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Abstract 

A new process logic is defined, called computation paths logic (CPL). which treats lbnn~~la~ 

and programs essentially alike. CPL is a pathwlse extension of PDL. following the basic pt-ocess 
logic of Harel. Kozen and Parikh. and is close in spirit to the logic R of Hare1 and Peleg. It enjoys 
most of the advantages of previous process logics. yet is decidable in elementary tlmc. We also 
ofrcr extensions for modeling asynchronouaisynchronous concurrency and infinite computanons. 
All extensions are also shown to be decidable in elementary time. :g 1999 Elsevicr Scicncr 

B.V. All rights reserved. 
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1. introduction 

Two major approaches to modal logics of programs arc dynamic logic [lb] and tcm- 

poral logic [ 151. Propositional dynamic logic, PDL [5], ‘. I$ a natural ‘dynamic’ extension 

of the propositional calculus, in which programs are intermixed with propositions in 

a modal-like fashion. Formulas of PDL can express many input/output propertics of 

programs in a natural way. Moreover, validityisatisfiability in PDL is decidable in cx- 

ponential time, and the logic has a simple complete axiomatization [I 11. PDL is thus a 

suitable system for reasoning about the input’output behavior of sequential programs on 

the propositional level. However, PDL is unsuited for dealing with the continuous. or 

progressive behavior of programs, i.e.. the situations occuring tlz~irzg computations The 
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need for reasoning about continuous behavior arises naturally in the study of reactive 

and concurrent programs. 

The main approach proposed in response to this need is temporal logic, TL [ 151, in 

which assertions can be made naturally about the progressive behavior of programs. In 

particular, TL can easily express freedom from deadlock, liveness, and mutual exclu- 

sion. The basic versions of TL, however, are not compositional, in the sense that their 

treatment of a well-structured program does not derive directly from their treatment 

of its components. Indeed, TL usually does not name programs at all, but refers to 

instructions and labels in a fixed program. Although TL can discuss the synthesis of 

complex programs from simpler ones to some extent using at predicates, this method 

is rather cumbersome. 

This dichotomy between the dynamic and temporal logic approaches has prompted 

researchers to try to combine the best of the two in what is generally called process 

logic. Accordingly, a system called PL was proposed in [6]. It borrows the program 

constructs and modal operators [ ] and ( ) from DL, and the temporal connectives 

suf (similar to until) and f (standing for first) from TL, and combines them into a 

single system. The expressive power of PL is greater than that of PDL and of TL, 

and its validity/satisfiability problem was shown in [6] to be decidable, though it is 

not known to be elementary. 3 

There are some inconvenient features of PL, including the asymmetry of its central 

path operator, suf, and the fact that its formula connectives are somewhat weaker than 

its program operators. A proposal that overcomes these problems is the regular process 

logic, RPL, of [7]. In RPL, the operators suf and f are replaced by chop and slice, 

corresponding essentially to Kleene’s regular operations of concatenation and star. In 

this way, the regular operations on programs, a U /$ up, CI*, have natural counterparts 

on formulas: X V I’, X chop Y and slice X. It is shown in [7] that RPL is even more 

expressive than PL, and that its validity problem is also decidable but nonelementary. 

Using the fact that in RPL both program and path operators are those of regular 

expressions, and that programs and formulas are interpreted over paths, a unijbvm 

process logic R was defined in [7]. In R, formulas are constructed inductively from 

atomic propositions and binary atomic programs, using a single set of regular operators. 

It was shown in [7] that R is more expressive than RPL with binary atomic programs, 

and is decidable (though, again, nonelementary). 

In the interest of obtaining a useful process logic decidable in elementary time, an 

automata-oriented logic, YAPL, was defined in [18]. In YAPL, formulas are constructed 

using finite automata for both temporal (path) connectives and for constructing com- 

pound programs from basic (atomic) ones. There is a clear distinction between state 

and path formulas in YAPL, atomic programs are binary and atomic formulas are re- 

stricted to being state formulas. YAPL is indeed shown in [ 181 to be decidable in 

3 Some versions of PL have been shown to be nonelementary [lo], but it is still not known whether PL 

itself is elementary. 
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elementary time (even over infinite paths). YAPL formulas, however, can be somewhat 

less intuitive and not that easy to comprehend. 

In the present paper, we try to combine some of the advantages of previous methods 

by introducing a new process logic that is compositional, uniform in its treatment of 

programs and formulas, expressive enough to capture the interesting path properties 

mentioned in the literature in a natural way, explicit in its treatment of concurrency, 

and elementary decidable. 

We term our basic formalism computation paths logic (CPL). A single set of regular 

operators acts on both transition formulas (programs) and state formulas. For example, 

a” P . b is a CPL formula. (Here a and b are atomic programs and P is an atomic 

state formula.) Intuitively, this formula means: “perform action a some nondeterministic 

number of times, check for property P and then do action 6”. An important operator 

in CPL is ‘n’ - pathwise intersection. Thus, f f' g is true on paths that satisfy both 

,f and g. Using this operator, it is possible to express a large variety of properties of 

computation paths. For example, c1 n (skip* P skip*), where x is a program and P is 

a proposition, is true on a-paths that contain some P-state. Note that an h, for atomic 

programs a and b is true only for paths which are both u-paths and b-paths, and is not 

expressible by PDL programs or formulas. 

Unlike PL and its descendants, RPL and R, we have decided not to include the 

modal operators [ ] and ( ) in CPL. The reason is as follows. Consider a PLIRPL!R 

formula of the form [m]cp, where CI is a program and 40 is a path property. While one 

might expect this formula to be true on all cc-paths that satisfy cp, in PL it is defined 

to be true on all paths p which, when extended by an x-path r, result in a path p I’ 

satisfying q. This, however, corresponds to the above intuition only when p is a path 

of length 0, i.e., a state. This broader (and somewhat complicated) definition in PL is 

an unavoidable outcome of the wish of the authors of [6] to have only path formulas. 

but at the same time use ( ) and [ ] as in PDL. (For example, they wanted (xl)‘) cp 

to be equivalent to (a) (fl)cp.) 

To make our logic elementary decidable, we use a special form of negation. Specif- 

ically, negation in CPL is not taken relative to the set of all paths (as is done, e.g., 

in PLIRPL!R). In fact, a negated formula is a state property, made true in any state 

that is not the initial state of a path that satisfies the argument formula. For example, 

l(a. P) asserts “it is not possible to carry out a computation of a. P from the present 

state”. While this form of negation is weaker than negation relative to all paths. most 

interesting path properties are still expressible. 

In Section 3, we show that CPL is elementary decidable, by reducing its satisfiability 

problem to that of APDL, the version of PDL in which programs are represented by 

finite automata rather than regular expressions [9]. The reduction is rather involved, 

and combines ideas from both [14] and [17]. 

In Section 4, we propose an extension of CPL for modeling concurrent processes, 

called ICPL. It uses ‘11’ to denote interleaving. Interleaving is one of the simplest 

ways to model concurrent computation (see, e.g., [ 12]), capturing processes that run 

concurrently in such a fashion that their atomic steps can be arbitrarily interleaved but 
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with no communication taking place. This might be termed asynchronous concurrency. 

Even though the interleaving operator itself is very intuitive, combining it with other 

operators (especially 73’) turns out to be rather technically involved. Nevertheless, we 

are able to extend our previous reduction, and show that ICPL is also decidable in 

elementary time. 

To model synchronous concurrency, we introduce a further extension in Section 5, 

called SICPL (ICPL with synchronization). In SICPL, interleaving can be synchronized 

with respect to subsets of atomic programs. For such a subset syn, and formulas ,f 

and g, the interleaving of f and g synchronized on QVI is expressed by ,f / sun / I/ 

(the notation is apt, since ‘11’ denotes the special case where s~?n = 0). For example, 

the formula (a u b) c 1 u, b / (a U c) P. (b U c) is true only in paths of the form: 

a c P c a P c c c P b c 

> h > 

We prove that SICPL is also elementary, by extending the reduction to APDL men- 

tioned above. 

A further extension of CPL for expressing properties of infinite computations, wCPL, 

is defined in Section 6. In oCPL, we add the operator “), which has the following 

intuitive meaning. Given a formula f, .f”’ is true in the first state of a cl-path obtained 

by fusing infinitely many ,f -paths. With this interpretation, (‘I plays a role similar to that 

of repeat in RPDL [8], and indeed, we prove that wCPL is elementary by a reduction 

to an automata version of RPDL. 

2. Definitions and basic observations 

Definition 1. A path over a set S is simply a nonempty sequence of elements of S. 

We use si for elements of S, so that (SI, SZ, ~3) is an example of a path over S. In 

the sequel, all paths are assumed to be over the same set S. For a path p, denote 

by first(p) and last(p) the first and the last elements of p. The length of a path 

p, denoted IpI, is the number of elements in p minus 1. The set of all paths of 

length 0 is denoted (S) = {(s) 1 s E S}. For paths p and q with last(p)=first(q), 

the fusion of p and q, denoted p q, is the path obtained by writing the elements 

of p and then the elements of q, omitting one occurrence of last(p). For example, 

(~I,s~,sJ).(s~,s~) = (s~,s~,sJ,s~). For sets of paths 9 and 9, the operations 9.9, Y*, 

and ,first(.Y) are defined in the natural way. 

We now define computation paths logic, CPL for short. It has two sorts, a set ASF 

of atomic state formulas (propositions), and a set ATF of atomic transition formulas 

(programs). The set of formulas is defined as the least set containing ASF and ATF, 

and such that if f and g are formulas, then so are (-,f ), (,f*), (f g), (,f U g) 

and (f n g). (We often omit the parentheses where there is no confusion.) 
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Fig. 1. A CPL model. 

CPL formulas are interpreted over models M = (S,,, pI, ). where S,, is the set of 

states, p,,(P) C(S,,) for each P EASF, and p,,(a) iS>,l x S,, for each N E ATF. In 

addition, /I,, is is extended to all formulas as follows: 

- p,,(f 9) = r%,(f) P,,(9). 

- P,,(.f‘U 9) = P\,(.f) u P,,(g). 

- ~,,(.f n 9) = I,, n pm. 

~ P,,(.f* 1 = P,,(f)*. 

- P!, C-f) = (S,, ) \ fWP,L, (.f)). 
(We often leave out the M subscript of S and p.) A path p in a model M satisfirs a 

CPL formula .f, written M, p + .f, when p E p,,(,f). A formula ,f is satisfiahlr iff 

IV. p b ,f for some path p in some model M. A state s in a model M satisfies a CPL 

formula f’, written M, s + f iff there exist a path satisfying ,f’ whose first state is s. 

Example. Consider the CPL formula cp : (P a)” Q n (h u c)* -(h P) a, where 

I’, p E ASF and a. b E ATF. In the model illustrated in Fig. 1, paths that satisfy q~ are 

(among others): (1, 2, 3, 4. 5), (1, 2. 3, 4) and (1, 2. 3, 1). On the other hand, a 

path that does not satisfy cp is (1, 2, 7, 8, 9) (this is because (8) k 7th. P)), For 

CPL formulas ,f and g, it is sometimes convenient to use the following abbreviations: 

,f”? instead of --.f’, this test is a state formula with ~,,(,f?) = ,first(p,,(,f)). f’ v $1 

instead of .f? U y?, and ,f A g instead of ,f? n g?. Regarding transitions, it useful to 

adopt the following abbreviations: skip instead of &E.4TFa, path instead of skip”. and 

true instead of path?. Note that path holds in every path in which consecutive states 

are connected by some atomic transition. Moreover, it follows from the semantics of 

CPL that for every ,f E CPL and every path p in any model M, if p E p,,(,f’) then 

p b path. So that path plays the role of ‘true’ for paths that correspond to formulas. 

The formula true is a ‘state version’ of path and is true in every path of length 0. 

i.e.. in every state in every model. 
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Let us demonstrate how to express some useful path properties in CPL. 

The existence of some segment of the path satisfying ,f is expressed by 

someseg( f) = path . f path. 

The existence of some prefix of the path satisfying f is expressed by 

somepre(f) = f path. 
The existence of some suffix of the path satisfying f is expressed by 

somesuf (f) = path f. 

The existence of some state in the path satisfying f is expressed by 

somestate( f ) = someseg( f ?). 
An operator similar to 0 of TL is next(f) = skip f. 

An operator similar to O%i of TL is ,f until g = (f skip)* g. 

CPL can clearly be viewed as a pathwise extension of PDL. To embed PDL 

in CPL, we associate with every PDL formula/program x, a corresponding CPL for- 

mula, denoted x’. Defining x’ for boolean combinations and regular operations is 

easy. The ( ) of PDL is dealt as follows: ((p) f )’ = (p’ . ,f’)?. (As in R [7], this 

last equality nicely brings out the uniform treatment of formulae and programs 

in CPL.) 

Note that every PDL model M = (S, r, R) is a priori also a CPL model; simply 

take p(P) = (r(P)) and p(a) = z(a), f or every P E ASF and a E ATF, respectively. 

Under this model correspondence it is easy show that PDLs expressive power is no 

more than that of CPL. 

Actually, CPL is more expressive than PDL. For such a comparison to be fair, how- 

ever, we ought to consider only state formulas of CPL (i.e., formulas satisfiable only 

in paths of length 0). As a trivial example, take the CPL formula f = (al n al)?, 
where al, a2 EATF. We claim that .f has no equivalent in PDL. To prove this, con- 

sider the following two models: 

) < 
Ll 

aI3 a2 
aI 

r 
S t a2 ” 

M N 

Obviously, M(s) kc,, f and N,(r) /h,-,, .f. H owever, it can be verified that for every 

PDL formula g: A4,s k,,,, g iff N,r I=,,,,, g. 

Considering other process logics, CPL can be thought of as a restricted version of 

the logic R of [7]. The main differences between CPL and R are the following. CPL 

does not use the modal operators [ ] and ( ), in CPL we consider only (finite) paths 

that arise from computations and negation in CPL is not relative to all paths, but rather 

is a state property. 

In spite of these differences, it is not difficult to show that CPL can be embedded in 

R, and then use the fact that R is decidable [7] to conclude that CPL is decidable. Since 

R is nonelementary [14], this yields a nonelementary decision procedure for CPL. We 

will show in the next section, however, that CPL is, in fact, elementary. 



3. CPL is elementary decidable 

In this section we show that satisfiability of CPL formulas is decidable in clcmentary 

time. This will be done in two steps. In the first, we carry out a reduction from the 

satisfiability problem of CPL to the satisfiability problem of CPL over one-action-per- 

transition models. These one-action-per-trunsition (oapt, for short) models are defined 

below. (These models were used in [14] for the logic R.) in the second step WC 

carry out a reduction from the satisfiability problem of CPL over oqt-models to the 

satisfiability problem of APDL. 

3.1. Reduction to ortpt-sati$iahilit?~ 

Definition 2. A model M is called an oapt-model relative to the set A TF = {u I,. . . u,, } 

if for every 1 <i # jan, p(ai) n p(aj) = 8. A CPL formula ,f is oupt-,~L/ti.~fiahi~~ 

there exist some oapt-model which satisfies ,f. 

Lemma 3. For ereg’ CPL ,forrmlu j’ over {al u,!}, there exists (I CPL fiwrnultr 

(ocw LI ne\13 ATF) sz~h that ,f is sati.$ahie $f ,f’ is oapt-satisfiable. 

iff 

t 
I, 

Proof. Let f be a formula over {al,. , a,, }. We define a set ATF’ of 2” - 1 new 

symbols (to be used as the atomic transition formulas of ,f’), each of the form II, , 

where c’/, E {k. i}, 

ATF’ ==: {a, / ,., (.#, / ‘d 

Let f’ be the formula 

I <k <II, with 

l<k<n, ci, E {k. k}} ‘>>, {al-, .,i}. 

obtained from f by replacing every appearance of [[is, for 

The following claim completes the proof of the lemma. 

Claim. ,f is satisfimhle * ,f’ is oapt-sati.$iahlr. 

Proof. (Cluirn) (+==): assume N’, p k .f’. We build a model M for ,f similar to M’ 

without p,,, (u,., ., <,, ), but with p,, (a,: ) = p,,, (fik ). Since this is the only difference be- 

tween ,f and ,f ‘, it is straightforward to check that M. p + ,f’. 

(===+): assume M, p + ,f. We build a model M’ for ,f’ similar to hl without 

II,, (~11, ), but with 
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where P,,,(Q) denotes S x 5’ - P,,,(Q). To complete the proof it suffices to show that 

for every 1 Gkdn, p,,,(Pk) = &(0x) ( a g ain, since this is the only difference between 

,f and f’): 

=U . u u . ..(J 
c,=l.i 

- 
<,A-,=k-l.kLI cA+,:k+l,k+l c,,=n, fi 

3.2. Reduction to APDL 

As preparation for the reduction to APDL, let us start the discussion in the framework 

of PDL. Recall that a PDL model is also a CPL model; note, however, that while 

CPL formulas are interpreted over paths, PDL formulas are interpreted over states. To 

overcome this dichotomy we shall relate paths to PDL programs in the following way: 

Definition 4. For a PDL program a and a path p = (PI,. . . , pk ) in a model (S, z, R), 

p E a is defined by induction on the structure of CI: 

If x E ATF then p E c( iff (k = 1 and (PO, ~1) E R(u)) 

pEaUfiiffpExorpE/? 
p E a; /!I iff there are paths q E a and r E /I with p = q r 

pEa* iffpEcc’forsomei31 orp=(po) 

P E cp? iff P = (PO> and (PO, PO> E Fcp?) 

Via this association we can view PDL programs as being carried out along paths rather 

than as binary relations. For the reduction, however, it is more convenient to use the 

automata version of PDL, namely APDL [9]. The reason for this is that ‘fl’ can be 

handled more economically by automata than by regular expressions. (This also applies 

to other operators used in the extensions of CPL we define later on.) 

Remark. Using PDL with intersection (IPDL) does not help, since the intersection in 

CPL is pathwise and different from that of IPDL. As a matter of fact, the 2EXPTIME 



upper bound for deciding IPDL, was also obtained via a reduction to APDL [I], where 

one exponent is due a cross product automaton used to handle the intersection operator. 

APDL formulas are, in general, more succinct than their equivalent PDL formulas. 

Nevertheless, satisfiability for APDL can be decided in EXPTIME [9]. This is also 

the case for deciding satisfiability over oapt-models. For if M, .s /= cp, then Al can bc 

transformed into an oapt-model of cp. One way of doing this is to unwind the model 

into a tree, which, in particular, is an oapt-model. The resulting tree model might 

be infinite, but the point here is that it is possible, and therefore the complexity of 

deciding APDL over oapt models is exactly as for unrestricted models. Simply. cheek 

satisfiability without any restriction and you have the answer! 

We shall use this to get an elementary decision procedure for CPL by carrying out a 

reduction from CPL into APDL. Relating paths in a model to APDL programs is done 

as in Definition 4, i.e., if M is an automaton (APDL program) then p t x iff p t J.( I ). 

where I.(X) is a regular expression denoting the language of z. 

Lemma 5. Fw every CPL j&~~ulu f‘ there exists tm APDL IHY~</IU~ (NFA ) A, . .cwl~ 

thut jbr. ever?, puth p in every oapt-nlodel, p t p(,f’) #’ p E .-I,. 

Proof. The APDL automaton (program) A, corresponding to the CPL formula 1’ is 

built by induction on the structure of f. 

-- P EASF: let AP = ({ko,kl}. kO, (jV,, {k,}), where iiil,)(/ro, P?) = {kl \. Thus. the 

language accepted by AP is simply {P’?}. 
~- a E ATF: similarly, let A,, be a two state NFA accepting the language {u) 

~- 7~: let A -ii be a two state NFA accepting the language { ( [A~,] @se)‘? }. 

-- g h: let A!,.h be an NFA with L(.4,,.,, ) = L(A,, ): L(A;,). 
-- y*: let ‘4,,, be an NFA with L(A,- ) = L(A,,)*. 

~~ ~7 U h: let Aq~~~r be an NFA with L(A,,,_,,,) = [<(A,,) iJ L(il,,). 
._ g n h: this case should be dealt with more carefully since the ‘n‘ in CPL is 

intersection in the puth sense rather than in the lungzruye sense. WC use the fact 

that we are dealing with oapt-models and build _Af,,7,, that simulates both J,, and ‘-11, 

synchronizing on ATF-letters. To be specific let 

A in/i = K, x Ki,. (s<,..v,), d,,-,/,, F,, x F/i 1). 

where 

(i) 6!,&(k,k’),@) = (6,(k,cp?) x {k’}) u({k} x 6,j(k’,(p?)). for cp E Pray 
(ii) 6,,qi,((k, k’),a) = 6,(k,a) x 6,,(k’,a), for u E ATF. 1 

We can now prove the main theorem. 

Theorem 6. If we ,jix ATF to he a subset qf’ { ul, . u,,}, then suti@ihilit~~ qf CPL 

formulas can he decided in ZEXPTIME. 



176 D. Harel, E. Singermunl Annals qf Pure und Applied Logic 96 (1999j 167-186 

Proof. Let f be a CPL formula over ATF C {a,, . . , a,?}. Use Lemma 3 to construct 

f’ with new atomic transition formulas ATF’, such that f is satisfiable iff f’ is oapt- 

satisfiable. Note that since the set {al,. . . ,a,} is fixed, if’1 = cl /fl, for some constant 

cl. By Lemma 5, there exists an APDL program Aft (in the form of an NFA over the 

alphabet ATF’ U Prop, ) such that for every path p in every oapt-model M : p E p(f) 

iff p E A,, . In other words, p E p(f) iff &t(p) /= (A,.!) true. It is known [9], 

that satisfiability of APDL formulas can be decided in deterministic exponential time. 

One can easily prove by induction on the structure of f’ that IA,) / <2’2’lf’i, for some 

constant c2 (actually, the exponent is needed only for the ‘fl’ case). So that the overall 

time complexity of deciding satisfiability of the original CPL formula f is bounded 

by 22”’ “I, for some constant ~3. q 

Remark. Deciding satisfiability of CPL formulas without the restriction to a fixed 

finite subset of atomic transition formulas costs one more exponent (in this case, 

If’1 is exponential in If I). This will also apply to all the extensions of CPL in the 

sequel. 

4. CPL with interleaving 

The motivation for adding the interleaving operator to CPL is twofold. Our primary 

motivation is that the interleaving operator can be interpreted as the simplest case of 

composition used in algebraic approaches to modeling concurrent computation (see, 

e.g., [12]). Interleaving represents the case where processes run concurrently in such 

a fashion that their atomic steps can be arbitrarily interleaved but where no communi- 

cation between them takes place. This form of concurrency, modeled by interleaving, 

might also be described as asynchronous. Second, as discussed in the sequel, using 

interleaving we gain succinctness. 

Let us now define ICPL (CPL with interleaving). The syntax of ICPL extends that 

of CPL as follows: if f and g are formulas, then so is (f‘ 1) g). Turning to the 

semantics, the basic difficulty is that our p, which associates paths with formulas, is 

not informative enough to capture interleaving. For example, we would like the formula 

(u . P) 11 b to be satisfied by paths of the following forms: 

a P b a b P b a P 

> > > 

However, paths of the second form would not appear if we used ,o(a.P) and p(b), since 

~(a. P) contains only ‘a’-paths with P at the last state. To solve this problem we shall 

use a more detailed version of p. The idea is that now p,,,,(f) will contain, in addition 

to paths in A4 that are associated with ,f, some ‘evidence’ of this association. We will 

associate with each formula (via this extended p) a set of computation paths (defined 

below) rather than a set of (ordinary) paths. A computation path in a model M consists 

of two objects: a computation, which is a sequence of transitions accompanied by a 
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sequence of properties (state formulas); and an ordinary path over M, i.e., a sequence 

of states of 44. To get a feeling for this, the figure below illustrates a computation 

path: 

Here, the path is (s, t, r), i.e., the sequence of states, and the computation is ((u. {a,c} ). 

(P.l(h. Q),R)). 
To make the discussion above more formal, WC need some preparations. We first 

define the notion of a computation, and some operations on computations and on 

computation sets. Then, we combine computations and paths to define computation 

puths. and define several operations on them. Finally. we present the semantics of 

ICPL. 

Definition 7. The set of state j?wmulus SF is the minimal set of ICPL formulas that 

contains ASF, contains all formulas of the form -,f, and is closed under and n. For 

stateformu1as.f andgoftheformf =,f’~,f’...~,f‘h,~~=g’~~~‘...~g’,wherek,/~l. 

let 

(.f’ n g’ ) . (f” n g’), k = I, 

g’).... .(f’ng’)..f”+’ . . . . ..fk. k > 1. 
(,f’n9’).....(,f”ng~).(/ k+ I ‘....u’. h-c 1. 

Definition 8. A computation is a pair c = (Trun, , Vui, ), where Tran, is a path over 

the set 2”r’- - 8 and Val, is a path of length (True, 1 + 1 over the set SF. The lenyth 

qf’ c, denoted lc/, is 1 Val, / - 1. 

WC now define several operations on computations. For this we use the two com- 

putations: 

I, Cl,,, Ill/, rl.clii,, Ii!/, 

c = (m,m) and (i= (m,D) 

-~ c d ‘cl’ (( Tran,.); (Tran,,), ( Vu/, ): ( I’ul,,)), where 

(t,,. ., tiL) ; (q,. ,T/) = (tl,. , t!,,rl,. ,Y/) and 

(.f’o 1...1. ~)~(g~r,-..~g/)=(.fo....,.f/, ‘YO>...?S/). 

-- If c and d are of the same length (i.e., k = I), 

then c’ n cl ‘k! ((t, u Q,. , ti, u q), (J’origo,. . ,.firi.c/~~ )). 

The next operation we want to define is c 11 d. In general, c’ 11 d is a set of computations. 

A computation in c (1 d is obtained by sequentially executing portions from C’ or 

from d. Let us make this notion more precise. First, denote by Z, c{O,. , k} the set 
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of indices s.t. i E I, iff f, is of the form f/ ff. f,@“” (and last(f,) 32). Next, 

define a formula portion of c to be any element of the set 

(8, 

( u f;) u(u ‘ijf?). 
JE{O.....k}-I, iE1, WEI 

Finally, a portion of c is a formula portion or a transition portion of c, where a tran- 

sition portion of c is an element of {r,}:=, . Portions of d are defined in a similar way. 

Constructing a computation e E c 1) d is carried out as follows. Initialize Trun, and 

Vul, with ( ), and set pointers to the leftmost formula portions of c and d. While 

there remain portions of c and d, that have not been dealt with, nondeterministically 

add to e the next portion of c or that of d, and advance the corresponding pointer to 

the next portion, where the successor of a transition is a formula and the successor of 

a formula portion is either the next portion of the same formula or the next transition, 

if the current portion is last in the formula. When one of c or d has been consumed, 

simply add to e the remaining portions of the other. The construction above can be 

put on a more formal basis by the following algorithm. 

6) (a> 

@I 
cc> 

let next(c) and next(d) be the leftmost formula portions of c and d, respec- 

tively. 

Tran, := Val, := ( ). 

Last:=false. { h’ t is variable indicates whether the recent portion added to e 

is a transition} 

(ii) (a> if next(c) = 0 and next(d) = 0 then halt. 

(b) go to step (3) or step (4) nondeterministically. 

(iii) if next(c) = 0 then go to step (2). 

if next(c) is a formula portion 

then begin 

(a) if Last then Vul, := Vul, ; (next(c)) else Val, := Val, r (next(c)). 

(b) if next(c) = f: for some i E I,,, x < last(fi) then next(c) := f;‘” 

else let next(c) be the next transition portion of c, i.e., next(c) := Y,+I. 

(If there is no transition Yi+l, that is i = 1, then next(c) := 8.) 

(c) Last:=fulse, and go to step (2). 

end 

else begin {next(c) is a transition portion} 

(a’) Tran, := Trun, ; (next(c)). 

(b’) if Last then Val, := Vul, .^ (true). 

(c’) let next(c) be the next formula portion of c (for example, if the 

current value of next(c) is rj, then the next value of next(c) will be 

fj in case i E IC, and fl otherwise). 

(d’) Last:=true, and go to step (2). 

end 

(iv) analogous to step (3) with next(d) instead of next(c), Zd replacing I,, etc. 
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We are now ready to define the notion of computation path. 

Definition 9. A computation puth in a model M is a pair p = (Stat,,, c,,), where 

But,, is a nonempty path over & (ie., an ordinary path in the model M) and c’,, is 

a computation with 1 Vul,.,, ( = lStat,,l. 

For a computation path p = (Stut,j, cp), we denote Tmn,.,, and Vul, i, by Tmn,, 

and Vul,,, respectively. We intend to use a computation path p as follows: Stut,, will 

be the states along p, Tran,) will be the sequence of transitions along p, and Vul,, 

will be the sequence of state formulas satisfied in states along p. For example, a 

computation path p with Stat,, = (s, I, r), Tmn,, = ({u, h}, a) and Vul,, = (Tue. P 

Q, -~(a U c)) is illustrated by: 

a, b P.Q ‘I -(aUc) 

> 
s t r 

We have defined both on computations and on paths, and we now use these together 

to define p’q, for computation paths p and q (and then, extend it to sets of computation 

paths in the usual way): p . q def (Stat,, Stat,, c,’ c,) 

Definition 10. Let CP be a set of computation paths in a model 111. A path p = 

(SO,. . . ,sh) in M is CP consistent with a computation c = ((t,. . , ti), (,f’(,, . , ,f,)). if 

the following conditions are satisfied: 

(i) IpI = (c/ (i.e., k = I), 

(ii) for every O<i<k - 1, there exist q E CP s.t. But, = (s,,s, r 1) and Trun, = (t,), 

(iii) for every 0 <i < k, there exist q E CP s.t. Stat, = (s,) and Val, = ( f, ). 

We can now define the semantics of ICPL. Formulas are interpreted over the same 

models as in CPL, that is, models of the form M = (S,,. py, ), where S,, is the set of 

states, p:,(P) C(S), for every element P E ASF, and p:,(u) C_ S x S, for every element 

CI E ATF. 

Next, /I;, is extended by induction to a function II,,. which assigns a set ,j,,(,f‘) 

of computation paths to every ICPL formula J’. The set of all computation paths 

assigned to formulas in this way (i.e., those that are in p,,(f) for some ,f’) 

U’(M). All the inductive cases in the definition of p,, are straightforward, 

the following two: 

/),,(I n 61) = {r / 3p E p,,(f). q E /h,(g) s.t. Stat,. = Stat,> = St&! 

and c,. = c,, n c.,,} 

is denoted 

except for 

p,,(,f’ I/ 9) = {I- 1 Staty is U(M) consistent with c,- and c,. E (cp /I c.~,), 

for some P E P,,(S), q E p,,(g)). 
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Now that we have this extended version of p we can extract from it the relevant 

information as follows. 

Definition 11. An ICPL formula f is satisfied in a path p of a model A4, written 

A4, p /= f, iff p = Stat, for some computation path q E p,,(f). f is satisfiable iff 

M, p /= ,f for some path p of some model M. 

How does ICPL relate to CPL? Recall that ICPL is intended to be CPL extended 

with the‘ j/‘-operator. While syntactically it is clear that CPL c ICPL, semantically this 

may seem less obvious due to the differences in the definitions. We therefore proceed 

by showing that under the canonical correspondence between CPL models and ICPL 

models, that is, pCPL = pf.,,, this is indeed the case. 

Proposition 12. For every CPL jbrmula f and every (ordinary) path p in any model 

M M PkCPLf iiTM Pk,,,,f. 

Sketch of Proof. Let M be fixed. We show, by induction on the structure of f, that 

df > = SMp,(f 11, where P = pCpL, P, = P,~,~~, and SWp,(f >> = {SWu> I u E 

P,(f 11. 
The base case of the induction follows from the model correspondence. The inductive 

clauses follow readily from the induction hypothesis. For example, the f = g h case 

is proved as follows. Assume p E p(g h). Then, p = q . r for some q E p(g), r E 

,o(h). By the i.h., q E Stat(p,(g)) and r E Stut(p,(h)). Thus, there exist computation 

paths u E p,(g), v E p,(h), such that Stat(u) = q and Stat(v) = r. From this we get 

q Y E Stat(u v), and since u v E p,(g h) we have p E p,(g h). The other direction 

is proved similarly. C 

In what sense is ICPL ‘better’ than CPL? Well, using the well known fact that regular 

sets are closed under interleaving it is not difficult to prove that ICPL and CPL have the 

same expressive power. Nevertheless, ICPL has two important advantages over CPL. 

The first is clarity in modeling asynchronous concurrent computations. For example, 

consider the following two computations: (i) Execute a, observe P and then perform b. 

(ii) Observe Q and then execute b followed by a. 

In ICPL, we can use the formula a . P. b I/ Q. b. a to model computations that arise 

from running these two in parallel, while in CPL one must use a cumbersome formula 

of the form 

Other CPL formulas exist for this, yet it is very unlikely that such a formula will be 

as transparent as the ICPL formula given above. 

The second (and related) advantage of ICPL over CPL is succinctness. It is known 

that the use of the interleaving operator can shorten a regular expression by an 



exponential amount [4, 131. It is true that interleaving in ICPL is (in general ) not 

interleaving in the language sense. However, ICPL formulas that USC only ATF and 

the operators ‘.‘, ir’, ‘U’ and ‘I(’ correspond essentially to regular expressions (extended 

with interleaving operator) over the alphabet ATF. 

Let us now turn to the problem of deciding the satisfiability status of ICPL formu- 

las. Given an 1CPL formula, one can construct an equivalent CPL formula and then 

use the methods of the previous section to decide the satisfiability status of the latter. 

and therefore also of the former. The discussion above indicates that the first step of 

this naive algorithm, i.e., transforming an ICPL formula to an cquivalcnt CPL for- 

mula, yields an exponential growth in size. Taking into account that reducing CPL. to 

APDL also involves an exponential growth in size, and that APDL can be dccidcd in 

EXPTIME, we get a 3EXPTIME algorithm for deciding ICPL. However, wc can rc- 

duce ICPL directly to APDL (over oapt-models) by using a cross-product automaton 

to handle the ‘I/. -- case (as we did in the -n’ ~ case in the reduction from CPI. to 

APDL). This way we get a 2EXPTIME decision procedure for ICPL. 

Before getting into the technical details of the proof we would like to draw the 

reader’s attention to the following difference between ICPL and CPL. L.ct f and !/ 

bc state ,fiwnlu/tr,s. In CPL, one can replace .f’ 1 g by f’ .I/ (and vice versa) without 

affecting the semantics. However. this IS not the case in the presence of ‘11’. that is. in 

ICPL. For example. consider the state formulas P n Q and P Q. where f’, p c<ASF. 

.4lthough these two are equivalent in ICPL, they arc not interchangeable. For example, 

if (I .f ATF, then P n Q (1 u is satisfied in paths of the form 

P.Q tl li P.Q 

while P Q ~1 II is also satisfied in paths of the form 

This is because the interleaving operator permits ‘breaking up’ concatenation, but not 

intersection (of state formulas). To reflect this in the reduction to APDL WC have to 

modify the construction of the ‘n’-automaton of L.emma 5. (For instance, the ‘-‘- 

automaton constructed there for P n Q would accept P‘?Q?. However, this word would 

also be accepted by the automaton for P Q: therefore, the distinction noted above 

would not be preserved.) 

We are now ready to carry out the reduction from ICPL formulas to APDL programs. 

As was done for ordinary CPL, we can restrict our attention to oapt-models, since It 

is easy to see that Lemma 3 holds for ICPL formulas too. 

Lemma 13. For etirry ICPL formula J’ there esists rm APDL program (NFA ) .il , . 

SU& that. ,fbr every path p in every oapt-nlon’el, y E Stat(p(,f’)) iff’ p E ‘4,. 
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Proof. We build the APDL program A, = (K,,., s/ , 6f, Ff) corresponding to the 

ICPL formula f by induction on the structure of f. The tests of A, is the set 

VA/,) = {t I QEK, ./ 6 (s, t?) # 0}. The construction of A, for the ‘n’ and ‘/I’ cases is 

given below (all other cases are carried out precisely as in the proof of Lemma 5). 

_ g n h: given A, and Ah, let 

A gn/l = ( Kc, x Kh x (9 A A, 9, A}, (&,, Shr 9 Ah), &g-i/~, 

F;, X Fh X (9 Ah, 9, A}), 

where 

(i) &,nh((k,k’, 9 A h), (t A Y)?) = 6&k, t?) X dh(k’, r?) X ,CJ A h, t E T(A,) A Y C! T(Ah) 

(ii) &,nh((kk',g A h),f?) = b&t?) x {k'} x 8, t E T(A,) 

(iii) &d(k,k',g),t?) = J,(kt?) x {k'} x 9, t E %$,I 

(iv) 6,n,1((k,k’,g A h), Y?) = {k} x 6,,(k’,r?) x h, r E T(A/,) 
(V) f&“h((k,k’,h)J?) = {k} X &(k’, t-?) X h, Y E T(Ah) 

(vi) 6,&(k,k’, g A h),a) = 6,(k,a) x &(k’,a) x g A h, a E ATF 

(Vii) dqnh((k,k’,g),a) = &,(k,U) X 6h(k’,a) X g A h, U E ATF 

(viii) +,l,((k,k’,h),u) = 6,(k,a) x J~,(k’,a) x y A h, a E ATF 

- g 11 h: given A, and Ah, let 

A Ill//~ = (KC, X Khv (sy> s/z), d,(lh, Tc, X Fh)> 

where 

(i) 6,11,1((kk’),t?) = &,(kt?) x {k’}, t E T(A,) 

(ii) 6,11,,((kk’),r?) = {k} X dh(k', p?), y E WI,) 

(iii) dglIh((k,k'),a)= 6g(k,a) x {k'} u {k} x &(k',o), a EATS. q 

It is not difficult to prove by induction on f, that the size of the automaton A,, of the 

previous lemma is at most exponential in 1 f 1, so that we have: 

Theorem 14. Sutisfiubility of ICPL formulas with ATF 2 {al,. . . , a,} can be decided 
in 2EXPTIME. 

5. ICPL with synchronization 

ICPL is suited for modeling asynchronous concurrency. To model synchronous con- 

currency as well, we introduce ICPL with synchronization (SICPL). All ICPL formulas 

are SICPL formulas. In addition, if f and g are SICPL formulas and syn is a subset of 

ATF, then f 1 syn ( g is a SICPL formula. (The set syn has to be written out in full, 

for example as in (a. b)” . P 1 a, b 1 (a U b).) Intuitively, f ( syn 1 g represents the inter- 

leaving of f and g synchronized w.r.t. syn. See the example in Section 1. 

To present the formal semantics of SICPL we have to modify each step in the defi- 

nition of pM(f (( g). First, we extend the algorithm presented in Section 4.4. Recall that 
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for any given computations c and d, the algorithm was used to generate all computa- 

tions e E (c 11 cl). Given a set syn CATF, to obtain all computations e E (c 1 .yt9n ) d), 

add the following to the algorithm: 

__ to step (1) add the substep: (d) let Suspend,.:=Suspend,,:Tf&e. 
_ in step (3) (respectively, (4)) add (prior to substep (a’)) the step: 

(check) if ne.xt(c) n syn # 0 (respectively, next(d) n qw # 0) then Suspend,.:=tj.uc 

(resp. Suspend, :=true), and go to step (5). 
_ at the end of the algorithm add: 

(5) if (Suspend, and Suspend(i) 

then begin 

(a) Tuan, := Tmn,; (next(c) U next(d)). 
(b) if Last then Vul, := Vul,F(tme). 

(c) let next(c) be the next formula portion of c. 

(d) let ne.yt(d) be the next formula portion of d. 

(e) Suspend,.:=Suspend,l:==false, Last:=true, and go to step (2). 

end 

else go to step (2). 

Note that if the synchronization set is empty (syn = 0), then these additions have no 

effect on the algorithm. And indeed, to impose no synchronization constraints amounts 

to asynchronization. (This is also reflected in the notation, since if syn = 0, then 

,f / syn 1 g is simply ,f // g.) Now, for every model A4 and every synchronization set 

.r,yn &ATF, let 

p,u(,flqnlg) = {rlStut, is U(M) consistent with c,- and 

c,- E (c,&w4c,)3 for SOme P E p,,(.f ). 4 E p,,(g)) 

Reducing the satisfiability problem of SICPL to that of APDL can be done essentially 

as for ICPL. Given a SICPL formula ,f, we use the transformation described in the 

proof of Lemma 3 to construct a formula ,f’, with atomic transition formulas from 

ATF’, ’ such that ,f is satisfiable iff ,f’ is oapt-satisfiable. Then, we proceed as in 

Lemma 13 to construct the corresponding APDL program (automaton) A,‘, where for 

the g / syn / h case, we use 

where 

(i) s,,,,.,,l,,((k,k’),t?) = &,(k, t?) x {k’}, t E VA,,), 

(ii) iji,l’~.,,lh((k,k’),Y?) = {k} x fih(k',r?), Y E %dh), 

(iii) ~,d.v,~rl~h ((kk').a) = qka) x Mk',a), a E SJW, 

(iv) 6 i,,s,+((krk’),a) = (&&a) x {k’}) U ({k} x hh(k’,a)). a E ATF - q!‘n. 1 .1 

J This time. elements of ATF appearing in synchronization nets should also be transformed 
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Constructing A/, from f’ costs at most an exponential in added size (as was the case 

for ICPL), so that we have: 

Theorem 15. Satisjiability of SICPL formulas with ATF 2 {al,. . , a,} can be decided 

in 2EXPTIME 

6. Infinite computations 

CPL (and its extensions ICPL, SICPL) are input/output oriented and are therefore 

appropriate for stating properties concerning programs with finite computations. We 

wish, however, to make it possible to reason about processes with possible infinite 
computations. For example, we would like to say that the model illustrated below, 

admits in addition to the finite computations described by (P a)* also the infinite 

computation (P a)“‘. 

PaPaPaP 
.- . . . 

With this idea in mind, we introduce the extension wCPL. Before giving the for- 

mal definition let us try to explain informally the route we have chosen to 

follow. 

Basically, one would like oCPL to extend CPL by employing the new operator 

‘w’ and use formulas of the form ,f”‘, where ,f is a CPL formula. The most intuitive 

interpretation of ,f”’ is simply to associate with it infinite paths that result by fus- 

ing infinitely many (finite) paths of f (that is, take p(f’“) as p(f)‘“). Choosing this 

interpretation, however, forces one to make a distinction between ‘o-formulas’ (those 

with possibly infinite paths corresponding to the o) and ‘finite formulas’. This is 

necessary in order to interpret (or to forbid) formulas of the form ,f”’ g, f’” g”‘, 
(,f”‘)* etc. 

To enable a uniform representation, we have decided to adopt a more modest in- 

terpretation of f”‘, as follows. We shall consider f’” rather as a test, true in states 

(i.e., paths of length 0) from which it is possible to repeatedly carry out computations 

of f infinitely often. The advantage of using this interpretation is that even though 

paths associated with formulas are finite, and hence all CPL operators are applicable 

and retain their usual meaning, it is still possible to make assertions concerning infinite 

computations. 

Let us now define wCPL. As preparation, we need a definition. 

Definition 16. An w-path over a set S is an injinite sequence of elements of S. For a 
set .Y of finite paths, let 9”’ = {pl p? p3 1 / Vi > 1, p, E P}. That is, 9”” is the 

set of j&ire and infinite paths obtained b.y repeatedly .fusiny Cfinite) paths ,from 9 
injinitely often. 
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The syntax is such that oCPL contains all CPL formulas, and in addition if ,f‘ and cr 

arc wCPL formulas, then so are (-f), (,f’*). (,f”‘), (,f‘ g). (,f’ U 9) and (,f n y). hs 

for semantics, oKPL is interpreted over the same models as CPL. Given a model ,U 

and an wCPL formula ,f, p,,(f) is defined exactly as in CPL with the addition of the 

clause: 

P,,(.f”‘) = fi~st((P,,(.f))“‘)’ 

tuCPL can be considered to be a ‘path version’ of RPDL. Indeed. we can extend the 

embedding of PDL in CPL to an embedding of RPDL in wCPL by: (reperrr(/~))’ = 

([i”)“‘. Thus, uCPL’S expressive power is at least as that of RPDL, which is known to 

be high (for example it exceeds that of CTL* [2] ). 

Proving that toCPL is elementary decidable is done by reducing its satisfiability 

problem to that of ARPDL (the automata version of PDL+rqenr). Here, WC omit 

the details, and only mention that this reduction costs at most an exponential in added 

size. Thus, using the fact that ARPDL is decidable in EXPTIME [3], WC have 

Theorem 17. Sati.$iahiiit~~ of oCPL fimdus hrlith ATF Cr {u I . . . CI,, } cm hr dwirid 

in 2EXPTIME 
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