
Theoretical Computer Science 13 (198 1) 175-l 9%
@ North-Holland Publishing Company

avid IX**
?%M T.J. Watson Research Center, Yorktow Heights, hTY 10598, U.S.A.

tqmmunicated bv A. Meyer
.,.;eived Pine 1978

Revised April 19’79

AI&art. For an arbitrary programming language with nondeterminism to be implementable, the
existence of ct;.nputation trees modelling the possible changes in state in the course of a compu-
tation is postulated. P general definition of what constitutes an execution method is then presented.
Falling naturally out of these ideas is the correspondence between execution methods and total
correctness, in that different properties aYe required of a program to be correct when d#erent
methods are adopted. We describe a variety of plausible methods of execution falling under the
general definition and single out four parti ular ones. The arguments made are then illustrated by
analysing the properties required by Dijkstra of guarded commands in view (of these four methods.
We conclude that a general approach such as that suggested here seems to be needed for dealing
with programming languages and execution methods other than the particular ones treated by
Dijkstra.

The main objective of this paper is the presentation of a convincing argument to
the extent that, contrary to the case with deterministic programs, the concept of a
nondeterministic program being totally correct de;?ends heavily upon the way in
which such a program is executed.

In genera!, the possibilities associated with the behavior of a nondeterministic
program in some state can be collected in a cirmputak~~ tree, the nodes of which
are labelled with states. The root is labelled with the start state and the leaves,
if any, either with Enal states, i.e., states in which the progralm can terminate, or
with some indication of failure. It is, of course, possible that the tree wi?l
contain infinite paths. A branching po:in!t in the tree indicates that the p
permits a nondeterministic choice between the computations associat

*Part of this work was done while the author was with the Laboratory for Computer Science at the
assachusetts Institute of Technology, and was sup

19754.
**Current address: Department of Applied Mathematics, 7.7ae eizm4rnn Institute of Science,

Rehovot, Israel.

1’76 D. Hard

each branch. We postulate the existence of such a tree for eveij program and
every possible sta*..*T state, in any implementable nonc?eterministic

is not at all clear, however, ho*\v a single coi+.rtation is extracted from such a
‘ree or, for .;hat matter, what a computiltion is. One can envisiobn a mechanism
following a path from The root own the tree, keeping track of the changes in states,
and choosing (say at random) how to branch at each branching poirt. One can also

envision a mechanism -with access to more than one processor9 following some of t
alternatives pf a branch point in parallel.

In Section 2 we present a general definition of an execution method (avoiding
questions of practicality, efficiency, etc. j as assigning to each computation tree a set
of possible traversds. A traversal can be thought of as a path in the tree traced by a
possibly multiple-processor mechanism. An executim of the pr’ using such a
method wil! consist o ‘carrying out’ one of the traversals. Thus, an execution can
succeed, fail, or diverge depending, respectively, upon whether I he traversal selected
is of finite depth and has final states, is of finite depth but has n12 final states, or is of
infinite depth.

Falling naturally out of this setup is the correspondence between execution
methods and de nitions of total correctnes:, i.e., the property of a program being
guaiahieed to terminate with the expected results. For example, if no traversal of
intinire depth is associated with a tree there is no need to require that the tree be free
of infinite paths Accordingly, we define the notion of tota: corr:ct iess, as being
generic, i.e., parameterized by execution niethods.

The rest of the paper is devoted to the illustration of this general approach with the
aid of ‘real’ execution methods and a ‘real’ programming language. In Section 3 a
variety of execution methods are described and four particular ones are singled out,
corresponding to four different definitions of total correctness. In Section 4 the
guarded commands programming language
computation trees of such programs defined.

of Dijkstra [S] it* introduced and the
th,e properties required

by Dijkstra of the weakest precondition (guaranteeing total correctness) is then
carried out with our four metho s of execution in mind. It irj shown in Stiction S that
these properties correspond io the most restrictive of the four methods - depth finat
search with no backtracking. n other words, a guarded commands program which i<
totally correct a la Dijkstra will be totally correct with respect to any one of the four.
methods but, in neral, not vice versa; a significa;.; relaxation of the requirements
for a program to totally correct can be arChj\“~~~ , ,d by adopting any one of the other
three. Some of tlke results of Section 5 have been obtained also by

Total correctness of nondeterministic pragrizms 177

et us assume we are given a set S of skztes. We wouid like to t of a
eterministic program ;as being some well-formeG expression in some pro-

gramming language, with which, whenever a start state s E S is selected, a pattern of
possible computation can be associated. This pattern should consist o
changes the state s can go through, triggered by parts of the program.
program deterministic, this computation would take the form of a finite or infiniae

sequence s = SQ, $1, s2, . . e . Being nondeterministic, however, WC want to view th
computation as a tree label,,, “M with states, the root being labelled with s. Branc
points of the tree should correspond to the nondeterministic choices in such a way
that the sequence of states along any path from thi= root down the tree corresponds to
a possible sequence of changes during a computation, i.e., a CO 4!ta tion sequence. If
such a path is hnite and terminates in a leaf labelled, say, s’, . should be able to
conclude that it is possible for the program to terminate in state s’- and if it is infinite
that it is possible for the program to diverge, i.e., enter an ‘infinite loop’. We must
also provide means for indicating when an abnormal termination occurs, that is, a
finite computation sequence ending prematurely (e.g., division by zero, false
‘guards’, deadlock, etc.). For the purposes of this paper there is RIO need to distinguish
between these kinds of abnormalities; we can term any such computation sequence a
failure, and use a special symbol, say F, to label leaves corresponding to the last state
in such sequences.

The understanding of the rest of this paper is dependent upon the reader accepting
our classification of the computations of nor,Jeterministic programs; infinite ones,
finite ‘has” yes and finite ‘good’ ones (in the sequel, respectiveiy, divergences,
failures ac * . rmirations). This classification has) been made, either explicitly or
implicitly, in Q, MO, 12, 131. -Accordingly, from now on we will assume that the
semantics 6.~7 ihe r ondeterministic programming languages we discuss are given in
such a way 1, _ .:jt 8 computation tree as described above, and as defined more formally
below, exis; 5 for any program in any given start state.

Let C be some set, and let N be the set of natural numbers. We use u and v to range
over N*, i e+? i>ver finite sequences of natural numbers, with h standing for thz empty
sequence .% free over 2 is a partial function T: N* + .E, whose domain, domIT), is
non-6 L +p! a~ i:! I - d satisfies: if u E dam(T) and v -C u, then v E darn(T), where -c is the
nattlhai a~:;~Gcographical ordering on N* (e.g. 0101 i 01.010 i 01011). If u E Jsm(T)
ve say t9a.t u is a node of T and is labelled by T(u). .a is the PQO

stand;! rr;l’ t-z~kyqlo~~ for trees, such as path, descendent, etc. d

A = (i i wi E dom(T)}TThen u is said to be of degree k -t- I, of injkite degree, OF n beak
respecti (&a y, i 4 ‘f A={O, 1,2,. . . , k}, A= N or A= 4.

be a symbol not in
s E S. The compute tion tree

§a.
only. In other words, ct(a, s)(A) = s, and if ct(cu, s)(u) =

Some further notational conveniences for computation trees are the following.

final, (s) = {t 1 t E S and t labels a leaf of ct(cu, s)};

fail, (s) =
1, there is a leaf in ct(ac, s) IGabelled
0, otherwise;

loop, (s) =
1, there is an infinite path in ct(a, s),
0, otherwise.

The concepts of fall, and loop, correspond, respectively, to t e derivatives and
coderivatives of [9], ock:cw) and Loop(a) of [2], the blind alle
andfl((x) and dv(a), kttei also [a I’, of [81. The present nctatio
used in [7]. A prograin Q! is said to be of finite nondeterminisrrl in s if each node of
ct(a, s) is of finite degree; it ks said to be of bounded nondeterminisru- in s if there is a
constant k such that each no6je of ct(a, s) is of degree at most k; it is said to be of finite
nondeterrninism if it is of finite nondeterminism for every s c: S; it is said to be of
bounded nondeterminism if there is a k such that for every s E S each node of &a, S) is
of degree at most k, Note that even the strongest of these propel-ties, namely thF.t a) is
of bounded nondeterminism, does not preclude the possibility of dom(ct(ar, s)) being
infinite, or indeed of’ final, (s) being infinite; it might be possible (see Section 3) for a
program to be able to go through an infinite sequence of states with a (2-way) choice
at each state either terminating or continuing to compute. We are aware of the
opinion (see e.g., [6, IO]) that, practically speaking, one can res” tict oneself to
programming languages for which every program is of bounded nondetermlnism,
and indeed Section 4 of our paper is concerned with one such language. This point,
however, is controversial (see [3]), so we see no reason to exclude other possibilities
from the general discussion. So e ideas on unbounded nondeterminism appear
in [4].

We now want to capture, in a general way, the intuitive notion of executing a
nondeterministic program Q! in state s. We would li:ke to think of such an execution as
being induced y some mechanism h is ‘started in state s ia fat t indicated, saly,
by the content of part of its mem which goes through some process of state
changes until (hopei’ully) reaching a state s’ E final, (s). Clearly, one way of doing ohi&

trace a path down ct(ac, s) (say the O-path, A, 0, 00,000, . ,, .) starting frc
would like, however, to provide for more than these simple sing1
aces. For example, we would like to include the cases where

e have arrived at the definitions presemcd

Total correctnesT of nodeterministic programs a79

computability; they are all included in the Sollowing de ecial cases, as are
the various constructs appearing in 141.

Let T be a tree over X. A traversal “3 of T iis a tree over dom(

and IP(ui) = w, then for some j, either wjorw=vj.
The labels of are to be viewed as the nodes of T. can be thought of as a
generalized path through T starting from its root; travelling down along some path
corresponds tcJ a path in the undirected version of T.

Denote by TN the set of trees over N* and by tr(T) the set of traversals of T.
Clearly, tr(T) c T’N. Let L be a programming language. An execulion method E for L
is a function.

such that for every a! and s, E(cw, s) c tr(ct(cu, s)). In other words, an execcztion
method Issigns to each program and starting state a set of traversals of the
appropriate computation tree. As noted above, we ignore here the question of
feasibilii, of execution methods. .

The intuition behind the definition will hopefully become clearer in the next
section. For now it suffices to note that a mechanism M using method E will traverse
ct(a, s) in a manner captured by some traversal HE E(cu, s), the paths of H being
pursued by M simultaneously.

For HE E(cu, s) and u a node of H, denote by lab(u) the label (of the node of ct(ar, s)
labelling u; i.e., lab(u) = ct(cr, s)(H(u)). Now define

finH (s) - [lab(u) 1 lab(u) e final,(s) and u is a leaf of H}.

finH(s) is the set of states which are final states of ar when started in s, aild which are
‘found’ by traversal H (in the sense that they correspond to the leaves of H).

The total correctness of a program a! with respect to input and output conditions P
and Q is, intuitively, the property that, start@ in any state satisfying P, a is
guaranteed to terminate properly in a state satisfying Q. In our context P and W will
be taken to be subsets of the fixed sets of states S (s E S ‘satisfies” P if s E P), and the
vague notion of being ‘guaranteed to terminate properly’ will be relativiz& to an
execution method.

Let E be an execution method for L; let CY E L, P c: S and Q 6 S. We say that a! is

E-tot&y correct with respect to P arze J Q if for every s E P and ior every’ E L(3, s),
(A) there is a bounE 2 on the length of the paths of H, and

(2) finds) n (2 # 4.
The intuition is th

in a state s E P, any traversal ?? selected must be ‘

many plausible execution methods assign only special, simple kinds of traversals to
programs, with the result that the property of cy being totally correct by that method
can be described quite succinctly in terms of the computation trees of a and the
conditions P and

The alert reader will no doubt have some objection to our choice of part (2) in thle
above definition, over the more natural

(2’) firm(s) f 41 A finH(s) c Q.
First, let us say here that the rest of the paper is invariant under this change; in
particular, tt,z execution methods we analyze in Section 3 and utilize in 5, have thie
property that the total correctness of a with respect to P and Q according to these
methods is the same either way. It is precisely this observation which convinced us to
give the deenition which, in general, is the weaker of the two. The definition as stated
will allow us to regard as totally correct with respect to P and Q programs which have
final states in which Q is false, on condition that they also have final states in which Q
is true. This will happen, though, only for very special (an.l strange) execution
methods in which some property Q is ‘built-in’, enabling the er:ec tion mechanism
itself to check for Q, rather than that check be part of the progrz m. Qur point is that
making (2) weak does not prevent us from achieving strong notions of total
correctness; these can always be obtained by limiting the set of traversals as seen in
the next section. However, the reader might feel more comfortable with (2’) and is
free to use it instead.

We close this section with a definition of the weakest-precondition? of a progra:m
with respect to an assertion Q. Again, let E be an execution method for L, CY E L and
Q c S. Define

wp&, Q) = {s 1 s E S and Q! is E-totally correct with respect to {s} and Q],#

VVe note that a! is E-totally correct with respect to P and Q iff Per: ,wp&, Q).
Consequently, in the remainder of this aper we will investigate the notion of total
correctness via the related notion of weakest precondition. Specifically, the follow-
ing equivalent definition of wpE will be used:

s E wp&, Q) iff

(VI-I E E(a, s))(finH(s) n Q # Q and the dlepth of

hroughout the rest of the paper it will be convenient to identify a tree as a
tion, with its graph. s, ‘ct(a, s) is infinite will re e ‘dom(ct(cw, $1)

is infinite’, ‘((A, u), (0, v)) C ct Iace ‘~!;(a, s)(A) = u &(a, s)(Q) = \I’,

etc.

eeding along a

Fc tal correctness of nondeterministic programs 181

single path down the tree, making nondeterministic c
process terminates when any leaf is reached; the labe
state, the computation being a failure if the leaf is lab
terminate if the path chosen is infinite, i.e., a divergence.

In terms of the previous section, (a!, s) is the set of all ‘maximal downward’ paths
from the root of ct(ar, s), i.e., all infinite paths and all paths ending in leaves. For
example, if {(A, s), (ir, sl), (iliz, SZ), . . . , (il l l 9 ik, sk)} c ct(a, s) and if 11 l l 0 ik is a leaf,
then {(A, A), (0, in), (00, i&). . . l , (Ok, il l l 1 i& D(cu, s).

Let us now characterize the states in wpp(a, Q) and thus :jnderstand the meaning
of D-total correctness. Let Q c S. It is clear that for every HE D(cY, s), fin&) is either
empty (if H corresponds to a failure or a divergence) or a singleton (otherwise), and
that

U fin&) = final,(s).
HED(a,s)

Hence, the requirement, for every such H, that finrq(s) 1-7 Q z ~$5, ic equivalent to
requring that IfinH(s)l =I 1, and that the single element of fi:n~~(si be an element of Q.
Since any failure or divergence in ct(nn, s) would contribute an l-I to D(a, s) violating
this, it follows that this requirement amounts to requiring that ct(a, s) be free of
failures and divergences, and that, furthermore, all states in final,(s) be ila Q. The
requirement that there be a bound on the length of paths in each H E D(cu, s) is
subsumed by the above since here H can be unbounded if? it is infinite, ifI there is an
infinite path in ct(cw, s), i.e., a divergence. To summarize, we have

Lemma 3.1. F’a every cy and Q c S,

wpD(a, Q)I = (S 1 find, (S) C Q A fail, (S) = 0 A BOOpa (S) = 01..

In other woards, a is D-totally correct with respect to P and Q iff cy, started in any
state satisfying P, cannot diverge or fail, and furthe~*more, every possible finite state
satisfies Q. This description of wpD is quite intuitive; using de:yth search, a path is
chosen ‘blindly’ and following it might lead to a failure or a divergence, or
alternatively, to any one of the final states of a! in s.

The second method, a variation of D, is depth first with backtracking, DT. Here too

elements of DT(cu, s) will be degenerate, l-degree trees, i.e., paths. The method is
obtained by imagining a mechanism similar to the previous one moving down the
tree. Here though, if it reaches an -leaf it backtracks to the most recent branc
point and pursues a previously unselected alternative to the one it came from. If no
such alternative branch exists it backs u to the next recent point, etc. If it ret
this manner to the root A, having exhaus d all its branches, the procedure ter
unsuccessfully. This last ccur if and only if ct(a, s) is finite
leaves are labelled with

ing three poslsible: :Sypes: infi,~ite
at i 9 s),

ending in nodes corresponding to the root. As remarked. the ?-+?r case occurs i

182 D. Harel

both others do not. As an example, if s2 E S an), (I, sz), (10, sz!)c cr(m, s)
and 10 is a leaf (here 10 is the sequence consisting of 1 followed by 0), then {(A, A),
10, O), (00, h), (000, I), (0000, lO)}E D ere too, ;ve note that

H#_.D.r.&$) fmH(S) = fi l,,(s) and that for ea Q(, s), Itin~&)j~ I. Let us now
aracterize wp&ff,). As before, any infinite path in et(r?r, s) contributes an infinite

traversal to T(a, s), violating the boundedness property.
phenomenon has the same effect: suppose some node u of ct(a, s)
and infinitely many (though not necessarily all) of its sons have the property tha,t the
subtree rooted iI1 them is finite and all of its leaves are labelled Since u is reachable

2 root A, an infinite traversal H of ct(a, s) exists, corresponding to the
s alternatives at u only sons of the aforementioned kind. The

traverse; finds only -leaves on each subtree and backtracks to u infinitely often.
finite and H E DT(a, s). Calling such a node u an a-fuilure, we see that
o no H E DT(a, s) be unbounded amounts to requring tLfat loop,(s) = 0

and also that ct(a, s) has no m-failures.
Turning to the fin&) n (2 # 4 requirement, any unbounded violates it, as does

the presence of any s’ E fin&(s) - Q (such an s’ will he the state (. orresponding to the
Tingle leaf of at least one finite traversal in DT(cu, s)). Moreover, i ; c t-$x, s) is finite and
all of its leaves labelled with DT(a, s) will consist, as remarked above, of finite
traversals H with fin&) = 4. These cases exhaust all the possibilities of H E DT(a, s)
violating finH(s) n Q = 4. In particular, a failure in ct(cw, s) does not necessarily imply
s B WPDT(CY, Q), although it does imply s B wp&, Q). We thus conc!ude

. For every a ar,d QcS,

wp~&, Q) =’ {s 1 final, (s) f 4 A final, (s) c IQ A Iloop, (s) = [j

A ct(a, s) has no a-fizilures).

Since a tree which is of finite nondeterminism cannot have co-failures, we also have

. FOP every Q of finite nondeterminism artd Q c S,

) = (s 1 final,(s) # 4 n final,(s) c Q /\ looy, (s) = 0).

These characterizations are also intuitively clear; using backtracking, a failure Ida
ct(a, s) does not cause a failure in execution and hence fail,(s) = 0 is not required
Note that, since Xl,(s) = 0 A loop,(s) = 0 implies that final,(s) # 4, wp&, Q) c

Q! of finite nondeterminism.
ath execution methods are plausible, including methods which

ng only to some fixed height, or methods of predetermined

e traversal is

Total correctness of nondeterministic programs 183

Let us now describe two methods which produce traversals which are trees (i.e.,
ey are not single p hs), and which, for programs of ite nonde terminis
rn out to be du;l-1 to and i>T. The first, breadth search is obtained by im

a meck2nisi-n n-~ving down through ct(cr, s’,, but splitting up and pursuing all
branches encountered simultaneously. The relative speeds of the various processors
assigned to the different paths by the mechanism are assumed not to be known, nor
indeed whether or not the simultaneity is real; it is possible for the paths to be
pursued by advancing a step at a time at some nondeterminirstically chosen branch.
We do, however, assume fairness of a sort, in that at each moment every possible
path has the property that it will be advanced upon eventually. In other words, no
path will be followed to an infinite depth while another is followed only to a finite
depth. The process terminates when at least on% &af oE ct(a, s) is reached.

In order to characterize w we note that B(cu, s) will consist of
(a) pri=cisely one tree, an
(b) infinitely many trees of bounded depth, or
(c) finitely many trees of bounded depth, 0

according to whether
(a) ct(cu, s) has no leaves at all,
(1,) ct(a, s) has leaves and also an infinite path, or
(c) ct(cu, s) has leaves but no infinite path 9

respectively.
The reason there are infinitely many trees in case (b:r is that *we must account, in

B(a, s), for every possible a& ante along the infinite paths before reaching a leaf. For
example, if ((A, s), (1, s’), (0, si), (00, s& . . . , (Ok, Sk), . . .} c ct(ti, s) and 1 is a leaf,
then for every k, {(A, A), (1, l), (0, 0), (00, 00), . . . 9 (Ok, Ok)}~ B(cu, s), but, say,
10, A), (09 0), (009 OO), ’ ’ l 9 (0”, Ok)}~ B(a, s). Hence, in order to satisfy the boun-
dedness requirement for every Ii E B; a,, s), we must require that ct(a, s) has at least
one leaf; equivalently, fail,(s) = 1 Y final,(s) # 4. In this case we also have
U HEB(* s) finH(s) = fina&(Note now that for every s’ E final, (8) there is an HE
B(ar, s) ‘such th Y fin&s) =(s). Also, if ct(cu, s) has an P-ieaf, then there is an
HE B(cw, s) such that finH(s) = 4, e.g., a traversal with one leaf corresponding to that

-leaf. It follows from these remarks that fin&s) n C> # (b for every EZ E B(ar, s)
reduces to requiring that fail, (s) = 0 A final,(s) c Q. And so we have:

. For every cy and Q c S,

wpB((Y, Q) = &s 1 final,(s) # (b A final, (s) c Q A fail, (s) = 0).

The intuition here is also clear; the breadth search method is fair, that is, an infi
path will never be taken if the tree has at least one leaif. Qn the other h

-leaves are leaves and cause a traversal to terminate uasuccessfully, they

liminated from the brea
aves i searc

simply ignore -leaves, terminating our breadth search only upon reaching a non-

i.e., a termination leaf. Otherwise, this method, -which we call brezdth search with

ignoring, G, is the same as B. In order to characterize WPBG

can also occur when ct(eY, s) has infinite paths but has only
reader to convince himself that whenever final,(s) # 4, each

bounded depth and finu(s) # 0. ence, all we need in a n, to ensure the

properties ired of the weakest precondition is final,(s) c

as in meth). And so,

3. For every Q! and Q c S,

WP&Lk, Q) = {S 1 final, (s) # 4 A final, (s) C: Q}.

Varidms of breadth search are also possible, in which the number of processors
available is limited, as in k-breadth search, kB. Every traversal in kB(a, s) has no
qrore than k paths. Also, combinations of depth and breadth starch are possible, say
by taking 2breadth search and allowing backtracking on rezching
might also a!low a ‘clever’ backtracking feature in which a final state s’ is tested for
some important prc’nerty Q and backtracking occurs if s’ 9 Q &re Q is ‘built-in’ to
the execution method itself rather than being a property of interest in the context of a
particular program only. We do not further elaborate on these methods here. As
mentioned earlier, through, a more refined definition of what ;;n +=cution method is
would be necessary if ft is to exclude impractica.1 and useless metI-ads which the
reader can no doubt see our definition admits. Some relevant results and remarks
about the computability of various kinds of nondeterminism app3ear in [4].

‘Te four methods II, D 1 , B, and BG will be used in the next sec;;ion to analyze the
properties required by Dijkstra [5,6] for his noncleterministic language of guarded
commands. We summarize the results of this section needed in the next, urging the
reader to convince himself that these hold also when (2) is replaced by (2’) in the
definitron of total correctness in Section 2.

i tzt L be a programming language of ibounded nondeterminism. For any
cu~Landfor~z~y

s E WPld% if final,(s) # C$ I\ final, (cs) C /\ fail, (s) = 0 A loop,(s)= Ct,

SEWP&x,) iff final,(s) z C#I A final,(s) c Q A loop,(s) = 0,

) iff final,,(s) f q5 /\ final,(s) C

) iff final, (s) Z 4 A final,(s) C

Total correctness of norldeterministic programs

The reader familiar with dynamic lo& (see e.g., [7,14-l) will recognize the
correspondence of concepts: final,(s) + d>, final,(s) c Q, fail,(s) = 0 and loopa (s) = 0

ectively, s t= (a) true, s t= [a] , s l=fail, and s t= loop, (the latter two from [7]).
oreover, Lemma 3.3 for exampl by virtue of II holding for every S, simply states

the following vaEidity :

I= (WPDT(~, Q)EWtrue ~&]QA sloop,)).

In this section, a particular programming language, the gzfarded canzmc.~ds
language, GC, of Dijkstra [S] will be described as a tool for presenting the results of
the next section. The syntax of GC will be defined, assuming a given set B of primitive
operations. Then, given an arbitrary set of states S and meanings for the elemnts of A,
the computation tree, ct(a, s), will be defined for every CL! E GC and s F, S. (The
computation trees of a somewhat more general language, that of regular programs
over A, have been defined in [7,8].)

Let A be a set of symbols. Elements of A, denoted by a, b, . . . , will be called
primitive programs, and can be thought of as assignment statements. The set of
programs GC is defined inductively as follows:

0) any primitive program a E 6, is in GC,
(2) for any Q! and p in GC, (a! ; fi) is in GC.,

(3) foranyPcS,RcSanda andpinGC,

IFP-,a, II R-+8 FI and DQP+xKOR-+/~ QD

are in GC.
Let an arbitrary set of states S be given, along wi.th an interpretation of the

elsments of A as functions from states to states; i.e., iI: !s + S is given for every a E A.
a(s) can be thought of as the state in which one ends up when carrying out program a
in state s, We assume throughout that there is some element in A, which we denote by
skip, the interpretation of which is the identity function on S.

Intuitively, (a ; p) corresponds to QL followed by 13. IF P -+ (x 0 R -, p FI cor-
responds to the program obtained by testing P and R; if IF holds Q! can be executed, if

holds 0 can, if both hold either u or ,6 are executed (the choice being nondl:ter-
ministic) and if neither hold the program fails. DO P + ~b! 0 R OD corresponds t
repeatedly executing IF P + IX 0 + P FI while either :P or (or both) hold, a
terminating properly when neither hold. The reader might want to view it as rvhike
PvR do IF P+cwn -B /3 FI od. Note that one can generalize by

nondeterministic primitive prog
ted here merely as an ex

assignments, we leave it as ii is.

186 D. Hare1

efine the computation trees ct(cw, s), for LY E CC and s E S, inductively a~ follows:

(I) if a E A, then ct(a, s) = ((h, s), (0, S(S))},

(2) for any QI, /3, E GC, ct((cr ; p), s) = ct(Ck, s) u {(uv, I) 1 (u, s’) E ct(Q, s) for some

s’ E S, u is a leaf of ct(a, s) and (v, I) E ct(& s’)},
(3)foranyWS,RcSanda,pEGC,

ct(IF P + Q1’ cl R + p FI, s) = i ct(/J, s), SER-P

{(k s)) u Wu, 0 I (u, 0 E ctb, s)

u{(lu, l)l(u, I)xt(P,s)I, SEP~R,

ct(MLP+a!OR+P OD,s)= 6 A,,
n=O

where A0 = ((A, s)} and A,,+1 = {(uv, I) 1 (II, s’) E An for some s’ E P u ,uisaleafofA,
and (v, I) E ct(IF P + cy 0 R + ~3 FI, s’)}.

We now show that this definition for GC conforims to tt,e reqakements of
computation trees in the previous section.

eme . For any a E GC and s E S, ct(cr, s) is indeed a computation tree.

. The only part of the definition of a computation tree in Section 2 which 3s not
trivially verified for the trees of GC is the fact that ct(cu, s) is a function, i.e., that if
(u, 2) E ct(a, s) and (u, I’) E ct(a, s), then E = I’. This, hiowever, follows quibt easily from
the inductive definition of ct; the two cases where an overlap might have been
possible are when some (u, s’) is present in one tree and, for some dv, I) in another,
(uv, I) is added. In both these cases (i.e., in the definitions for (cu; /3) and for An+l),

(a) u is a leaf of the first tree and hence, for v # A, uv was not a node of that tree at
all, and

(b) for v = A, the label of v in the second tree is s’, so that (u, s’) is simply ‘added’ to
(u, s’), with no effect.

Note that ct(cu, s) is of bounded nondeterminism, each node being of degree s 2.

The intuition behind programs in GC is described in greater etailin [61- Failures
occur <when an IF statement is reachcj and both f and R are ‘false’ in the current state

ivergences occur when the ‘body’ I

. Note that for every
. Also, ct(LOOP, s) is

Totid correctness of nondeterministic programs 187

i.e., the set of ai; :hairs of natural numbers. Think of (i, j) as being the current values of
primitive operations (in A) that we use

efined respectively by xe 0 (i, j) = (0, j), --
x+x-t-l (i,j)=(i+l, j), and y*y+l (i, j)=(i, j+l). For any fixed n we let x+-n
abbreviate the program (x + 0; x+x + 1; . . . ; xc-x + 1) with n appearances of x+ --_
x + 1, and similarly for y + n. Thus, e.g., xc- n (i, j) = (n, j). Finally, define [x = n] to be
the set {(n, j) 1 j E N} and [y = n] to be {(i, n) Ii E N). In the sequel we will freely use
similar sets such as [xd n].

In [5,6], Dijkstra introduced the language of guarded comman
induction on the structure of CY, a set wp(cy, Qj for every CY E GG
words of [6]: “We shall use the notation wp(cu, Crj to deriote the weakest precondition
for the initial state of the system such that activation c)f cy is guaranteed ?o lead to a
properly terminating activity leavmg the system in a final state satisfying the post
condition Q.” One of the purposes of fhis section is to illustrate that the key word in
this description is ‘actit3tion’, by aialyziny the wp of [5,6] in view of four different
methods of activation, or execu:ion.

Dijkstra postulated four healthiness properties for weakest precondition:, which
are to hold for every choice of a set of states SF every 4y E GC and every P: Q= S:

Hl: wp(a, 4) = 4,
H2: If P c Q, then wp(a, P) c wp(a, Q),
H3: wp(o, P n Q) = wpb, p) A wpb, Qd,
H4: (Continuity) Pf PO, PI, . . . are subsets of S such that (‘tin)& = P&, then

WPkb LAP”) = ull wpb, k”).

Our first result concerns the extent to which these pll!perties define a unique notion
of wp, even for the language GC. It is shown that the weakest preconditions
corresponding to methods D and DT both comply with all t!iese requirements. Next,
we present Dijkstra’s definition of wp(a, Q) for ar E GC, and show that this definition
‘ assumes’ met od D, in the sense that wp(&%, Q) = wpp(a, Q) for every QI G GC and
Q c S, and for every S, and that in general wp # wpJrL for X E {DT, B, BG).

orks related to the results of this section are those of de Roever [15], de Bakket
[1], Wand /[VI, Plotkin (see [161) and Hoare [lo]. In particu
of the tables in Theorems 5.1 and 5.2 below for methods
est.ablished independently in [lo] using a logic of traces (which correspond to
single-path traversals). All the results of this section appear, in somewhat di

188 D. Hare1

. . L,er 1 in column X meal; that the properties in the correspon,dCzp row
hold of X, and let 0 mean otherwise= Then the following table summarizes the
situation :

, OT, B and BG:
We show I<1 and leave H2 and H3 to rhe reader. Since for any >I; E { , BG),

) = {s 1 final,(s) # 4 A final, {s) C Q},

and final,(s) c d) is th.e same as final,(s) L= 4, it follows that

wpx(cy, 4) = {s 1 final, (s) # q% A final,(s) = c$) = #.

4 does not ho1 f B or BG, i.e., there is a set of states S, cy E BG and

PO, h, l l l c S such tha 4 is not true for B or BG:
Take S = SN and, for every n, P, to be [x s n], i.e., {(i, j) 1 j E ?\, i s n}. Certainly,

cFPn+l* Now a will be the program ‘set x to any natural number’, which in GC can
be written as

a! :((x4;y4); O+skipCi[y==0]
+(IFSN-+(y+l)OSN+(x+x --1)FI)OD)

(This program, in the terminology of [7,14] and others, is simplv x + 0; (x+- x + 1)“;
y+ 1.) It can be shown that final, (i, j) = {(k, 1) 1 k E M}, and that Eaib, (i, j) = 0. Both
these remarks are true for any (i, j) E SN, and in addition, UnPn = S,, SO that
final, (i, j) c Un P, and wph, Un P,) = wp~G(a, U,, P,) = SW However, wp&, P,) =
wp&&, P,) = 4 for every n, the reason being that {(k, 1) 1 k E N) is a subset of no set of
the form [x s n]. Hence,

u WpBb, pn) = u WpBGb, h) - 4.
n n

4 holds %A iD an

be subsets of S such that (he claim will follow
immediately from the fact that

s 1 loop, (s) = 0 A final,(s) c LJ P,
I

= U {s I loop,(s) = 0 A final,(s) c P,}.
n 111

et s be a state in the first set. For

Total correctness of nsndeteb rinistic progwms

ctive definition of wp(a,
lences, so that proving wrp = w

g that these equivalences ho1

/3 FL Q) = (P u R) n (P u wp(a, Q)) n (R u wp(p, Q)),
E6: wp(DOP+a!OR+3 QD,Q)=U~=,,HnY

where Ho =PnRnQ, and Hn+r = ouwp(IFP+cwUR+/3 FI, H:,).

5.2. Let 1 and 0 have meanings as in Theorem 5.1. Then the foblowing table
summarizes the situation :

D DT B BG

El--E3 1 1 1 1

E4-E6 1 0 0 0

roof. (i) El-E3 hold for D, DT, B, BG:
(El): By definition, ct(skip S) = {(A, s), (0, s)} SO that fina&, = s and

loop&$(s) = f a&i, (s) = 0. It follows that wpx(skip, Q) = {S 1 final,kip(s> c Q} =

{s(SEQ}=Q.
(E2): By definition, ct(FAIL, s) = {(A, s), (0,)), so that finahds) - 4, implying

also wpx(FAIL, Q) = 4.
(E3): Since loop,(s) = fail,(s) = 0 and final,(s) = a(s) for every a E A, E3 follows.
(ii) E4 does not hold for DT, B or BG:
Again, let S = SNI Q = S and let a! be IF S + (x + 1)O S + (x + 2) FI. For each of DT,

B and BG we define a program p E GC such that cy, p :and Q violate E4.
(DT): Let @ be IF [x = l]+ skip0 [x = I]-+ skip FL Note that ct(a, (i, j)) has no

failures or divergences and that final, (i, j) = ((1, j), (2, j)}. Consequently, final,, ipI

(i, j) = ((1, j)) and loop~o,;pJ(ir j) = 0. Since finalc,:s,(i, j) c S it follows that

WPDT((~ ; p), Q) = W~DT((~ ; p), S) = s. However

WpDTb, WpIlT(& s)) =

= {s 1 final, (s) # 4 A loop, (s) = 0 A final, (s) C

{s’ 1 finalp (s’) ;f t#5 A 100~~ (s’) = 0 A final0 (s’) c S})

= {(i, _i) 1 {(l, j), (2, j)) = {(k, 1) 1 fin&(k: ?) # 4)) = 4.

The last equality follows from finalp(2, j) = 4.

wpB(% wpJ3(/% 8) = 49

190 D. Hard

(BG:): Let ,@ be any one of the above two. The rest of the reasoning ,: similar.
(iii) E4 hol;!~ P,,jr D:

We first state the following two facts which can easily 5e established for any S, s E S
and a, /3, E GC, using the definition of ct(a ; /3, s):

ioop(,;/&) = 0 loop,(s) = 0 !! (s' E final, (#(loo

fail(,&s) = 0 iff fail,(s) = 9 A (s’ E fi9a.1, (s!)(f ai&3 (0 = 0 9.

Now sEwP&; P)9 Q) ifl ifinal~,&s) f q5 A final(,;&s)CQ ~fail~,&s) = 0 A
loopca ;6) = 0) iff

4 E final, (s))(finals (6’) # 4) /\ fail, (s) = 0 A loop,(s) = 0

A (Vs’ E final, (s))(finalp (s’) c Q A fail@ (s’) = 0 r\ loop&‘) = A). (1)

We have to show that (1) holds iff

final,(s) Z 4 I\ faii, (s) = O A 1007, (s) = 0 A (Vs’ e final, (sMnala (s’) # 4

A final&s’) c Q A fail&‘) = 0 A lOOpp(S’) = 0) (2)

iff SE wpb ((x, \vpD(& Q)). All that is needed for this is to show that, Under the
assumption (l), final&s’) # # for every s’ E final,(s). This follows from the fact that for
each s’ E final, (s), ct(& s’) is a nonempty tree free of failures and divergences.

(iv) ES does not hold for DT, B or BG:
Taking S = SN, P = R = Q = S and cy to be skip, we let p be FAIL, LOOP or either

of these for cases DT, B and BG respectively. In each case the left %dnrd side of ES is
equal to S and the right to c$. We omit the details.

(v) E5 holds for D:
Straightforward using the definition of ct(IF P + cy c! R + /3 FI, s).
(vi) Et5 does not hold for DT, B or BG:
Here, too, there is a general structure to the three counter-examples.

and Q = S. Taking y to be FAIL for the DT case, LOOP for t*he B case and either for
the BG case, we define our program S : OP+cuUR-+ (QD to be DO [x=0]+
(x+x+3/Xl[x~2]+(x+x+l;IF[x=1]-,(x+-x+1)C1[x#1]+~FI)0D.Weclaim
that for any j EN, (0, j) E wp&J, S) but (0, j) & Wn W,, where X E { T, B, BG} and 6
contains the appropriate version of ‘y. Certainly, (3, j) E finala(0, j), and trivially
final6 (0, j) c S. For case DT, there is no divergence in ct(& (0, j)) because x will
‘reach’ the value 3 in at most three iterations and y is FAIL,
ct(& (0,jb) is failure-free because [x = l] w [x # l] = S and 7 is

s are irrelevant. It follows that (0, j) E wpx(S, S). Now

Total correctness of nondeterministic programs

stands for an arbitrary program of the form IF P+ CR 0 + p. FL
bserve that (3, j) E final&O, j) but final&3, j) = 4, so t

(vii) E6 holds for D:
e will show in detail only one direction of this rather tedious prouf, the other,

y similar, is omitted. Let rr denote an arbitrary program of the form IF
+/3 FI, and let a* stand for DO P+ Q! 0 IX+ F OD. Assume x

wp&*, Q) for some Q c S. We have to show that for every such s, s E Hk for some k
(Note the difficulty here: while there is a correspondence between Ao, Al, . . . and
H(), HI,. . . in the definitions of ct(7’r*, s) land in E6, this correspondence is not
perfect; Ai+l corresponds to adding an iteration rr to Ai as a ‘suflix’, i.e., this ?T is the
last iteration in Ai+l, while in H i+l r is added as a ‘prefix’, i.e., as the first iteration in
Hi+l.) Here we are using Hk to denote the set obtained in E6 with wpP replacing wp.
It is an easily-proved fact that the Hi are nondecreasing, in the sense that Hi c Hi+1

for every i. Now since: s E WpD(m*: Q), ct(ar*, s) is finite, and we c=tn denote by k(s)
the least integer p such that ct(p*, s) = UE=, A,, where the A, are as in clause (3) in
the definition of ct.

]Let us now show that for every s E wpP (n*, Q), s E HktsJ, by induction on k(s). Ifs is
such that k(s) = 0, then ct(n*, s) = A0 = {(A, s)} ard hence final,*(s) = {s), so that by
s E wp&*, Q) we know that s E Q. Howeve:-, from Al '= ~5 it is evident that s B P u R.
And so for k(s) = 0, s E ?i n R n Q = Ho. Assume that s E wpP(n*, Q), that k(s) :> d’5,
and that the claim holds for every s’ with k(s) < k(s). I& s’ be an arbitrary element of
final,(s). (There is at least one such s’ by the assumptior s chat k(s) a 1 and loop,-(s) =
fail,*(s) = 0.) Thus, there is a leaf u of ct(ar, s) labellec? with s’. Clearly the,n, by the
definition of ct, ct(#, s’) = {(v, I) I(uv, Z)E ct(#, s)]. We know that ct(rr*, s) is

failure-free, and divergence-free, hence so is ct(rr*, 5’). Moreover, this implies thai
final,Js’) # 4. Finally, final&) c final,+(s) c Q. Putting these t’ogether *hre have
S’E wp&*, Q). The characterization of ct(?r*, s’) above implies that k(s’) < k(s),
hence by the inductive hypothesis s’ E H k(s’). But by our remark above concerning the

sets HkY since k(s’) s k(s) - 1, it follows that Hkcse) c Hl;(+l.- We have shown that
final,(s) c Hk(s~_l. Since final,(s) # 4 and loop,*(s) = fail,*(s) = 8 (from which we get

loop,(s) = fail,(s) = 0), we obtain s E wpP(r9 Hk(+!.) and henr:e s E Hkl+
This completes the proof of the theorem.

Thus&Theorem 5.1 points to the fact that HI-H4 tire not adequate for singling out
a particular notion of total correctness, and Theorem 5.12 shows one execution
method which, for the language: (GC, is ‘behind’ EL-E6, in the sense t
corresponding notion of total co. - y ,- pctness is the sarnc as that defined by El-E6.

‘.n resul 5 can be viewe as pi. OYi ri us s

intuition behind the int:roduction of El-E6 as rules for ‘constructing’ totally current

D. Hare1 192

programs _ - in Dijkstra [6]. We have shown that at Peast one reasonable execution
method is consistent with the unique notion of wp defined by EL-E6. However? it
seems that in order to be able to define wp for other, perhaps more general
programming languages, or to be able to define w ‘s corresponding to other methods
of execution, a general framework such as that suggested in 3 is
necessary.

Some early ideas leading to this work were developed jointly with V.R. Pratt and
appeared in [S]. During that period, we had many helpful discussions with N.
Dershowitz and A. Shamir. The detailed remarks and suggestions of A.R. Meyer and
M. O’Donn41 led to the development of Sections 2 and 3, We are grateful to these

s and to an anonymous referee for their help. Finally, the rescnlts of Set
5 appeared in preliminary form in [7].

IIll

PI

II31

L41

PI

ca
171

ca

191

WI
Cl11

[I21

Cl31
[I41

Cl51

‘161

D71

3.W. de Bakker, Recursive programs as predicate transformers, in* E.J. Ncuhold, Ed., Forma!
Specifications of Programmikk Cwzcepts (North-Holland, Amsterdam, 1978, 165-179.)
A. Blikle, An Analysis of Programs by Algebraic Means, Banach Center Publications 2 (Polish
Scientific Publishers, Warsaw, 1973).
H.J. Boom, A weaker precondition for loops, Technical Report IW 104/78 Mathematisch Centrum,
Amsterdam (1978).
A.K. Chandra, Computable nondeterministic functions, Proc. 19th IEEE Symposium on
Foundations of Computer Science, Ann Arbor, MI (1978) 127-l 3 1.
E.W. Dijkstra, Guarded commands, ncndeterminancy and formal derivatia 1 2? programs, Comm.

(8) (1975) 453-457.
E.W. Dijkstra, A Discipbw of Programming (Prentice-Hall, Englewood Cliffs, NJ, 1976).
D. Hare;, First-Order Dynamic Logic, Lecture Notes in Computer Science 68 (Springer, 13erlin,
1979).
D. Hal -1 and V.R. Pratt, Nondeterminism in logics of programs, Proc. 5th ACM Symposiirm on
Principles of Programming Languages, Tucson, AZ (1978) 203-2 13.
P. Hitchcock and D. Park, Induction rules and termination proofs, in: M. Nivat, Ed., Automata,
Languages and Programming (North-Holland. Amsterdam 1973).
C.A.R. Hoare, Some properties of predicate transformers, J. ACM 25(3) (1978) 461-480.
D. KGnig, 7Ieorie der endlichen und unendlichen Graphen (Leipzig, 1936); reprinted (Chelsea, New
York, 1950).
R. Kurki-Suonio, Nondeterxinism, parallelism and intermittent assertions, Proc. International
Conference on Mathematical Studies of Information Processing, Kyoto, Japan (1978).
G.D. Plotkin, A powerdomain construction, Sfi1M.I. Comput. 3(3) (1976; 452-487.
V.R. ,- itt, Semantical considerations on Floyd-Hoare logic, &SC. 17th ZEEE Symposium on
Foundations of Computer Sciex;, (1976) :09-121.
W?. de Roever, Dijkstra’s predicate transformer, nondeterminism, recursion and termination, in:
Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, 45 (Springer,
Berlin, 1976) 472-48 1.
-MU’. a Roewr, Equivalence between Dijkstra’s predicate transformer semantics and Smyth’s

werdomain semantic; as found bq 6. Plot
Wand, A characterization of weakest

9-212.
(2) (1977)

