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Abstract—End-user applications aimed at the public in general 
(mobile and web applications, games, etc.) are usually 
developed with feedback from only a tiny fraction of the 
millions of intended users, and are thus built under significant 
uncertainty. The developer cannot really tell a priori which 
features the users will like, which they will dislike, and which 
ones will help create the desired outcome, such as high usage or 
increased revenue. In these cases, providing adaptive 
capabilities can be the key factor in the application's success. 
Existing self-adaptive techniques can provide some of the 
needed capabilities, but they too must be planned, and leave 
the developers, and much of the development process, “out of 
the loop”. We propose a development environment that allows 
the wisdom of the crowd to influence the very structure and 
flow of the program being created, by voting upon behavioral 
choices as they are observed in early versions of the working 
program. The approach still allows the developers to retain 
known desired behaviors, and to enforce constraints on crowd-
driven changes. The developers can also react to ongoing 
crowd-programmed feedback throughout the entire lifetime of 
the application.  
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I.  INTRODUCTION AND RELATED WORK 

A growing number of applications, especially those 

intended for mobile and web platforms, are aimed at 

millions or even billions of users. While most development 

methodologies call for a detailed elicitation process with 

customers and users, the developers of such applications do 

not have an effective way to communicate with the vast 

majority of the large number of potential users, as part of 

the software specification and design. They thus have to 

resort to other means for predicting their needs. Consider, 

for example, an adventure/quest game, in which users can 

also purchase helpful resources. Should a suggestion to buy 

a “power bottle” pop-up after losing a game or after 

winning? Or should it be constantly, but passively, 

displayed? Should a key to the treasure chest disappear if 

not used in time, or should it remain available forever? And 

when dealing with more practical applications, such as a 

chat-bot, an online-store or a collaboration platform, the 

considerations are, of course, different but the problem 

remains. Common practices often call for the developer to 

make such choices in advance or to manually collect and 

apply feedback from selected users of early versions.   

Agile development techniques indeed focus on obtaining 

such feedback frequently from a select group of 

stakeholders. More elaborate approaches to requirements 

engineering call for systematic collection of user feedback 

on designated features. For example, in [1], a “social 

adaptation” methodology is proposed for the manual process 

of requirements engineering, where the various design 

choices are explicitly stated, the users vote on these, and 

computer-aided analysis of the responses helps accelerate 

the necessary modifications to the system. And, in [2] a 

“social sensing” approach is proposed, where users are 

tasked with actually collecting quality measures (such as 

user comfort) that are needed for making adaptation 

decisions, but which the system cannot collect on its own.   

Another approach is to design the program so that it can 

behave in a variety of ways, and to apply an automated 

adaptation technique, such as reinforcement learning, to 

allow the program to dynamically modify itself based on the 

user’s actual behavior. Such adaptivity may be global, i.e., 

common for large groups of users, or can be designed to fit 

individual-user needs. 

The recent extensive survey [13] analyzes the state of 

the art regarding the role of crowdsourcing in software 

engineering. Based on this analysis the task of obtaining 

end-user feedback with respect to an already-developed 

application, seems to receive less attention.  

Our research is motivated by the desire to have a 

development and runtime environment where (a) an 

unlimited number of users can constantly provide focused 

feedback on the behavior of released applications, in the 

form of suggested program changes; and (b) the rationale, 

functionality, and expected effects of the automatically-

generated program changes are readily visible to the 

developers, who can then make informed decisions on when 

to allow, modify, or ignore the suggestions. Program 

behavior thus incorporates enhancements that are based on 

first-hand user feedback and comply with developer-

specified goals and constraints. We term this kind of 

approach crowd-based programming. 

To deal with the increasing complexity of software 

systems, and the uncertainty around the behavior of their 

environments, software engineers have turned to self-

adaptivity, where the system can change its behavior and 

structure in response to changes in the environment, in the 

user requirements, and even in the system itself. As can be 

seen, e.g., in [14, 12, 4, 11], such adaptivity is often 

application-specific and requires specialized design, which 
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may or may not be in line with other architectural 

preferences. In particular, adaptive behavior that is based on 

machine learning using neural nets [15] requires very 

specific designs and flows. Involving users in the adaptation 

process was proposed in [6], where the user can influence 

the adaptation behavior both at run-time and in the long 

term by setting individual preferences. This aims to balance 

the required system adaptation and user control.  

Such adaptive techniques are insufficient when the 

developer wishes to create a relatively small number of 

behaviors that will be essentially fixed for all or most users, 

and at the same time reflect design choices that 

accommodate the developers' intent as well as the goals and 

preferences of a large and varied audience.  

In this paper, we show how a general application-

independent design approach, namely, event-based 
abstraction and scenario-based programming (SBP), can, in 

addition to its other advantages, facilitate crowd-based 

programming approaches (as introduced above) by 

automatically translating systematically-collected end-user 

feedback into application code. We describe and evaluate 

our scenario-based crowd-programming approach and the 

initial web-based development and runtime environment we 

have built to support it. 

II. SCENARIO-BASED/BEHAVIORAL PROGRAMMING 

A basic principle of the scenario-based approach is to 

abstract and model the behavior of the system and the users 

as sequences of events. The infrastructure that generates 

input and output events (such as button click, text entry, and 

display of a screen object) is considered separate, and is 

only secondary in the system’s design and analysis. 

Execution progresses in cycles, a.k.a. supersteps, where 

each user event is responded to by a sequence of system-

generated events until there are no more system events that 

should be triggered. (In the present preliminary version of 

our work, each superstep consists of a user event followed 

by a single system event.) 

Scenario-based programming (SBP), a.k.a. behavioral 
programming (BP) was first introduced in [3, 9], with the 

language of live sequence charts (LSC) and was later 

extended to procedural languages like Java, C++ and 

JavaScript (see, e.g., [10]). In SBP, system components are 

scenarios, each of which describes an aspect of system 

behavior, much in the way humans describe what a system 

should do, either to each other or in a requirements 

document. Such specifications can be natural and 

incremental, and they simplify formal analysis and 

(compositional) verification (see, e.g., [7]). Most relevantly 

to the present research, SBP is conducive to adaptivity using 

reinforcement learning [5] and automated non-intrusive 

program repair [8]. 

Formally, the SBP/BP scenarios are automata, or state 

machines. In each state, the scenario declares events that it 

requests, i.e., ones that it wants to be considered for 

triggering, and events that it blocks, i.e., forbids from 

occurring. A scenario also has a transition function, 

dictating, for each state and triggered event, the new state. 

All scenarios are executed in parallel, in lockstep. Following 

an event (user, environment or system) all affected automata 

transition to their new states, and resynchronize. An event 

that is requested by some scenario and is blocked by none is 

then triggered. If there is more than one such enabled event, 

selection is carried out according to some strategy, such as 

random, probabilistic, or one based on lookahead or on 

program synthesis. Affected scenarios then transition to new 

states and the process repeats. This execution method, 

termed play-out, yields integrated system behavior that 

complies with the scenario-based specification. SBP also 

enables play-in: an interactive process where the developer 

specifies scenarios by recording and editing interactions 

with the system being developed. 

 

III. CROWD-BASED BEHAVIORAL PROGRAMMING  

In addition to event abstraction and scenario-based 

programming described above, our technique for crowd-

based adaptivity builds on the following principles: 

Underspecification and temporary behavior: While 

most system behavior would be fully specified, the 

developer can allow cases where multiple events are 

simultaneously enabled. User feedback then drives 

incremental refinement of the final behavior. Until it is fully 

specified, the system uses probabilistic event selection at 

points of underspecification, and does not get stuck there. A 

key assumption is that “bad” choices do not cause real 

damage and are quickly found and eliminated. 

 Programming with linear scenarios: Commonly, 

program modules in any programming approach, SBP/BP 

included, contain constructs for non-sequential flow, like 

loops or if-then-else statements. While this is obviously 

valuable, we maintain that creating complex specifications 

from sequential rules and from separate sequential 

exceptions thereto, is often also convenient, and aligns with 

the way people tend to describe behavior. A linear scenario 

is thus a sequence of events and states, reflecting one path 

of program execution. It can be coded manually or recorded 

in an interaction with the system. States contain declarations 

regarding event choices, as described below. 

Probability-driven scenario execution: In standard 

SBP execution, in each state, one event that is requested and 

not blocked is selected according to some strategy. Here we 

propose that the declaration of requested and blocked events 

in each state, be replaced by a weighted vote, or score ‒ 

positive or negative ‒ for each system event (with some 

default for “don’t care”). When scenarios synchronize, the 

then-current scores form a distribution, with high positive 

scores yielding high probabilities and negative ones yielding 

low probabilities. Below a certain score threshold, an event 

is considered forbidden altogether. The event selection 

decision is then random, according to the distribution. This 

facilitates showing each behavior to some users, who will 
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then be able to provide feedback. The probabilities can carry 

different meanings: the developer’s confidence in various 

choices, the desire to force the system and its users to 

experiment with certain scenarios, or perhaps to make the 

final system behavior more varied and less predictable.  

Ongoing user feedback: The system continuously 

grades its probabilistic event selection based on user 

feedback, which can be explicit, e.g., clicking like or dislike 

meta-buttons automatically superimposed on application 

screens, or implicit, where the application contains code that 

assigns event scores based on actual user behavior (like 

buying products, closing certain screens, etc.). The method 

thus captures first-hand users’ reaction when they 

experience actual system choices, which may be better than 

having them comment on, say, system documentation or 

custom questionnaires. 

Representing crowd feedback as linear scenarios: A 

user’s feedback (whether explicit or implicit) is presented as 

a linear scenario, comprised of the events that led to a 

particular application state, followed by the scenario’s 

vote/score for the various events that may be triggered next, 

with positive feedbacks increasing the scores and negative 

ones reducing them. The crowd-formed scenarios are self-

standing, in that they modify overall application behavior 

without modifying existing scenarios. Also, they clearly 

convey to human users where and when they apply, and 

how they influence event selection at those points. This 

enables automated incorporation of such automatically-

generated scenarios into system behavior, as well as 

informed manual adjustment by developers.  

 

To illustrate these principles, consider a small online 

supermarket application, whose main screen is shown in 

Figure 1.   

 

 
Figure 1. The product-list screen of the supermarket 

application, with Like and Dislike buttons 
 

Clicking on any screen object (product image, action button) 

produces a corresponding user event. A scenario-based 

specification would include, e.g., the following scenarios  

(shown in pseudo code):   

 
  

1. When(user-clicks-on-product); Score(show-prod.-info,10) 
2. When(user-clicks-Buy); 

Score(add-to-cart-&-show-prod. list,10) 
3. When(user-clicks-Checkout); 

Score(checkout,10,show-ad,1) 

4. When(user-clicks-Checkout); 
Score(checkout,10,show-ad,1); 

When(user-clicks-Close-Ad); 

{Score(checkout,10,show-ad,-100); 

  ExitUpon(checkout)} 

 

Figure  shows Scenario 4 above in its automaton form. The 

When() method lists one possible event   and leads to the 

next state. The method Score(e1,v1,e2,v2,…) assigns to each 

system event ei the corresponding score value vi at that state. 

The method ExitUpon(e1,e2,…) can be used in a scenario to 

list events whose occurrence would cause the scenario to 

terminate (go back to its initial state).  

Scenario 4, for example, allows for both the checkout 

screen and an advertisement to be shown. Users who prefer 

not to see the advertisement can click the Dislike button 

superimposed on it. When they do so, either a new scenario 

is created, which traces the session’s event log and then 

assigns show-ad a low score, or, if such a scenario already 

exists, the score it assigns to the undesired event is reduced. 

If the developer is unsure as to whether a click on a product 

image should lead to add-to-cart or to show-prod.-info, 

he/she can assign positive scores to the respective events, 

and allow the users to vote. Similarly, the developer can use 

scenarios and/or specialized APIs to analyze when, or how 

often, users buy an advertised product, as opposed to 

skipping the ad, and accordingly create scenarios that 

increase or decrease the score of show-ad in certain states.  

 

Score(checkout,10,
show-ad,1)

S1: “Wait for User 
Action”

Score(checkout,10,
show-ad,-100)

Event: 
User 

clicked 
Checkout

Score()

S2: “Allow Ad”

Event: 
show-ad

Event: 
user

clicked
Close-Ad

Event: 
checkout XScore()

S3 S4: “Avoid Ad”

 
 

Figure 2. An automaton representation of a linear scenario: if 
in the initial state S1 the user clicks Checkout, State S2 assigns 
scores that cause either the checkout screen or an ad to be shown. 
In the case in which an ad is shown and the user skips it, state S4 
forbids the showing of an ad until checkout screen is shown.    

IV. THE CROWD PROGRAMMING INFRASTRUCTURE  

Towards experimenting with crowd programming, we 
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have developed a new BP infrastructure with the following 

capabilities: (a) web-based; (b) automatic superimposition 

of feedback buttons on application screens; (c) automatic 

capture of feedback and creation and update of feedback 

scenarios with respective scores; (d)  developer interface for 

specifying linear scenarios by manually simulating user 

actions and recording the resulting user and system events in 

line with  play-in capabilities in LSC; (e) APIs for implicit 

feedback via tracking of user behavior and dynamically 

creating new scenarios; and (f) streamlined viewing and 

assignment of scores of all system events at all system 

states.  

V. EVALUATION AND DISCUSSION 

In evaluating the approach, we sought to answer two 

main questions: (Q1) can the behavior for buying products 

in a web application be formed based on user feedback? 

(Q2) how easy will it be for a developer to understand the 

automatically-created application scenarios built this way?  

In our initial experiment, we used the above online 

supermarket and another web-store application. In the initial 

code, we specified only most basic behaviors, and a wide 

variety of events was left enabled in each state. We also 

coded collection of implicit feedback that reflects 

developers’ interest in maximizing user spending; i.e., the 

more the user buys the higher the score of system events in 

scenarios that lead to this behavior. The two applications 

were identical in their user interfaces, their events and the 

initial programmed behavior, and differed only in the 

offered products. However, we also told the users 

(participants) that “one application is a supermarket and the 

other is an online electronics store, like eBay”, and asked 

them to set their expectations and behavior accordingly. The 

users were also told that the application’s behavior may 

change based on their actual usage and their explicit 

feedback. In this initial evaluation, the users did not spend 

real money and did not receive actual products.  

Over the course of five days, a group of ten participants 

experimented with the system. For the supermarket 

application, 67 Like/Dislike feedbacks were submitted, and 

44 new scenarios were generated, and for the electronics 

store, 75 feedbacks were submitted and 43 new scenarios 

generated (we did not keep track of which user provided 

what feedback). 

Regarding question Q1, when looking at the possibility 

of showing a special-deals ad, as expected, negative 

feedbacks were almost always received when the ad was 

shown after the user clicked on a product. However, after 

showing the shopping cart, showing the ad caused the user 

to buy more products, yielding indirect positive feedback. 

We also observed that the applications evolved differently: 

after the user clicked a product image, the evolved 

supermarket app added the product to the cart and returned 

to the main product list, while the evolved electronics store 

app proceeded to show product information and only then 

moved to checkout. This difference in the effect on similar 

applications shows that feedback has non-trivial value.  

The second question, Q2, was not directly addressed by 

a specific test, but it is our subjective experience that despite 

the large number of generated scenarios, the developer 

could readily understand each of them and was able to 

create a mental model of the expected behavior of the 

evolving application. Moreover, the developer was able to 

simulate user behavior in specific flows, and check the 

scores assigned to the various system events to see which 

events were most or least likely to occur at a given point. As 

is common in SBP, the technique also allows one to see how 

the various scenarios affect the execution in each state.     

We have thus described an application-independent, 

crowd-based technique for collecting user feedback during 

execution, and influencing future behavior accordingly. The 

modularity of the modifications enables a wide variety of 

implementation approaches. These include (a) choosing a 

fixed reactive behavior for all users based on a majority user 

vote; (b) retaining all behaviors with some probability 

alongside a feedback mechanism towards indefinite 

continuation of program evolution; and (c) providing users 

with application behavior that is uniquely geared 

specifically to their preferences.  

Clearly, our current initial experience and evaluation 

results, while positive, are of limited scope. Issues that are 

left for future investigation include (a) using machine 

learning techniques like neural nets and enhanced event 

selection formulas to automatically aggregate crowd 

feedback into fewer and more general recommendation 

scenarios; (b) associating a set of feedbacks and preferences 

with the individual who communicated them, and using the 

information both in this user’s initial exploration and during 

their regular use of the application; (c) supporting richer 

scenarios and supersteps, e.g., ones which respond to a user 

event with a sequence of system events (with flow-control) 

rather than by just one event; (d) supporting variable data in 

events and in the object model; (e) creating succinct 

guidelines for placement and granularity of feedback-

collection points (Like/Dislike buttons) in an application, 

including dynamic changes to such feedback collection and 

possibly linking it to feature-models and software-product-

line planning; and (f) allowing users to specify the exact 

target of their Like/Dislike vote, such as particular events in 

the execution log or some screen elements.  

Furthermore, it will be interesting to extend the above 

into a broad, collaborative, concurrent, crowd-programming 

methodology, yielding short cycles of experimentation-

feedback-modification-release. A key part of such a 

methodology will be the flexibility in the feedback means 

given to the end user. While some may be willing to 

suspend their work with the product to open a trouble ticket, 

with rationale, examples and attachments, others may wish 

to just enter a one-line comment to capture their reaction, 

while yet others may agree only to occasional, optional  

clicking on a Like/Dislike button, while their main work and 

train of thought remain focused. Eventually, such crowd-
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based techniques may also be used to enhance 

methodologies and tools for unit testing, integration tests 

and system usability testing.  

VI. CONCLUSION 

Our crowd-based method for programming the behavior 

of reactive systems allows developers to subject some 

decisions to the wisdom of the crowd, while retaining 

sufficient control themselves. We believe that such an 

approach can become a key engineering practice in 

developing applications for large and varied audiences. 
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