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1. Introduction 
In  [l] and [Z] it is shoun that the language consisting of formulae of the form QM, 

where Q is a partially ordered qtiantifier prefix (Henkin prefix, abbreviated poq) and iVl 
is a quantifier-free matrix, is equal in expressive power to 2: (notation from ROGERS 131). 
Extending the language to allow the attachment of poq’s to formulae as an additional 
formation rule (together with, say, A and i), yields A: (see [l]). This extension seems, 
howeirer. to  destroy the natural character of the semantics of poq’s which existed in 
the case Q M .  We view the semantics differently in the extended case, giving rise to 
an extension Q consisting of formulae of the form PM, where the prefix P is a w d  
formed string of alternating poq’s, aiid M is a quantifier-free formula. The semantics 
of formulae of Q is given in terms of conventional second order logic. It is then shown 
that in fact Q is equa l  in expressive power to full second order logic, by establishing 
a correspondence between alternating second order quantifiers and alternating poq’q. 
This result supplies an alternative characteristic of second order logic using only 
(partially ordered) first-order quantification. 

2. Definitions 

We assume throughout that a fixed second order language L is given, and we freely 
use x ,  x l ,  x2, . . ., y, . . ., u, . . ., v, . . . to stand for variableq, and f ,  I,, f z ,  . . ,, g, h, . . . 
to  stand for function symbols. 

We define the language Q as follows: 
A partially ordered quantifier prefix (poq) is a tuple of the form 

(*) ( $ 1 , .  * . , X I * ;  y1 ,  * .  * ,  ym;  B, 
where B is a function which associates with each y, for 1 =( i 6 m, a tuple, with ele- 
ments taken from {xl, . . , , xn>. Intuitively, for a poq Q, we will be using (Q) to mean 
that the d s  are universally quantified and the y‘s existentially, but that each y l  depends 
only on the elements of p(y,). 

A prefix is defined recursively as follows: ( Q )  is a prefix for any poq Q, and i P l  
aiid PIP,  are prefixes for any prefixes P, and P,  such that P, and P, have no variables 
in common. 

A matrix is a quantifier-free formula of L. 
A well formed formula of Q is a formula of the form P H ,  where P is a prefix and M 

a matrix. 

’) The author is indebted to W. J. WALKOE, A. R. MEYER, A. SHAMIR and a rcfeiee for com- 
ments on previous versions. The idea for this paper %as motivated by work with V. R.  PRATT related 
to program semantics. This research was partially supported by the National Science Foundation 
under contract No. MCS 76-18461. 
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The semantics of Q will be defined by gathering that part of a prefix P which essen- 
tially quantifies over second order variables, on the left, and attaching the other (first 
order) part of P to the matrix M .  For the reader familiar with the standard semantics 
given in [l] and [2], this step can be seen to be a natural one, once he is willing to admit 
that the x,'s in (*) are artificial constructs which serve to help define the existential 
second order character of a single poq. 

The second order part of P (sop(P)) and Xkolem form of P and w (sf(P, w)) are defined 
recursively for any prefix P and wff 70 in L as follows: If Q is a poq of the form (*) 
then 

SOP((&)) = If$'. . . 312 
where the 1: are new function symbols. 

s o p ( i P )  = duaZ (sop(P)) 
where dual (3fn) = Vf dual (n) and dual (Vfn)  = 3f dual (n) for any second order pre- 
fix n, and dual of the empty prefix is defined to be empty. 

Similarly, if Q is of the form (*) then 

where w(=' is w with f?(/?(yl)) substituted for every free occurrence of y, in w. 

~OP(PIP2) = so?)(P,) S O P ( P 2 ) .  

sf ( (&),  W )  = Val. . . VX,(W'J) 

- s f ( l p >  u,) = lW, w) , Sf(PJ2, w) = sf (P,  9 Sf(P2 2 w)) . 
Given a model I for L we say that I satisfies PM (written I k PM)  iff 

A prefix P will be called a Z: prefix and denoted by P<'>, if sop(P) is a St quantifier- 
I b sop(P) sf(P, M ) ,  in the usual second-order sense. 

prefix in the usual sense (see [3]); similarly, a 17,' prefix will be denoted by Pel. 

3. Results 

In  order to simplify the expositioii of the following, we use the following notational 
convenience. For sets of formulae S and T of Q and L respectively, we write S = T 
to express the fact that for any PM E S there exists w E T such that kw = sop(P)sf(P,M), 
and vice versa. 

The following theorem establishes a tight link between alternating second order 
quantifiers in L, and forming compositions of alternating poq's in Q. 

Theorem. For i 2 0, 

Proof. Surely, given a prefix P' of the form (Q)P['l, by definition sop(P') is a Z,',, 
prefix and sf(P', M )  has no second order quantifiers. Negation gives this direction 
for (b). 

We concentrate on the t direction. For i = 0 (a) simplifies to (&),If 3 Z;, which 
is shown in WALKOE [2] and ENDERTON [l], and negation gives (b). 

Assume (a) and (b) hold for i - 1 where i > 0. Without loss of generality we can 
assume that a Z:+l formula is given in prenex form, u): 3f, . . . 3f,,aR, with matrix R 
and Z7: prefix 01. (The dual case where we are given a nt,, formula is treated by carry- 
ing out the construction of this proof for its negation and then dualizing the prefix 

(a) (<Q)Ptll) M = Z1 ' + I ,  (b) ( l ( Q ) P " ] )  ff?+i- 
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v4,1 . '. .. vu,:, ,,,13v: 
vu;,, . . .vu,;,3)f*3v; 

vu'f,l,l * . . vu~l, , l~~3wn~ 1 

v4.1 . . . V?Lf, 11,,3v~ 

. . .  . . .  

. . .  ... 
... ... 

... ... 
k 1 .  v%k, 1 . V%& ,&&, 

and negating the matrix.) Now use the inductive hypothesis to come up with 
(~(Q')P'[ l -11)  M' equivalent to aR. Denoting by P[ll the prefix i (Q')P'[ ' - l I ,  we use 
a generalization of Whrxods technique to construct ( Q )  and N such that ((Q)P[']) M 
is equivalent to w :  

j 5 Ic, and let the arity of f, be " 1 , .  

Define Q t o  be the poq 
Let there be nJ appearances of fJ in M ' ,  for 1 

1 1 I 
(~:,1> 4 , Z y  . - * 9 4 , n I l  3 4 , 1 >  . . . > unl,rn1 3 4 , 1 >  * . . > u:X,mi ; ~ 1 ,  * . . > uril 3 V? 9 . . . > dX $1 

with p(4) = ( u { , ~ ,  . . . , where all the various 0's and u's stand for new variables 
not appearing in PL'IM. (Q)  can be comprehended more easily by visualizing it as 
reading "for every u : , ~ ,  . . . , there exists v: ,  and also, independently, for every 
u ; , ~ ,  . . . etc.". 

We now transform M' into a matrix M of the form T --f ( S  A MI') by the following 
process: T is taken t o  be the formula 

k n j - 1  i i i i  , 

A ( A (( A u$t ,p  = u'h+i,p) + 4 = &I))  
j = 1  h = l  p = l  

which essentially states that all the "lines" of (&) which correspond to some f j  define 
the same function. 

We now consider the appearances of the f j ' s  in M ' ,  working "from within". These 
q = n, + . . . + nk appearances can be ordered by dependency, starting with those in 
which some f j  is applied to f-free terms. Define M t  as M' and So as true. Assume the 
r'th appearance in the above order is fj(tl, . . . , t,,,,), which in M;!., has already been 
modified to /,(ti, . . . , Then MY is defined to be Jf:-l with the appropriate V X  
substituted for this appearance, and S ,  is 

" ' i  . 

s = l  
&-, * A ( 4 , s  = t:,. 

Take M" to be Mi' ,  and S to be A",. This process completes the construction of 
( (&)F"i] )  M .  

We now argue that kw = sop(P) sf(P, M )  with P: (Q)P['] and M :  T --+ ( S  A M " ) .  
By definition, sop(P) = sop((&)) sop(E"'1) = 3g, . . . 3y, sop(P"1) for some new func- 
tion symbols gj, and 
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where P(i> is PI'] with the leading negation dropped. For the sake of the following 
remarks we abbreviate 3 f l . .  . 3fk to 31, 3g l . .  . 39, to 3g and V U ~ , ~  . . . Vu",,, to VU.  
Surely V u ( i s f ( P < i > ,  T + (S A M"))Q) is, by virtue of T not containing any vari- 
able appearing in PC;), logically equivalent to V u i ( T Q  + sf(P<'), (S A M"))q)  or 
V u ( T Q )  A V'u( i . s f (P( '> ,  S A M")Q).  Careful applicat.ion of the definitions involved 
establishes the additional fact that V u ( i s f ( P < ' ) ,  S A M")o) is in fact logically equiv- 
alent to i s f ( P < ' > ,  (M')?)  where (M')? is M' with the corresponding new function sym- 
bols g,, . . ., g,, replacing the q appearances of the symbols f l ,  . . ., f,;. 

IJsing the inductive hypothesis, we have to show that the following two formulae 
are equivalent : 

wl: 3f sop(Pli') i sf(P<'>, iM') and w2: 3g ~ o p ( I " ~ 1 )  (Vu(RQ) A i s f (P ( '> ,  (MI)$ ) ) .  
Piiddeed, I t w, asserts the existence of an assignment of k functions to the symbols 
f l ,  . . ., fk satisfying soip(PL'1) sf(P['],  M ' ) .  To obtain I t w2, simply assign to  gl, . . . , g,,, 
the function assigned to f l ;  to g,!,+l, . . . , g,r,+l,2 the function assigned to f z ;  etc. Triv- 
ially Vu(RQ)  is satisfied, and hence I k w2. Conversely, if I k to2 ,. Vu(RQ) forces the 
assigiinient to g,, . . . , gr! to  be such that gl, . . . , g,$, are assigned the same function ; 
Y , , * + ~ ,  . . . , qnl+,,, are assigned t,he same function: etc. This assignment of k functions 
to the g's, when transformed appropriately to tlie f j 's  yields. I t 20,. 

As an example of the technique of the proof of t,he theorem, take w to be 3f, 3f,nR, 
and 111' to be of tlie form M'(f,(g(x), f2(y)), fz ( f l ( f2(z):  x))), involving these two terms 
and possibly other f;-free terms. Using new variable symbols wj and ZL, , ,  we take (Q)  
to be ( u l ,  . . . . u,; v,, . . . , v,; b), with b(vl) = (ul, u2},  8(v2).  = (u3, , I L ~ }  and b(q) = 
= ( u ~ + ~ >  for 3 6 i 5 ,  more vividly displayed as 

Vu,Vu,3v1 
Vu,Vu43v, 

VU,,3V4 

vu,-Jw,, 

( V u J v ,  ) 
and M as 

( (u l  = 1 . ~ ~  A u2 = u4) -+ wl = v q  .A. u5 = us + w3 = v4 .A. us = 11, -+ w4 = v5) -+ 

((y = U5 A 2 = Us A g(Z) = U1 A 2 = U4 A V 3  = ZC2 A V ,  = U3 A V2 = 'Up) A R ( V , ,  'Us)). 

Corollary. Q = L. 

Proof .  The previous theorem establishes the equivalence in expressive power, of L 
and a subset of the wff's of Q. Conversely, by tlie definition of I k PM, every wff 
of Q is equivalent to a formula of L. 
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