the selected event is then broadcast to all sce-
narios; scenarios can react to that event and change their declarations; and the
execution continues until the next synchronization point is reached. An example
appears in Fig. 1.

Some of the benefits of SBP stem from these intuitive [19] and succinct [31]
expression and composition semantics, reducing the cognitive load that might
be imposed by a single composite automaton, or depicting visually the actual
conditions of which events are allowed in which composite states. The approach
also renders scenario-based models more amenable to automatic analysis using
formal compositional techniques [21, 28, 29, 32, 37], and even makes it easier to
automatically distribute, repair and synthesize such models [23,24,26,35,57,58].

Here is how we would like to extend the current capabilities of SBP:

1. We wish to allow for rich events that may have multiple numeric and discrete
parameters. This need is clear in the context of modern systems, such as
autonomous driving, advanced robotics, and more. We believe that in this
area there is a gap in most, if not all, software engineering approaches. In
particular, it may well be that the recent trend to employ machine learning
(ML) techniques directly to a large variety of complex problems is fueled not
only by the great success of computational learning techniques in solving



wait for
WaterLow

request
AddHot

request
AddHot

request
AddHot

AddHotWater

wait for
WaterLow

request
AddCold

request
AddCold

request
AddCold

AddColdWater

wait for
AddHot

while
blocking
AddCold

wait for
AddCold

while
blocking
AddHot

Stability

· · ·
WaterLow
AddHot
AddCold
AddHot
AddCold
AddHot
AddCold
· · ·

Event Log

Fig. 1. (From [36]) A scenario-based system for controlling the water level in a tank
with hot and cold water taps. Scenarios are depicted as parallel-running transition
systems that synchronize at every state. The scenario object AddHotWater repeat-
edly waits for WaterLow events and requests the event AddHot three times; the
scenario object AddColdWater performs a symmetrical operation with cold water.
In a model that includes only the objects AddHotWater and AddColdWater, the
three AddHot events and three AddCold events may be triggered in any order during
execution. In order to maintain the stability of the water temperature in the tank, the
scenario object Stability enforces the interleaving of AddHot and AddCold events,
by using event blocking. The execution trace of the resulting model appears in the
event log.

certain kinds of problems. It is quite accepted that for complex systems
even if all rules and specifications needed for a procedural solution were
available, e.g., from domain experts, or by extraction from statistical and
ML tools, there are no practical engineering techniques for using these rules
in building the system so that it is robust, efficient, predictable, analyzable
and maintainable.

2. We would like to be able to view events as entire instances of object models
of the system and the environment, enabling new assignments to any and
all variables in a single synchronization point. As will be seen later, this
concept of finding object model instance aligns well with the terminology
of constraint solvers, which aim to find a model that satisfies the given
constraints. These instantaneous models are not to be confused with the
model of the system, which describes the objects in the system and their
behaviors.

3. We want to extend the basic request/block SBP interfaces with a richer set
of composable constraints which may relate to all variables or to just a
subset thereof; further, these constraints may be organized in hierarchies or
priorities of various kinds, and interfere with (or override) each other in more
ways than the request/block protocol allows.

4. We would like to add intelligence and insight to the event (or model) selec-
tion, such that when multiple solutions satisfy the constraints, optimization
techniques may be introduced, to select a preferred solution.

These extensions can be thought of as enhancing SBP’s concept of event
selection to a form of event construction. We accomplish them by allowing the



scenarios to present rich constraints in languages accepted by a variety of con-
straint solvers, and then having the SBP infrastructure invoke a solver and/or
optimizer at every synchronization point to solve a composite formula, which is
assembled from the declarations of all scenarios.

The work described in this paper extends our previous work [48] in several
ways. First, we introduce here an extension to SBP that performs constraint
resolution with optimization. Additionally, we study the concept of variable tar-
geting in constraint specifications. We also demonstrate the applicability of our
approach using additional use-cases, discuss its applicability to real-time set-
tings, and compare the solutions it yields to related solutions proposed in the
literature, particularly Null-Space behavior (NSB). Our extensions demonstrate
that through the proposed enhancements to SBP, the concept of rich events can
be expanded so that the entire state of the system and its environment, with its
numerous variables and parameters, can be determined by behavioral decisions
at every step. We propose the concept of variable targeting with proper labeling
and meta processing, and implement it in Python/Z3. Finally, we introduce an
implementation of the extended SBP principles, using Wolfram Mathematica.

The paper is organized as follows. In Section 2 we provide some necessary
background on SBP and on constraint solvers. In Section 3 we provide the formal
definitions of how SBP is to be extended to allow for the new capabilities, and
in Section 4 we describe certain technical aspects of the implementation of SBP
with various solvers. In Section 5 we review the main capabilities of the new
approach and illustrate them with specific example applications. In Section 6 we
review related work, and we conclude in Section 7.

2 BACKGROUND

2.1 Scenario-Based Modeling

Formally, a scenario-based specification/model/program consists of modules
termed scenarios. All scenarios run in parallel. Each scenario repeatedly de-
clares sets of events which, from its own perspective, should, may, or must not
occur at that particular point in time during the execution. The simultaneously-
running scenarios are repeatedly synchronized, and a central mechanism selects
events that constitute the integrated system behavior. Ideally, the scenarios do
not interact with each other directly — all interactions are carried out through
the common event selection and broadcasting mechanism.

Following the definitions in [41,49], we define a scenario object O over event
set E as a tuple O = 〈Q, δ, q0, R,B〉, where the components are interpreted as
follows:

– Q is a set of states, each representing one of the predetermined synchroniza-
tion points;

– q0 is the initial state;
– R : Q→ 2E and B : Q→ 2E map states to the sets of events requested and

blocked at these states, respectively; and



– δ : Q × E → 2Q is a transition function indicating how the object reacts
when an event is triggered.

Scenario objects can be composed, in the following manner. For objects
O1 = 〈Q1, δ1, q10 , R

1, B1〉 and O2 = 〈Q2, δ2, q20 , R
2, B2〉 over a common event

set E, the composite scenario object O1 ‖ O2 is defined by O1 ‖ O2 =
〈Q1 ×Q2, δ, 〈q10 , q20〉, R1 ∪R2, B1 ∪B2〉 where:

– 〈q̃1, q̃2〉 ∈ δ(〈q1, q2〉, e) if and only if q̃1 ∈ δ1(q1, e) and q̃2 ∈ δ2(q2, e); and
– The union of the labeling functions is defined in the natural way; i.e.,
e ∈ (R1 ∪ R2)(〈q1, q2〉) if and only if e ∈ R1(q1) ∪ R2(q2), and e ∈
(B1 ∪B2)(〈q1, q2〉) if and only if e ∈ B1(q1) ∪B2(q2).

A behavioral model M is simply a collection of scenario objects
O1, O2, . . . , On, and the executions of M are the executions of the composite
object O = O1 ‖ O2 ‖ . . . ‖ On. Each such execution starts from the initial state
of O, and in each state q along the run an enabled event is chosen for triggering,
if one exists (i.e., an event e ∈ R(q)−B(q)). Then, the execution moves to state
q̃ ∈ δ(q, e), and so on.

2.2 Constraint Solvers

Broadly speaking, constraint solvers are tools that take as input a set of con-
straints given as a formula ϕ over a set of variables V , and either (i) return a
variable assignment that satisfies ϕ, or (ii) state that no such variable assignment
exists. As mentioned above, a satisfying assignment is usually called a model,
but we will try to refrain from using that term, so as to not confuse it with the
model of the system under development. Different solvers differ in the kinds of
constraints they allow as part of their input, and many popular solvers operate
on constraints given in restricted forms of first order logic. The performance of
these solvers (and the complexity of the problems they solve) also closely depends
on the kinds of inputs they allow. Automated solvers have become widespread
and highly successful in the last decades, particularly in tasks related to program
analysis and verification [5, 14].

The types of candidate solvers relevant to our work are as follows:
Boolean Satisfiability (SAT) Solvers. These are solvers that operate on

a set V of Boolean variables, and limit the constraint input ϕ to be a quantifier-
free propositional formula over the variables of V . The solver then attempts
to find a Boolean assignment that satisfies ϕ. For example, for V = {p, q}, the
formula ϕ1 = (p∨q)∧(p∨¬q) is satisfiable, and one satisfying assignment is p,¬q,
whereas the formula ϕ2 = (¬p∨¬q)∧p∧q is unsatisfiable. Although the Boolean
satisfiability problem is NP-complete, there exist many mature tools that can
solve instances that appear in practice, and which contain hundreds of thousands
of variables [54]. A particular kind of SAT solver, called MaxSAT, attempts to
find a Boolean assignment that satisfies as many of the input constraints as
possible (and not necessarily all of them).



Linear Programming (LP) Solvers. LP solvers operate on a set V of
rational variables, and the constraint formula ϕ is a conjunction of linear con-
straints, often referred to as a linear program. For example, for the variables
V = {x, y, z}, the constraint ϕ3 = (x ≤ 5) ∧ (x + y ≤ z) is satisfiable, whereas
the constraint ϕ4 = (x ≤ 5) ∧ (y ≤ 2) ∧ (x + y ≥ 20) is unsatisfiable. The gen-
eral linear programming problem is known to be solvable in polynomial time,
although many solvers use worst-case exponential algorithms that turn out to
be more efficient in practice [13].

Satisfiability Modulo Theories (SMT) Solvers. These solvers can be
regarded as generalized SAT solvers, capable of handling formulas in rich frag-
ments of first order logic. The satisfiability of the formulas is checked subject
to (i.e., modulo) background theories, which intuitively restrict the search only
to satisfying assignments that “make sense” according to these certain theories.
For example, considering the theory of arrays of integer elements with variable
set V = {a, b}, the formula ϕ5 = (a[3] ≥ b[5]) ∧ (a[4] ≤ b[0]) is satisfiable,
whereas the formula ϕ6 = (a = b) ∧ (a[4] 6= b[4]) is unsatisfiable. Modern SMT
solvers support many theories of interest, including various arithmetic theories,
the theory of uninterpreted functions, and theories of arrays, of sets, of strings,
and others [6]. Furthermore, these background theories can be combined: for ex-
ample, one can define formulas that include arrays of integers or sets of strings,
etc. The SMT problem is, in general, undecidable, although certain background
theories afford efficient decision procedures.

Numeric Optimization Solvers. For some optimization problems, it is
beneficial to apply solvers that are guaranteed to terminate after a finite number
of steps. Some tools, such as MATLAB and Mathematica, implement iterative
algorithms that after a finite number of steps terminate, either converging to an
optimal solution or providing an approximation thereof if one has not yet been
discovered. Such solvers are useful, for example, when implementing a controller
for generating real-time feedback in the context of a physical system, such as an
autonomous car, a drone, a robot, etc.

The above kinds of solvers are used for many tasks in academia and industry,
and all are highly successful. Many mature tools supporting them exist, and a
great deal of research is being put into improving them further.

3 NEW EXTENSION MECHANISMS

3.1 Formal Definitions of the New Event Generation Mechanism

The mechanism underlying our extensions of SBP is as follows. At each synchro-
nization point, instead of declaring sets of requested and blocked events, each sce-
nario object Oi can instead declare a set of constraint formulas Φ = {ϕ1

i , . . . , ϕ
l
i}

that are intended as guiding rules for a solver-based mechanism that assembles
the events. Further, these constraint formulas are labeled by a labeling function
Li, which maps each formula ϕk

i into a subset of a finite set of predefined labels
(or tags) L. The labels then provide additional meta information/semantics that



can guide the SBP infrastructure in assembling and composing the various for-
mulas, such as distinguishing must constraints from may constraints, assigning
different priorities to some constraints, etc.

At each synchronization point, the execution mechanism collects from all
scenarios the sets of constraint formulas Φ1, . . . , Φn, and assembles them into a
global constraint formula ϕ. This formula is then passed as input to a constraint
solver. If the formula is found to be satisfiable, the result (i.e., the satisfying
assignment returned by the solver) is broadcast to all scenarios, which can then
change their states and declarations. When no satisfying assignment is found,
the system takes no action, and waits for an external event, as described in [42].
Alternatively, when the set of scenarios also includes scenarios that play the
role of (i.e., simulate) the environment, no additional external events can be
expected, and the system can then stop or terminate for further debugging.

Formally, we modify the definitions of SBP to support the new capabilities,
via integration with constraint solvers, as follows. Let V denote a set of variables.
(Note: the goal of the SBP infrastructure is to assign a value to each of these
variables, at each synchronization point.) Let L denote a finite set of labels.
We define a scenario object O over V and L as a tuple O = 〈Q, δ, q0, C, L〉,
where Q is a set of states and q0 is the initial state, as before. The function C
(which replaces the labeling functions R and B in the original definition of SBP)
maps each state q ∈ Q to a set of constraint formulas Φ = {ϕ1, . . . , ϕl} over the
variables of V . The function L maps each state to a labeling of these constraint
formulas; i.e., L : Q×ξ → 2L, where ξ represents the set of all possible formulas.
By convention, we require that L(q, ϕ) = ∅ for every ϕ such that ϕ /∈ C(q). The
transition function δ is now defined as δ : Q×A(V )→ 2Q, where A(V ) is the set
of all possible assignments to the variables of V . Intuitively, given a specific state
q and a variable assignment α ∈ A(V ) (as may be chosen by the solver-assisted
execution infrastructure), invoking δ(q, α) returns the set of states into which
the object may transition.

In order to account for the new constraint formulas, we modify the com-
position operator for scenario objects, as follows: for scenario objects O1 =
〈Q1, δ1, q10 , C

1, L1〉 and O2 = 〈Q2, δ2, q20 , C
2, L2〉 over a common variable set V

and a common label set L, the composite scenario object O1 ‖ O2 is defined
by O1 ‖ O2 = 〈Q1 × Q2, δ, 〈q10 , q20〉, C, L〉, where 〈q̃1, q̃2〉 ∈ δ(〈q1, q2〉, α) if and
only if q̃1 ∈ δ1(q1, α) and q̃2 ∈ δ2(q2, α). The constraint-generating function C
is defined as C(〈q1, q2〉) = C1(q1) ∪ C2(q2); i.e., the constraints defined by the
individual objects are combined and become the constraints defined by the com-
posite object. We define L(〈q1, q2〉, ϕ) = L1(q1, ϕ) ∪ L2(q2, ϕ), using again the
convention that Li(qi, ϕ) = ∅ if ϕ /∈ Ci(qi).

The key difference between our extended semantics and the original is only in
the event selection mechanism. As before, a behavioral model M is a collection of
scenario objects O1, O2, . . . , On, and the executions of M are the executions of
the composite object O = O1 ‖ O2 ‖ . . . ‖ On. Each such execution starts from
the initial state of O, and after each state q along the run a variable assignment
α is assembled, by invoking a constraint solver on a formula ϕ constructed from



C(q) according to the constraint labeling L. Specifically, we assume that the
modeler also provides a constraint composition rule ψ. Given the constraint-
generating function C and the labeling function L, ψ interprets the labels in
L and thus dictates how to construct for every state q the constraint formula
ϕ that should be passed along to the solver, and/or how, in general, to treat
the various constraints (e.g., applying conjunctions, disjunctions and negations,
applying priorities among scenarios, or applying various optimization goals when
multiple solutions exist). The execution then moves to state q̃ ∈ δ(q, α), and so
on.

3.2 Extension of the Request/Block Semantics of SBP

The original semantics of SBP, as defined in [41,49], can be obtained from the new
one as follows. We allow only two labels L = {“Request”, “Block”} representing
request constraints and block constraints respectively. In addition, we define
the variable set V to contain precisely one variable e, representing the triggered
event. Next, we syntactically restrict the constraint formulas ϕi to be of the form
e = c for some constant c; and finally, for any state q we define the constraint
composition rule to be:

ψ(q, C, L) = (
∨

ϕ∈C(q) | “Request”∈L(q,ϕ)

ϕ) ∧ (
∧

ϕ∈C(q) | “Block”∈L(q,ϕ)

¬ϕ) (1)

Intuitively, at each state, each scenario object can declare events it requests (ex-
pressed as constraints tagged with the label “Request”), and those it wants to
block (expressed as constraints tagged with the label “Block”). The constraint
composition rule then translates these individual constraints into a global for-
mula representing the fact that the triggered event needs to be requested and
not blocked; i.e., it should satisfy the conjunction of being requested with the
negation of being blocked.

When using these particular restrictions, the straightforward solver of choice
is a SAT solver: since the formula ϕ only contains propositional connectives
and the variable e can only take on a finite number of values, we can encode
these possible values using a finite set of Boolean variables (this process is often
called bit-blasting). A modern SAT solver can then be used for selecting the
triggered event very quickly, in a way that is likely to enable an execution that
is sufficiently fast for many application domains.

Beyond just SAT solvers, we propose in this paper to use SMT solvers. This
allows for richer constraint languages that employ theories such as the theory
of real numbers. Further, we do not restrict V to contain only a single variable.
This enables the constraint resolutions to yield not only the choice of a value or
event from a set of candidates, but an assignment of values to an entire system
configuration.

As explained in more detail in Section 5.6, to make sure that all variables are
properly assigned, and to comply with the scenario’s intentions of which variable
should constrain the values of each other variable, we enrich the “Request”



tagging and labeling with a subset S of the set V of variable names, i.e., we
use the labels L = {“Request(S)”|S ⊆ V } ∪ {“Block”}. The following formula
extends formula (1), in stating that for each variable in V there must be at least
one constraint satisfied in the constraint resolution, which stated that it wishes
that this variable be set.

ψ(q, C, L) = (2)∧
v∈V

 ∨
ϕ∈C(q) | “Request(S)”∈L(q,ϕ),v∈S

ϕ

 ∧
 ∧

ϕ∈C(q) | “Block”∈L(q,ϕ)

¬ϕ


4 Implementation Infrastructure

To demonstrate and evaluate our approach, we developed proof-of-concept ap-
plications on multiple platforms.

The first implementation uses MATLAB/Simulink. Scenario objects generate
their constraints as strings containing textual descriptions of the constraints.
These strings are then passed into MATLAB’s equation and system solver, which
is called solve. The solution yielded by the solver is then translated into variable
values that flow along the classical Simulink connectors as input to other blocks,
driving standard Simulink behavior. The results of this behavior (i.e., the effect
on the environment) are also fed back into the scenarios, which can then change
the constraints they present. See Section 5.7 for more details on this case study.

In a second, experimental implementation, described in Section 5.8, we used
solvers and optimizers of Wolfram’s Mathematica to create composite behavior
from SBP-like specifications.

A third implementation, used in the code examples in this paper, is based
on the Python language and the Z3 SMT solver [17]. We use Python and Z3
to implement the event selection formula (2). To simplify the specifications, we
also added the label Wait-For that allows a scenario to maintain its declaration
as long as the condition tagged by this label is not met. The default for this tag,
if not present, is True, i.e., if a scenario does not specify an explicit “Wait-For”
condition, its request and block statements are valid for the next event only.
Note that since formulas that are labeled only with “Wait-For” do dot appear
in Equation (2) they do not affect event construction, only the progress of the
scenarios.

In our implementation, each scenario object is coded as a Python generator.
A generator is a function that can pause itself and pass control back to its caller
at any point, using the yield idiom. It can then be subsequently resumed when it
is re-invoked with the language’s next idiom. The infrastructure mimics the par-
allel execution, as follows (the core of the execution mechanism code for a similar
system appears in [48]). It calls each generator sequentially, waiting for it to yield
control, and then calls the next one. When all scenarios reach their respective
synchronization points, the infrastructure collects the constraints passed by the
scenarios (in the form of a Python dictionary containing Z3 constraints labeled



by keys from the set {Request(S), Block, and Wait-For}). It then invokes the
solver to obtain an assignment for all variables of V that satisfies Equation (2).
We also support the label Request (without the set S) that is automatically
translated to the label Request(S), where S is the set of all the variables that
appear in the labeled formula.

5 Modeling with the New Composition Principles

What can be achieved by using this new composition mechanism? How does it
help system engineers and modelers? We review these capabilities via several
illustrative examples:

1. An extension of the water-tank example with hot and cold water taps.
2. A UAV/drone that is capable of maneuvers in three dimensional space.
3. A software installation management system and/or software product line

management system, where dependencies and conflicts among software li-
braries/features/packages determine which component is to be installed or
included in a particular delivery.

4. Solving the Towers of Hanoi puzzle. In this application the scenarios describe
the (a) essence of the puzzle, i.e., the initial state (all disks on one peg), the
goal (all disks are on some other peg), and rules (e.g., disks on a peg must be
ordered by decreasing diameter); and (b) behavioral scenarios for executing
an iterative solution.

5. Navigating a flock/swarm of robots, in two-dimensional space, towards a
destination, while bypassing obstacles. The goal is to move all robots towards
a configuration where the set’s centroid (“center of gravity”) is at a pre-
specified destination, while the individual robots avoid colliding with the
obstacles, whose boundaries were also pre-specified.

Listings of actual scenarios for these applications/models are available as
part of the supplementary material [15].

5.1 Constructing Rich Multi-Variable Events

We now illustrate the richness of the events that can be modeled our extension.
In the drone example, the UAV is capable of simultaneous vertical and hor-

izontal maneuvers. We can define V to include two variables, V = {v, h}, where
v represents the vertical angular velocity and h the horizontal angular velocity.
One scenario can set upper and lower bounds on the vertical angular velocity, say
due to the drone’s mechanical limitations, and another can limit the horizontal
angular velocity (see Fig. 2). Here we require no labeling of the constraints, i.e.
L = ∅, and the constraint composition rule ψ is a simply a conjunction of all the
individual constraints.

Without any additional limitations, i.e., if only these two scenarios existed
in the system, the constraint formula at any synchronization point would be



ϕ1 = −5 ≤ v ≤ 5

true

ϕ2 = −10 ≤ h ≤ 10

true

Fig. 2. Two scenario objects, represented as transition systems (state machines) that,
respectively, put hard limits on the vertical and horizontal angular velocities of the
drone. Each scenario has a single synchronization point, as indicated by its single
state, in which it contributes a constraint (e.g., ϕ1 = −5 ≤ v ≤ 5) to the global
constraint set. The only transition, a self loop that does not depend on the variable
assignment returned by the solver, indicates that the scenario continues to contribute
this constraint, regardless of the satisfying assignment discovered by the solver.

ϕ = ϕ1 ∧ ϕ2 = (−5 ≤ v ≤ 5) ∧ (−10 ≤ h ≤ 10)

Because the constraints are arithmetical, linear constraints, we can use an
LP solver to dispatch them; and indeed, in this case an LP solver will return an
assignment such as v = 3, h = 0. Other scenario objects in the system, referred
to as actuator scenarios, may then receive and process these values, and through
appropriate APIs adjust the drone’s engines accordingly.

Let us now extend the example with a particular flight situation, where an-
other scenario navigates the drone to its destination, and that scenario is re-
questing a right turn at an angular velocity of at least 6 degrees per second:

ϕ3 = h ≥ 6

We also add an obstacle-detection scenario that detected the presence of a
cellular-communication antenna tower up ahead, and which, in order to circum-
vent the obstacle, is requesting that the elevation be increased or that a left turn
be initiated:

ϕ4 = h ≤ −3 ∨ v ≥ 2

When the solver is given the global constraint formula ϕ = ∧4i=1ϕi, it can
construct the composite event by yielding the solution h = 8, v = 3, which
satisfies all constraints by both turning right and increasing the drone’s altitude.

In the Towers of Hanoi example (see detailed scenarios in Section 5.5 and
in the supplementary material), we observe how the scenarios form a complete
configuration; i.e., they specify which disc should reside on which peg, and which
pegs would be designated as source and destination respectively. Thus, in each
step, the SBP execution mechanism implicitly constructs the entire three-peg
configuration. The instructions for the actual moving of a disk from one peg
to another, is (purposely for this example) only implicit, in contrast to more
standard programming where this step would be at the core of the program.



5.2 Rich Constraint Specifications

While the events and the environment configurations are greatly enriched by
supporting the assignment of many variables in every step, one should note
that feeding the solvers with arbitrary expressions allows scenarios to introduce
constraints that in themselves are rich. For example, a scenario can introduce an
irregularly-shaped obstacle by describing the curve of its boundary in a single
expression. Or, the effect of gradually changing speeds and friction coefficients
as a car slows down or swerves on an uneven road, can be introduced as a single
rich function of time and location.

5.3 Enhanced Incrementality

Fig. 3 lists the Python code for the water tank system, depicted as a set of tran-
sition systems in Fig. 1. During execution, the satisfying assignments obtained
by the solver alternate between assigning hot to true and cold to false, and vice
versa.

hot = Bool(’hot’)

cold = Bool(’cold’)

def mutual exclusion():

yield {Block: And(cold,hot), WaitFor: false}

def three hot():

for i in range(3):

yield {Request([cold,hot]): hot, WaitFor: hot}

def three cold():

for j in range(3):

yield {Request([cold,hot]): cold, WaitFor: cold}

def no two same in a row ():

m=yield {}
while True:

if is true(m[cold]):

m=yield {Block: cold}
if is true(m[hot]):

m=yield {Block: hot}

Fig. 3. A solver-based SBP specification for the water-tank application. The hot (resp.,
cold) variables/flags indicate that a dose of hot (resp., cold) water is to be added to
the tank. The rules/requirements are: (1) do not add hot and cold doses at the same
time; (2) add three doses of hot water; (3) add three doses of cold water; (4) never add
two doses of the same type consecutively.



temp = Real(’temp’)

def hot temp():

while True:

yield {Block: And(hot, temp <= 50),
WaitFor: false}

def cold temp():

while True:

yield {Block: And(cold, temp >= 50),
WaitFor: false}

def after hot temp():

while True:

m=yield {WaitFor: hot}
while is true(m[hot]):

m=yield {Block: temp <= 20}

def after cold temp():

while True:

m=yield {WaitFor: cold}
while is true(m[cold]):

m=yield {Block: temp >= 80}

Fig. 4. New requirements for the water tap model: (1) the temperature of a hot event
must be above 50; (2) the temperature of a cold event must be below 50; (3) the
temperature of an event that follows a hot event must be above 20; (4) the temperature
of an event that follows a cold event must be below 80.

Consider now a customer-driven requirements change. E.g., the requirement
prohibiting two consecutive doses of the same type is removed, and the customer
decides to add requirements about water temperature, as presented in Fig. 4 and
its caption. In an SBP model, one can simply add and remove the respective lines
of scenario code. These additional requirements introduce a new solver variable
temp. The new scenarios can control this new variable, and the solver can handle
it, in addition to preexisting variables, without changing other scenarios. Note
that the remaining scenarios are unaware of the new variable.

5.4 Rich Constraint-Composition Semantics

So far, we have seen two examples for constraint composition rules (annotated
as ψ above): request-and-block and conjunction. We now demonstrate another
composition rule.

In a system for managing software package dependencies, package A may
require package B and/or it may be incompatible with package C, and thus
cannot be installed alongside C. The state of the entire system is the set of



currently installed software packages. Finally, the system is given a user-supplied
goal, such as install Package A, and is then required to install A and any
prerequisite packages, while removing the smallest number of packages currently
installed with which A and its dependencies are incompatible.

To model this, we can utilize a a MaxSAT solver, whose input formula con-
sists of subformulas labeled either hard or soft. The solver finds an assignment
that satisfies the hard constraints and as many of the soft constraints as possible.
For each package dependency, we will specify a scenario that adds a hard con-
straint representing this dependency, and we will model the currently-installed
packages as soft constraints that are introduced by designated scenarios. The
MaxSAT solver will thus return an assignment such that the goal package and
its prerequisites are installed while the number of previously installed packages
that are removed is minimized [2, 51].

More specifically, the variable set V consists of a Boolean variable for each
software package, e.g. {xA, xB , xC , . . .}, which are true if and only if the package
is installed. Actuator scenarios respond to changes in variable values by installing
or removing a package. Our label set is {h, s}, indicating whether a constraint
is hard or soft, respectively. Each dependency is represented by a dedicated ob-
ject; for example, the requirement “A requires B” is encoded by the top scenario
object in Fig. 5. Other objects are used for encoding the soft constraints rep-
resenting the currently installed packages; an example appears in the bottom
scenario object in Fig. 5.

The composition rule ψ constructs the formula ϕ (to be passed to the
MaxSAT solver) as the conjunction of the individual scenario objects’ con-
straints, and marks these constraints as hard or soft according to their labels.

ϕh
A = (¬xA ∨ xB)

true

ϕs
B = xB ϕ = ∅

xB

¬xB

¬xB

xB

Fig. 5. Software-package Management Example: (Left) A scenario object that specifies
that installing A requires B and labels the constraint as hard for the MaxSAT solver.
(Right) A scenario that adds xB as a soft constraint if package B is currently installed
(left state), and contributes no constraints if it is not installed (right state). Switching
between the states is performed according to the assignment discovered by the solver;
specifically, it depends on whether xB is assigned to true or not. We assume the package
is initially installed.

5.5 Combining “Stories” with Constraints

An important feature of SBP is the ability of each scenario object to describe
an aspect of system behavior as a “story”; i.e., a scenario of events in time.



This description does not mandate, as in standard programming, a complete
step-by-step prescription of all process steps.

We illustrate this concept via the Towers of Hanoi example. Our SBP model
for solving the puzzle is based on the following iterative (rather than recursive)
algorithm:

Repeat the following two steps: (1) move the smallest disk to the “next” peg
to the right (cyclically, or modulo three); and then (2) move “any” disk that is
not the smallest (there is only one option for this).

Using the Python/Z3 implementation of SBP, the (rich) events, or system
states can be modeled using the following state variables:

peg1 = Const(’peg1’, SetSort(IntSort()))

peg2 = Const(’peg2’, SetSort(IntSort()))

peg3 = Const(’peg3’, SetSort(IntSort()))

source, dest = Ints("source dest")

The variables source and dest are used to model the next action to be taken.
Note that the variables peg1, peg2, and peg3, which represent the disks on

the three pegs, are sets. Recomputing them at every step further illustrates the
richness of events and event selection, as discussed in Section 5.1. Furthermore,
observe that in this particular model we use sets rather than ordered entities such
as arrays or lists. We can do so for two independent reasons: (a) the particular
system is for executing a solution, and not for solving the puzzle, and as in other
models, not all assumptions must be explicitly coded; (b) in the representation
of the problem in the SMT solver the “identity” of a disk is also its size and
its location in the linear order (much as a collection of two-dimensional vectors
〈x, y〉 can imply relative locations for multiple pairs of points in a 2D space
without explicitly stating this fact).

The main scenario that provides the core steps of the algorithm states that
the variables source and dest should be chosen so that, repeatedly, (1) disk zero
is moved one peg to the right (cyclically), and (2) disk zero is not moved:

def cycle():

while True:

yield {Request([source, dest]):
And(min(peg(source)) == 0,

dest == nxtMod3(source))}

yield {Request([source, dest]):
min(peg(source)) != 0}

This ability to use SBP to extract and highlight the core steps of an algorithm
into separate scenarios, distinguishing them from technicalities like initialization,
termination, data management and other mandatory bookkeeping, is discussed
in greater detail in the proposal for Scenario-Based Algorithmics [44].

We model the rest of the behavior of the solution with the following scenarios:



– The values of variables source and dest must always be different from each
other and in the range 1,2,3 (notice the use of the blocking idiom):

def ranges():

yield {Block: Or(source < 1, source > 3,

dest < 1, dest > 3,

source == dest),

WaitFor: false}

This scenario is coded to never resume and change states; its constraints al-
ways hold, though the same behavior could be exhibited with a specification
that contains a loop that resumes after any event (WaitFor: True) and then
returns to the same state.

– The initial state of the pegs is 〈{0, . . . , n}, ∅, ∅〉:

def init():

yield {Request: And(peg1 == FullSet(),
peg2 == EmptySet(),

peg3 == EmptySet())}

– The smallest disk on the source peg must be smaller than the smallest disk
on the destination peg:

def size():

yield {Block: min(peg(dest)) < min(peg(source)),

WaitFor: false}

– The source peg must not be empty:

def nonempty():

yield {Block: IsEmpty(peg(source),
WaitFor: false}

– The smallest disk from the src peg should move to dest peg:

def actuator():

m = yield {}

while True:

src = pegs[m.eval(source).as long()−1]
dst = pegs[m.eval(dest).as long()−1]
thrd = (set(pegs) − {src, dst}).pop()

d = m.eval(min(src)).as long()

m=yield {Request([peg1, peg2, peg3]):
And(eqSet(dst, m.eval(SetAdd(dst, d))),

eqSet(thrd, m.eval(thrd)),

eqSet(src, m.eval(SetDel(src, d))))}



5.6 Specifying Targeted Constraints

Using the constraint solvers allows each scenario to relate to some variables,
while ignoring others. This is another source of expressive power. However, since
the solver must, at every step, assign values to each of the variables, it is the
modeler’s responsibility to specify for each variable at least one scenario that
requests a value for it. While this is normally not a significant burden, there
are some fine points that must be handled, and for which we offer a particular
interface.

Consider the situation in Fig. 6, where two scenarios deal with separate
variables, x1 and x2, respectively. The first scenario requests that x1 be greater
than 50, and the second requests that x2 be greater than 50. In traditional SBP,
if each of these two scenarios were to request, say, the coordinates for a robot’s
destination, exactly (and only) one of the two requests would be satisfied, but
both scenarios would be able to react to the choice (e.g., abandon requests that
were not chosen, or maintain the request until it is satisfied, perhaps after visiting
the destination that was chosen first). However, the current case is different.
Since the first scenario is not aware of the second one, the designer implicitly
assumes that the only may constraint for x1 is that it be greater than 50, hence
it does not expect the solver to allow an assignment to x1 that is smaller than
50. According to our semantics, however, the composition rules produces the
constraint ψ = x1 > 50 ∨ x2 > 50, which is satisfied, e.g., by the assignment
{x1 = 0, x2 = 51}. A way to avoid this unintended behavior is to label each
proposition with the variable that it is aware of and to solve for each set of
variables separately. Another way to avoid the problem is to look for assignments
that maximize the number of satisfied may constraints, e.g., by using solvers that
optimize the number of satisfied clauses.

def scenario1():

yield {Request: x1 > 50}

def scenario2():

yield {Request: x2 > 50}

Fig. 6. Unintended behavior with the Request semantics when using Equation (1).
Solving (x1<50)∨ (x2>50), the assignment {x1 = 0, x2 = 51} is valid, despite the fact
that no scenario specified that x1 may be smaller than 50.

In another case that must be handled, recall that, when specifying a con-
straint like x = y, a modeler may have different intents: whether the values for
both x and y are to be chosen, or the value for x should be chosen such that
it is equal to the value of y that was determined by other means, or the value
for y should be implied by that of the predetermined value of x. The need to
distinguish between these intents is particularly important in our setting, where



the constraint solver may be asked to set (almost) all variables of the system
and its environment, and may thus yield surprising results, such as having a ve-
hicle avoid an obstacle by moving the obstacle. Using existing idioms to specify
environment assumptions, like “the coordinates of this obstacle cannot change”
is not enough, because the intent to change or not change a particular variable
may vary from one scenario to another, or from one scenario state to another,
even within the same scenario.

In our implementation, we address this by using the labeling system.
E.g., specifying Request[source,dest] in the algorithm “story” scenario, and
Request[peg1,peg2,peg3] in the disk-moving actuator scenario, we indicate that the
first request is to assign values only to source and to dest and the second request
is to assign values only to peg1, peg2, and peg3.

The event selection mechanism is then changed to not only satisfy one request
while obeying all blocking statements, but to satisfy at least one request for
changing each of the variables for which there exists a request.

Thus, removing the [source,dest] and the [peg1,peg2,peg3] from the above labels
would allow for assignments that are consistent with one of the two requests but
are not consistent with the other one (since in SBP not all requests must be
satisfied).

The labeling of which variables can be set by a particular constraint is op-
tional. When absent, the default is that the request applies to all, and only, the
variables mentioned in the request.

This feature can be seen to provide additional expressive power, as follows.
The formal definition and the implementation allow the additional tagging of
the requests to include labels that are not necessarily variable names, or are
variable names but ones that are not mentioned in the particular mathematical
formulation of the constraint at hand. Thus, a scenario can specify that its
requested constraints may be ignored altogether if other constraints labeled in
the same way are satisfied.

5.7 Real-time Reactivity

Even though solvers are designed to apply complex mathematical and logical
operations and extensive searches, they can be also be used in real-time reac-
tive systems that need to provide fine-grained discretization of near-continuous
behavior.

To illustrate this, consider a model for a controlled follower rover that
needs to track a leader rover while keeping a safe distance from it. The fol-
lower must accommodate nearly-arbitrary leader behavior, constrained only by
basic, reasonable bounds on the leader’s speed and turn angles. This served
as a challenge problem in the MDETOOLS’18 workshop, where the orga-
nizers supplied a simulator for driving the participants’ demonstrations. (See
mdetools.github.io/mdetools18/challengeproblem.html.)

The simulator periodically emits the locations of the rovers, the distance
between them, and the heading angle of the follower. The follower advancement
and turning is controlled by setting the power for the left and right wheels.

mdetools.github.io/mdetools18/challengeproblem.html


The scenarios’ code is shown in Fig. 7: (i) bounds: the bounds for the pR and pL
variables, indicating the power to the right and left wheels; (ii) forward.backward:
forward and backward motion in reaction to relative distance; i.e., when the
rovers are too far apart or too close the follower accelerates, decelerates or even
reverses its direction; (iii) spin: steering towards the leader by turning the wheels
when the relative angle (based on the latest simulator input) exceeds a speci-
fied value (3 degrees), the follower turns left or right towards the leader; (iv)
turnpowers: calculating the needed wheel power(s) for an already-triggered turn.

This example demonstrates the ability to construct complex behavior at run
time, using distinct, modular, behavioral aspects.

The resulting system behavior is indeed very similar to the one presented
in [20], which resulted from using SBP without a constraint solver, employing
direct request-and-block logic, and which could request only finite sets of events.
The use of constraint-solvers enabled, e.g., the spin() scenario, to specify infinitely
many options and allows, as demonstrated by the turnpowers() scenario, to further
decompose the specification and to better align with the requirements.

The real-time capabilities of this solver-based composition is further demon-
strated in the Patrol Vehicle example (described here only briefly, in order to fit
space constraints), this time in a MATLAB/Simulink framework, using MAT-
LAB solvers. This is a simulation of an autonomous vehicle that moves repeatedly
in a fixed route in the shape of the figure eight, and is subject to strict speed
demands and constraints, as reflected by the following scenarios: (1) always at-
tempt to accelerate to a maximum pre-specified speed; (2) when arriving at a
sharp curve, reduce speed below a specified value until exiting the curve; and
(3) after driving at a speed that is higher than a certain value for longer than a
certain time limit, reduce the allowed speed and acceleration to be below some
other limits, for a certain amount of time (e.g., to avoid overheating or wearing
out of the motor).

In addition to the real-time perspective, this example also illustrates the abil-
ity to model “stories” (see Section 5.5) that progress from one state to another
and present different constraints at different times and states. Thus, for exam-
ple, specifying the speed constraints that hold only after detecting the arrival
at (or departure from) a sharp curve, or after the passage of a certain amount
of time, appears quite intuitive and well aligned with the stated requirements.
This can be contrasted with the less intuitive use of ever-present constraints,
each constantly requiring a conjunction of conditions, e.g., current-speed-and-
current-road-curvature, or, current-speed-and-time-since-certain-past-event.

5.8 Event Construction with Optimization

In this section, we show how the computational tools (namely, solvers) can also
be applied to enrich the event construction with optimization of event-selection
and variable assignment choices. This optimization capability is a step towards
being able to manage multiple concurrent prioritized goals. This part of the
work is inspired by the Null Space Behaviour (NSB) technique [1] in control
theory, where composition and optimization of controllers is based on linear



def bounds():

yield {Block: Or(pL < −MAX, pL > MAX, pR < −MAX, pR > MAX),
WaitFor: false}

def forward backward():

while True:

if dist > CLOSE:

if dist < FAR:

yield {Request([pL,pR]): pL = pR = MAX·(dist−CLOSE)
FAR−CLOSE

}
else:

yield {Request([pL,pR]): pL = pR = MAX}

else:

if dist > VERY CLOSE:

yield {Request([pL,pR]): pL = pR = MAX·(dist−CLOSE)
CLOSE−V ERY CLOSE

}
else:

yield {Request([pL,pR]): pL = pR = −MAX}

def spin():

while True:

if abs(dir error) > 3:

if dir error > 0:

yield {Request([pL,pR]): pL > pR, Block: Not(pL > pR)}
else:

yield {Request([pL,pR]): pL < pR, Block: Not(pL < pR)}
else:

yield {}

def turnpowers():

yield {Block: And(pL 6= pR , Or(pL 6= 0, pR 6= 40),Or(pL 6= 40, pR 6= 0)),
WaitFor: false}

Fig. 7. Main scenarios of the leader-follower rover model (see explanation in the text).

matrix operations, and where computing solutions for lower priority goals is
done within the null space of the matrices used for the achieving higher priority
goals.

This richer example also further illustrates other key properties discussed
earlier. These include the ability to construct decisions with a multitude of vari-
ables; the ability to compose scenarios, each of which has a partial view of the
system behavior; and, more importantly, the ability to specify what can or can-
not be changed in the system and its environment.

The system in this example coordinates and guides the motion of a flock of
robots (a.k.a. a multi-robot) in a two-dimensional space, as proposed in [1]. Both
our approach and NSB are based on first designing simple controllers for achiev-
ing individual aspects of the required behaviour, and then composing them into



a combined controller, whose emergent behaviour addresses all the requirements
together.

The requirements for the flock’s motion are: (i) the centroid (“center of grav-
ity”) of the flock should move in the direction of a specified point; (ii) a robot
may not travel faster than 10 meters per second; (iii) initially, the robots are
placed at equal distances on (the perimeter/curve of) a given circle; (iv) while
moving, the robots should strive to maintain the circle formation; (v) the robots
should stay within a specified rectangular region; (vi) the robots should not
path through a specified elliptical obstacle; (vii) the centroid should also not
pass through the given elliptical obstacle; (viii) the robots should maintain a
minimal specified distance between any two.

In this implementation, the solver we used is the “FindMinimum” procedure
from Wolfram’s Mathematica.

We formalized each requirement as an objective function or a blocking con-
straint to be presented to the solver. Specifically, we created a separate mod-
ule/formula for each requirement. This modeling approach helps engineers and
other stakeholders examine how the behaviour of a system might change when
individual requirements are added, removed, or changed.

The solver was used to steer the multi-robot iteratively, in a greedy approach.
Conceptually, at each step, all possible movements of the flock were considered
and an optimal one was chosen. The resulting motions of each step were used
to move the robots’ coordinates, and this information then served as the input
for forming the equations for the next step. In future enhancements additional
parameters can be considered in subsequent steps, such as past speeds and direc-
tions, in the interest of creating smoother motion or detecting situations where
a robot is stuck in a tight corner.

The simulation ran successfully at about 20 steps per second (i.e., at intervals
of 50 millisecond), thus supporting the claim that solvers can be used for real-
time control systems. Clearly, faster processors now enable the running of new
and complex computational tools for applications that previously demanded
solutions to focus on leanness and efficiency (as in the case of NSB).

The use of the Mathematica solver enables composing the controllers in a
way that manages goals hierarchically. One approach is to nest the calls for
finding optimal solutions, and pass the results of each invocation as a constraint
on the search for the next-lower goal in the hierarchy ladder. This can be done
as follows:

arg max{f2(x, v) : v ∈ arg max{f1(x, v) : v ∈ R2n}}

Here, n is the number of robots, x ∈ R2n is a vector representing the positions
of the robots in the plane, v ∈ R2n is a vector representing the horizontal and
vertical velocities that the controller needs to assign to the robots, and f1 and f2
represent the higher-priority and lower-priority goal functions, such as reaching
the target destination, avoiding an obstacle, or preserving a formation.

The idea in this formulation is to only create sets of commands that are
optimal with respect to the high-priority function, while using the low-priority



function as a secondary consideration within the first solution space (similarly
to sorting database records by a primary and secondary sort keys).

Other composition rules can support more refined controller combinations;
e.g., composing the constraints in parallel to achieve a joint objective function,
and controlling goal priorities via weights as opposed to solving for one goal and
only then for the other.

The general characteristics of the solution’s emergent behaviour is similar
to the behaviours shown in the NSB paper [1]. In particular, casual observation
makes it clear that in both cases global solutions are handled with narrower local
views; i.e., the scenario-weaving mechanism returns the control commands only
for a specific time instance. A detailed comparison of the two approaches accord-
ing to criteria like solution quality (e.g., successful termination, path length and
smoothness of trajectory and speed), computational cost/efficiency, the ability
to provide formal correctness proofs, and ease of development, is beyond the
scope of the current paper.

The demonstration of SBP with Mathematica is still in early stages. We have
not built interfaces between a procedural/scripting language like Java or Python
to Mathematica. Hence, the present example does not (yet) demonstrate the SBP
capabilities of scenarios that follow a “story”, changing states and declaration
following the occurrence of relevant events. Given that SBP principles are lan-
guage agnostic, and our experience with developing such interfaces in multiple
languages and environments, we regard this issue is a technicality.

Other interesting challenges we encountered include the following. First, there
were several technical issues to be addressed. For example, the solver was not
able to cope with rectangular and other non-elliptical obstacles. Clearly, this
should not be attributed to the use of SBP, and we expect that engineers will
be able to specify constraints and objective functions that indeed test the limits
of each solver’s capabilities.

A second issue is that, as stated earlier, the solver is applied locally, in very
short time intervals, and without look-ahead or backward planning. This can
cause some robots to get stuck in tight corners, not recognizing that they have
to reverse some distance in order to get back on track. Finding a composition
technique that allows for global solutions, e.g., for adding a requirement that the
path be the shortest possible, or that it meet some other overall conditions, re-
mains as future research. Note that global solutions do not mandate look-ahead
that is provided by the execution infrastructure. As in NSB, the individual sce-
narios can contain the needed logic. For example, the flock may apply the “right
hand rule” a localized approach to finding paths in certain mazes; or pilot/scout
robots can explore the perimeter of the obstacle, reporting to others, who then
plan a trajectory with straightforward geometry. Specialized sensors (simulating
ordinary long-distance vision, or the availability of maps) can detect obstacles
from a distance, triggering bypass trajectories that are less likely to get stuck in
narrow crevasses. Alternatively, recovery scenarios can exercise “simulated an-
nealing”, detecting when robots are stuck and and driving them to return and
explore new directions.



Another important issue is verification, and especially, compositional verifi-
cation. The basic-style SBP lent itself very well to compositional verification,
which helps tackle the state explosion that often hinders application of formal
methods to complex reactive systems [29]. How does one specify the assumptions
and guarantees of scenarios when their declarations include complex assertions
that are understood only by rich solvers? A first step could be to use yet another
kind of solver for composing behaviors, one that is geared especially for such a
verification purpose [18].

6 RELATED WORK

In this paper, we propose a particular approach to run-time composition of
behavior, namely, extending the composition rules of existing SBP-style frame-
works with specification and solving of constraints. We now briefly compare SBP
to other mechanisms for execution-time composition of events, with a special fo-
cus on the present context of constraint specifications (an earlier, related analysis
appears in [45]).

An important feature of SBP is its intuitiveness and succinctness. These
properties are a consequence of the ability to specify forbidden behavior directly
and explicitly, rather than doing so using control-flow conditions, designed to
prevent certain pieces of code or specification from actually doing the undesired
action. In SBP, this feature was originally embodied in the use of concrete lists
of requested events and filter-based blocking. Using this paper’s extensions, this
is done with constraint solvers. For example, one can now build and test the
specification that a vehicle is not allowed to enter a road intersection when the
traffic light is red, even before having coded how vehicles behave. Other ap-
proaches, such as business-workflow engines, simulation engines, and tools for
test-driven development, often support intuitive specification of executable use
cases and scenarios, but their support for generic composition of multiple al-
lowed scenarios and forbidden scenarios is limited. Conventional object oriented
and procedural programming, logic programming and functional programming
languages provide for composition of behaviors, but the requirements’ use cases
and scenarios are not directly visible in the code. Instead, they are typically
reflected only in emergent properties of the actual execution.

The principles of SBP have been implemented in several languages, in both
centralized and distributed environments. These implementations have posi-
tioned SBP as a design pattern for using constructs like messaging, semaphores
and threads, and concepts such as agent-orientation for achieving incrementality
and alignment of code with a set of requirements.

Publish-subscribe is a related framework for parallel composition, which does
not provide language support for forbidden behavior. Aspect oriented program-
ming [50] supports specifying and executing cross-cutting program instructions
on top of a base application, but, unlike SBP, it does not allow for specifying
forbidden behavior, state management within an aspect, or symmetry between
aspects and base code.



Other behavior-based models, such as Brooks’s subsumption architec-
ture [12], Branicky’s behavioral programming [11], and LEGO Mindstorms leJOS
(see [3]), call for constructing systems from behaviors. The SBP formalism is
language-independent, has multiple implementations, and extends in a variety
of ways each of the coordination and arbitration mechanisms used by those ar-
chitectures.

The execution semantics employed by SBP is similar to the event-based
scheduling of SystemC [46], which uses cyclical co-routine scheduling by syn-
chronization, evaluation, update and notification. SBP is different from Sys-
temC in that it offers support for specifying scenarios and forbidden scenarios
that directly correspond with the original requirements, while SystemC provides
a particular framework for composing parallel components in certain designs
and architectures. In SBP, synchronization is an inherent technique for contin-
uously complying with the constraints posed by the requiremenbts, whereas in
SystemC synchronization is used for the coordination of an otherwise parallel
component execution. This also implies differences in the semantic details of
synchronization, queuing, event selection, and state management within each
parallel component.

The BIP language (behavior, interaction, priority) [8] utilizes the concept of
glue for assembling components. It pursues goals similar to SBP’s, with a focus
on correct-by-construction systems. SBP is more geared towards the execution
of intuitively specified behaviors and constraints, and the run-time resolution of
these constraints.

As mentioned earlier, SBP has recently been implemented using the visual
formalism of Statecharts. The Yakindu Statecharts tool now offers an extension
of Statecharts’ original support for concurrent, orthogonal and hierarchical state
machines [27] with the optional specification of requested and blocked events in
any state, accompanied by an enhanced event selection semantics [53]. These
enhancements provide the formal definitions of SBP principles, which are based
on transition systems and state machines (see, e.g., [41]), with a direct, concrete
executable implementation that is readily understood by humans. This allows to
directly cast inter-object behaviour, which typically modelled with Statecharts
and other state-based languages, in the same formalism and language as intra-
object behaviour.

In SBP, the direct execution and/or simulation of a model is termed play-out.
Play-out is achieved by considering all constraints of the various scenarios before
each event selection. Thus, the computational burden required for each runtime
decision depends mainly on the number of scenarios, and does not depend on the
number of states in each scenario or on the nondeterministic branching in future
system and environment behavior. In contrast, many general program synthesis
approaches for reactive systems (see, e.g., [9]) apply planning, model-checking,
and other techniques to resolve environment assumptions and specification con-
straints a-priori. This gives rise to a strategy (e.g., a deterministic finite automa-
ton) for successfully handling all possible environment behaviors that may be



encountered in all reachable program states. Synthesis has been applied to SBP
specifications with the request-and-block idioms in, e.g., [43].

General synthesis techniques typically have to deal with very large state
graphs. Often, this is done via run-time planning (also termed online/on-the-fly
synthesis) (see, e.g., [10]). In this approach, an execution mechanism considers a
single starting state of the system and its environment, thus limiting the number
of system and/or environment actions considered in the search. Such a technique
was implemented in SBP in, e.g., smart play-out [38]. An intriguing future re-
search avenue is to perform run-time look-ahead, or complete program synthesis
during development, for SBP specifications with rich constraint specifications
like the ones discussed in this paper. Such research could include identifying
categories of constraint specifications that are richer than the filters and lists
used in traditional SBP, but which are still more amenable to synthesis than
arbitrary constraints.

Our proposed use of constraint solvers to directly control the execution
of SBP specifications differs from other uses of these tools in the verifica-
tion and analysis of systems, including symbolic execution [55], bounded model-
checking [7], concolic testing [56], and others. SMT solvers have previously been
applied in performing such analysis tasks also in the context of SBP; e.g., by
extending SMT solvers to deal more efficiently with transition systems [47] and
by using the solvers to efficiently prove compositional properties for collections
of SBP scenarios [29].

7 CONCLUSION

We have described a substantial extension of the Scenario-Based programming
design and modeling approach for complex systems. By enabling the invocation
of general, rich, and well-proven solvers and optimizers at every decision that
the system makes, we enable modelers to perform sophisticated, yet trusted,
composition of modular requirement specifications. At the same time, each nar-
row requirement can itself be as deep and rich as the domain professional that
presented it wishes it to be. The enhancements allow scenario objects to interact
with each other in far more subtle and intricate ways than is possible with only
the original request-and-block idioms. All these capabilities enable engineers to
use SBP in order to more directly create faithful models of complex systems.
The theoretical principles of this extension are demonstrated through numerous
applications that explore the capabilities, and limits, of the approach.

Future research directions include making intelligent run-time decisions us-
ing look-ahead (with model checking facilities), development-time and run-time
program synthesis, and applying machine learning techniques for improving pro-
gram decisions over time. These tools exist already in basic forms for traditional
SBP, and have been shown to be useful. However, extending them to the present
formulation will entail accounting for the more flexible event selection process.



ACKNOWLEDGMENTS

This work was supported in part by a grant to David Harel from the Israel
Science Foundation, the William Sussman Professorial chair in mathematics,
and the Estate of Emile Mimran.

References

1. G. Antonelli, F. Arrichiello, and S. Chiaverini. The NSB control: a behavior-based
approach for multi-robot systems. Paladyn, J. of Behavioral Robotics, 1(1):48–56,
2010.

2. J. Argelich and I. Lynce. CNF Instances from the Software Package Installation
Problem. In Proc. 15th RCRA Workshop on Experimental Evaluation of Algo-
rithms for Solving Problems with Combinatorial Explosion, 2008.

3. R. C. Arkin. Behavior-Based Robotics. MIT Press, 1998.
4. M. Bar-Sinai, G. Weiss, and R. Shmuel. BPjs: An Extensible, Open Infrastructure

for Behavioral Programming Research. In Proc. 21st ACM/IEEE Int. Conf. on
Model Driven Engineering Languages and Systems (MODELS), pages 59–60, 2018.

5. C. Barrett, D. Kroening, and T. Melham. Problem Solving for the 21st Century:
Efficient Solvers for Satisfiability Modulo Theories. London Mathematical Society
and Smith Institute for Industrial Mathematics and System Engineering, 2014.

6. C. Barrett and C. Tinelli. Satisfiability Modulo Theories. In E. Clarke, T. Hen-
zinger, H. Veith, and R. Bloem, editors, Handbook of Model Checking. Springer,
2018.

7. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In Proc. 5th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 193–207, 1999.

8. S. Bliudze and J. Sifakis. A Notion of Glue Expressiveness for Component-Based
Systems. In Conf. on Concurrency Theory (CONCUR), pages 508–522, 2008.

9. R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar. Synthesis of
Reactive(1) Designs. J. Computer and System Sciences, 78(3):911–938, 2012.

10. Avrim L Blum and Merrick L Furst. Fast Planning Through Planning Graph
Analysis. Artificial intelligence, 90(1-2):281–300, 1997.

11. M.S. Branicky. Behavioral Programming. In Working Notes AAAI Spring Sympo-
sium on Hybrid Systems and AI, 1999.

12. R. Brooks. A Robust Layered Control System for a Mobile Robot. Robotics and
Automation, 2(1):14–23, 1986.

13. Vasek Chvátal. Linear Programming. W. H. Freeman., 1983.
14. E. Clarke, T. Henzinger, H Veith, and R. Bloem. Handbook of Model Checking.

Springer, 2018.
15. D. Harel and G. Katz and A. Marron and A. Sadon and G. Weiss . Supplementary

Material for Scenario-based Programming with Rich Event Construction, 2019.
http://www.b-prog.org/ccismw19.

16. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.
Journal on Formal Methods in System Design (FMSD), 19(1):45–80, 2001.

17. L. De Moura and N. Bjorner. Z3: An Efficient SMT Solver. In Proc. 14th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 337–340, 2008.



18. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and Oded Maler. Spaceex: Scalable verification of hybrid
systems. In Computer Aided Verification (CAV), pages 379–395. Springer, 2011.

19. M. Gordon, A. Marron, and O. Meerbaum-Salant. Spaghetti for the main course?:
Observations on the naturalness of scenario-based programming. In Innovation
and Technology in Computer Science Education,ITiCSE ’12. ACM, 2012.

20. J. Greenyer, M. Bar-Sinai, G. Weiss, A. Sadon, and A. Marron. Modeling and
Programming a Leader-Follower Challenge Problem with Scenario-Based Tools.
In Proc. 21st ACM/IEEE Int. Conf. on Model Driven Engineering Languages and
Systems (MODELS), pages 376–385, 2018.

21. J. Greenyer and D. Gritzner. Generating Correct, Compact, and Efficient PLC
Code from Scenario-based GR(1) Specifications. In System-Integrated Intelligence:
Challenges for Product and Production Engineering (SYSINT), 2018.

22. J. Greenyer, D. Gritzner, T. Gutjahr, F. König, N. Glade, A. Marron, and G. Katz.
ScenarioTools — A Tool Suite for the Scenario-based Modeling and Analysis of
Reactive Systems. J. of Science of Computer Programming, 149:15–27, 2017.

23. J. Greenyer, D. Gritzner, G. Katz, and A. Marron. Scenario-Based Modeling and
Synthesis for Reactive Systems with Dynamic System Structure in ScenarioTools.
In Proc. 19th ACM/IEEE Int. Conf. on Model Driven Engineering Languages and
Systems (MODELS), pages 16–23, 2016.

24. J. Greenyer, D. Gritzner, G. Katz, A. Marron, N. Glade, T. Gutjahr, and F. König.
Distributed Execution of Scenario-Based Specifications of Structurally Dynamic
Cyber-Physical Systems. In Int. Conf. on System-Integrated Intelligence: Chal-
lenges for Product and Production Engineering (SYSINT), pages 552–559, 2016.

25. D. Gritzner and J. Greenyer. Synthesizing Executable PLC Code for Robots from
Scenario-Based GR(1) Specifications. In Proc. 4th Workshop of Model-Driven
Robot Software Engineering (MORSE), pages 247–262, 2018.

26. A. Harel, D. Kantor, G. Katz, A. Marron, G. Weiss, and G. Wiener. Towards
Behavioral Programming in Distributed Architectures. Journal of Science of Com-
puter Programming (J. SCP), 98:233–267, 2015.

27. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Journal of
Science of Computer Programming (J. SCP), 8(3):231–274, 1987.

28. D. Harel, Kantor A., and G. Katz. Relaxing Synchronization Constraints in Be-
havioral Programs. In Proc. 19th Int. Conf. on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR), pages 355–372, 2013.

29. D. Harel, A. Kantor, G. Katz, A. Marron, L. Mizrahi, and G. Weiss. On Composing
and Proving the Correctness of Reactive Behavior. In Proc. 13th Int. Conf. on
Embedded Software (EMSOFT), pages 1–10, 2013.

30. D. Harel and G. Katz. Scaling-Up Behavioral Programming: Steps from Basic
Principles to Application Architectures. In Int. Workshop on Programming based
on Actors, Agents, and Decentralized Control (AGERE!), pages 95–108, 2014.

31. D. Harel, G. Katz, R. Lampert, A. Marron, and G. Weiss. On the Succinctness
of Idioms for Concurrent Programming. In Proc. 26th Int. Conf. on Concurrency
Theory (CONCUR), pages 85–99, 2015.

32. D. Harel, G. Katz, R. Marelly, and A. Marron. An Initial Wise Development
Environment for Behavioral Models. In Proc. 4th Int. Conf. on Model-Driven
Engineering and Software Development (MODELSWARD), pages 600–612, 2016.

33. D. Harel, G. Katz, R. Marelly, and A. Marron. First Steps Towards a Wise Devel-
opment Environment for Behavioral Models. International Journal of Information
System Modeling and Design (IJISMD), 7(3):1–22, 2016.



34. D. Harel, G. Katz, R. Marelly, and A. Marron. Wise Computing: Toward Endowing
System Development with Proactive Wisdom. IEEE Computer, 51(2):14–26, 2018.

35. D. Harel, G. Katz, A. Marron, and G. Weiss. Non-Intrusive Repair of Reactive
Programs. In Proc. 17th IEEE Int. Conf. on Engineering of Complex Computer
Systems (ICECCS), pages 3–12, 2012.

36. D. Harel, G. Katz, A. Marron, and G. Weiss. Non-Intrusive Repair of Safety
and Liveness Violations in Reactive Programs. Transactions on Computational
Collective Intelligence (TCCI), 16:1–33, 2014.

37. D. Harel, G. Katz, A. Marron, and G. Weiss. The Effect of Concurrent Pro-
gramming Idioms on Verification: A Position Paper. In Proc. 3rd Int. Conf. on
Model-Driven Engineering and Software Development (MODELSWARD), pages
363–369, 2015.

38. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart Play-Out of Behavioral
Requirements. In Formal Methods in Computer-Aided Design (FMCAD), pages
378–398. Springer, 2002.

39. D. Harel, S. Maoz, S. Szekely, and D. Barkan. PlayGo: Towards a Comprehensive
Tool for Scenario Based Programming. In Proc. 10th Int. Conf. on Automated
Software Engineering (ASE), pages 359–360, 2010.

40. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer, 2003.

41. D. Harel, A. Marron, and G. Weiss. Programming Coordinated Scenarios in Java.
In Proc. 24th European Conf. on Object-Oriented Programming (ECOOP), pages
250–274, 2010.

42. D. Harel, A. Marron, G. Weiss, and G. Wiener. Behavioral Programming, Decen-
tralized Control, and Multiple Time Scales. In Proc. 1st SPLASH Workshop on
Programming Systems, Languages, and Applications based on Agents, Actors, and
Decentralized Control (AGERE!), pages 171–182, 2011.

43. D. Harel and I. Segall. Synthesis from live sequence chart specifications. Computer
System Sciences, 78(3):970–980, 2012.

44. David Harel and Assaf Marron. Toward scenario-based algorithmics. In Adventures
Between Lower Bounds and Higher Altitudes, pages 549–567. Springer, 2018.

45. David Harel, Assaf Marron, and Gera Weiss. Behavioral Programming. Commu-
nications of the ACM, 55(7):90–100, 2012.

46. IEEE. Standard SystemC Lang. Ref. Manual. IEEE, 2006.
47. G. Katz, C. Barrett, and D. Harel. Theory-Aided Model Checking of Concurrent

Transition Systems. In Proc. 15th Int. Conf. on Formal Methods in Computer-
Aided Design (FMCAD), pages 81–88, 2015.

48. G. Katz, A. Marron, A. Sadon, and G. Weiss. On-the-fly construction of composite
events in scenario-based modeling using constraint solvers. In Model-Driven Engi-
neering and Software Development, MODELSWARD 2019, pages 141–154, 2019.

49. Guy Katz. On Module-Based Abstraction and Repair of Behavioral Programs.
In Proc. 19th Int. Conf. on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR), pages 518–535, 2013.

50. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In Proc. 11th European Conf. on Object-
Oriented Programming (ECOOP), pages 220–242, 1997.

51. F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, and R. Leroy.
Treinen: Managing the Complexity of Large Free and Open Source Package Based
Software Distributions. In Proc. 21st IEEE/ACM Int. Conf. on Automated Soft-
ware Engineering (ASE), pages 199–208, 2006.



52. A. Marron, B. Arnon, A. Elyasaf, M. Gordon, G. Katz, H. Lapid, R. Marelly,
D. Sherman, S. Szekely, Weiss G., and D. Harel. Six (Im)possible Things before
Breakfast: Building-Blocks and Design-Principles for Wise Computing. In Proc.
19th ACM/IEEE Int. Conf. on Model Driven Engineering Languages and Systems
(MODELS), pages 94–100, 2016.

53. A. Marron, Y. Hacohen, D. Harel, A. Mülder, and A. Terfloth. Embedding
Scenario-based Modeling in Statecharts. In Proc. 5th Int. Workshop on Model-
Driven Robot Software Engineering (MORSE), 2018.

54. A. Nadel. Understanding and Improving a Modern SAT Solver, 2009. Ph.D. Thesis,
Tel Aviv University.

55. C. Păsăreanu and W. Visser. A Survey of New Trends in Symbolic Execution
for Software Testing and Analysis. Int. Journal on Software Tools for Technology
Transfer, 11(4):339–353, 2009.

56. K. Sen. Concolic Testing. In Proc. 22nd IEEE/ACM Int. Conf. on Automated
Software Engineering (ASE), pages 571–572, 2007.

57. S. Steinberg, J. Greenyer, D. Gritzner, D. Harel, G. Katz, and A. Marron. Dis-
tributing Scenario-Based Models: A Replicate-and-Project Approach. In Proc.
5th Int. Conf. on Model-Driven Engineering and Software Development (MODEL-
SWARD), pages 182–195, 2015.

58. S. Steinberg, J. Greenyer, D. Gritzner, D. Harel, G. Katz, and A. Marron. Efficient
Distributed Execution of Multi-Component Scenario-Based Models. Communica-
tions in Computer and Information Science (CCIS), 880:449–483, 2018.


	Executing Scenario-Based Specification with Dynamic Generation of Rich Events

