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Abstract— We present an algorithm for drawing directed
graphs, which is based on rapidly solving a unique one-
dimensional optimization problem for each of the axes. The
algorithm results in a clear description of the hierarchy structure
of the graph. Nodes are not restricted to lie on fixed horizontal
layers, resulting in layouts that convey the symmetries of the
graph very naturally. The algorithm can be applied without
change to cyclic or acyclic digraphs, and even to graphs con-
taining both directed and undirected edges. We also derive a
hierarchy index from the input digraph, which quantitatively
measures its amount of hierarchy.

Index Terms— Directed graph drawing, force directed layout,
hierarchy energy, Fiedler vector, minimum linear arrangement.

I. INTRODUCTION

V ISUALIZING directed graphs (digraphs) is a challenging
task, requiring algorithms that faithfully represent the

relative similarities of the nodes, as well as to give some sense
of the overall directionality. The latter requirement renders
algorithms designed for undirected graphs inappropriate for di-
graphs. Consequently, algorithms for digraph drawing usually
adopt different strategies from their undirected counterparts.
The dominant strategy, rooted in the work of Sugiyama et.
al. [21], is based on separating the axes, where the y-axis
represents the directional information, or hierarchy, and the
x-axis allows for additional aesthetic considerations, such as
shortening edge lengths or minimizing the number of edge
crossings.

In these Sugiyama-style algorithms, the y-coordinates are
computed by dividing the y-axis into a finite number of
layers and associating each node with exactly one layer —
a process called layering. Edges are allowed only between
consecutive layers, and they all point in the same direction.
Whenever an edge is about to cross a layer, a dummy node
is inserted to prevent this. When dealing with cyclic digraphs,
no layout can place all edges in the same direction, and what
is traditionally done in this case is to apply a preliminary
stage, in which a minimal number of edges is sought, whose
reversal will make the digraph acyclic. This is actually an NP-
hard problem, but several sub-optimal algorithms have been
proposed. Assigning the x-coordinates is normally done in
two stages. The first determines the order of the nodes within
each layer, in an iterative process called ordering. In a single
iteration two adjacent layers are considered: the order of the
nodes is kept fixed in one, and is determined in the other layer
in order to reduce the number of edge crossings. This too is
an NP-hard problem. The second stage determines the exact
locations of the nodes along the x-axis, taking into account
various parameters, such as the finite size of the nodes and the
smoothness of the edges. For more details see [3], [10], [13].

Such digraph drawing algorithms have evolved to produce
nice and useful layouts for many different types of digraphs.
Nevertheless, we would like to point out two inherent prop-
erties of the standard strategy, which, despite being treated in
various ways by the many algorithms, are in many cases still
undesirable:

• Finding a layering for cyclic digraphs requires transform-
ing them into acyclic ones, thus introducing a certain
distortion of the original problem.

• The layering is strict, in the sense that the y-axis is
quantized into a finite number of layers. This constraint
may sometimes be advisable for acyclic digraphs, but we
show that allowing for more flexibility turns out to be
advantageous to the drawing.

In this paper we present a new algorithm for digraph draw-
ing1. It embraces the idea of axis separation, but uses novel
approaches to the drawing of both axes. These approaches,
apart from the fact that they produce nice drawings and
have fast implementations, also successfully deal with the
two aforementioned points — the distortion and the discrete
layering.

We associate with the nodes continuous y-coordinates, in a
way that suggests a natural unified framework that can be
applied to any kind of digraph, whether cyclic or acyclic,
and which requires no graph modification or preprocessing. In
particular, dummy nodes are not required, and cyclic digraphs
do not have to go through the process of edge inversion. For
some digraphs, the continuous layering produces the usual
quantization of the y-axis. But, for many other digraphs
the quantization is broken, in order to better represent the
hierarchy. If strict layering is nevertheless important, it can be
easily induced from the continuous y-coordinates by a simple
quantization process.

We define the vector of y-coordinates as the unique min-
imizer of a simple energy (cost function), and show that
the minimization problem is equivalent to a system of linear
equations, whose solution can be found with high speed.
This energy function, to which we call the hierarchy energy,
strongly reflects the directional information of the digraph. Its
simple form enables rigorous analysis, giving rise to many
interesting results, the most important of which appears to be
the definition of an index for measuring the amount of hierar-
chy in a digraph. In the absence of strict layering we cannot
use traditional schemes for drawing the x-coordinates, since
now the stage of ordering becomes meaningless. Thus, they are

1An early and short version of this work appeared in: L. Carmel, D.
Harel and Y. Koren, “Drawing Directed Graphs Using One-Dimensional
Optimization”, Proc. Graph Drawing (GD’02), LNCS 2528, pp. 193–206,
Springer-Verlag, 2002.
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simultaneously assigned (without having to go through an iter-
ative process) using the minimizer of another energy function
that is suitable for the one-dimensional case. We suggest three
alternatives for such an energy function. Surprisingly, despite
of the fact that no directional information is expressed by the
x-axis, the most successful of these energy functions strongly
relates to the same hierarchy energy used for calculating the
y-coordinates.

Had we been asked to categorize our algorithm, we would
have said that it is purely energy minimization oriented, as
all of its parts use energy minimization procedures, each part
with its own specially tailored energy function. By definition,
a force is the inverse gradient of the energy. Thus, the strategy
of energy minimization is equivalent to a force directed model.
Force directed models are much more popular in undirected
graph drawing than in digraph drawing. Probably, the majority
of the undirected graph drawing algorithms are of this type,
would it be by directly assigning forces between the nodes [5],
[6], or by minimizing energy functions [2], [11]. We are aware
of only two other occasions where a force directed model was
suggested for digraph drawing, [12], [20], but in both cases
we are under the impression that the inferred energy function
is complicated, rich in local minima, and rather difficult to
minimize.

II. BASIC NOTIONS

A digraph is usually written as G(V,E), where V =
{1, . . . , n} is a set of n nodes, and E ⊆ V × V is a set of
directed edges, (i, j) being the edge pointing from node i to
node j. Henceforth, we reserve the notation (i, j) to describe
a directed edge, and use 〈i, j〉 to simply state that there is an
edge between nodes i and j.

Each edge 〈i, j〉 is associated with a weight wij . We assume
that the weights are always non-negative (wij > 0 for all
〈i, j〉), and that there are no self-edges (wii = 0 for all i).
For simplicity of notation we shall use the convention that
wij = 0 for any non-adjacent pair. We symbolize by W the
corresponding n × n matrix of weights. Obviously, this is a
symmetric matrix, wij = wji.

We further associate with each edge (i, j) a number δij that
measures the desired height difference between nodes i and
j along the y-axis, thus expressing the relative hierarchy of
the nodes. Accordingly, in the drawing we would like to place
nodes i and j such that yi − yj = δij . We shall call these
numbers as target height differences, and use the convention
δij = 0 for any non-directed edge, or when there is no edge
between nodes i and j. We symbolize by ∆ the corresponding
n × n matrix of target height differences. By definition, this
is an antisymmetric matrix, δij = −δji.

Correspondingly, from this point on we write a digraph as
G(V,E;W,∆). In the absence of information on the weights
and/or the target height differences, it is always possible to as-
sociate with each edge (i, j) the default values wij = δij = 1.
Hereinafter, we shall term a digraph with these default values
an unweighted digraph, and denote its weights matrix and
target height differences matrix by W 0 and ∆0, respectively.
The only ingredient incorporating directional information is

∆. A digraph with ∆ = 0 (i.e., δij = 0 for any i and j) is
nothing but an undirected graph.

For later use we define two entities associated with a digraph
G(V,E;W,∆) — the Laplacian and the balance:

Definition 1 (Laplacian): Let G(V,E;W,∆) be a digraph.
The Laplacian of the digraph is the symmetric n× n matrix

Lij =

{
∑n

k=1
wik i = j

−wij i 6= j
i, j = 1, . . . , n.

This is just the conventional definition of Laplacian, customary
for undirected graphs. Indeed, since the Laplacian is indepen-
dent of ∆, the definition does not distinguish between digraphs
and undirected graphs. The Laplacian has a key role in some
undirected graph drawing algorithms; see, e.g., [9], [14], [16],
[17], and will be shown to play a fundamental role here, too.
One of its most important properties is the following:

Lemma 1: Let G(V,E;W,∆) be a digraph. Its Laplacian is
a positive semi-definite matrix, and thus has non-negative real
eigenvalues. Moreover, when G is a connected digraph, L has
exactly one zero eigenvalue, corresponding to the eigenvector
c · 1n, where 1n = (1, . . . , 1)T ∈ R

n and c any constant.
Proof: See Hall [9].

Naturally, a drawing algorithm has to deal only with connected
digraphs. When a digraph is disconnected, one should draw
each of its connected sub-digraphs separately. Unless other-
wise stated, we shall hereinafter always assume we have a
connected digraph.

Definition 2 (Balance): Let G(V,E;W,∆) be a digraph.
The balance of the i’th node, denoted bi, is

bi =

n
∑

j=1

wijδij .

The balance of G is the vector

b = (b1, . . . , bn)T .

A node whose balance is zero will be called a balanced node.
A digraph all of whose nodes are balanced will be called a
balanced digraph.
The balance of the i’th node measures the difference between
how much it pushes away other nodes (those nodes j for which
δij > 0), and how much it is pushed away (by those nodes j
for which δij < 0), thus the name balance. For the unweighted
digraph the balance is simply the difference between the out-
degree and the in-degree of the node. The balance vector has
the following useful property:

Lemma 2: Any balance vector b is orthogonal to the vector
1n, i.e.,

b · 1n =
n

∑

i=1

bi = 0.

Proof: From Definition 2

n
∑

i=1

bi =

n
∑

i,j=1

wijδij = 0,

where the last equality follows from the fact that W is
symmetric while ∆ is antisymmetric.
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III. THE ALGORITHM

In this section we define the hierarchy energy and develop
the theory that underlies the different parts of the drawing
algorithm. Some details of implementation are postponed to
Section IV.

A. Assigning the y-Coordinates

We suggest using an energy function, whose minimization
yields a vector of coordinates that bears some desired proper-
ties.

Definition 3 (Hierarchy Energy): Let G(V,E;W,∆) be a
digraph, and let y = (y1, . . . , yn)T be any vector of coordi-
nates. The hierarchy energy is

EH(y) =
1

2

n
∑

i,j=1

wij(yi − yj − δij)
2. (1)

Clearly, EH(y) ≥ 0 for any digraph and any vector of coordi-
nates. We define an optimal arrangement of a digraph, y?, as
a minimizer of the hierarchy energy, y? = arg miny EH(y).2

An optimal arrangement will try to place the nodes such that
the height difference yi − yj for any adjacent pair 〈i, j〉 will
be close to δij . The weight wij indicates how ‘important’ it
is that (yi − yj − δij)

2 be small. The larger this quantity,
the smaller (yi − yj − δij)

2 should be, in order to keep the
contribution to the energy small. A similar energy function was
used by Brandes et al. [1] for a completely different drawing
application (edge routing of timetable graphs).

Using the previously defined notions of Laplacian and
balance, the hierarchy energy can be written in a compact
form:

Lemma 3: Let G(V,E;W,∆) be a digraph with Laplacian
L and balance b, and let y = (y1, . . . , yn)T be any vector of
coordinates. The hierarchy energy is given by

EH(y) = E0 + yT Ly − 2yT b, (2)

where E0 = 1

2

∑n
i,j=1

wijδ
2

ij .
Proof: Expanding the hierarchy energy (1), we get

EH(y) =
1

2

n
∑

i,j=1

wij(yi − yj)
2 −

n
∑

i,j=1

wijδij(yi − yj) +

+
1

2

n
∑

i,j=1

wijδ
2

ij .

The first term was shown in [9] to be just yT Ly. The third
term is, by definition, E0. The second term is

−

n
∑

i,j=1

wijδij(yi − yj) = −2

n
∑

i,j=1

wijδijyi = −2yT b,

where the first equality stems from W being symmetric and
∆ being antisymmetric.

Exploiting the simple form of the hierarchy energy, we find
an explicit formula for an optimal arrangement. As the next
result shows, y? is the solution of a system of linear equations.

2x0 = arg minx f(x) is a notation commonly used to describe the
minimizer x0 of f(x). This is to be distinguished from minx f(x) which is
just f(x0).

Proposition 1: Let G(V,E;W,∆) be a digraph, with
Laplacian L and balance b. An optimal arrangement y? is a
solution of

Ly = b.
Proof: Differentiating (2) with respect to y and equating

to zero gives:

∂EH(y)

∂y
= 2Ly − 2b = 0.

Thus, the solution of Ly = b corresponds to an extremum of
EH(y). It is a global minimum, since EH(y) is a quadratic
form with yT Ly ≥ 0 (recall from Lemma 1 that L is positive
semi-definite).

But what can we say about existence and uniqueness of this
solution? Lemma 1 tells us that L is singular. However, this
should not worry us, as the following proposition shows.

Proposition 2: Let G(V,E;W,∆) be a connected digraph,
with Laplacian L and balance b. The system Ly = b is
compatible, with an infinite number of solutions differing only
by a translation.

Proof: The existence of at least one solution follows
from the fact that the energy EH(y) is bounded from below.
Suppose that y1 and y2 are two solutions of Ly = b, i.e.,
Ly1 = b and Ly2 = b. Therefore, L(y2 − y1) = 0, with y2 −
y1 an eigenvector of L corresponding to the zero eigenvalue.
From Lemma 1 it follows that y2 − y1 = c · 1n.
The uniqueness (up to a translation) suggests that y? carries
some essential information. Indeed, as will be shown in
Section V, this exact property is the one that makes feasible
the definition of a hierarchy index.

Actually, Proposition 2 enables us to define the optimal
arrangement in a completely unique fashion. We require that
the center of mass of the optimal arrangement is at the origin
of the coordinates, i.e.,

∑

i y?
i = 0. This choice of y? enables

its fast computation using the conjugate gradient method; see
Section IV. Therefore, we redefine the optimal arrangement
as:

Definition 4 (Optimal Arrangement): Let G(V,E;W,∆)
be a digraph with Laplacian L and balance b. Its optimal
arrangement, y?, is the solution of Ly = b, subject to the
constraint yT · 1n = 0.

Let us see how this algorithm works by applying it to some
very small-scale examples. More examples appear in later
sections. Figure 1(a) shows an unweighted acyclic digraph.
Its optimal arrangement is the solution of the system





2 −1 −1
−1 1 0
−1 0 1



 y =





2
−1
−1



 ,

under the constraint yT · 1n = 0. This gives

y? =





2/3
−1/3
−1/3



 ,

which is just the expected two-layer solution. The height
difference between the layers is 1, thus δij = yi − yj for
all 〈i, j〉, giving EH(y?) = 0.
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23 3 2

1

(a) (b)

Fig. 1. Two very small examples of unweighted acyclic digraphs.

Figure 1(b) shows another example of an unweighted
acyclic digraph. In this case,

y? =





2/3
0

−2/3



 ,

which is the constrained solution of the system




2 −1 −1
−1 2 −1
−1 −1 2



 y =





2
0
−2



 .

Aesthetically, this vector of coordinates nicely captures the
structure of the digraph, where, in contrast to the first example,
nodes 2 and 3 can no longer have the same y-coordinate since
they push each other in opposite directions. The result reflects
a compromise of sorts, pushing node 2 upwards and node 3
downwards, thus decreasing the height difference y1 − y2 to
2

3
and increasing y1 − y3 to 4

3
. The height differences cannot

achieve their targets, resulting in a strictly positive hierarchy
energy EH(y?) = ( 2

3
− 1)2 + ( 2

3
− 1)2 + ( 4

3
− 1)2 = 1

3
.

Figure 2(a) shows an example of an unweighted cyclic
digraph. This time the system to be solved is









2 −1 0 −1
−1 3 −1 −1
0 −1 2 −1
−1 −1 −1 3









y =









0
1
0
−1









,

giving

y? =









0
1/4

0
−1/4









,

which is schematically plotted in Fig. 2(b). Here we see
the naturalness of the way our algorithm deals with cyclic
digraphs. The result is aesthetically convincing, putting node
2, whose balance is the largest, at the top, and node 4, whose
balance is the smallest, at the bottom. As is always the case
with cyclic digraphs, the height differences cannot all achieve
their targets, resulting in strictly positive hierarchy energy.
Indeed, EH(y?) = 4 · ( 1

4
− 1)2 + ( 1

2
− 1)2 = 2.5.

The idea of using energy minimization to determine a
vector of coordinates on one axis of the drawing, was already
exploited in the field of undirected graph drawing by Tutte
[22] and Hall [9], both utilizing the same quadratic energy
function. We next show that the hierarchy energy can be

1

4 2

3

y

1
4

1
4

2

1 3

4

(a) (b)

Fig. 2. (a) A small example of an unweighted cyclic digraph; (b) its
optimal arrangement.

viewed as a generalization of the Tutte-Hall energy, suggesting
the possibility of drawing undirected graphs and digraphs
using the same tools.

Tutte and Hall used the following quadratic energy function:

ETH(y) =
1

2

n
∑

i,j=1

wij(yi − yj)
2 = yT Ly.

Comparing this energy with the hierarchy energy (1), it is clear
that they become identical for a digraph with ∆ = 0, which
is really an undirected graph. Furthermore, undirected graphs
are members of the larger family of balanced digraphs, for
which we get the (undesirable) zero vector as a minimizer,
y? = (0, . . . , 0)T .

The case of a zero balance vector is discussed in Section
V, and here we just briefly explain how Tutte and Hall dealt
with it in the framework of undirected graph drawing:

• Tutte’s solution: Tutte [22] arbitrarily chose a certain
number of nodes to be anchors, i.e., he fixed their
coordinates in advance. This, of course, prevents the
collapse of all nodes to the same location, but instead
it raises new problems, such as which nodes should be
the anchors, and how to determine their coordinates.

• Hall’s solution: Hall [9] constrained the solution to be
centered at the origin, which is just a translation. Further-
more, Hall posed an overall scaling constraint yT y = 1,
thus avoiding the zero-vector solution. He showed that
the optimal vector of coordinates is the eigenvector of
the Laplacian that corresponds to the lowest positive
eigenvalue. This vector, also known as the Fiedler vector,
is of tremendous importance in many other fields too.
This approach, so it seems, yields nice drawings; see the
examples in [9] and [16].

It is instructive to adopt a different viewpoint in explaining
a fundamental difference between the minimizer of the Tutte-
Hall energy, and the optimal arrangement y?. The former is
obtained from the equation ∂ETH(y)/∂yi = 0 which gives

yi =

∑n
j=1

wijyj
∑n

j=1
wij

. (3)
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This equation tells us to put node i in the barycenter of
its neighbors. Clearly, the zero vector is a solution of (3),
a situation that both Tutte and Hall avoid by using various
constraints. In analogy, the minimizer of our hierarchy energy
is obtained from the equation ∂EH(y)/∂yi = 0 which gives

2

n
∑

j=1

wij(y
?
i − y?

j − δij) = 0.

This yields the following important property of y?:

y?
i =

∑n
j=1

wij(y
?
j + δij)

∑n
j=1

wij

,

which is substantially different from (3). Here we take a
‘balanced’ weighted average instead of the barycenter. The
introduction of nonzero δij’s prevents the collapse of all the
nodes to the same location, yielding a meaningful solution.

B. Assigning the x-Coordinates

In principle, we would like to use a classical force directed
model for the x-axis. Directional information should not be
considered any longer, since it is assumed to be exhaustively
taken care of by the y-axis. However, when trying to modify
the customary two-dimensional gradient descent optimization
algorithm, for use in our one-dimensional case, convergence
was rarely achieved. The reason for this is what we call the
‘swapping problem’. Recall that the y-coordinates of the nodes
are already fixed, and now the nodes are allowed to move
only along the x-axis. However, if two nodes have close
y-coordinates, swapping places along the x-axis is almost
always impossible, even if it is energetically favorable, due
to the repulsive forces that form an “energy barrier”. This is
demonstrated in Figure 3. Suppose we have nodes 1 and 2,
whose y-coordinates are close, arranged along the x-axis, as
shown in Figure 3(a). Suppose also that the arrangement in
Figure 3(b) is energetically favorable. Yet, the transition from
state (a) to state (b) involves an intermediate state like the one
shown in Figure 3(c), in which the nodes become very close.
In this state the repulsive forces are the dominant ones, thus
preventing further progress of the nodes.

(a) 1 2
x-axis

(b)

x-axis
2 1

(c)

x-axis
1 2

Fig. 3. Visualization of the swapping problem.

It would be the best, then, to employ an alternative op-
timization technique for our one-dimensional case, which
skirts the swapping problem by avoiding the node-by-node
optimization mechanism. This calls for associating the vector
x = (x1, . . . , xn)T representing the x-coordinates of the nodes
with an energy function that can be minimized using global (as
opposed to node-by-node) techniques. To this end, we would

like to suggest three such energy functions, each is driven by
different aesthetic reasoning:

Minimizing edge-squared lengths: This means minimizing
the already familiar Tutte-Hall energy function, ETH(x) =
1

2

∑n
i,j=1

wij(xi − xj)
2 = xT Lx. As discussed in Subsection

III-A; see also [14], the non-trivial minimizer of this energy
function is the Fiedler vector, which is the eigenvector of the
Laplacian associated with the smallest positive eigenvalue. We
find the minimizer of ETH using ACE [16] — an extremely
fast multiscale algorithm for undirected graph drawing.

Minimizing edge lengths: This is the well known prob-
lem of minimum linear arrangement [4]. The solution is
obtained by minimizing the energy function ELA(x) =
1

2

∑n
i,j=1

wij |xi−xj |, where (x1, . . . , xn) is a permutation of
(1, . . . , n). This is an NP-hard problem, and hence we should
work with heuristics. In practice, we find a local minimizer
of ELA using another fast multiscale algorithm [18], designed
especially for this problem.

Minimizing the stress: This means minimizing the stress
energy, ES(x) = 1

2

∑n
i,j=1

kij (|xi − xj | − dij)
2, where dij

is the graph-theoretical distance between nodes i and j,
and kij = 1/d2

ij is a normalization constant. This energy
is a traditional measure of drawing quality, based on the
heuristic that a nice drawing relates to good isometry [11]. Its
minimization calls for placing the nodes so that the resulting
pairwise Euclidean distances will approach the corresponding
graph-theoretical distances. Interestingly, the stress energy
shares much resemblance to the hierarchy energy (1), with
the only difference being the absolute value appearing in
the former. In another work [15] it is shown that a local
minimizer of the stress energy can be found by sequentially
optimizing a series of hierarchy energies. Impressively enough,
the hierarchy energy is found to fulfill a valuable role also in
determining the x-coordinates, despite of the fact that they
does not carry directional information.

Specific examples of the layouts obtained by the three
energy functions are shown in Section VI; see Figure 10. Here
we would like to keep the discussion more theoretical, and
dwell upon some of the pros and cons of the three alternatives.
The minimization process of the Tutte-Hall energy function
is guaranteed to converge to the global minimum. This is
reflected in very smooth layouts that very impressively capture
symmetries in the digraph; see Figure 15. Consequently, it
seems highly adequate for drawing large and well-connected
digraphs with some clear structure. The Tutte-Hall energy
minimization is further favorable when very large digraph are
concerned, since the solution can be found extremely fast using
multiscale techniques; see [16], [17] and Table I. In other
cases (most notably, trees), the Fiedler vector was inferior
with respect to the final result. The reason for this is that
nothing in the Tutte-Hall energy function prevents two nodes
from having the same x-coordinate. Therefore, locally dense
regions could very well appear. Using the minimum linear
arrangement for the x-coordinates solves this last drawback of
the Fiedler vector. It allocates a different integral x-coordinate
per node, thus preventing overcrowding of the nodes. However,
the final result might in some cases be somewhat “unnatural”
due to this quantization of the x-axis. Using the stress energy
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minimization yields, in many cases, the most “natural” results,
with the overall Euclidean distances between the nodes highly
correlated with their graph-theoretical distances.

IV. OPTIMIZATION OF THE HIERARCHY ENERGY

Finding the optimal layering means solving the system
Ly = b; see Definition 4. Classical solvers, however, might
fail, since, by Lemma 1, L is singular. However, here we
note the fundamental importance of the fact that we have been
defining the optimal arrangement to be orthogonal to 1n. As
will be explained shortly, this fact enables us to solve the
system Ly = b by direct application of a conjugate gradient
algorithm [8]; see Figure 4. All that we have to do is to make
sure that the initial vector is orthogonal to 1n. Convergence is
then guaranteed in n iterations, but in practice it is much faster
than that. Each iteration is fast, with the dominant operation
being a single multiplication of a matrix with a vector, which
is done in time O(|E|), where E is the set of edges.

Function Conjugate Gradient (L, b)
% L — the Laplacian
% b — the balance
const ε ∼ 10−3 % tolerance

% Initialization:
y ← choose at random
y ← y − 1

n

∑n
i=1

yi % Orthogonalization against 1n

d← r ← b− Ly

% Loop until convergence:
while ‖r‖ > ε do

γ ← rT r
α← γ

dT Ld

y ← y + αd
r ← r − αLd

β ← rT r
γ

d← r + βd
end while
return y

Fig. 4. The conjugate gradient algorithm that we use to find the
optimal arrangement.

For the interested reader, we now show why we can safely
apply a conjugate gradient algorithm to the system Ly = b.
The basic idea is that the singularity of L can be removed by
restricting the problem to a subspace of R

n.
Let P be the rotation matrix that sets the direction 1n to be

the first axis of R
n, i.e., P · 1n = (1, 0, . . . , 0)T . Let b′ = Pb

be the rotated balance, and y?′

= Py? the rotated optimal
arrangement. Then L′y?′

= b′, where L′ = PLPT is the
rotated Laplacian.

From Definition 4, y? · 1n = 0, so that y?′

1
= 0. Also, from

Lemma 2, b · 1n = 0, thus b′
1

= 0. Therefore, the first element
of both y?′

and b′ is identically zero, allowing to ignore that
axis and to restrict the problem to the (n − 1)-dimensional
subspace orthogonal to 1n. Let b′′ be the (n− 1)-dimensional
vector (b′

2
, . . . , b′n)T , and let y?′′

be the (n − 1)-dimensional

vector (y?′

2
, . . . , y?′

n )T . Let L′′ be the (n−1)× (n−1) matrix
obtained by omitting the first row and first column of L′. Then

L′′y?′′

= b′′,

where it can be easily proved that L′′ a positive definite, thus
non-singular, matrix.

A system of linear equations with a positive definite matrix
can be quickly solved and with excellent numerical stability.
If L′′ is dense, one can solve the system using Cholesky
factorization [8], which is faster and more stable than Gauss
elimination. If L′′ is sparse, iterative techniques should be pre-
ferred. Gauss-Seidel relaxation [8] is guaranteed to converge,
but the conjugate-gradient (CG) technique [8] is considered
stronger, with a guaranteed convergence in n iterations. L′′ is
used in each iteration by multiplying it once with a vector.
In fact, this multiplication is the only way in which L′′ is
used. For our case, this fact is of utmost practical importance,
sparing the need to go through the process of restricting L to
L′′. Any multiplication of the form L·y, where y is orthogonal
to 1n, keeps us in the subspace orthogonal to the 1n direction.
Thus, as long as we start with a vector orthogonal to 1n, we are
guaranteed that the final solution y? will be orthogonal to 1n,
too. This justifies our use of the conjugate gradient algorithm
directly on Ly = b.

V. FURTHER IMPLICATIONS OF THE y-AXIS
ARRANGEMENT

Here we concentrate on four issues. In the first two sub-
sections we characterize the way our algorithm operates on
regular graphs and on symmetric nodes. Next we present a
definition of an index that measures the amount of hierarchy
in a given digraph, and demonstrate how it works. Finally, we
discuss the way our algorithm draws cyclic digraphs.

A. Regular Digraphs

A regular graph is one in which all nodes have the same
degree. In analogy, a regular digraph is one in which all nodes
have the same in-degree and also all nodes have the same out-
degree. A regular digraph exhibits a high level of symmetry,
so that we do not expect to find much hierarchy in it. Indeed,
our algorithm reflects this absence of hierarchy by placing all
nodes at the same y-coordinate. This can be proved from the
observation that in a regular digraph each node is balanced,
having equal in-degree and out-degree (as can be deduced from
the fact that in every digraph the sum of all in-degrees is equal
to the sum of all out-degrees). Hence, the optimal arrangement
for a regular digraph is the solution of Ly = 0, which is
y? = (0, . . . , 0)T .

In general, the optimal arrangement of any balanced digraph
(Definition 2) would be the zero vector y? = (0, . . . , 0)T . Two
examples of such digraphs are shown in Figure 5. Interestingly,
any undirected graph is a balanced digraph. This is consistent
with the above intuition, since undirected edges cannot impose
any directionality.

Clearly, using the optimal arrangement for the y-coordinates
of regular digraphs is useless, and we shall prefer undirected
drawing algorithms.
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1 2
d12 = 1

d23 = 1

d34 = 1

d41 = 1

4 3

1 2
d12 = 1

d41 = 1

34

d32 = 1

d43 = 1

d24 = 2

(a) (b)

Fig. 5. Two examples of balanced digraphs. For both we assume a
default weights matrix, W 0.

B. Symmetric Nodes

When the nodes are all symmetric the digraph is regular,
hence the nodes are all assigned the same y-coordinate. In-
terestingly, this observation can be extended: if two nodes are
symmetric, they have the same y-coordinate. In the framework
of undirected graphs, it is customary to denote two nodes
i and j as symmetric if there exists a permutation π such
that π(i) = j and π(j) = i, and the Laplacian is invariant
under π, L = Lπ . Here, Lπ is the Laplacian whose rows
and columns are permuted according to π. For digraphs, we
impose symmetry also on the directionality:

Definition 5 (Symmetric Nodes): Two nodes i and j are
called symmetric if there exists a permutation π such that
π(i) = j and π(j) = i, and both the Laplacian and the balance
are invariant under π,

1) L = Lπ .
2) b = bπ .

The vector bπ is the balance vector whose entries were per-
muted according to π. This definition reduces to the standard
one for undirected graphs, since in this case b is the zero
vector.

We expect symmetric nodes to have the same level of
hierarchy, i.e., to have identical y-coordinates. This is indeed
the case:

Proposition 3: Let i and j be two symmetric nodes. Then,
y?

i = y?
j .

Proof: Let y? be the optimal arrangement obtained from
Ly = b, and let y?

π be the optimal arrangement obtained from
Lπy = bπ . Then, since the optimal arrangement is unique, we
must have y?

π = y?, and in particular

(y?
π)i = y?

i . (4)

But a permutation is nothing but a re-naming of the nodes, so
that

(y?
π)i = y?

j . (5)

Combining (4) and (5), we get y?
i = y?

j .
We would like to emphasize that this proof relies strongly on
the uniqueness of the optimal arrangement. This key property
of our hierarchy energy enables us to relate the symmetry of
nodes to actual properties of the drawing.

C. Hierarchy Index

The y-axis in our drawings contains the entire available
information about the hierarchy. We claim that the spread of

the projection of the drawing on this axis is closely related
to its inherent hierarchy. Two extreme examples are shown
in Figure 6. In Figure 6(a) a circle is shown. Clearly, no
node is different from the other, and we do not expect to
see any hierarchy at all. Indeed, it is a regular digraph, thus
y? = (0, . . . , 0)T . In Figure 6(b), a path is shown. There, the
amount of hierarchy is maximal, each node has a different
y-coordinate in unit increments, y? = (2, 1, 0,−1,−2)T .

1

2

3

45

1 2 43 5

(a) (b)

Fig. 6. The digraph in (a) is hierarchy-free, while that in (b) has a
maximal amount of hierarchy.

It would be natural, therefore, to associate the hierarchy of
a digraph with the magnitude ∆y? = y?

max
− y?

min
. The larger

the ∆y?, the more hierarchical the digraph. One can use this
magnitude to measure how worthwhile it is to allot the y-
axis to exhibit the directional information. In order to do so,
∆y? should be compared with a measure of the dimension
of the digraph, had it been drawn using undirected graph
drawing algorithms. A plausible candidate for measuring this
is the diameter D of the digraph, which is the graph-theoretical
distance between the two most distant nodes. Therefore:

Definition 6: The hierarchy index of an unweighted di-
graph3 is

H =
∆y?

D
=

y?
max
− y?

min

D
,

where y? is its optimal arrangement and D is its diameter.
If ∆y? is comparable to D, the directional information is

significant and one should use digraph drawing algorithms. If,
on the other hand, ∆y? is small with respect to D, then it is no
longer ‘profitable’ to dedicate an entire axis for the directional
information, and undirected graph drawing algorithms should
be preferred.

We shall next see some examples for the hierarchy index:

1) Regular digraph: For any regular digraph — for exam-
ple, undirected graphs and circles — H = 0.

2) Binary tree: The diameter of a complete binary tree
with n nodes is 2 log n. The magnitude ∆y? is log n;
see also Section VI. The hierarchy index of a complete
binary tree is therefore H = 1

2
, independent of n. This

1:2 ratio is well visualized when comparing the height
of the hierarchical drawing, as in Figure 10, with that of
the radial drawing generated by undirected force models,
as in Figure 7.

3It is possible to generalize the definition of the hierarchy index for
weighted digraphs, but we will not do it here.
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3) Path: The diameter of an n-node path is n− 1 (see for
example the 5-node path of Figure 6(b)). ∆y? is also
n − 1. Consequently, the hierarchy index of a path is
H = 1, independent of n.

4) Circle with extension: Let one of the nodes of an n-
node circle be connected to one node outside the circle;
see example in Figure 8. The diameter of such a digraph
is roughly n/2. The magnitude ∆y? is 1. Therefore,
H ≈ 2

n
. As expected, limn→∞ H = 0.

Fig. 7. An undirected force-model drawing of a binary tree.

1

2

3

45

6

Fig. 8. A 5-node circle with an outlier.

D. Cyclic Digraphs

Standard layering algorithms can be applied only to acyclic
digraphs. When dealing with cyclic digraphs they are first
transformed into acyclic ones by inverting the direction of a
minimal number of edges [3], [13]. (Although, in cases where
a special root node is known in advance, better strategies are
possible.) Our algorithm allows one to directly draw cyclic
digraphs without having to invert edge directions. We believe
this to be one of its most significant advantages.

To make this claim stronger, we now show why it seems that
there is no simple connection between the number of edges
whose direction should be reversed and the inherent hierarchy
of the digraph. As an example, in a directed cycle, like the
one plotted in Figure 6(a), it suffices to invert the direction of
a single edge in order to make it acyclic. Thus, the graph will
be drawn by standard layering algorithms as a full-hierarchy

path, having the lowest and the highest nodes connected by a
reversed edge; see Figure 9. Obviously, this misrepresents the
structure of the hierarchy-free cycle. Applying our algorithm
to a directed cycle shows that it contains no directionality,
being a regular digraph. In the absence of hierarchy, there is
no sense in forcing the edges to be all laid out in the same
direction.

1

2

4

3

5

Fig. 9. Schematic layering of 5-points circle.

Another example is shown in Fig. 11(a). Here, the digraph
does contain hierarchy, and the figure shows its optimal
arrangement as dictated by our algorithm. We believe that we
can quite objectively claim that this drawing best represents the
structure of the digraph, despite of the fact that only about half
of the edges point downward, and the rest point upward. This
is because the only explicit hierarchy in this digraph, which
is well captured in the figure, is between the highest node
and the lowest one. None of the other nodes possess evident
hierarchical relations, thus some of the edges connecting them
are ‘allowed’ to go upward.

VI. EXAMPLES

We have tested our algorithm against several unweighted
digraphs with diverse structures. Most of the digraphs are
based on matrices from the Matrix Market collection [23].
Each digraph is constructed by taking a matrix and replacing
each non-zero entry (i, j) with a directed edge from i to j.

Figure 10 compares between the three different techniques
for calculating the x-coordinates, with regard to three dif-
ferent digraphs. Complete 5-level binary tree: the optimal
arrangement is naturally quantized into 6 layers, as dictated
by the tree structure. Using the Fiedler vector to determine
the x-coordinates obviously fails to capture the tree structure,
with many nodes being placed in exactly the same location.
This phenomenon is explained in Subsection III-B. Using
the minimum linear arrangement we definitely reveal the tree
structure, but the stress minimization technique unquestionably
gives the best result. Nos6 digraph [23]: the three techniques
all exhibit the symmetries of the graph very well. Notice the
smooth layout formed by the Fiedler vector, as opposed to
the more rigid one formed by the two other alternatives. Nos3
digraph [23]: Here, the superiority of the stress minimization
technique is clear, with the Fiedler vector and minimum linear
arrangement produce a condensed diagonal stripe that conceals
the structure of this digraph.
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Depth-5 binary tree:

Nos6 graph:

Nos3 graph:

Fiedler vector Minimum linear arrangement Stress minimization
Fig. 10. Demonstration of drawings produced by our algorithm. The different columns are distinguished by the method used to produce the
x-coordinates. The Fiedler vector was used in the left column, the minimum linear arrangement was used in the middle column, and the
stress minimization was used in the right column. In the upper row a 5-node complete binary tree is shown. In the middle and lower rows
the Nos6 and Nos 3 digraphs [23] are drawn. Obviously, the y-coordinates are identical for three versions of each digraph.

Figure 11 shows another three instructive examples. Here,
we have used the Fiedler vector for drawing the x-coordinates,
but the other two alternatives yield pretty much the same
layouts. Figure 11(a) shows a directed cycle with an additional
edge. In contrast to a pure cycle, which is regular and
thus hierarchy-free, this digraph, thanks to the extra edge,
does contain hierarchical information. Figure 11(b) shows an
acyclic digraph comprised of a few parallel paths of different
lengths. In spite of the diversity of path lengths, all edges are
drawn in the same direction. Figure 11(c) is a cyclic version of
the former digraph, with the direction of the edges along one
of the paths (the middle one) being inverted. Interestingly, the

drawing is almost identical to that of the acyclic version, with
the principal difference being the direction of the “reversed”
edges. It seems that restricting the y-coordinates to strict
horizontal layers would ruin the natural structure of the graphs
of Fig. 11(b,c).

Figure 12 shows two different layouts of the Nos7 digraph
[23]. In both cases the x-coordinates were constructed using
the Fiedler vector. Here, the multiplicity of the lowest positive
eigenvalue of the Laplacian is greater than 1, so there are two
different Fiedler vectors. The left-hand-side drawing draws
the graph in a “layering style”, putting the nodes on many
horizontal layers. The right-hand-side drawing has a three-
dimensional look. It arranges the nodes in 9 two-dimensional
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(a) (b) (c)

Fig. 11. Three examples of digraphs; (a) a distorted cycle. The extra
edge is responsible for the observed hierarchy; (b) an acyclic digraph
comprised of a few parallel paths with varying lengths; (c) a cyclic
version of the former digraph.

layers. Note that in both drawings the edges point downwards.

Fig. 12. Two different drawings of the Nos7 digraph [23]. The y-
coordinates are the same, whereas the x-coordinates obtained by two
different Fiedler vectors.

Frequently, drawing large digraphs is based on different
aesthetic criteria than those used for drawing small digraphs.
Nice drawings of small digraphs are usually obtained if one
optimizes low-level features like minimizing the crossings
between edges and/or node. This is, of course, very important
for close examination of portions of the digraph. However,
for large digraphs it might be better to focus on different,
more global, aesthetic aspects, like expressing symmetries,
in order to preserve the high-level structure. This allows the
user to grasp important characteristics of the digraph simply
by its visual inspection. In this regards, our method is more
appropriate for the drawing of large digraphs, compared to the
Sugiyama-style approach. To demonstrate this, we took two
large digraphs and displayed them using both our algorithm
and the dot software package [7], which is a state-of-the-art
Sugiyama-style digraph drawing software; see Figure 13. The
dot software puts much emphasize on the aforementioned low-
level features like preventing overlap of nodes and optimizing
the navigation of the edges. The general layout of Plat362
in Figure 13 is similar for both algorithms, but it is clear
that our algorithm is somewhat superior in emphasizing the
internal symmetries. The dot software seems to have more
difficulty in capturing the structure of the Nos5 digraph, while

it is clearly achieved using our algorithm. Another advantage
of our algorithm in the context of drawing large digraphs, is
in its computation speed; see Table I. The dot software may
be many times slower.

The Plat362 digraph

The Nos5 digraph

Fig. 13. Two large digraphs, Nos5 and Plat362 [23], were chosen for
the comparison between our algorithm (the drawings on the right),
and the popular dot software package (the drawings on the left). We
have used stress minimization to determine the x-coordinates.

Another comparison between our algorithm and dot is pre-
sented in Figure 14, where the transcriptional gene regulation
network of Escherichia coli is shown. Here, the two drawings
are quite comparable, both capturing the structure of the
network.

(a)

(b)

Fig. 14. Network of transcription interactions between regulatory
proteins and genes in the bacterium Escherichia coli, taken from
[19]. This digraph has |V | = 424 nodes and |E| = 519 edges. (a)
The layout produced by our algorithm, where we have used minimum
linear arrangement to find the x-coordinates. (b) The layout produced
by the dot software.

Interestingly, our algorithm can be applied to graphs con-
taining both directed and undirected edges. As was already
mentioned, all we have to do in order to deal with an
undirected edge (i, j) is to set δij = δji = 0, meaning
that such an edge induces no hierarchical relation. Many
graphs based on matrices in the Matrix Market collection [23]
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contain both directed edges (when entry (i, j) is non-zero and
entry (j, i) is zero) and undirected edges (when both entries
(i, j) and (j, i) are non-zero). In Fig. 15 we show three such
graphs: Dwa512, Dw2048 and Dw8192, all computed using
the Fiedler vector for the x-coordinates. Directed edges are
colored red and undirected edges are colored blue. In all the
drawings the graph structure is shown nicely with excellent
symmetry preservation. Moreover, all the directed edges point
downwards, and induce hierarchical relations between nodes
that are contained in undirected components of the graph. We
think that these results demonstrate that sometimes restricting
the nodes to strict layers hides the graph’s natural structure.

In Table I we provide the sizes of the graphs and running
times, as measured on a Pentium IV 2GHz PC with 256 MB
RAM. In the table, the difference in computation speed be-
tween the three alternatives for the x-coordinates computation
is apparent. Finding the Fiedler vector is unquestionably the
fastest method, followed by the stress energy minimization,
which is about two orders of magnitude slower, and then the
minimum linear arrangement which is yet another order of
magnitude slower. To get a feeling of the overall computation
time, notice that the largest graph, containing 8192 nodes,
was drawn in less than half a second using the Fiedler vector,
while it required about half a minute using the minimum linear
arrangement.

VII. DISCUSSION

We have presented a digraph drawing algorithm that uses
several one-dimensional energy minimization problems to find
an optimal drawing in two-dimensions. The vector of y-
coordinates is found using a rather elegant minimization of
the so-called hierarchy energy, which yields a unique global
minimizer that nicely captures the hierarchical information.
To calculate the vector of x-coordinates, which contains non-
directional information, we have proposed three possible en-
ergy functions. One of them, the stress energy function, can
be minimized by an iterative process that is intimately related
to the hierarchy energy. Thus, the hierarchy energy seems to
be a fundamental concept in digraph drawing, involved with
calculating the y, as well as the x, coordinates.

The layouts produced by our algorithm are very natural, and
are not subject to any predefined restrictions. In a way, they
simply “let the graph speak for itself”. The fact that the layout
is a minimizer of carefully designed energy functions enables a
rather accurate representation of many properties of the graph,
such as its hierarchical structure and its symmetries. In terms
of running time, our algorithm is very fast, being able to draw
10,000-node graphs in less than a second on a mid-range PC.

Significant virtues of our algorithm include its ability to
draw cyclic digraphs without having to invert edge directions,
the possibility of applying it to graphs containing both directed
and undirected edges and its ability to measure the amount
of hierarchy in the digraph via the hierarchy index. One
potential application of this index is to decide whether to use
hierarchical drawing tools to represent a given digraph, or to
prefer undirected graph drawing algorithms.

We believe this last issue to be worthy of further research,
and suggest the possibility of combining digraph drawing

algorithms and undirected graph drawing algorithms into a
unified tool: Given a general digraph, we could use the hier-
archy index on portions of it, and draw the different portions
either with this algorithm or with the other, depending of their
level of hierarchy. More specifically, one can scan the optimal
y-coordinates vector to find connected subgraphs, such that
the nodes in each subgraph have similar y-coordinates. Such
subgraphs are candidates for being hierarchy-free components,
and should be processed separately.

Our algorithm can be used in two different ways for the
benefit of the standard approach for digraph drawing:

• It can induce layering: We can think of the optimal
arrangement as a kind of a “continuous layering”. The
usual discrete layering can be easily induced from it if we
divide the nodes into maximal subsets, such that within
each subset the nodes have successive y-coordinates and
no edge resides within a single subset. This might be spe-
cially useful for computing layering of cyclic digraphs,
where other methods confront difficulties.

• It can induce ordering: Standard ordering algorithms
are typically very local in nature. In a single iteration
only one layer is free to change the order of its nodes.
We can replace it with a more global approach, using our
vector of x-coordinates to impose a “global ordering”.
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