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CHARACTERIZING SECOND ORDER LOGIC
WITH FIRST ORDER QUANTIFIERS

by Davip HargL in Cambridge, Massachusets (U.S.A.)?)

1. Introduetion

In [1] and [2] it is shown that the language consisting of formulae of the form Q.M,
where @ is a partially ordered quantifier prefix (Henkin prefix, abbreviated poq) and M
is a quantifier-free matrix, is equal in expressive power to X} (notation from RoGErs [3)).
Extending the language to allow the attachment of poq’s to formulae as an additional
formation rule (together with, say, A and —), yields 43 (see [1]). This extension seems,
however, to destroy the natural character of the semantics of poq’s which existed in
the case @M. We view the semantics differently in the extended case, giving rise to
an extension @ consisting of formulae of the form PM, where the prefix P is a well
formed string of alternating poq’s, and M is a quantifier-free formula. The semantics
of formulae of @ is given in terms of conventional second order logic. It is then shown
that in fact Q is equal in expressive power to full second order logic, by establishing
a correspondence between alternating second order quantifiers and alternating poq’s.
This result supplies an alternative characteristic of second order logic using only
(partially ordered) first-order quantification.

2. Definitions

We assume throughout that a fixed second order language L is given, and we freely
USE &, Ty, Loy v v ey Ys o v s Uy o vy 0, ... to stand for variables, and f, f;, fo, . ... 9, A, ..
to stand for function symbols.

We define the language Q as follows:

A partially ordered quantifier prefixz (poq) is a tuple of the form

(*) (931:-‘-,3011§Z/1s--~,?/m;ﬁ)

where § is a function which associates with each y, for 1 £ ¢ £ m, a tuple, with ele-
ments taken from {z,, ..., ,}. Intuitively, for a poq @, we will be using (@) to mean
that the x’s are universally quantified and the y’s existentially, but that each y; depends

only on the elements of B(y;).

A prefiz is defined recursively as follows: (@) is a prefix for any poq @, and —F,
and P, P, are prefixes for any prefixes P, and P, such that P, and P, have no variables
in common.

A matrir is a quantifier-free formula of L.

A well formed formula of Q is a formula of the form PM, where P is a prefix and M
a matrix. ‘ ’

1y The author is indebted to W.J. WaLkoE, A. R. MEYER, A. SHAMIR and a referee for com-
ments on previous versions. The idea for this paper was motivated by work with V. R. PRATT related
to program semantics. This research was partially supported by the National Science Foundation
under contract No. MCS 76-18461.
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The semantics of @ will be defined by gathering that part of a prefix P which essen-
tially quantifies over second order variables, on the left, and attaching the other (first
order) part of P to the matrix M. For the reader familiar with the standard semantics
given in [1] and [2], this step can be seen to be a natural one, once he is willing to admit
that the x;’s in (*) are artificial constructs which serve to help define the existential
second order character of a single poq.

The second order part of P (sop(P)) and Skolem form of P and w (sf(P, w)) are defined
recursively for any prefix P and wff w in L as follows: If @ is a poq of the form (¥)
then

sop(@Y) = 37 ... 38
where the f¢ are new function symbols.
sop(—P) = dual (sop(P))
where dual (3fn) = Vf dual (=) and dual (Vfr) = 3f dual (n) for any second order pre-
fix 7, and dual of the empty prefix is defined to be empty.
s0p(P,Py) = sop(P,) sop(P,).
Similarly, if @ is of the form (*) then
SHC@D, ) = Vay - . . Va,(w?)
where w¥? is w with f?(8(y;)) substituted for every free occurrence of y; in w.
S{(—P,w) = —si(P,w),  sf(PyPy, w) = sf(Py, s{(Py, w)).
Given a model I for L. we say that I satisfles PM (written I F PM) iff
1 & sop(P) sf(P, M), in the usual second-order sense.
A prefix P will be called a X} prefix and denoted by P<?>, if sop(P) is a ! quantifier-
prefix in the usual sense (see [3]); similarly, a IT} prefix will be denoted by PUl.

3. Results

In order to simplify the exposition of the following, we use the following notational
convenience. For sets of formulae § and 7' of Q and L respectively, we write § = T
to express the fact that for any PM e S there exists w € T such that Fw = sop(P) sf(P,M),
and vice versa.

The following theorem establishes a tight link between alternating second order
quantifiers in L, and forming compositions of alternating pog’s in Q.

Theorem. For 1 2 0,

() KQPMHM =2, (b) (XQPY)M =IT,,.

Proof. Surely, given a prefix P’ of the form {(@>P!}, by definition sop(P’) is a X}, ;
prefix and sf(P’, M) has no second order quantifiers. Negation gives this direction
for (b).

We concentrate on the < direction. For i = 0 (a) simplifies to (@) M = X}, which
is shown in WaLgkoR [2] and ExpErTON [1], and negation gives (b).

Assume (a) and (b) hold for ¢ — 1 where 7 > 0. Without loss of generality we can
assume that a X7, formula is given in prenex form, w: 3f, . .. IfixR, with matrix R
and /T} prefix «. (The dual case where we are given a [T}, formula is treated by carry-
ing out the construction of this proof for its negation and then dualizing the prefix
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and negating the matrix.) Now use the inductive hypothesis to come up with
(—K@Q'>P'li-1y M’ equivalent to aR. Denoting by Pl the prefix — @ >P'!"-1], we use
a generalization of WALKOR's technique to construct Q> and M such that (KQYPUy M
is equivalent to w:

Let there be n; appearances of f; in M', for 1 £ j < k, and let the arity of f; be m;
Define @ to be the poq

(U115 UL gy o oy Whays UB,as - - o Uy mys Ugps o - Uy g3 Vs e Uh s Uty ooy UsB)
with ﬂ(v’ ) = (us A .m,), Where all the various v’s and «’s stand for new variables
not appearing in PNM %) can be comprehended more easily by visualizing it as
reading “for every uj,, ..., u} ., there exists v, and also, independently, for every

1 1]
Ug 1, - .- €0CT.

1 . 1 1
Vg, ... Y, 30
1 1 1
Yuz ... Yuy, m 30,

1 1
ny, v e V""‘nl,mlavnl

ke I Y/
Vul. 1 v"‘1, mkavf

Vunk, Vu"b my ‘vn*
We now transform M’ into a matrix M of the form 7 — (S A M"') by the following
process: T is taken to be the formula

ny—1 m;

ke 7
A CACA uhp = u]{‘x-i—l p) U= ”h+1))

j=1 h=1 p=1

which essentially states that all the “lines” of <@ which correspond to some f; define
the same function. '

We now consider the appearances of the f;’s in M’, working “‘from within”’. These
g = n; + ...+ n, appearances can be ordered by dependency, starting with those in
which some f; is applied to f-free terms. Define My as M’ and §, as true. Assume the
r’th appearance in the above order is fi{t,, ..., 1,), which in M ,"1 has already been
modified to f;(t1, . . ,,l) Then M is deflned to be M., with the appropriate v}
substituted for this appearance, and 8, is

m; ; ,
Sr—l A /\ (uh,s = ts)'

Take M to be M , and S to be S§,. This process completes the construction of
(P M.

We now argue that Fw = sop(P) sf(P, M) with P: (Q)PY and M: T — (SA M").
By definition, sop(P) = sop({Q)) sop(Pt1) = g, . .. g, sop(P'}) for some new func-
tion symbols g;, and

s{(P, M) = sf<@), s{(P1, T — (S A M"")))
= Vuil - Vu’,jk,mk (Tsf(P<O, T — (S A M')9),
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where P<” is PUl with the leading negation dropped. For the sake of the following
remarks we abbreviate 3f, ... 3f, to 3f, 3y, ... g, to dg and Vuiy ... ‘v’uf‘;k’,,,‘t to Vu.
Surely Yu(—sf(P<P, T — (S A M'")?) is, by virtue of T' not containing any vari-
able appearing in P<”, logically equivalent to Vu—(T¢ — sf(P<?, (S A M'"))¥) or
Vu(T9) A Vu(—sf(P<?, 8 A M")?). Careful application of the definitions involved
establishes the additional fact that Vu(—sf(P<?, § A M"')?) is in fact logically equiv-
alent to —sf(P<?, (M')f) where (M')f is M’ with the corresponding new function sym-
bols ¢, . . ., g, replacing the q appearances of the symbols f,, ..., f;.

Using the inductive hypothesis, we have to show that the following two formulae
are equivalent:

wy: 3f sop(PUY 1 sf(PD, M') and wy: Ig sop(PU) (Vu(R?) A —sf(P<?, (M")E)).
Indeed, I Fw, asserts the existence of an assignment of & functions to the symbols
fis -+ s fi satisfying sop(PY1) sf(PUl, M’). To obtain I k w,, simply assign to gy, . . ., gy,
the function assigned to f,; t0 g, 41, - - -, §u,+n, the function assigned to fa; ete. Triv-
ially Vu(R?) is satisfied, and hence I Fw,. Conversely, if Ik w,, Yu(R?) forces the
assignment to g,, ..., ¢, to be such that g,,....g, are assigned the same funection ;
Juy1s -+ > Gny4n, 8T€ assigned the same function; etc. This assignment of k functions
to the g¢’s, when transformed appropriately to the f;’s yields. I Fw,. ]

As an example of the technique of the proof of the theorem, take w to be 3f, If,x R,
and M’ to be of the form M'(f(g(x), fo(¥), f2lf1(f2(2). 2})), involving these two terms
and possibly other f;-free terms. Using new variable symbols v; and u;, we take (@)
to be {uy, ..., U0y, ..., 0 B, with B(v) = {uy, us}, B(vy) = {us, u,} and f(v;) =
= {uj,y} for 3 £ § £ 5, more vividly displayed as '

YV, Vug3v,
Vu,VuJv,
VusJv,
Yugdv,
Yu,dv;,
and M as
({uy, = Ug AUy = Uy) = V) = Uy AUy = Ug = Vg = Uy A Ug = Uy = Dy = V) >
({(y = usAz = UgAG(Z) = U AT = Uy AV = Uy ATy = Ug ATy = Uy) A B(D,. 95)).
Corollary. @ = L.
Proof. The previous theorem establishes the equivalence in expressive power, of L

and a subset of the wif’s of Q. Conversely, by the definition of I F PM, every wif
of Q is equivalent to a formula of L. []
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