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Abstract: The manual modeling of complex systems is a daunting task; and although a plethora of methods exist that
mitigate this issue, the problem remains very difficult. Recent advances in generative AI have allowed the
creation of general-purpose chatbots, capable of assisting software engineers in various modeling tasks. How-
ever, these chatbots are often inaccurate, and an unstructured use thereof could result in erroneous system
models. In this paper, we outline a method for the safer and more structured use of chatbots as part of the
modeling process. To streamline this integration, we propose leveraging scenario-based modeling techniques,
which are known to facilitate the automated analysis of models. We argue that through iterative invocations of
the chatbot and the manual and automatic inspection of the resulting models, a more accurate system model
can eventually be obtained. We describe favorable preliminary results, which highlight the potential of this
approach.

1 INTRODUCTION

Manually modeling complex systems is a daunting
and error-prone endeavor. Furthermore, even after the
system is modeled, ongoing tasks, such as modifica-
tion and repair, continue to tax human engineers. Cre-
ating tools and methodologies for streamlining and
facilitating this process has been the topic of exten-
sive work, but many aspects of the problem remain
unsolved (Pettersson and Andersson, 2016; Biolchini
et al., 2005).

In recent years, the deep learning revolution has
been causing dramatic changes in many areas, in-
cluding computer science; and this revolution has re-
cently taken yet another step towards general-purpose
AI, with the release of ChatGPT, the learning-based
chatbot (OpenAI, 2022). ChatGPT, and other, simi-
lar tools (Google, 2023; MetaAI, 2023), can be used
for countless kinds of tasks — including the model-
ing and coding of complex systems (Surameery and
Shakor, 2023). An engineer might provide ChatGPT
with a natural-language description of the system at
hand, and receive in return a model of the system, or
even computer code that implements it; and through
iterative querying of ChatGPT, the system can later
be modified or enhanced. This approach has already
been used in several application domains (Surameery
and Shakor, 2023; Burak et al., 2023; Liu et al., 2023).

Although the ability to integrate ChatGPT1 into
the software development cycle will undoubtedly em-
power engineers, there are also potential pitfalls that
need to be taken into account. One drawback of Chat-
GPT and similar tools is that the answers they provide
are often inaccurate, and might overlook important as-
pects of the input query (Liu et al., 2023). Moreover,
the input query itself might be imperfect, and the en-
gineer might not realize this until the system is de-
ployed. Thus, if we make the reasonable assumption
that human engineers will gradually become depen-
dent on chatbots for various tasks, the risk increases
that these inaccuracies will find their way into the fi-
nal models of the system at hand and the code that
ensues. We are thus faced with the following chal-
lenge: how can we harness ChatGPT in a way that
lifts a significant load of work off the shoulders of the
engineers, but which still results in sound and accu-
rate models?

Here, we advocate the creation of an encompass-
ing modeling scheme that will combine ChatGPT
with more traditional techniques for manual model-
ing of systems (Biolchini et al., 2005; Pettersson and
Andersson, 2016), in a way that will achieve this goal.
Our core idea is to use ChatGPT in a controlled way;
i.e., to repeatedly invoke it for various tasks, but to

1We will often use the term ChatGPT somewhat gener-
ically, to represent an arbitrary, modern chatbot.
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then thoroughly inspect and analyze its results, to en-
sure their soundness and accuracy. We argue that
such a scheme, if designed properly, would allow soft-
ware and system engineers to benefit from the capa-
bilities of modern chatbots, but without jeopardizing
the quality of the resulting products. In the long run,
we regard such a scheme as a step towards the Wise
Computing vision (Harel et al., 2018), which calls for
turning the computer into a proactive member of the
software development team — one which can propose
courses of action, detect under-specified portions of
the model, and assist in the various routine actions
that naturally arise as part of the software develop-
ment cycle.

In order to design such a modeling scheme, we
propose to leverage the extensive work carried out in
the modeling community over the years. Specifically,
we propose to focus on modeling frameworks that af-
ford two benefits that complement the capabilities of
ChatGPT: (i) the models produced by the framework
are naturally well-aligned with how humans perceive
systems; this, we believe, will make it easier for the
human engineer to inspect ChatGPT’s output; and (ii)
the resulting models are amenable to automated anal-
ysis tasks, such as model checking, which will sup-
port the automated detection of bugs and inconsisten-
cies in the automatically generated models.

Several modeling approaches fit this description,
and many of them can probably be used, but for
the initial evaluation presented here, we focus on
scenario-based modeling (SBM) — a technique that
generates models comprised of simple scenarios,
each of which describes a single aspect of the sys-
tem at hand (Harel et al., 2012b; Damm and Harel,
2001). As we later discuss, this can facilitate the
smooth collaboration between ChatGPT and the hu-
man engineers.

To demonstrate the potential of this combined
framework, we focus on a few tasks that arise nat-
urally as part of a system’s life cycle. Specifically,
we discuss the initial design of the model, its testing
and the verification of its properties, its later enhance-
ment or repair due to the discovery of inconsistencies,
and also a search for under-specified portions of the
model. Our results, although preliminary, are very
promising, and we hope this paper will form a basis
for further research in this direction.

In the remainder of the paper, we present the key
concepts of our approach, and discuss a high-level
plan for the next steps. We begin by introducing the
concepts of SBM and language model-based chatbots
in Section 2. Next, we present the proposed integra-
tion of SBM and ChatGPT in Section 3, followed by
a discussion of some of the more advanced aspects of

this integration in Section 4. We discuss related work
in Section 5 and conclude in Section 6.

2 BACKGROUND

2.1 Large Language Model-Based
Chatbots

ChatGPT (Chat Generative Pre-trained Transformer)
is a large language model (LLM) based chatbot, de-
veloped by OpenAI (OpenAI, 2022; Chang et al.,
2023). The chatbot is able to conduct an iterative con-
versation of variable length, format, style, level of de-
tail, and language. At each stage, the user presents
a new prompt to ChatGPT, which then replies, based
on all previous prompts in that conversation (the con-
text). Following its debut in 2022, ChatGPT quickly
became highly successful, and inspired multiple other
companies to release their own chatbots (Google,
2023; MetaAI, 2023).

Internally, ChatGPT is implemented using a pro-
prietary series of generative pre-trained transformer
(GPT) models, which in turn are based on Google’s
transformer architecture (Vaswani et al., 2017). Chat-
GPT is fine-tuned for conversational applications,
through a combination of supervised and reinforce-
ment learning techniques, as well as manual ad-
justment by human engineers. ChatGPT’s training,
as well as its inference, are considered very costly
in terms of power consumption and processing re-
sources.

Functionality-wise, ChatGPT is highly versatile.
Some of its many uses include generating student es-
says (AlAfnan et al., 2023), writing and debugging
computer programs (Surameery and Shakor, 2023),
and composing music (Lu et al., 2023). However, it
will sometimes produce plausible-sounding but incor-
rect or nonsensical answers — a common limitation
for large language models (Gregorcic and Pendrill,
2023).

2.2 Scenario-Based Modeling

Scenario-based modeling (Harel et al., 2012b) (SBM)
is a modeling approach aimed at modeling com-
plex, reactive systems. The main component in a
scenario-based (SB) model is the scenario object,
which describes a single behavior of the system at
hand, whether desirable or undesirable, so that one
can specify it as necessary, allowed or forbidden.
Each scenario object does not directly interact with its
counterparts, and can be created in isolation. Cross-
scenario interaction is allowed only through a global



execution mechanism, which can execute a collec-
tion of scenarios in a manner that produces cohesive,
global behavior.

There exist several flavors of SBM, employing
slightly different mechanisms for cross-scenario in-
teractions. We focus here on a particular set of id-
ioms, which has become quite popular: the request-
ing, waiting-for and blocking of discrete events (Harel
et al., 2012b). During execution, each scenario object
repeatedly visits designated synchronization points,
and in each of these the global execution mecha-
nism selects one event for triggering. A scenario
object may declare events that it wishes to be trig-
gered (requested events), events that it wishes to
avoid (blocked events), and also events it does not
request itself but would like to monitor (waited-for
events). The execution mechanism collects these dec-
larations from each of the scenario objects (or a subset
thereof (Harel et al., 2013a)), selects one event that is
requested and not blocked, and then informs all rele-
vant scenario objects of this selection.

In a given synchronization point, multiple events
may be requested and not blocked, and several strate-
gies have been proposed for selecting one of them.
These include an arbitrary selection, a random se-
lection, a round-robin mechanism, and look-ahead
that simulates possible progression of the execution
and selects events with an attempt to achieve a desir-
able objective specified a-priori (e.g., the avoidance
of deadlocks). Executing a scenario-based program
in this manner is termed play-out (Harel and Marelly,
2003)).

Fig. 1 depicts a simple example of an SB model.
The system at hand controls the water level in a wa-
ter tank, which is equipped with hot and cold water
taps. Each scenario object appears as a transition sys-
tem, in which nodes corresponds to the predetermined
synchronization points. Scenario object ADDHOT-
WATER repeatedly waits for WATERLOW events, and
when such an event is triggered, it requests three times
the event ADDHOT. Similarly, scenario object AD-
DCOLDWATER requests the addition of cold water.
When the model includes only objects ADDHOTWA-
TER and ADDCOLDWATER, three ADDHOT events
and three ADDCOLD events may be triggered in any
order during execution. If we wish to maintain a more
stable water temperature within the tank, we might
add the scenario object STABILITY, to enforce the
interleaving of ADDHOT and ADDCOLD — through
the use of event blocking. An execution trace of the
model containing all three objects appears in the event
log.

The SBM framework has been implemented
on top of multiple high-level languages, including

wait for
WATERLOW

request
ADDHOT

request
ADDHOT

request
ADDHOT

ADDHOTWATER

wait for
WATERLOW

request
ADDCOLD

request
ADDCOLD

request
ADDCOLD

ADDCOLDWATER

wait for
ADDHOT

while
blocking

ADDCOLD

wait for
ADDCOLD

while
blocking
ADDHOT

STABILITY

· · ·
WATERLOW

ADDHOT
ADDCOLD
ADDHOT

ADDCOLD
ADDHOT

ADDCOLD
· · ·

EVENT LOG

Figure 1: A scenario-based model for a system that controls
the water level in a tank with hot and cold water taps (taken
from (Harel et al., 2014)).

Java (Harel et al., 2010), C++ (Harel and Katz, 2014),
Python (Yaacov, 2023), JavsScript (Bar-Sinai et al.,
2018) and ScenarioTools (Greenyer et al., 2017). Fur-
thermore, SBM has been applied in modeling var-
ious complex systems, such as web-servers (Harel
and Katz, 2014), cache coherence protocols (Harel
et al., 2016a) and robotic controllers (Gritzner and
Greenyer, 2018). In order to simplify the presenta-
tion in the following sections, we mostly describe SB
models as transitions systems.

In formally defining SBM, we follow the defini-
tions of (Katz, 2013). A scenario object O over event
set E is a tuple O = ⟨Q,δ,q0,R,B⟩, where the compo-
nents are interpreted as follows:

• Q is the set of states. Each state represents a sin-
gle, predetermined synchronization point;

• q0 ∈ Q is the initial state;

• R : Q → 2E and B : Q → 2E map states to the sets
of events requested and blocked at these states, re-
spectively; and

• δ : Q×E → 2Q is the transition function, which in-
dicates how the object switches states in response
to the triggering of events.

Once the individual scenario objects are created,
they can be composed in a pairwise fashion. Two
scenario objects O1 = ⟨Q1,δ1,q1

0,R
1,B1⟩ and O2 =

⟨Q2,δ2,q2
0,R

2,B2⟩, specified over a common set of
events E, can be composed into a single scenario ob-
ject O1 ∥ O2 = ⟨Q1×Q2,δ,⟨q1

0,q
2
0⟩,R1∪R2,B1∪B2⟩,

where:

• ⟨q̃1, q̃2⟩ ∈ δ(⟨q1,q2⟩,e) if and only if q̃1 ∈
δ1(q1,e) and q̃2 ∈ δ2(q2,e); and

• the union of the labeling functions is defined in
the natural way; i.e., e ∈ (R1 ∪ R2)(⟨q1,q2⟩) if
and only if e ∈ R1(q1)∪ R2(q2), and e ∈ (B1 ∪
B2)(⟨q1,q2⟩) if and only if e ∈ B1(q1)∪B2(q2).

Using the composition operator ∥, we can define
a behavioral model M as a collection of scenario ob-
jects, M = {O1,O2, . . . ,On}. The executions of M are



defined to be the executions of the single, compos-
ite object O = O1 ∥ O2 ∥ . . . ∥ On. Thus, each execu-
tion starts from the initial state of O, which is the n-
tuple of the initial states of its constituent objects, and
throughout the run, in each state q an enabled event
e ∈ R(q)−B(q) is chosen for triggering, if one exists.
The execution then moves to a state q̃ ∈ δ(q,e), and
the process repeats.

3 INTEGRATING CHATGPT AND
SBM

3.1 Basic Integration

As a first step to integrating ChatGPT and SBM, we
present a simple methodology for creating scenario
objects from free-text, using ChatGPT. In order to get
ChatGPT to present its output as a scenario object, we
propose to include in each query a preamble that de-
scribes the SBM semantics, as described in Section 2.
This preamble instructs ChatGPT to present its output
as a transition system, in which each state is labeled
with requested and blocked events, and has a set of
transition rules indicating its successor state, based
on the event later triggered. Note that this preamble
needs only be crafted once, and can then be attached
to any subsequent query. If a specific implementa-
tion of SBM is used (e.g., C++, Java), the output can
be crafted to match the required syntax of that imple-
mentation.

The simple preamble that we used in our initial
experiments is as follows:

I would like you to help me create a scenario-
based model. A scenario-based model is com-
prised of a finite set of events, and scenarios.
Each scenario is a sequence of states. In each
state the scenario can request events, wait-for
events, and block events. Afterwards, one event
that is requested by at least one scenario, but is
blocked by no scenario, is selected for trigger-
ing. Scenarios that requested or waited-for this
scenario may then change states, and the pro-
cess repeats itself. Scenarios cannot have inter-
nal loops or variables; these must be expressed
using additional states.

To display scenarios, please use the follow-
ing format. For each state, mention the state’s
name, and the sets of requested and blocked
events. Also, mention the transitions to other
states. For example:

• s1: request X, block Y. If X is triggered, go
to state s2.

• s2: request Y, block X. If Y is triggered, go
to state s2.

Now, here are the details of the specific
scenario-based model I’d like you to create. . .

Given this preamble, we can use ChatGPT to pro-
duce the model we described in Section 2. To produce
the ADDHOTWATER scenario, we use the following
prompt:

Consider the event set WaterLow, AddHot, Ad-
dCold.

Please suggest a scenario that waits for event
WaterLow (without requesting it). When Water-
Low is triggered, the scenario performs the fol-
lowing, 3 times in a row: request the event Ad-
dHot, and wait for it to be triggered (both in a
single state). When the 3rd AddHot event oc-
curs, the scenario transitions back to its initial
state.

In response to this prompt, the chatbot replies:

• s1: wait for WaterLow. If WaterLow is trig-
gered, go to state s2.

• s2: request AddHot, wait for AddHot. If Ad-
dHot is triggered, go to state s3.

• s3: request AddHot, wait for AddHot. If Ad-
dHot is triggered, go to state s4.

• s4: request AddHot, wait for AddHot. If Ad-
dHot is triggered, go to state s1.

Which is equivalent to the transition system we pre-
sented in Fig. 1. The ADDCOLDWATER scenario can
be generated symmetrically. Now, if we wish to incre-
mentally modify the system by introducing the STA-
BILITY scenario, we can issue the following prompt:

Please suggests a scenario that ensures that uses
blocking to ensure that no two consecutive Ad-
dHot events can be triggered, and that no two
consecutive AddCold events can be triggered;
that is, once AddHot is triggered, AddCold must
be triggered before AddHot can be triggered
again, and vice versa. This scenario should not
request any events, and should work regardless
of any WaterLow events.

And in response, the chatbot produces the STABILITY
scenario, as described in Fig. 1.

We note a subtle difference between the way
we prompted ChatGPT for the first two scenarios,



ADDHOTWATER and ADDCOLDWATER, and our
prompting for STABILITY. In the former two cases,
our prompt contained information that roughly de-
scribed the transition system itself, whereas in the
third case our description was more high-level, and
did not mention the word “state”. Still, in both cases,
ChatGPT produced the desired result. This demon-
strates the wide range of specifications with which the
chatbot can successfully deal, and suggests that it can
be used even when the engineers are themselves not
entirely certain of the structure of the scenario they
require. While it stands to reason that more accurate
descriptions would lead to more accurate results, it
appears that even high-level descriptions can be very
useful, especially when combined with the automated
analysis techniques that we discuss next.

3.2 The Proposed Methodology

Building upon this basic integration of ChatGPT and
SBM, we now outline a structured LLM-agnostic and
language-agnostic methodology for creating complex
reactive models, i.e., models of systems that interact
with their environment repeatedly over time, and re-
ceive external inputs (Harel and Pnueli, 1985). Nu-
merous modern, critical systems can be regarded as
reactive (Aceto et al., 2007), and consequently there
has been extensive research on developing tools and
methods for modeling these systems. Despite this
tremendous effort, there still remain significant gaps,
which could result in models that are inaccurate or
that are difficult to maintain. The present work, which
can be seen as an element of the Wise Computing vi-
sion (Harel et al., 2018), seeks to mitigate these gaps,
through the creation of advanced, intelligent tools that
will begin to undertake the software and system de-
velopment tasks that are normally assigned to hu-
mans. The core of the approach is to have system
components be generated, iteratively and incremen-
tally, with the help of an LLM; and to have the LLM’s
outputs checked systematically, and perhaps automat-
ically, using various tools and methods.

1. Describe the problem and the environment textu-
ally, in natural language.

2. Choose a compositional, scenario-based model-
ing language, which has well-defined execution
semantics and is suitable for the incremental de-
velopment of the system.

3. Obtain an LLM that is familiar with the applica-
tion domain in general, or can readily gain exten-
sive knowledge about that domain, and which can
(or can be taught to) generate code in the chosen
scenario-based language.

4. Describe, perhaps iteratively, the semantics of the
scenario-based language to the LLM as a pream-
ble. Confirm that the LLM indeed internalizes the
details of the language semantics by teaching it to
execute (i.e., play out (Harel and Marelly, 2003))
systems described as scenarios or rules in the cho-
sen language, where the LLM outputs logs of
triggered events, scenario states, composite sys-
tem states, values of environment variables and
changes thereto, etc.

5. Iteratively add scenarios and refine existing ones,
as follows:

(a) Describe in a prompt one or more scenarios
for certain not-yet-specified requirements or as-
pects of the system.

(b) Have the LLM generate actual scenarios for the
prompt, in the chosen language.

(c) Have the LLM generate natural language de-
scription of properties to be verified, executable
test cases, and assertions for formal verifica-
tion tools, per the original requirements. This
constitutes stating the requirement at hand from
different perspectives.

(d) Carry out initial testing and validation within
the LLM, challenging the LLM to find gaps and
incorrect execution paths on its own. Correct
the natural language specification and prompts
as needed.

(e) Systematically check the LLM output outside
of the LLM, using any or all of the following:
code reviews by human engineers, unit testing
of individual scenarios, subsystem testing with
some or all of the already-developed scenarios,
model checking of the new scenarios, as well
as those of the composite system, etc. The test-
ing is to be carried out in the execution envi-
ronment of the language, and model checking
is to be carried out using a suitable formal ver-
ification tool. Both should be independent of
the LLM environment. Possibly automate the
subjecting of generated scenarios to testing and
model checking.

(f) When errors are found, do not modify the gen-
erated code. Instead, revise the LLM prompts
until correct system scenarios and verification
and testing properties are generated. This step
is critical for aligning the stakeholder (i.e., cus-
tomer) view of the requirements, the devel-
oper’s understanding, and the actual code.

(g) Once the set of generated scenarios seems
ready, repeat the likes of step (d), asking the
LLM to find gaps or potential failures in this
set of scenarios; specifically look for LLM



suggestions of new environment considerations
that prevent the system from working correctly.
This step simulates the common system engi-
neering task of having external experts or po-
tential customers review advanced prototypes
of systems. Repeat earlier steps as needed.

Next, we elaborate on some of these steps, and
provide simple, illustrative examples.

4 USING THE METHOD IN THE
DEVELOPMENT CYCLE

4.1 Code Generation

Code generation is probably the most straightforward
chatbot capability that we propose be integrated into
the development cycle. In Section 3 we showed that
ChatGPT can generate an (executable) SB model — a
capability that has also been demonstrated with other
languages (Surameery and Shakor, 2023; Burak et al.,
2023; Liu et al., 2023). A unique advantage in the
context of SB systems is the ability to generate stand-
alone scenarios, which can be reviewed and tested
separately, and then be incrementally added to the
system under development. In our preliminary testing
for this paper, we experimented with code generation
for requirements in the realms of autonomous vehi-
cles, algorithms on data structures, simulating natural
phenomena, and control systems. In all of these, the
ChatGPT/SBM integration proved useful.

4.2 Modeling

Once ChatGPT understood the principles underlying
scenario-based models, it was able to combine its
knowledge of the problem domain, the world at large,
and logic, in order to develop or enhance a model.
It was able to introduce new environment events, de-
scribe the sensor scenarios that are required for trig-
gering these events, and then add the necessary appli-
cation scenarios that react to these events. For exam-
ple, when we asked ChatGPT to generate scenario-
based code for a bubble-sort algorithm to be used by
a robot moving numbered tiles on a sequence of cells,
it was able to introduce the events of detecting the ar-
rival of a tile at the tail-end of the array, as well as
scenarios for reacting to such events.

4.3 Play Out & Simulation

After a few iterations, we were able to teach ChatGPT
to produce an execution log of an arbitrary scenario-

based specification. At first we observed “wishful
thinking”, where ChatGPT described the run as it
should be per the problem description. However, as
illustrated in Fig. 2, ChatGPT was then able to follow
the execution steps correctly, displaying at each syn-
chronization point the event that triggered the state
transition that led to this synchronization point, and a
table of all scenarios, indicating for each one whether
or not it was put into action by the triggered event,
and providing its declaration of requested, blocked
and waited-for events.

4.4 SMT-Like Model Analysis

One of the advantages of scenario-based modeling is
its amenability to formal verification with appropriate
tools, both by exhaustive model checking traversing
all paths, and by using domain knowledge for Satisfia-
bility Modulo Theory (SMT) verification (Harel et al.,
2011; Harel et al., 2013b). This is accomplished by
virtue of the abstraction and encapsulation of domain-
specific processes, actions and conditions as events
and states. System complexity thus emerges from the
composition of relatively small intuitive scenarios re-
flecting individual requirements, and not from the in-
tricate conditional flow of delicate and sensitive pro-
cesses with numerous steps.

Our experiments have shown that ChatGPT is able
to leverage this kind of abstraction and encapsulation
to identify cases that a specification either omitted
or handles incorrectly. For example, we presented
ChatGPT with the following three requirements for
an autonomous vehicle: (i) always stop at a red light;
(ii) always obey a police person’s instructions; (iii)
never injure a person. ChatGPT readily recognized
that these requirements may be in conflict with each
other. Given the safety property of not entering an in-
tersection when the traffic light is red, it pointed out
that the AV may be unable to stop if the road is icy,
that it may enter the intersection involuntarily if after
stopping it is hit from behind by a car that did not stop,
and, furthermore, that it may injure a person without
moving, if a person walks behind the AV, and another
vehicle hits the person who is then thrust against the
AV.

In a mathematical, SMT-like analysis, ChatGPT
was able to identify a particularly interesting execu-
tion path. We presented it with a system consisting of
the following four scenarios: the first requests flash-
ing a red light briefly in response to an external time
tick event, and then waits for any event; the second
does the same with a green light; the third scenario
blocks the event of flashing the red light every third
tick, and another blocks flashing the green light every



Figure 2: A simulation of scenario execution with ChatGPT. Top: textual description of scenarios in user prompts. Middle
and bottom: The first two entries in ChatGPT’s output when requested to play out the execution, showing triggered events,
the scenarios that reacted to the triggered events, and the declarations of each scenario at the next synchronization point.

five ticks. We then added the requirement that at least
one light must be flashed between any two consecu-
tive time ticks. ChatGPT was able to respond that the
requirement is not satisfied, and that every 15 time
ticks (3 · 5) both events will be blocked. ChatGPT
apparently recognized this by arithmetic calculation
and not by step-by-step simulation, as it was able to
quickly reach the same conclusion for arbitrarily large
numbers.

Here is an excerpt from this conversation, after de-
scribing the scenarios. When prompted with

now a new requirement came in: always, after
every tick, at least one light must be flashed.
Does the combined system of red flashing and
green flashing with the 3 and 5 restrictions sat-
isfy the requirement?

ChatGPT replies:

To analyze whether the combined system satis-
fies the new requirement that at least one light
must flash after every tick, we must consider the
synchronization points of both the red and green

systems with their respective restrictions:
The red system flashes on every tick, except

every third one. The green system flashes on ev-
ery tick, except every fifth one. If we consider
the sequence of ticks and apply both restrictions,
the combined system would not flash a light on
a tick that is both a multiple of three and five —
specifically, on ticks that are multiples of fifteen,
since 15 is the least common multiple of 3 and
5. At such ticks, both systems would be block-
ing their respective lights from flashing due to
their individual restrictions.

Therefore, on ticks that are multiples of fif-
teen (like the 15th, 30th, 45th tick, and so on),
neither light would flash, violating the new re-
quirement that at least one light must flash after
every tick.

In conclusion, the combined system of red
flashing and green flashing with the restrictions
of not flashing on ticks divisible by three and
five, respectively, does not satisfy the require-
ment that at least one light must be flashed after
every tick.

ChatGPT also successfully discussed generaliza-



tions of this computation, including calculating the
number of composite system states that would have
to be traversed in exhaustive model checking.

It is interesting to note though, that while the
LLM was able to apply its logic to find system ex-
ecution paths with special properties, it did not do
well when asked to list all the execution paths pos-
sessing a certain property. For example, we pre-
sented it with a 4-by-4 grid of cells, and asked for
the steps that a robot may take from (0,0) at the bot-
tom left to (3,3) at the top right, using the events for
right, left, up, and down motions. We also required
that the path remains within the grid. ChatGPT was
able to list paths like right,right,right,up,up,up and
right,up,right,up,right,up, but when asked to list all
the paths that go through (1,3) it failed, listing sev-
eral paths that do not reach the desired target, includ-
ing up,up,up,right,down,down,right,up,right. Chat-
GPT is thus not yet ready to carry out exhaustive
model checking on scenario-based systems. This is
not really an issue, however, since with the proposed
methodology verification of the LLM’s outputs will
be carried out independently of the LLM environ-
ment.

4.5 Identifying Under-Specification

Even when the created model addresses the stated re-
quirements perfectly, as may be possible with syn-
thetic or reduced problem descriptions, there may be
additional areas of the broader problem domain that
can or must be handled. In response to appropriate
prompts ChatGPT was able to significantly enrich a
developed model, or helped restate the explicit bound-
aries and expected scope of the intended system.

For example, in (Harel et al., 2023) we presented
ChatGPT with a scenario-based model that was de-
veloped for science teaching purposes. The model de-
scribes how bees depend on the ambient temperature
for switching between hibernation and being active,
flower plants depend on hours of daylight in order to
start blooming, and active bees depend on blooming
flowers for survival. In the original model, average
temperatures and number of daylight hours were pa-
rameters that students could adjust to see how certain
combinations of settings might be sustaining while
others can cause the bees to die out due to hunger.

When we asked ChatGPT to offer enhance-
ments to the education model, it suggested to con-
sider weather-related variations that modify the pre-
specified fixed average temperature and the number
of daylight hours for a given time of year.

4.6 Explainability

Given a certain observed or expected behavior of the
system, ChatGPT is able to produce a natural lan-
guage description of the cause of that behavior, find-
ing a reasonable balance between the arcane details of
the complete execution trace, and the overall require-
ment that ”this is what the system was supposed to
do”.

For example, following a paragraph on the se-
mantics of SB modeling we presented the following
prompt:

In a system with two scenarios, one waits for
time tick events and after each time tick requests
a short beep (100 msec). The other scenario
waits for time ticks, and after each such event
requests a long beep (500 msec). Each of these
scenarios waits for both the short and long beep
events, so that after each time tick, exactly one
beep occurs. Actuator scenarios actually cause
the respective beeping action. Time tick events
are injected by the environment every one sec-
ond. A user reported that it watched the system
for 20 seconds, and never heard a long beep. Can
you explain why this may have happened?

ChatGPT response was:

The user’s report of not hearing a long beep in
a system with two scenarios—one requesting a
short beep after each time tick, and the other re-
questing a long beep after each time tick—can
be explained through the principles of Scenario-
based Modeling (SBM).

In SBM, when multiple scenarios request
different events after a shared trigger event, the
execution environment selects one of these re-
quested events to occur. The selection can be
arbitrary or follow a specific strategy, such as
alphabetic or lexical order, priority, random,
round-robin, etc. In this case, if the event selec-
tion strategy prioritizes the short beep over the
long beep (for example, due to alphabetic order,
where “short beep” comes before “long beep”),
then the short beep will always be selected to oc-
cur after each time tick, and the long beep will
never be executed. Since time tick events are
injected by the environment every second, and
both scenarios are waiting for this event, each
time tick leads to both scenarios being activated.
However, if the system consistently selects the
short beep event over the long beep event after
each time tick, the scenario requesting the long



beep will never progress to the state where it ac-
tually triggers the long beep. As a result, only
short beeps will be heard.

In summary, the user’s observation of not
hearing any long beeps can be attributed to
the event selection mechanism within the SBM
framework, which in this case consistently fa-
vors the short beep event over the long beep
event. This could be due to the selection strat-
egy used by the system (like alphabetic order) or
other operational logic specifics.

We then challenged ChatGPT again:

Thank you. Assume that the developers changed
the selection algorithm and they now select
events randomly. The user tested the system
many times, for hours, and never heard a long
beep. Can you try to explain?

To this, ChatGPT produced a very comprehen-
sive answer, covering possible issues with application
scenarios, the execution infrastructure, and human-
machine interaction. Here are some excerpts:

If the event selection algorithm was changed to
randomly select between the short beep and long
beep events, but the user still never hears a long
beep, there are several potential explanations:

Implementation Error in Random Selection:
The most straightforward explanation could be
a bug or implementation error in the random se-
lection algorithm. It might not be truly random,
or it could be incorrectly favoring the short beep
event due to a coding mistake.

Issue with the Long Beep Scenario: There
might be a problem with the scenario that re-
quests the long beep. This could be a coding
error or a logical flaw in the scenario itself, pre-
venting it from properly requesting the long beep
event.

User Perception or Reporting Error: Finally,
there could be an issue with how the user is per-
ceiving or reporting the beeps. They might be
missing the long beep due to distraction, ambi-
ent noise, or misunderstanding what constitutes
a long beep in the context of this system.

To diagnose the issue accurately, developers
would need to conduct thorough testing and de-
bugging, looking into each of these potential ar-
eas to find where the problem lies.

While such explanations are impressive, they were
not perfect. We had cases where we presented Chat-
GPT with well specified scenarios and a description

of an observed execution log, i.e., an event sequence,
but ChatGPT was not able to retrospectively produce
a step by step play-out sequence that would gener-
ate this execution log. Instead, it provided incor-
rect explanations for that event sequence. While fre-
quently providing ChatGPT with better reminders and
interactive practice of its knowledge of semantics and
play-out may remedy such issues, this caveat is a re-
minder that all outputs produced by the LLM must be
formally checked.

4.7 Accommodating Semantic
Flexibility

Most software development studios are tied to specific
languages and their associated semantics. In our ex-
periments, ChatGPT was able to accommodate, and
discuss, alternative semantics.

For example, in the water tap example in Sec-
tion 2, when the scenario ADDHOTWATER is in any
of the states where it requests ADDHOT, it cannot
react to WATERLOW, since it is not waiting for that
event. By contrast, in the semantics of the LSC
scenario-based language, the infrastructure constantly
listens for all events that are waited for in the first
state of all scenarios. When such an event occurs,
the infrastructure instantiates another copy of the sce-
nario. In fact, from our first textual descriptions of
SBP, ChatGPT understood this semantics to be the de-
fault.

In another example, we asked ChatGPT to gener-
ate scenarios for Quicksort. Before starting, it com-
mented that it will be hard, as classical solutions are
recursive. We then pointed out to ChatGPT that there
is a published implementation that is iterative, not
recursive (Harel et al., 2021), that is structured as
instructions to human workers arranging cars in an
automobile dealership parking lot according to, say,
window-sticker price, where each employee had one
narrow role. ChatGPT readily accommodated the
new mindset and produced the desired scenario-based
specification.

4.8 Interactive Mutual Learning

In our experiments, we noticed that ChatGPT learns
from multiple prompts, discussions and exploration
better than from concise or detailed descriptions. We
believe that the same may hold for software and sys-
tem developers. Interactive, agile development pro-
cesses may not be just trial and error, or spiral con-
vergence to and discovery of a predefined but poorly
specified goal. Rather, they are often constructive
processes, where stakeholders and developers build



their wishes and plans, as they refine their own under-
standing of the environment, the systems, their needs,
and their future interactions with the system.

An important part of this refinement is producing
more explicit definitions of elements that are outside
the scope of the system. In contrast, such definitions
are often totally absent from classical system specifi-
cations.

5 RELATED WORK

Recent advances in LLM-based chatbots have made
a considerable impact on numerous domains. Re-
searchers and engineers are now examining the po-
tential applications of this technology in educa-
tion (AlAfnan et al., 2023), music (Lu et al., 2023),
academia and libraries (Lund and Wang, 2023),
healthcare (Li et al., 2023), and many other areas.

Within the field of software engineering, which is
our subject matter here, attempts have been made to
apply chatbots to evaluate the quality of code (Burak
et al., 2023), to correct bugs (Surameery and Shakor,
2023), and to generate code automatically or semi-
automatically (Feng et al., 2023; Dong et al., 2023).
The general consensus appears to be that chatbots will
play a key role in code generation in years to come.
Our work here outlines a possible path towards allow-
ing this integration in a safe and controlled manner.

Our proposed methodology for integrating Chat-
GPT into the software engineering process lever-
ages the large body of existing work on scenario-
based modeling (Harel et al., 2012b; Damm and
Harel, 2001). Specifically, we propose to make use
of the amenability of SBM to formal analysis tech-
niques (Harel et al., 2015a; Harel et al., 2015b), such
as verification (Harel et al., 2011; Harel et al., 2013b),
automatic repair (Harel et al., 2012a), and synthe-
sis (Greenyer et al., 2016). Despite our focus on
SBM, other modeling approaches, with similar traits,
could be used in a similar manner.

Finally, our work here can be regarded as another
step towards the Wise Computing vision (Harel et al.,
2016a; Harel et al., 2016b; Harel et al., 2018), which
seeks to transform the computer into an active mem-
ber of the software engineering team — raising ques-
tions, making suggestions and observations, and car-
rying out verification-like processes, even without ex-
plicitly being asked to do so.

6 CONCLUSION

The appearance of large language models, and the
subsequent release of advanced chatbots, is a major
development, and it is likely to revolutionize the do-
main of software engineering in coming years. How-
ever, because of inaccuracies and errors that are in-
herent to the outputs of these chatbots, such an in-
tegration must be performed with care. We outline
here a possible method for such an integration, which
makes use of the advanced features of chatbots, but
which also puts an emphasis on inspecting and ana-
lyzing the results of the integration. We are hopeful
that our work will trigger additional research in this
important direction.

Moving forward, we plan to continue this work
along several axes. First and foremost, we intend
to implement the necessary tools and environments
needed to fully integrate ChatGPT with SBM, and
then use these tools and environments in large, real-
world case studies that will demonstrate the useful-
ness of the approach as a whole.

In addition, we expect that this line of work will
require us to enhance and modify existing tools, both
on the SBM said and on the chatbot one. For instance,
with the current version of ChatGPT, every conver-
sation starts from a blank slate, whereas for the on-
going development of a system, as part of the Wise
Computing vision, it would be more useful to have
the chatbot remember and use previous conversations.
This could be achieved, for instance, by summarizing
each conversation as it ends, and then feeding these
summaries back to the chatbot when a new conversa-
tion starts. In fact, with the newly announced GPTs
feature introduced in ChatGPT one can build a chat-
bot that is customized specifically for developing SB
models and programs.

Ideally, LLMs will be able learn immediately from
ongoing conversations, yet they will do so selectively,
learning over time, to select what should be retained
in each conversation and for how long.

These developments can also be beneficial in a
broader perspective: prompt engineering methods and
practices that would be developed along the way for
such interactive, incremental development may prove
useful not only in teaching computers, but in enhanc-
ing the training and everyday communications of hu-
man engineers.
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(2023). Evaluating the Code Quality of AI-Assisted
Code Generation Tools: An Empirical Study on
GitHub Copilot, Amazon CodeWhisperer, and Chat-
GPT. Technical Report. https://arxiv.org/abs/2304.
10778/.

Chang, Y., Wang, X., Wang, J., Wu, Y., Zhu, K., Chen,
H., Yang, L., Yi, X., Wang, C., Wang, Y., and Ye, W.
(2023). A Survey on Evaluation of Large Language
Models. Technical Report. https://arxiv.org/abs/2307.
03109/.

Damm, W. and Harel, D. (2001). LSCs: Breathing Life into
Message Sequence Charts. J. on Formal Methods in
System Design (FMSD), 19(1):45–80.

Dong, Y., Jiang, X., Jin, Z., and Li, G. (2023). Self-
Collaboration Code Generation via ChatGPT. Tech-
nical Report. https://arxiv.org/abs/2304.07590/.

Feng, Y., Vanam, S., Cherukupally, M., Zheng, W., Qiu,
M., and Chen, H. (2023). Investigating Code Gener-
ation Performance of Chat-GPT with Crowdsourcing

Social Data. In Proc. 47th IEEE Computer Software
and Applications Conf. (COMPSAC), pages 1–10.

Google (2023). Bard. https://bard.google.com/.
Greenyer, J., Gritzner, D., Gutjahr, T., König, F., Glade,

N., Marron, A., and Katz, G. (2017). ScenarioTools
— A Tool Suite for the Scenario-based Modeling and
Analysis of Reactive Systems. Journal of Science of
Computer Programming (J. SCP), 149:15–27.

Greenyer, J., Gritzner, D., Katz, G., and Marron, A. (2016).
Scenario-Based Modeling and Synthesis for Reactive
Systems with Dynamic System Structure in Scenari-
oTools. In Proc. 19th ACM/IEEE Int. Conf. on Model
Driven Engineering Languages and Systems (MOD-
ELS), pages 16–23.

Gregorcic, B. and Pendrill, A.-M. (2023). ChatGPT and the
Frustrated Socrates. Physics Education, 58(2).

Gritzner, D. and Greenyer, J. (2018). Synthesizing Exe-
cutable PLC Code for Robots from Scenario-Based
GR(1) Specifications. In Proc. 4th Workshop of
Model-Driven Robot Software Engineering (MORSE),
pages 247–262.

Harel, D., Assmann, U., Fournier, F., Limonad, L., Mar-
ron, A., and Szekely, S. (2023). Toward Methodi-
cal Discovery and Handling of Hidden Assumptions
in Complex Systems and Models. In Engineering
Safe and Trustworthy Cyber Physical Systems – Es-
says Dedicated to Werner Damm on the Occasion
of His 71st Birthday. To Appear. arXiV preprint.
https://arxiv.org/abs/2312.16507.

Harel, D., Kantor, A., and Katz, G. (2013a). Relaxing Syn-
chronization Constraints in Behavioral Programs. In
Proc. 19th Int. Conf. on Logic for Programming, Arti-
ficial Intelligence and Reasoning (LPAR), pages 355–
372.

Harel, D., Kantor, A., Katz, G., Marron, A., Mizrahi, L.,
and Weiss, G. (2013b). On Composing and Proving
the Correctness of Reactive Behavior. In Proc. 13th
Int. Conf. on Embedded Software (EMSOFT), pages
1–10.

Harel, D. and Katz, G. (2014). Scaling-Up Behavioral Pro-
gramming: Steps from Basic Principles to Applica-
tion Architectures. In Proc. 4th SPLASH Workshop
on Programming based on Actors, Agents and Decen-
tralized Control (AGERE!), pages 95–108.

Harel, D., Katz, G., Lampert, R., Marron, A., and Weiss, G.
(2015a). On the Succinctness of Idioms for Concur-
rent Programming. In Proc. 26th Int. Conf. on Con-
currency Theory (CONCUR), pages 85–99.

Harel, D., Katz, G., Marelly, R., and Marron, A. (2016a).
An Initial Wise Development Environment for Behav-
ioral Models. In Proc. 4th Int. Conf. on Model-Driven
Engineering and Software Development (MODEL-
SWARD), pages 600–612.

Harel, D., Katz, G., Marelly, R., and Marron, A. (2016b).
First Steps Towards a Wise Development Environ-
ment for Behavioral Models. Int. Journal of Informa-
tion System Modeling and Design (IJISMD), 7(3):1–
22.

Harel, D., Katz, G., Marelly, R., and Marron, A. (2018).
Wise Computing: Toward Endowing System Devel-

https://arxiv.org/abs/2304.10778/
https://arxiv.org/abs/2304.10778/
https://arxiv.org/abs/2307.03109/
https://arxiv.org/abs/2307.03109/
https://arxiv.org/abs/2304.07590/
https://bard.google.com/
https://arxiv.org/abs/2312.16507


opment with Proactive Wisdom. IEEE Computer,
51(2):14–26.

Harel, D., Katz, G., Marron, A., and Weiss, G. (2012a).
Non-Intrusive Repair of Reactive Programs. In Proc.
17th IEEE Int. Conf. on Engineering of Complex Com-
puter Systems (ICECCS), pages 3–12.

Harel, D., Katz, G., Marron, A., and Weiss, G. (2014). Non-
Intrusive Repair of Safety and Liveness Violations in
Reactive Programs. Transactions on Computational
Collective Intelligence (TCCI), 16:1–33.

Harel, D., Katz, G., Marron, A., and Weiss, G. (2015b). The
Effect of Concurrent Programming Idioms on Veri-
fication. In Proc. 3rd Int. Conf. on Model-Driven
Engineering and Software Development (MODEL-
SWARD), pages 363–369.

Harel, D., Lampert, R., Marron, A., and Weiss, G. (2011).
Model-Checking Behavioral Programs. In Proc. 9th
ACM Int. Conf. on Embedded Software (EMSOFT),
pages 279–288.

Harel, D. and Marelly, R. (2003). Specifying and Execut-
ing Behavioral Requirements: The Play In/Play-Out
Approach. Software and System Modeling (SoSyM),
2:82–107.

Harel, D., Marron, A., and Weiss, G. (2010). Program-
ming Coordinated Scenarios in Java. In Proc. 24th
European Conf. on Object-Oriented Programming
(ECOOP), pages 250–274.

Harel, D., Marron, A., and Weiss, G. (2012b). Behavioral
Programming. Communications of the ACM (CACM),
55(7):90–100.

Harel, D., Marron, A., and Yerushalmi, R. (2021). Scenario-
Based Algorithmics: Coding Algorithms by Auto-
matic Composition of Separate Concerns. Computer,
54(10):95–101.

Harel, D. and Pnueli, A. (1985). On the Development of
Reactive Systems. Logics and Models of Concurrent
Systems, F-13:474–498.

Katz, G. (2013). On Module-Based Abstraction and Re-
pair of Behavioral Programs. In Proc. 19th Int. Conf.
on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR), pages 518–535.

Li, J., Dada, A., Kleesiek, J., and Egger, J. (2023). Chat-
GPT in Healthcare: A Taxonomy and Systematic
Review. Technical Report. https://www.medrxiv.org/
content/10.1101/2023.03.30.23287899v1.

Liu, J., Xia, C., Wang, Y., and Zhang, L. (2023). Is your
Code Generated by ChatGPT really Correct? Rigor-
ous Evaluation of Large Language Models for Code
Generation. Technical Report. https://arxiv.org/abs/
2305.01210/.

Lu, P., Xu, X., Kang, C., Yu, B., Xing, C., Tan, X., and
Bian, J. (2023). MuseCoco: Generating Symbolic
Music from Text. Technical Report. https://arxiv.org/
abs/2306.00110/.

Lund, B. and Wang, T. (2023). Chatting about Chat-
GPT: how may AI and GPT Impact Academia and Li-
braries? Library Hi Tech News, 40(3):26–29.

MetaAI (2023). LLaMa. https://ai.meta.com/llama/.
OpenAI (2022). ChatGPT. https://chat.openai.com/.

Pettersson, O. and Andersson, J. (2016). A Survey of Mod-
eling Approaches for Software Ecosystems. In Proc.
7th Int. Conf. on Software Business (ICSOB), pages
79–93.

Surameery, N. and Shakor, M. (2023). Use Chat GPT
to Solve Programming Bugs. Int. Journal of Infor-
mation Technology & Computer Engineering (IJITC),
3(1):17–22.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you Need. In Proc. 31st Conf. on
Advances in Neural Information Processing Systems
(NeurIPS).

Yaacov, T. (2023). BPPy: Behavioral Programming in
Python. SoftwareX, 24.

https://www.medrxiv.org/content/10.1101/2023.03.30.23287899v1
https://www.medrxiv.org/content/10.1101/2023.03.30.23287899v1
https://arxiv.org/abs/2305.01210/
https://arxiv.org/abs/2305.01210/
https://arxiv.org/abs/2306.00110/
https://arxiv.org/abs/2306.00110/
https://ai.meta.com/llama/
https://chat.openai.com/

	Introduction
	Background
	Large Language Model-Based Chatbots
	Scenario-Based Modeling

	Integrating ChatGPT and SBM
	Basic Integration
	The Proposed Methodology

	Using the Method in the Development Cycle
	Code Generation
	Modeling
	Play Out & Simulation
	SMT-Like Model Analysis
	Identifying Under-Specification
	Explainability
	Accommodating Semantic Flexibility
	Interactive Mutual Learning

	Related Work
	Conclusion

