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Abstract

Modeling natural systems is a complicated task that involves the concurrent behavior of various processes,
mechanisms and objects. Here, we describe an approach that we have been taking in our group for several
years, whereby the complexity of the problem is reduced by decomposing a natural system into its basic
elements, which are then reassembled and combined to form a comprehensive, simulatable model of the
system. Our modeling approach allows one to view a natural system at various levels of abstraction, in
a way that makes it possible to zoom in and out between levels. Using statecharts, a high level visual
formalism, we specify the behavior of the basic elements of each level and compile these into executable
code, which is then linked to an animated front-end. At run-time, the concurrent execution of the basic
elements is continuously displayed and provides a dynamic description of the system. We illustrate this
approach by modeling aspects of three biological systems: development of the mammalian pancreas; the
differentiation of T cells in the thymus; and the dynamic architecture of a lymph node. We compared each
model’s behavior with experimental data and also reproduced genetic experiments in silico. Interestingly,
certain behavioral properties that were not explicitly programmed into the model emerge from concurrent
execution and correspond well with the experimental observations.
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1 Introduction

An ambitious and long-term goal is to comprehensively model an entire organism,
which can be viewed as a very complex system with many interacting concurrent
objects [13]. We describe here our approach to such modeling, developed in our
group for the past several years. As a first step towards an in-silico organism, we
have reduced the complexity of the problem by modeling particular organs of the
complete organism [4]. We then can combine the various organs concurrently to
discover how they act in concert to form and drive an organism. Note that any
organ is itself a compound element, with many internal concurrent processes and
mechanisms. We reduce the organ’s complexity by modeling its basic concurrent
elements, molecules and cells. Again, however, each cell has many concurrent sub-
cellular elements (e.g., the nucleus) that drive its development and its life history.
Figure 1 illustrates these levels of abstraction in natural systems. The levels exist
concurrently, of course, and, in addition, each level consists of many concurrent
manifestations of its basic elements. We deliberately leave open both ends of the

Fig. 1. Various levels of abstraction in biological systems.

pyramid to indicate that the pyramid is incomplete and can be extended in both
directions. Downwards, we may zoom in and model gene expression and protein
activity using a variety of mathematical and computational tools (for example,
see [3,19,25,26,27]). Such extensions address the task of modeling the behavior of
many concurrent molecules as they are expressed in the cell and interact over time.
Conversely, we may zoom out and add upper levels to the pyramid. Thus, we can
model concurrent interactions between different organisms, not necessary of the
same species, in a population. A comprehensive model of a mouse, for example,
may be used to specify the interactions within a population of mice and may help
in understanding how the population behaves under various circumstances, such as
starvation.

In this paper, we focus on two levels of abstraction — the cell and the organ —
and describe an approach to specify their concurrent behavior using high-level vi-
sual formalisms. The specifications are compiled into executable machine code and
enable concurrent execution of objects. Moreover, the generated program is linked
to an animated front-end that visualizes the behavior of the concurrent execution in
real-time. We illustrate this approach by discussing briefly models of three different
biological systems, with different characteristics and behaviors, that were developed
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in our group over the last few years. One of our models, pancreatic organogenesis
[30], captures cells cooperating dynamically to form an organ. The other two, mat-
uration of T-cells in the thymus gland[6] and development of the lymph node[31],
simulate how cells behave in a mature organ. The models were tested by comparing
computer executions with previous investigations, including histological images, ex-
perimental data, and theoretical models. Furthermore, we tested the models using
i silico knock-out experiments in which we disabled elements in the model and
studied the effect on the system. Interestingly, some unexpected behavioral proper-
ties emerged from the simulations at run-time. These emergent properties were not
explicitly programmed by us, but are a consequence of the concurrent execution of
basic elements with identical specification. Here, we focus on emergent properties
at the level of the organ, however the emergence is identified across different levels
of abstraction, as discussed in [4].

2 Tools and Methods

To model the concurrent mechanisms within and between different levels of abstrac-
tions of natural systems, we use the visual formalism of statecharts [12,16] as it is
implemented in the Rhapsody tool [33]. Statecharts define behavior using a hier-
archy of states with transitions, events, and conditions, and, using Rhapsody (or
other similar tools) Statecharts can be compiled into executable reactive machine
code (for example, in C++).

By its nature, the language of Statecharts enables the specification of orthogonal
state components within a statechart. Each component specifies one parallel aspect
of the behavior of the object. At run-time, one state in each component is defined as
an active state — that is the current state of this component. Thus, the state of an
object is identified by the set of active states of its components. As the simulation
advances, various events move the active state in each orthogonal component from
one state to another. Thus, concurrent execution is naturally implemented in the
executable code that is generated from the specification.

To visualize the model, we use the idea of reactive animation (RA) [7,15], a
technique that links a reactive executable model with an animated front-end to form
a visualized, interactive, and dynamic model. At run-time, the front-end displays
the simulation continuously and provides the means to interact with it. Initially,
RA was implemented in an ad-hoc fashion, that is, one reactive system engine to
one animation tool. Recently, we have upgraded the implementation resulting in
a generic platform that enables interaction between various tools such as multiple
reactive engines, 3D animation, real-time analysis and more [18].

3 Modeling Concurrency: The Basic Approach

The organ and the cell levels of abstraction involve many concurrent processes and
objects. In this section, we discuss the concurrent behavior of the basic elements
in each level and the way concurrence is specified in our models. Furthermore, we
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illustrate the concurrent execution of specifications across the two levels by a small
representative example of a conceptual biological process.

3.1 Concurrent behavior in a eukaryotic cell

A cell consists of many concurrent sub-cellular and molecular mechanisms that
drive development and function over its lifespan. Each sub-cellular element consists
of many concurrent processes and mechanisms that dynamically drive the cell’s
function over time. We specified behavior for two sub-cellular elements of a cell,
namely the nucleus and membrane. The Cell object itself specifies the behavior
of molecular mechanisms in the cell (e.g., proliferation). This setup formalizes a
cell as an autonomous agent[2] that senses its environment and acts based on its
specification. This setup is illustrated in Figure 2, which shows the elements ac-
companied by schematic versions of their statecharts. Each orthogonal component
in the statechart of the Cell specifies the behavior of a concurrent molecular mech-
anism. Similarly, in the statecharts of the Nucleus and the Membrane, each orthog-
onal component specifies concurrent behavior of a Gene and Receptor, respectively.
The front-end visualizes the Cell and holds relevant structural information. As
the simulation progresses, the animated Cell changes its properties (e.g., color) to
indicate behavioral changes in the object.
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Fig. 2. An autonomous cell Sfrom [30]): Three concurrent elements accompanied by a schematic statechart
for their behavior: the Nucleus, the Membrane and the element, which formalizes behavior of different
molecular mechanisms (e.g., differentiation). Notice the dashed line that indicates orthogonality; i.e., these
state components are independent and act concurrently.

The membrane, the surface that acts as the boundary of a cell, contains many
concurrent receptors, which are responsible for perceiving external signals. The
receptors are located on the membrane and are continuously searching for molecules
in the surrounding environment. Each receptor recognizes specific molecules that
may bind to it, and the binding activates signaling pathways that regulate molecular
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mechanisms in the cell. To model the membrane, we defined each receptor as an
independent component that can be in the Unbound or in Bound state, with the
difference being reflected in the dedicated element on the cell surface in the front-
end; see Figure 3,top.

Similarly, the nucleus, the core of a cell that contains the DNA, consists of con-
current genes that regulate its development. Genes are expressed in response to
various signals in the cell. Genes express proteins that influence the cell’s behav-
ior. To model the nucleus, we took a simplistic approach, defining each gene as
an independent component that can be either Expressed or Unexpressed. The
effect of gene expression is diverse and depends on the process, and is visualized
in different manners. For example, in the case of markers, proteins that determine
differentiation, expression is visualized by color changes of the animated cell; see
Figure 3,middle.

Specification Animation
8
A receptor 0 > 0
Unbound
Lnexpressed
A gene — . " .

A molecular | | ‘l M1~ i .
. G2 G |
mechanism. | '~ =7 ’

Fig. 3. Basic components of a Cell: a receptor, a gene and the cell cycle mechanism.

The Cell itself describes the behavior of various molecular mechanisms (such as,
differentiation, proliferation, death) in a cell during its lifespan. This element also
carries the spatial 3D coordinates of the cell and updates their values at run-time
as the simulation progresses. We specify the mechanisms as orthogonal compo-
nents, which at run-time act concurrently to drive the cell’s behavior over time.
As an example, consider cell proliferation, illustrated in Figure 3, bottom. The
Proliferation component defines a state for each stage of the cell cycle. At run-
time, at the end of the Proliferation stage (when its active state moves to state
M)), the Cell duplicates itself by creating an identical Cell instance (i.e., a new
instance of a cell is created and its active states are set to be identical to its par-
ent). At the front-end, an additional animated cell is created in the appropriate
location, which was calculated during its parent division. Furthermore, at run-time,
when the Membrane senses changes in specific environmental conditions, an event is
generated and blocks expression specific Genes, which are crucial to proliferation.
In turn, the period of specific proliferation stages is extended and the process is
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decelerated. Similarly, expression of other Genes triggers an event, which decreases
the proliferation period and leads to acceleration of the process. Other mechanisms,
such as signaling pathways or differentiation are specified in a similar way.

3.2 Concurrent behavior in an organ

The function and development of an organ are largely dependant on interactions
between cells and their environment. Very often the environment consists of several
tissues that generate various signals (e.g., secreted molecules) and thus affect nearby
cells and tissues. The various objects of the organ, mainly cells, receive the signals
and cooperate to form the organ and drive its behavior over time.

Inspired by ideas from the Turing instability hypothesis [34,35], we formalize
surrounding environments as a 3D grid that overlies the organ. Accordingly, the
space surrounding the organ is divided into 3D grid-cubes with a fixed volume.
Objects, representing different elements in the environment, regulate concentrations
of factors that are stored in grid-cubes. At run-time, autonomous cells sense the
various factors and act accordingly. The animated front-end can then visualize
each element of the model and expose, at run-time, the formation and behavior of
the organ. The visualization is best set up to be consistent with illustrations and
descriptions of the system as depicted in the biological literature.

Figure 4 illustrates, as an example, the setup of the organ level in our pancreatic
organogenesis model [30]. The model consists of three different tissues, the Aorta,
the Notochord and the Mesenchyme, which regulate the development of the pan-
creas; see Figure 4, top. Each tissue is represented as a concurrent object that can
regulate factors in the grid, which is stored in the Extracellular Matrix object;
Figure 4, middle. Thus, as in nature, tissues and cells interact through the extra-
cellular matrix, rather than directly. The animated front-end (Figure 4, bottom)
visualizes the extracellular space by representing each element as an animated figure
that changes its properties over time. For example, the Mesenchyme is represented
as a tissue-like space that changes its color when the Aorta is present.

3.3 Concurrent execution

When the model is executed, the environment is initiated and instances of the Cell
are created and appear in the front-end at their initial positions. Once a Cell
instance is created, one state in each concurrent component of its statechart is set
to be an active state. At this point, the Cells are uniform and their active states are
set to their initial states (designated in the statecharts by stubbed arrows). As the
simulation advances, the cells respond concurrently to various events by changing
their active states accordingly. Hence, the population loses uniformity at a very
early stage of the simulation.

To illustrate the simulation in progress, consider a conceptual process that uni-
fies many biological processes such as signaling pathways or cell migration. Such
a process is stimulated by an external signal that initiates a chain of various in-
teractions across the different levels of abstraction. At the cell level, concurrent
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Fig. 4. Modeling the organ level in pancreatic organogenesis (from [30]). Top: An illustration of the

participating tissues $adapted from [22]). Middle: The interaction scheme of the model. Bottom: The 3D
animated front-end of the model.

independent Receptors on the Membrane sense stimulation signals in their vicinity
(i.e., neighboring grid cubes) and change their active state to Bound accordingly. At
the front-end, the corresponding Receptors reflect the changes by updating their
relevant property. Consequently, events are sent to the Nucleus, which initiates
expression in various concurrent Genes. In turn, the active state in the relevant
components moves to the Expressed state and the corresponding animated cell
changes its color. Eventually, an event is generated and the relevant molecular
mechanisms move to new states. For example, an event may promote a cell to
proliferate. Accordingly, the active state in the Proliferation component in the
Cell becomes M, the cell duplicates itself, and a new animated cell appears in the
front-end.

Zooming out reveals the development of the organ, in which interactions between
concurrently active cells and various concurrent environmental elements drive the
simulation. The concurrently active cells, as a population, act in concert until the
simulated system achieves equilibrium. The front-end visualizes the process and
displays the organ at work. Furthermore, one can analyze a model by reproducing
genetic ablation experiments, in which an organism is engineered to lack one of
its genetic components. Accordingly, we can disable the corresponding element
and examine the effect of the concurrent execution under the mutated condition.
Interestingly, concurrent execution of the basic elements often reveals properties
that were not explicitly programmed into the model. Rather, they emerge from the
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concurrent, execution of cells as a population. In general, since emergent properties
are dynamic properties of a population, it is rather difficult to predict them from
the model’s static specifications. At the animated front-end, which visualizes the
simulation, the phenomenon is often easily seen and can then be carefully examined
against the literature for a biological explanation.

4 Modeling Concurrency: Examples

We have illustrated our approach using three models developed in the last few
years. We briefly describe the models, not in their chronological order. The first
is a model of pancreatic organogenesis in the embryonic mouse [30], in which the
concurrent, execution of pancreatic cells forms the unique 3D structure of the organ
(Figure 5A). The other two models relate to the immune system: one simulates
the differentiation of T-cells in the thymus gland[6] and the other simulates the
development and function of cells in the lymph node[31]. In both immune models,
the concurrent execution describes the maturation of precursor cells in an active
organ (Figure 5B and 5C, respectively).

Fig. 5. Simulation of organ level in three models: (A) pancreatic organogenesis; (B) maturation of T-cells
in the thymus; (C) development of the lymph node.

We studied the three models by comparing simulations against relevant exper-
imental data and reproduced some genetic ablation experiments in silico. As an
example, Figure 6A shows a histological cut of the pancreas (left) and the emerging
structure in the model at approximately the same day (middle). On the right, the
figure shows the result of an in silico experiment, in which the aorta was disabled
leading to a complete lose of structure. Figure 6B shows a similar analysis of the
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thymus model; microscopy image of the wild type thymus (left) compared with the
same area in the model (middle). On the right, the figure shows an in silico ex-
periment, in which the knockout of a single gene leads to a major change in the
behavior of the cell population.

Analysis of the models also revealed some very interesting emergent properties,
which correspond well with biological phenomena. For example, in the pancreas
model, we found that concurrent execution of pancreatic cells gives rise to a prop-
erty that corresponds well with endocrinic clusters found to appear early in the
developing organ in vivo [30]. Similarly, the concurrent execution of T-cell develop-
ment in the thymus led to the emergence of competitive behavior between the cells
[6]. We analyzed and studied these properties and suggested some insights into the
phenomena [8,30].

Fig. 6. Comparison between in silico and in vivo results. (A) Histological section of the developing pancreas
(left; adopted from [20]), the emerging structure of the simulated pancreas (middle), and in silico genetic
ablation of the Aorta (right). Notice the different background color indicating that the aorta is absent. (B)
Microscopic image of the T-cells in thymus (left; adopted from [24]), a snapshot of the simulation (middle)
and in silico knockout of the CXCR4 gene (right).

Recent work in our group, that was also inspired by the aforementioned ap-
proach, has produced a system we call GemCell [1]. It contains a generic statechart
model of cell behavior, which captures the five main aspects of cell behavior (prolif-
eration, death, movement, import and export). This generic model is coupled with
a database of biological specifics (DBS), which holds the information about the spe-
cific cellular system. Modeling a particular segment of biology involves setting up
the DBS to contain data about the specific behaviors and responses of the particular
kinds of cells in the system under description. During execution, statecharts read
in the specific data and the combination runs just as described in the particular
models above. This project is still in its early stages of development.

5 Discussion

The recent decade has seen an increasing effort in modeling natural systems. Our
approach is guided by the observation that natural systems can be beneficially



128 D. Harel et al. / Electronic Notes in Theoretical Computer Science 194 (2008) 119-131

specified as reactive systems [13,14]. This observation has led to quite a lot of work
on modeling biology using various software engineering tools and ideas to simu-
late concurrent behavior in various natural systems. Furthermore, this approach
incorporates cental modeling elements, such as time and stochasticity (e.g., the
simulation in different runs with same initial conditions does not necessarily give
identical results).

In [9], the authors describe computational challenges of systems biology and
discuss various approaches for achieving them. Further motivation for such a com-
putational approach for modeling natural systems is given in [28]. A detailed dis-
tinction between the computational and mathematical approaches is given in [10],
where the term ezecutable biology is used to describe kinds of modeling carried out
in our group, and recently also elsewhere.

[38] provides a model for eukaryotic cell in which UML class diagram was used
to formalize the relations between a cell and its sub-cellular elements. The setup
was empowered by specifying behavior of different cell types (e.g., red blood cell)
using the ROOM formalism. Similar approach was employed in [32] to model the
Ethylene-Pathway in Arabidopsis thaliana using statecharts and LSCs. Another
approach for modeling is described in [11], where hybrid automata were employed to
model the Delta-Notch mechanism, which directs differentiation in various natural
systems. This model reproduces the Delta-Notch decision: cells that express Delta
are surrounded by cells that express Notch.

This paper emphasizes the idea of decomposing a natural system into its concur-
rent components, which are then modeled and reassembled to form comprehensive
emerging simulations of the system. We recognize concurrency along two dimen-
sions: wvertical concurrency between different levels of abstraction, and horizontal
concurrency between the basic elements on the sub-levels. Using this approach, we
can specify behavior for concurrent elements and reassemble them horizontally and
vertically to form a comprehensive model. Using reactive engines, we can then ana-
lyze and execute the specifications and observe the effect of the concurrent execution
of the basic elements as a population.

The approach supports integration with other models that have designed using
different approaches. Thus, for example, we may employ this approach for inter-
facing with the ROOM-based model of a cell in [36,37,38] or the hybrid automata
based model for the Delta-Notch mechanism [11]. Also, within our own group, be-
sides the examples discussed above that use statecharts, we have used the language
of live sequence charts (LSCs) [5,17] to specify biological systems in an inter-object
(rather than an intra-object) way (see [21]). These kinds of models can also be
linked with stratified statechart-based modeling, as we have shown, for example, in
[29].

As the field of computational modeling advances and more biological systems are
modeled, we believe that these and other approaches to model natural systems (see,
for example, [23]), may serve as basic elements in the effort to model a complete
organism (see figure 7).
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Fig. 7. Towards an in silico organism: three reactive animation models of different organs in a mouse. Top:
T-cell maturation in the thymus. Bottom left: Pancreatic organogenesis. Bottom right: Development of a
lymph node.
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