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Abstract. For an arbitrary programming language with nondeterminism to be implemen:able, the
existence of co.aputation trees modelling the possible changes in state in the course of a compu-
tation is postuiated. A general definition of what constitutes an execution method is then presented.
Falling naturaiiv out of these ideas is the correspondence between execution methods and total
correctness, in that different properties a:e required of a program to be correct when diffzrent
methods are adopied. We describe a variety of plausible methods of execution falling under the
general definition and single out four parti 'ular ones. The arguments made are then illustrated by
analysing the properties required by Dijkstra of guarded commands in view of these four metheds.
We conclude that a general approach such as thai suggested here seems to be needed for dezling
with programining languages and execution methods other than the particular ones ireated by
Dijkstra.

1. Imntroduction

The main objective of this paper is the presentation of a convincing argument to
the extent that, contrary to the case with deterministic programs, the concept of a
nondeterministic program being totally correct depends heavily upon the way in
which such a program is ¢xecuted.

In general, the possibilities associated with the behavior of a nondetermiristic
program in some state can be collected in a computation tree, the nodes of which
are labelled with states. The root is labelled with the start state and the leaves,
if any, either with final states, i.e., states in which the program can terminate, or
with some indication of failure. It is, of course, possible that the tree will also
contain infinite paths. .A branching point in the tree indicates that the program
permits a nondeterministic choice between the computations associated with
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176 D. Harel

each branch. We postulate the existence of such a tree for eveiy program and
every possible sta state, in any implementabie nondeterministic programming
language.

It is not at all clear, however, how a single coi.;utation is extracted from such a
‘ree or, for ;hat matter, what a computation is. One can envision a mechanism
following a path from the root down the trez, keeping track of the changes in states,
and choosing (say at random) how to branch at each branching poirt. One can also
envision a mechanism with access to more than one processor, following some of the
alternatives of a branch point in parallel.

In Section 2 we present a general definition of an execution method (avoiding
questions of practicality, efficiency, etc.) as assigning to each computation tree a set
of possible fraversals. A. traversal can be thought of as 2 path in the tree traced by a
possibly multipie-processor mechanism. An execution of the prggram using such a
method will consist of ‘carrying out’ one of the traversals. Thus, an execution can
succeed, fail, or diverge depending, respectively, upon whether the traversal selected
is of finite depth and has final states, is of finite depth but has no final states, or is of
infinite depth.

Falling naturaily out of this setup is the correspondencc vetween execution
methods and definitions of total correctness, i.e., the property of a program being
guaiaunieed to terminate with the expected results. For example, if no traversal of
infinive depth is associated with a tree there is no need to require that the tree be free
of infinite paths. Accordingly, we define the notion of tota! corr:ct .ess, as being
generic, i.e., parameterized by executicn methods.

The rest of the paper is devoted to the illustration of this geneial anpproach with the
aid of ‘real’ execution methods and a ‘real’ programming language. In Section 3 a
variety of execution methods are described and four particular ones are singled out,
corresponding to four different definitions of total correctness. In Section 4 the
guarded commands programming language of Dijkstra [6] is introduced and the
computation trees of such programs defined. An analysis of the properties required
by Dijkstra of the weakest precondiiion (guaranteeing total correctness) is then
carried out with our four methods of execution in mind. It is skown in Section 5 that
these properties correspond io the most restrictive of the four methods - depth fi1.t
search with no backtracking. In other words, a guardzd commands program which i:
totally correct a la Dijkstra will be totally correct with respect to any one of the four
methods but, in general, not vice versa; a significa..: relaxation of the requirements
for a program tc be totally correct can be achicved by adopting any or:¢ of the other
three. Some of th.e results of Section 5 have been obtained also by Hoare [10]
using his logic of traces, and related work can be found in [1, 15, 16, 17]. The
upshot of Sections 4 and 5 is thai, although the definitions in [5, 6] give rise
to a unique well-defined notion of total correctness for this particular program-
ming language, dealing with other languages or with other execution methods

seems to require a general framework such as that proposed in Sections 2
and 3.
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2. Computation trees, execution methods and total correctness

Let us assume we are given a set S of states. Ve wouid like to think of a
nondeterministic program as being some well-formec expression in some pro-
gramming language, with which, whenever a start state s€ S is selected, a pattern of
possible computation can be associated. This pattern should consist of possitie
changes the state s can go through, triggered by parts of the program. Were the
program deterministic, this computation would take the form of a finite or infinite
sequence S=sg, S1, S2, . . . . 3eing nondeterministic, however, we want to view the
computatior: as a free labeiled with states, the root bsing labelled with s. Branch
points of the tree should correspond to the nondeterministic choices in such a way
that the sequence of states along any path from the root down the tree correspends to
a possible sequence of changes during a computation, i.e., a computation sequence. If
such a path is hinite and terminates in a leaf labelled, say, s’, we should be able to
conclude that it is possible for the program to term:inate in state s’. and if it is infinite
that it is possible for the program to divcrge, i.e., enter an ‘infinite loop’. We must
also provide means for indicating when an sbnormal termination occurs, that is, a
finite computation sequence ending prematurely (e.g., division by zero, false
‘guards’, deadlock, etc.). For the purposes of this paper there is no need to distinguish
between these kinds of abnormalities; we can term any such computation sequence a
failure, and use a special symbol, say F, to label leaves corresponding to the last state
in such sequences.

The understanding of the rest of this paper is dependent upon the reader accepting
our classification of the computations of ner.deterministic programs; infinite ones,
finite ‘ba® mnes and finite ‘good’ ones (in the sequel, respectiveiy, divergences,
failures an~ rmir.ations). This classification has been made, either explicitly or
implicitly, n {2, 7-10, 12, 13]. Accordingly, from now on we will assume that the
semantics «:{ the rondeterministic programming languages we discuss are given in
such a way ' it & computztion tree as described above, and as defined mo~e formally
below, exis:: for any program in any given start state.

Let 3 be some set, and let N be the set of natural numbers. We use u and v to range
over N*,i e., over finite sequences of natural numbers, with A standing for the empty
sequence 4 ‘ree over X is a partial function T:N* > 2, whose domain, dom(T), is
non-¢ p*y «ad satisfies: if ue dom(T) and v<u, then ve dom(T), where < is the
natuial ;- zicographical ordering on N* (e.g. 0101 <01010<01011). If ue dom(T)
‘we say that u is a node of T and is labelled by T(u). A is the root of T. We shall use
standxa rd"'.:rrninglo‘gy for trees, such as path, descendent, etc. For ue dem(T), let
A = {ijuie dom(T)}. Then u is said to be of degree k+ 1, of injinite degree, or a leaf,
respecti «<ly,if A={0,1,2,...,k}, A=Nor A=¢.

Let$ »e afixed set of states, and let F be a symbol not in S. Let o be a program in a
given programming language, and let s € S. The computation tree of « in s, denoted
ct(e, 8), 18 a tree over SuU {F} whose root is labelled by s and in which #' labels icaves
only. In other words, ct(a, s)(A) =s, and if ct(a, s)(u) = F, then u0 ¢ dom(cti.y, s)).



178 D. Herel

Some further notational conveniences for compuiation trees are the following.

1, there is a leaf in ct(e, s) labelled F,
0, otherwise;

1, there is an infinite path in ci(a, §),

loop.. (8) =! - ) ]
* {0, otherwise.

k{a) and Loop(a) of [2], the blind alleys and b(a) of [10],
e n is similar to that
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at each siate either terminating or continuing to compute. We are aware of the
opinion (see e.g., {6, 10]) that, practically speaking, one can res'-ict oneseif to
programming languages for which every program is of bounded nondeterminism,
and indeed Section 4 of our paper is concerned with one such language. This point,
hewever, is coniroversial (see [3]), so we see no reason to exclude other possibilities
from the general discussion. Some ideas on unbounded nondeterminism appear
in [41.

We now want tc capture, in a general way, the intuitive notion of executing a
nondeterministic program « in state s. We would like to think of such an execution as
being induced by some mechanism M which is ‘started’ in state s (a fact indicated, say,
by the contents of part of its memory) and which goes through some process of state
changes until (hopefully) reaching a state s’ € final, (s). Clearly, one way of doing this
is to have M trace a path down ct(e, s) (say the 0-path, A, 0, 00, 000, . . .) starting frcr
the root. We would like, however, to provide for more than these simple single-pa: b
downward traces. For example, we would like to include the cases where M can
traverse parts of the tree backwards (e.g., by backtracking when i. sees something it
does not like, such as an F-leaf), or pursue more than one branch simultaneously.

Motivated b/ the desire: to include reasonable traversal methods rather than by the
need to exclucle unreasonable ones, we have arrived at the definitions presenied

s. For the purpose
paper, however, the definitions suffice. In Section 3 we describe some particular
methods in a manner which is more algorithmic and which points at least to their
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computability; they are all included in the following definition as special cases, as are
the various constructs appearing in [4].

Let T be a tree over .2. A traversal | of T is a tree over dom(T) such th.t

(1) H(A)=A, and

(2) If :i(u) =v and ii(ui) =w, then for some j, either v=wj or w =vj.
The labels of H are to be viewed as the nodes of T. H can be thought of as a
generalized path through T starting from its root; travelling down H along some path
corresponds to a path in the undirected version of T.

Denote by TN the set of trees over N* and by tr(T) the set of traversals of T.
Clearly, tr(T) c TN. Let L be a programming language. An execution method E for L
is a function.

E:LxS->2™

such that for every a and s, E(a, s)=tr(ct(a, s)). In other words, an execution
method 1ssigns to each program and starting state a set of traversals of the
appropriate computation tree. As noted above, we ignore here the question of
feasibilii, of execution methods.

The intuition behind the definition will hopefully become clearer in the next
section. For now it suffices to note that a mechanism M using method E wili traverse
ct(a, s) in a manner captured by some traversal H € E(q, s), the paths of H being
pursued by M simultaneously.

For He E(a, s) and u a node of H, denote by lab(u) the lahel of the node of ct(a, s)
labelling u; i.e.. lab(u) = ct(a, s)(H(u)). Now define

fing (s) = {lab(u)|lab(u) € final, (s) and u is a leaf of H}.

finy(s) is the set of states which are final states of @« when started in s, and which are
‘found’ by traversal H (in the sense that they correspond to the leaves of H).

The total correctness of a program a with respect to input and output conditions P
and Q is, intuitively, the property that, starting in any state satisfying P, « is
guaranteed to terminate properly in a state satisfying Q. In our context P and W will
be taken to be subsets of the fixed sets of states S (s€ S ‘satisfies’ P if s € P), and the
vague notion of being ‘guaranteed to terminate properly’ will be relativized to an
execution method.

Let E be an execution method for L; let a €L, P= S and Q< S. We say that « is
E-totelly correct with respect to P and Q if for every s€ P and for every He L:( 4, s),

(1) there is a bound cn the length of the paths of H, and

(2) finu(s) N Q # ¢.

The intuition is that for a program « to always succeed in achieving Q when sta ‘ted
in a state s € P, any traversal H selected must be ‘traversable’ in finite time, and must
lead to the finding of a final state satisfying Q. Our definition thus isolat=s the
nondeterminism ir: a, by reducing it to the single choice of a traversal. Of course, in
practice the traversal actually chosen might be constructed step by step by making
appropriate choices during the computation. We shall see in the n:xt section that
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many plausible execution methods assign only special, simple Kinds of traversals to
programs, with the result that the property of a being totally correct by that method
can be described quite succinctly in terms of the computation trees ¢f @ and the
conditions P and Q.

The alert reader will no doubt kave some objection to our choice of part (2) in the
above definition, over the more natural

(2) finu(s) # @ A finu(s) = Q.
First, let us say here that the rest of the paper is invariant under this change; in
particular, th.z execution methods we analyze in Section 3 and utilize in 5, have the
property that the total correctness of a with respect to P and Q according to these
methods is the same either way. It is precisely this observation which convinced us to
give the definition which, in general, is the weaker of the twc. Thie definition as stated
will allow us to regard as totally correct with respect to P and Q programs which have
final states in which Q is false, on condition that they also have final states in which Q
is true. This will happen, though, only for very special (an. strange) execution
methods in which some property Q is ‘built-in’, enabling the e::ecution mechanism
itself to check for Q, rather than that check be part of the progrz m. Our point is that
making (2) weak does not prevent us from achieving strong notions of total
correctness; these can always be obtained by limiting the set of traversals as seen in
the next section. However, the reader might feel more comfortable with (2') and is
free to use it instead.

We close this section with a definition of the weakest-preconditior of a program

with respect to an assertion Q. Again, let E be an execution method for L, a € L and
QcS. Define

wpe(a, Q) ={s|s€ S and a is E-totally correct with respect to {s} and Q}.

We note that a is E-totally correct with respect to P and Q iff P< wpg(a, Q).
Consequently, in the remainder of this paper we will investigate the notion of total
correctness via the related notion of weakest precondition. Specifically, the follow-
ing equivalent definition of wpg will be used:

s € wpg(a, Q) iff
(VH € E(a, s))(finy(s) " Q # ¢ and the depth of H is bounded).

3. Some execution methods

Thicughout the rest of ilie paper it will be convenient to identify a tree as a
function, with its graph. In other words, ‘ct(a, s) is infinite’ will replace ‘dom(ct(a, s))
is infinite’, “{(A, ), (0, v)} = ct{a, s)’ will replace ‘ct(c, s)(A)=u and ct(a, s)(0) =V,
etc.

Our first method, which we call depth search and denote by D, is obtained by
imagining a mechanism starting from A, the root of ct(a, s), and proceeding along a
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single path down the tree, making nondeterministic choices at branch points. This
process terminates when any leaf is reached; the label of that leaf is the resulting
state, the computation being a failure i* the leaf is labelled F. The process does not
terminate if the path chosen is infinite, i.e., a divergence.

In terms of the previous section, D(a, s) is the set of ali ‘maximal downward’ paths
frem the root of ct(a, s), i.e., all infinite paths and all paths ending in leaves. For
example, if {(A, S), (i;, Sl), (iliz, Sz), ey (i1 e ik, Sk)}C: ct(a, S) and if il s ik isa !eaf,
then {(A, A), (0, iy), (00, isiz). . . ., (0%, i; - « - ik} € D(a, s).

Let us now characterize the states in wpp(a, Q) and thus :nderstand the meaning
of D-total correctness. Let Q < S. It is clear that for every H € D(e, ), finy(s) is either
empty (if H corresponds to a failure or a divergence) or a singleton (otherwise), and
that

\J fing(s) = final,(s).
HeD(a,s)

Hence, the requirement, for every such H, that finy(s) " Q # ¢, is equivalent to
requring that |fing(s)| = 1, and that the single element of fing(si be an element of Q.
Since any failure or divergence in ct(«. s) would contribute an H to D(a, s) violating
this, it follows that this requirement amounts to requiring that ct(e, s) be free of
failures and divergences, and that, furthermore, all states in final,(s) be in Q. The
requirement that there be a bound on the length cf paths in each He Dia, s) is
subsumed by the above since here H can be unbounded iff it is infinite, iff there is an
infinite path in ct(a, s), i.e., a divergence. To summarize, we have

Lemma 3.1. For every a and Q<S,
wppla, Q) ={s|final, (s) = Q A fail, (s) = 0 A loop.(s) = O}.

In other words, a is D-totally correct with respect to P and Q iff «, started in any
state satisfying P, cannot diverge or fail, and furthzirmore, every possible finite state
satisfies Q. This description of wpp is quite intuitive; using depth search, a path is
chosen ‘blindly’ and following it might lead to a failure or a divergence, or
alternatively, to any one of the final states of « in s.

The second method, a variation of D, s depth first with backtracking, DT. Here too
elements of DT(a, s) will be degenerate, 1-degree trees, i.e., paths. The method is
obtained by imagining a mechanism similar to the previovs one moving down the
tree. Here though, if it reaches an F-leaf it backtracks to the must recent branch
point and pursues a previously unselected alternative to the one it came from. If no
such alternative branch exists it backs up to the next recent point, etc. If it returns in
this manner to the root A, having exhausted all its branches, the procedure terminates
unsuccessfully. This last situation can cccur if and only if ct(e, s) is finite and alt its
leaves are labelled with F.

DT/(a, s) consists of paths of the following three possible types: infizite ones, finite
ones ending in nodes corresponding to termination leaves of ct(a, s), and finite ones
endirg in nodes corresponding to the root. As remarked. the '~**zr case occurs iff
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both others donot. Asanexample, if s € Sand {(A, s), (0, F), (1, 1), (10, s2)} = ci(a, 8)
and 10 is a leaf (here 10 is the sequence consisting of 1 followed by 0), then {(A, A),
(0,0), (00,1), (000,1), (0000,10)}eDT(a,s). Here too, we note that
Ustenries) finu(s) = final, (s) and that for each He DT(a, s), [finu(s)| < 1. Let us now
characterize wppr(a, Q). As before, any infinite pathin ct(a, s) contributes an infinite
traversal to DT(a,s), violating the boundedness property. However, another
phenomenon has the same effect: suppose some node u of ct(a, s) is of infinite degree,
and infinitely many (though not necessarily all) of its sons have the property that the
subtree rooted in them is finite and all of its leaves are labelled F. Since u is reachable
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Lemma 3.2. For every a and QcS,
wppt(a, Q) = {s|final, (s) # ¢ A final, (s) = Q A loop.(s) =

A tla, s) has no c©-failures}.
Since a tree which is of finite nondeterminism cannot have co-failures, we aiso have

Lemma 3.3. For every « of finite nondeterminism and Q< S,

wppr(a, Q) ={s|final, (s) # ¢ A final, (s) = Q A loop, (s) = 0}.

o

These characterizations are also intuitively clear; using backtracking, a failure in
ct(a, s) does not cause a failure in execution and hence fail, (s) = 0 is not required.
Note that, since fail,(s)=0Aloop,(s)=0 implies that final,(s) # ¢, wpp(a, Q)<
wppr(a, Q) for any a of finite nondeterminism.

Many other single-path execution methods are plausible, including methods which
allow backtracking only to some fixed height, or methods of predetermined
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Let us now describe two methods which produce traverszals which are trees (i.e.,
they are not single paths), and which, for programs of finite nondeterminism, will
turn out to be duzl to D and DT. The first, breadtk search, B, is obtained bv imagining
a mechtznism moving down through ct(a,s;, but splitting up and pursuing all
branches encountered simultaneously. The relative speeds of the various processors
assigned to the different paths by the mechanism are assumed not to be known, nor
indeed whether or not the simultaneity is real; it is possible for the paths to be
pursued by advancing a step at a time at some nondeterministically chosen branch.
We do, however, assume fairness of a sort, in that at each moment every possible
path has the property that it will be advanced upon eventually. In other werds, no
path will be followed to an infinite dzpth while another is followed only to a finite
depth. The process terminates when at least one icaf of ct(a, s) is reached.

In order to characterize wpg, we note that B(e, s) will consisi of

(a) precisely one tree, an infinite one,

(b) infinitely many trees of bounded depth, or

(c) finitely many trees of bounded depth,
according to whether

(a) ct(a, s) has no leaves at all,

(b) ct(a, s) has leaves and also an infinite path, or

(¢) ct(a, s) has leaves but no infinite path,
respectively.

The reason there are infinitely many trees in case (b) is that we must account, in
B(a, s), for every possible adiance along the infinite paths before reaching a leaf. For
example, if {(A,s), (1,s"). (0,s1), (00,s5), ..., (05 sy),...}cct(e,s) and 1 is a leaf,
then for every k, {(A,A),(1, 1), (0, 0), (00,00),..., (0, 0}eB(a,s), but, say,
{(A, 1), (0, 0), (00, 00),.. .., (0%, 0“)} ¢ B(a, s). Hence, in order to satisfy the boun-
dedness requirement for every H € B: a, s), we must require that ct(e, s) has at ieast
one leaf; equivalently, fail,(s)=1v final,(s)#¢. In this case we also have
UneBas) finu(s) = final, (s). Note now that for every s’ € final,(s) there is an He
B(a, s) such thot finy(s) ={s}. Also, if ct(a,s) has an F-ieaf, then there is an
H € B(a, s) such that finy(s) = ¢, e.g., a traversal with one leaf corresponding o that
F-leaf. It follows from these remarks that fing(s)"Q# ¢ for every 1€ B(a,s)
reduces to requiring that fail, (s) = 0 A final, (s) = Q. And so we have:

Lemma 3.4. For every a and Qc S,
wps(a, Q) ={s|final, (s) # ¢ A final, (s) = Q A fail, (s) = 0}.

The intuition here is also clear; the breadth search method is fair, that is, an infinit:
path will never be taken if the tree has at least one leaf. On the other hand, since
F -leaves are lcaves and cause a traversal to terminate unsuccessfully, they have to by
outlawed.

The latter problem can be eliminated from the breadth search method in a way
analogous to the overriding of F-leaves in depth search by backtracking. Here we
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simply ignore F-leaves, terminating our breadth search only upon reaching a non-F,
i.e., a termination leaf. Otherwise, this method, which we call breadth search with
ignoring, BG, is the same as B. In order to characterize wpsg, note that case (a) above
c—an also occur when ct(a, s) has infirite paths but has only F-leaves. We leave the
reader to convince himself that whenever final, (s) # ¢, each He BG(a, s) will be of
bounded depth and finu(s) # ¢. Hence, all we need in additior, to ensure the
properties required of the weakest precondition is final, (s) = Q (for :he same reasons
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Variations of breadth search are also possible, in which the numtber of processors
available is limited, as in k-breadth search, kB. Every traversal in kB(a, s) has no
niore than k paths. Also, combinations of depth and breadth sc.arch are possible, say
by taking 2-breadth search and allowing backtracking on reoching F-leaves. On~
might also z'low a ‘clever’ backtracking feature in which a fina! state s' is tested for
some impor:ani prcoerty Q and backtracking occurs if s'¢ Q. Here Q is ‘built-in’ to
the execution metho  itseli rather than being a property of interest in the contextof a
particular program ounly. We do not further elaborate on these methods here. As
mentioned easlier, through, a more refined definition of what an execution method is
if it is to exclude impractical and useless metl ads which the
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Thus, our four methods are complementary in the sense that besides the reason-
able requirex.2nts on the set of final states of « in s, they represent the four
possibilities of allowing or disallowing failures and divergences. It follows, of course,
that (omitting & and Q) wpp = (WpprNWp> "wpg), and (w
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The reader familiar with dynamic logic (see e.g., [7, 141) will recognize the
correspondence of concepts: final,(s) # ¢, final, (s) = Q, fail, (s) = 0 and loop, (s) =0
are, respectively, sk (a)true, sk[a]Q, skfail, and sk loop, (the latter two from [7]).
Moreover, Lemma 3.3 for example, by virtue of 1t holding for every S, simply states
the following validity:

E (wppr(a, Q)= ({a)true A[a]Q A —1locp.,)).

4. Guarded commands

In this section, a particular programming language, the guarded commands
language, GC, of Dijkstra [5] will be described as a tool for presenting the results of
the next section. The syntax of GC will be defined, assuming a given set 4 of primitive
operations. Then, given an arbitrary set of states S and meanings for the elemnts of 4,
the computation tree, ct(a, s), will be defined for every « € GC and s€S. (The
computation trees of a somewhat more general language, that of regular programs
over 4, have been defined in [7, 8].)

Let A4 be a set of symbols. Elements of 4, denoted by a, b, ..., will be called
primitive programs, and can be thought of as assignment statements. The set of
programs GC is defined inductively as follows:

(1) any primitive program a€ A is in GC,

(2) for any « and B in GC, (a; B) is in GC,

(3) for any Pc<S, R<S and a and B8 in GC,

IFP>a[IR»BFI and DOP-«R~-»BOD

are in GC.

Let an arbitrary set of states S be given, along with an interpretation of the
elzments of 4 as functions from states to states; i.e., ii: S> S is given for every a€ A.
a(s) can be thought of as the state in which one ends up when carrying out program a
in state s. We assume throughout that there is some element in 4, which we denote by
skip, the interpretation of which is the identity function on S.

Intuitively, (a;B) corresponds to a followed by 3. IF P»>al R~ g FI cor-
responds to the program obtained by testing P and R; if P holds & can be execut2d, if
R holds B can, if both hold either « or 8 are executed {(the choice being nond-ter-
ministic) and if neither hold the program fails. DO P+ o 1 R 8 OD corresponis to
repeatedly executing IF P- o 0R - g FI while either P or R (or both) hold, and
terminating properly when neither hold. The reader might want to view it as while
PvR do IF P>a0R-> B Flod. Note that one can generalize by allowing the
elements of 4 to be interpreted as nondeterministic primitive programs, e.g., by
letting (s) = S. However, since GC is presented here merely as an example of a
language and since Dijkstra [5] has as primitive operations only (deterministic)
assignments, we leave it as i is.
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Define the computation trees ct(a, s), fora € GC and s€ S, inductively a- follows:

(1) if a€ 4, then ct(a, s) ={(1, s), (0, &(s))},

(2) for any a, B,€GC, ct((a; B),s) = ctia, s) U{(uv, )| (u, s") € ct(a, s) for some
'S, u is a leaf of ct(a, s) and (v, [)ect(B, s)},

(3) for any P<=S, Rc $ and a, B € GC,

{(As S)a (O’ F)}9 SE Pu R,
ct(a, s), seP-R,
ct(IFP->a0R~- 8 FL s)=1{ct(B, s), seR-P

[{(/\, $)}u{(Ou, )|(u, 1) e ct{a, s)}
u{(lu, | (u, Hect(B,s)}, sePNR,

ct(iDOP->a0R->B OD,s)=J A,
n=0

where Ao ={(A, s)} and An.; ={(uv, I)| (1, s") € A, forsome s'e PUR, uis aleaf of A,
and (v, DectIFP->aOR- B FL,s')}.

We now show that this definition for GC conforms to thLe requirements of
computation trees in the previous section.

Theorem 4.1. For any a € GC and s€8, ct(a, s) is indeed a computation tree.

Proof. The only part of the definition of 2 computation tree in Section 2 which is not
trivially verified for the trees of GC is the fact that ct(a, s) is a function, i.e., that if
(u, l) e ct(a, s) and (u, ') € ct(a, s), then ! = I'. This, however, follov’s quiiz easily from
the inductive definition of ct; the two cases where an overlap might have been
possible are wher some (u, s') is present in one tree and, for son.e {v, /) in another,
(uv, 1) is added. In both these cases (i.e., in the definitions for (a; 8) and for A,+1),

(a) u is a leaf of the first tree and hence, for v # A, uv was not a node of that tree at
all, and

(b) for v = A, the label of v in the cecond tree is §', so that (u, §') is simply ‘added’ to
(u, s'), with no effect.

Note that ct(a, s) is of bounded nondetermirism, each node being of degree <2.

The intuition behind programs in GC is described in greater detail in [6]. Failures
occur when an IF statement is reache d and both P and R are ‘false’ in the current state
s, i.e., s g PUR. Divergences occur when the ‘body’ IF P»>a R - FI of a DO
statement can be r-peatedly executed without reaching a state s’ PUR.

Denote by FAIL the always failing program IF ¢ - skip( ¢ - skip FI, and by
LOOP the always diverging progra:: DO S - ckip[] S - skip OD. Note that for every
se S, ctiskip, s) ={(A, 8), (0, )} and ct(FAIL, s) ={(A, s), (0, F)}. Also, ct(LOOP, s) is
an infiite tree with no finite paths.

We close this section with an example of a very simple set of states and primitive
program in GC which will serve uvs in the next section. Define

SN = {(ii j) l ;’ j € N}’
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i.e., the set of ai nairs of natural numbers. Think of (i, j) as being the current values of
‘variables’ x and y. The primitive operations (in 4) that we use are: x< 0, y<«0,
x<x+1 and y«y+1, defined respectively by x< 0 (i, j) = (0, j), y< 0 (i, j) = (i, 0),
xex+1 (1,j)=(@1+1,j), and yey+1(,j)=(,j+1). For any fixed n we let x<n
abbreviate the program (x« 0;x<x+1;...;x<x+1) with n appearances of x «
x+ 1, and similarly for y « n. Thus, e.g., X< n (i, j) = (n, j). Finally, define [x = n] to be
the set {(n, j)|je N} and [y=n] to be {(i, n}|ie N}. In the sequel we will freely use
similar sets such as [x<n].

S. Properties of weakest preconditions

In [S, 6], Dijkstra introduced the language of guarded commands and defined, by
induction on the structure of a, a set wp(a, Q) for every a € GC and Q< S. In the
words of [6]: ““We shall use the notation wp(a, CC) to denote the weakest precondition
for the initial state of the system such that activation of « is guaranteed to lead to a
properly terminating activity leavinug the system in 2 final state satistying the post
condition Q.”” One of the purposes of this section is to illustrate that the key word in
this description is ‘activation’, by analyzing the wp of [ 5, 6] in view of four different
methods of activation, or execviion.

Dijkstra postulated four healthiness properties for weakest preconditions, which
are to hold for every choice of a set of states S, every « € GC and every P. Q<S:

H1: wpla, ¢)=¢,

H2: If P<Q, then wp(a, P) < wp(a, Q),

H3: wp(a, PnQ)=wp(a, p) nwp(a, Q),

H4: (Continuity) If Po, Py, ... are subsets of S such that {Vn)}{P, = Pn.1), then
Wp(a, Unpn) = Un WP(aa P).

Our first result concerns the extent to which these properties define a unique notion
of wp, even for the language GC. It is shown that the weakest preconditions
corresponding to methods D and DT both comply with all these requirements. Next,
we present Dijkstra’s definition of wp(a, Q) for @ € GC, and show that this definition
‘assumes’ method D, in the sense that wp(a, Q) = wpp(a, Q) for every a € GC and
QcS, and for every S, and that in general wp # wpy for X ={DT, B, BG}.

Works related to the results of this section are those of de Roever [15], de Bakker
[1], Wand [17], Plotkin (see [16]) and Hoare [10]. In particular, many of the entries
of the tables in Theorems 5.1 and 5.2 below for methods D and DT, have been
established independently in [10] using a logic of traces (which correspond to
single-path traversals). All the results of this section appear, in somewhat different
form, in [7]. ‘

Returning to properties H1-H4, for X € {D, DT, B, BG} we say that Hi holds of X
if, for every S, @ € GC, interpretations for the elements of 4, and P, Q< §, property
Hi is true when wp is replaced by wpx.
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Theorem 5.1.. Ler 1 in column X mea. that the properties in the corresponding row
hold of X, and let O mean otherwise. Then the following table summarizes the
situation :

D DT B BG
H1-H3 1 1 1 1
Ha4 1 M 0 O

Proof. (i) H1-H3 told of D, DT, B and BG:
We show F 1 and leave H2 and H3 to the reader. Since ferany X € {D, DT, B, BG},

wpx(a, Q) < {s|final, (s) # ¢ Afinal,{s) < Q},
and final, (s) = ¢ is the same as final, (s) = @, it follows that

wpx(a, @) < {s|final, (s) # ¢ A final. (s) = ¢} = ¢.

(ii) H4 does not hold of B or BG, i.e., there is a set of states S, « € BG and
Py, Pi, ... < S such that H4 is not true for B or BG:

Take S =8y and, for every n, P, to be [x=<n], i.e., {(i, j)|j€ . i<n}. Certainly,
P,<P,.1. Now a will be the program ‘set x to any natural number’, which in GC can
be written as

a:((x<0;y«<0); DO ¢ ->skipU[y =0]
> (IFSn~> (y«1)0Sy= (x«x ~1) FI) OD)

(This program, in the terminology of [7, 14] and others, is simply » « 0; (x « x + 1)*;
y< 1.) It can be shown that final, (i, j) ={(k, 1)| k€ N}, and that ‘ail, (i, j) = 0. Both
these remarks are true for anv (i, j)eSn, and in addition, {_,P,=S,, so that
final, (i, j) < Un P,and wa(a: Un Po)= wpsala, Un P.) = Sn. However, wps(a, Py) =
wpsa(a, P,) = ¢ for every n, the reason being that {(k, 1)| k € N}is a subset of no set of
the form [x <n]. Hence,

U wps(a, P,) = U wpsala, Pn) = ¢.
(iii) H4 holds £o1 U and DT

Lzt Py, Py, ... be subsets of S such that (¥n) (F,<P,.1). The claim will follow
immediately from the fact thart

{ s|loop,(s) =0 A final,(s) = U P,.} =|J{s|loop.(s) =0 A final, (s) = P,}.

Clearly, the first set contains the s=~cund. Let s be a state in the first set. For
s' e final,, (s), denote by k(s') the least integer i such that s’ ¢ P;. Sinice ct(a, s) is of finite
nondeterminism and has no infinite paths, by Konig’s infinity lemma it is finite.
Hence so is final,(s). Thus, by the nondecreasing property of {P,}, letting no =
max{k(s') |s' ¢ final, (s)}, we have final, (s) = Po,-
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We now present the inductive definition of wp(a, Q) which was given in [5]. We
rewrite the definition in the form of equivalences, so that proving wp = wpx for some
X e {D, DT, B, BG} will amount to showing that these equivalences hoid when wp is
replaced by wpx. Let P stand for S—P.

El: wp(skip, Q)=Q,

E2: wp(FAIL, Q)=¢,

E3: wp(a, Q) ={s|a(s)eQ} forac4,

E4: wp((e;8), Q) =wp(a, wp(8,Q)),  _

ES: wp(IFP->aOR-B8FIL Q)=(PUR)N(Puwp(a, Q) (R uwp(8, Q)),
E6: wp(DOP-aOR-BOD,Q)=U>,H.

where Ho=PnRNQ, and H,.. =Houwp(IF P->aOR- 3 FI, H,).

Theorem 5.2. Let 1 and 0 have meanings as in Theorem 5.1. Then the following table
summarizes the situation :
D DT B BG
E1-E3 1 1 1 1
E4-E6 1 0

Proof. (i) E1-E3 hold for D, DT, B, BG:

(E1): By definition, ct(skip, s) ={(A,s), (0,s)} so that finaly,(s)=s and
100Dskip(s) = failgip(s) =0. It follows that wpx(skip, Q)= {s|finalyp(s) = Q} =
{s|seQ}=Q.

(E2): By definition, ct(FAIL, s) = {(A, =}, (0, F)}, so that finalgaL(s) = ¢, implying
also wpx(FAIL, Q) = ¢.

(E3): Since loopa(s) = fail,(s) = 0 and final,(s) = a(s) for every a€ 4, E3 follows.

(ii) E4 does not hold for DT, B or BG:

Again, let S=8y, Q=S andlet a be IF S > (x < 1)0S - (x « 2) FI. For each of DT,
B and BG we define a program 8 € GC such that «, 8 and Q violate E4.

(DT): Let B be IF [x=1]-skip0[x=1]-skip Fl. Note that ct(a, (i, j)) has no
failures or divergences and that final, (i, j) ={(1, j), (2, j)}. Consequently, final..g)
(,))={(1,j)} and 100pw.s(i,j)=0. Since finala.(,j)=S it follows that
wppr((e; B), Q) =wppr((a; B), S) =S. However

wppt{a, Wppr(B, S)) =
= {s|final, (s) # ¢ A loop..(s) = 0 A final, (s) =
{s'|finalg(s") # & Aloopg(s’) = 0 A finalg(s') = S}}
={G, P, i), 2, )} <k, D|finalg(k, ) = o1} = &.

The last equality follows from finalg (2, j) = ¢.

(B:) Let 8 be DO [x = 1]-skip{[x = 1]-> skip OD. Similarly to the previous case
one can show that since finalg(1, j)=¢ but failz(1, j) =0, wps((a; 8), S) =S but
wpa(a, wpa(B, S)) = .
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(BG:): Let B8 be any one of the above two. The rest of the reasoning i: similar.

(iti) E4 holi: for D: o i i

We first state che following two facts which can easily be established forary 5,s €5
and a, B, € GC, using the definition of ct(a; B, s):

100P(:p)(s) =0 i loopa(s) = 0 » (Vs' € final, (s))(loopg(s') = 0),
fail,.py(8) =0 iff fail,(s) = J A (Vs' e final,(s))(failg(s’) = 0).

Now sewppi(a;B),Q) ift (final,.p)(s)# @ Afinala,e)(s) = QAfail,,e)(s)=0n
100p(a:8) = 0) iff

A (Vs' € final, (s))(finalg (s') = Q A failz (s') = 0 A loopg(s’) =), (1)
We have to show that (1) holds iff
final, (s) # ¢ A fail,(s) = 0 Aloop,(s) = 0 A (Vs' € final,, (s))(finals (s') # ¢
Afinalg(s') © Q A failg(c") = 0 A loopg(s’) = 0) (2)

iff se wpp (a, wpp(B, Q)). All that is needed for this is to show that, under the
assumption (1), finalg(s') # ¢ foreverys' € final, (s). This follows from the fact that for
each s’ € final, (s), ct(B, ¢') is a nonempty tree free of failures and diveruzences.

(iv) ES does not hold for DT, B or BG:

Taking S =Sn, P=R =Q =S and «a to be skip, we let 8 be FAIL., LOOP or either
of these for cases DT, B and BG respectively. In each case the left 1aud side of ES is
equal to S and the right to ¢. We omit the details.

(v) E5 holds for D:

Straightforward using the definition of ct(IF P->aC R - 8 FI, s).

(vi) E6 does not hold for DT, B or BG:

Here, too, there is a general structure to the three counter-examples. Let S =Sy
and Q = §. Taking y to be FAIL for the DT case, LOOP for the B case and either for
the BG case, we define our program § :DOP->a0R -8 OD to be DO [x=0]-»
xex+3)0x=2]>(xex+1;IF[x=1]-> (x«x+1)0[x# 1]> y FI) OD. We claim
that for any jeN, (0, j) € wpx(8, S) but (0, j) & . H,, where Xe {DT, B, BG} and 6
contains the appropriate version of y. Certainly, (3, j)€ finals(0, j), and trivially
finals (0, j)=S. For case DT, there is no divergence in ct(, (0, j)) because x will
‘reach’ the value 3 in at most three iterations and vy is FAIL, not LOOP. For case B,
<t(d, (0, ) is failure-free because [x = 1]u[x # 1]=S and y is LOOP, not FAIL. For
the BG case these remarks are irrelevant. It follows that (0, j) € wpx(8, S). Now
Ho=[x#8]n[x>21nS={(, j)|i>2}, so that (0, j) & H,. For (0, j) to be in H;, say
for case D, we would have had to have finals (0, j) = Ho, where 81F stands for 8 with
IF - - - Fl replacing DO - - - OD. However, it is clear that (by carrying out x«x+1
twice) we have (2, )¢ finalsir(0, j), whereas (2, j)2 Ho. Orie can now show, by
induction on k, that if s € Hy and k =2, final;x(s') # ¢ for every s’ € finalyg(s), where IF
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stands for an arbitrary program of the form IF P-»>« 0 R -» g8 FI. However, in our
case we observe that (3, j) € finals(0, j) but finals(3, j) = @, so that for any k=2,
(0, j) 2 H,.

(vii) E6 holds for D:

We will show in detail only one direction of this rather tedious prooi, the other,
being very similar, is omitted. Let = denote an arbitrary program of the form IF
P->a0OR->BFI, and let #* stand for DOP->aOR->8 OD. Assume s:€
wpp(w*, Q) for some Q = S. We have to show that for every suchs, s € H, for some k
(Note the difficulty here: while there is a correspondence betweer: Ag, A;, ... and
Hy, Hy, ... in the definitions of ct(#*,s) and in E6, this correspondence is not
perfect; A;.; corresponds to adding an iteration 7 to A; as a ‘suffix’, i.e., this »r is the
last iteration in A;. 1, while in H;,; = is added as a ‘prefix’, i.e., as the first iteration in
H;.:.) Here we are using Hy to denote the set obtained in E6 with wpp replacing wp.
It is an easily-proved fact that the H; are nondecreasing, in the sense that H; < H;.,
for every i. Now since s € wpp(7™*, Q), ct(7*, s) is finite, and we can denote by k(s)
the least integer p such that ct(=z*, s) = U:=o A,, where the A, are as in clause (3) in
the definition of ct.

Let us now show that for every s € wpp {7 *, Q), s € Hg(), by induction on k(s). If s is
such that k(s) =0, then ct(7*, s) = Ao ={(A, s)} ar- hence final,«(s) = {s}, so that by
se wpp(7*, Q) we know thatse Q. Howeve:, from A; = ¢ itis evidentthatsg PUR.
And so for k(s) =0, se PARNQ=H,. Assume that s wpp(7*, Q), that k(s) >,
and that the claim holds for every s’ with k(s') <k(s). Let s’ be an arbitrary element of
final..(s). (There is at least one such s’ by the assumptior s that k(s) = 1 and loop+(s) =
fail .+(s) = 0.) Thus, there is a leaf u of ct(, s) labellec with s. Clearly then, by the
definition of ct, ct(=*,s)={(v,)|(uv, )ect(n*,s)}. We know that ct(m*,s) is
failure-free, and divergence-free, hence so is ct(w*, s'). Moreover, this implies thai
final,«(s') # ¢. Finally, final,+(s') = final «(s) = Q. Putting these together we have
s'e wpp(7*, Q). The characterization of ct(#*,s’) above implies that k(s') <k(s),
hence by the inductive hypoth.zsis s’ € Hy). But by our remark above concerning the
sets Hy. since k(s')<k(s)—1, it follows that Hy)< Hy)-1. We have shown that
final,,(s) = Hy,-1. Since final . (s) # ¢ and loop,+(s) = fail ,(s) = O (from which we get
loop . (s) =fail,.(s) = 0), we obtain s € wpp(m, Hys)-1) and henre se Hyy).

This completes the proof of the theorem.

Thus,Theorem 5.1 points to the fact that H1-H4 arz not adequate for singling out
a particular notion of total correctness, and Theorzm 5.2 shows one execution

method which, for the language GC, is ‘behind’ Z1-E6, in the sense that its
corresponding notion of total ccr.zctness is the samc as that defined by Ei-E6.

6. Conclusions

Our results in Section 5 can he viewed as p:oviding rigorous support of the
intuition behind the introduction of E1-E6 as rules for ‘constructing’ totally correct
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programs in Dijkstra [6]. We have shown that at least one reasonable execution
method is consistent with the unique notion of wp defined by E1-E6. However, it
seems that in order to be able to define wp for other, perhaps more generai
programming languages, or to be able to define wp’s corresponding to other methods
of execution, a general framework such as that suggested in Section 2 and 3 is
necessary.
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