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ABSTRACT
In this paper we present qualitative findings on the influ-
ence of previous programming experience on the learning
of the visual, scenario-based programming language of live
sequence charts (LSC). Our findings suggest that previous
programming experience leads programmers not only to mis-
understand or misinterpret concepts that are new to them,
but that it can also lead them to actively distort the new
concepts in a way that enables them to use familiar program-
ming patterns, rather than exploiting the new ones to good
effect. Eventually, this leads to poor usage of some of the
new concepts, and also to the creation of programs that be-
haved differently from what the programmers expected. We
also show that previous programming experience can affect
programmers’ attitude towards new programming concepts.
Attitude is known to have an effect on performance. Since
LSC and its underlying concepts are of growing popularity
in the software engineering community, it is interesting to in-
vestigate its learning process. Furthermore, we believe that
our findings can shed light on some of the ways by which
previous programming experience influences the learning of
new programming concepts and paradigms.

Keywords
Scenario-based programming, Visual Languages, Construc-
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1. INTRODUCTION
The idea that prior experience significantly influences the

way one acquires and uses new knowledge is the basis of the
learning theory of constructivism. According to construc-
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tivism, learning is not a passive process, in which knowl-
edge is received, but an active and subjective process, in
which new knowledge is built upon existing constructs of
knowledge and extends them (for more on constructivism
in education, see [23]). In science education research, the
constructivist approach has become very influential; for ex-
ample, in the study of misconceptions (see the work of Smith
et al. [22], and others). The application of constructivism
to computer science education (CSE) is relatively new, but
has become very influential since then, as indicated by the
number of references to Ben-Ari’s paper on the subject [4].

The schema theory of learning [2] also implies that experi-
ence plays a significant role in the learning process. This the-
ory describes knowledge as arranged in a hierarchical struc-
ture around cognitive constructs called schemas. A schema
encapsulates pieces of knowledge around a specific function-
ality. When this functionality is required – for example,
when one is solving a problem, the relevant schema is re-
trieved and applied. Rist describes programming knowledge
as arranged in plan schemas [19]. A plan schema is “an ab-
stract solution to a common programming problem; It stores
a plan to achieve a common goal” (pg. 175). Plan schemas
are developed while solving programming problems in the
context of specific programming languages. Thus, it is rea-
sonable to believe that different languages and paradigms
will lead to the creation of different programming schemas,
and that this will significantly affect the learning and usage
of new programming languages. About thirty years ago, a
question in this spirit was raised by Wexelblat, in a paper ti-
tled“The consequences of one’s first programming language”
[25].

The subject of the first programming paradigm, and the
language through which it should be introduced (hereafter,
we use the term ‘first language’, but we actually mean the
language and the main paradigm that underlies it), is a prin-
ciple question in CSE. This question is the core of a storming
debate, that was humoristically described by Gal-Ezer and
Harel as a ‘culture war’ [9]. A recent and comprehensive
survey on the subject of the first language can be found in
[24].

Reviewing the body of research on this subject yields that
arguments that base the importance of the first language
on its effect on future learning of other languages are used
quite often, but usually these arguments are not empirically
based. As far as we know, studies on the role of previous
experience in the learning of a new language and paradigm
are quite uncommon. Empirical studies that look on the
role of experience in programming usually concentrate on



the differences between novices and experts, and study these
differences in the context of a programming language that
is known to the experts. See for example the works of Adel-
son and Soloway [1], Burkhardt et al. [5], Détienne [7], and
others. We study the role of experience in the learning of
a programming language and paradigm that are new to the
experts. In this area, we are familiar only with the work
of Sharp and Griffyth [21]. They analyzed the correlation
between programmers’ experience and programmers’ under-
standing of object-oriented concepts. However, their anal-
ysis was based on a survey, which means that it relied on
students’ subjective perception of their level of understand-
ing of the course topics. Relying on self assessment for mea-
suring understanding in known to be unreliable, as there
are documented gaps between understanding and sense of
understanding. Also, due to the nature of collected data, a
survey is more appropriate for verifying existing hypotheses.
Since our goal is to obtain new insights and a deeper under-
standing of the phenomena, we chose to use a qualitative
analysis of in-depth interviews that were based on students’
projects.
When planning a study on the influence of programming

experience on the learning of new programming concepts, it
is important to use a programming language that the pro-
grammers are not familiar with, not only with respect to the
syntax, but also with respect to the underlying concepts.
LSC ([6], described in section 2), which introduces a new,
inter-object paradigm termed scenario-based programming,
and uses visual syntax, provides such an opportunity. In this
paper we present findings from such a study. By analyzing
several phenomena observed in the programming behavior
of nine CS graduate students, we show how previous pro-
gramming experience led the students to misinterpret and
distort some of the new concepts that LSC introduces, and
consequently to write erroneous programs.
The rest of the paper is organized as follows. In section 2

we present the principle concepts of LSC. In section 3 we
present the research question, the methodology, and the
findings. In section 4 we discuss the findings, and in sec-
tion 5 we present our conclusions.

2. LIVE SEQUENCE CHARTS
In this section we briefly describe the language of live-

sequence charts (LSC) and its development environment,
the Play-Engine. The language was originally introduced
by Damm and Harel in [6], and was extended significantly
in [14] and [15]. LSC is a visual specification language for
reactive system development. LSC and the Play-Engine are
based on three main concepts, that we now briefly review.

2.1 Scenario-based programming
LSC introduces a new paradigm, termed scenario-based

programming, implemented in a language that uses visual,
diagrammatic syntax. The main decomposition tool that
the language offers is the scenario. In the abstract sense, a
scenario describes a series of actions that compose a certain
functionality of the system, as seen by the user, and may in-
clude possible, necessary or forbidden actions. For example,
cash withdrawal is a basic functionality of an ATM machine.
In LSC, it can be captured in a scenario that describes the
system behavior in cash withdrawal, and will include the
interactions between the withdrawer and the system, and
between the internal parts of the system. Since a scenario

usually involves multiple objects – “one story for all relevant
objects” ([14], pg. 4) – scenario-based programming is inter-
object by nature. Returning to the ATM, a scenario-based
specification of an ATM will describe the ATM as a collec-
tion of such user-view inter-object scenarios. Scenarios in
LSC are also multi-modal in nature. That is, LSC events
have behavioral properties that define modalities of behav-
ior in three dimensions: must vs. may, allow vs. forbid, and
execute vs. observe.

Syntactically, a scenario is implemented in a live sequence
chart (see Figure 1). The chart is composed of two parts –
the prechart, and the main chart. The prechart is the upper
dashed-line hexagon, and it is the activation condition of
the chart. In case that the events in the prechart occur, the
chart is activated. Execution then enters the main chart.
This is the lower rectangle, which contains the execution
instructions. The vertical lines represent the objects, and
the horizontal arrows represent interactions between them.
The flow of time is top down. The chart in Figure 1 is
taken from a sample implementation of a cruise control. It
describes a scenario of stopping the cruise control when the
foot brake is pressed. When this happens, the cruise unit
releases control of the brakes and the accelerator, and turns
itself off.

Figure 1: A simple LSC chart.

2.2 The play-in method
LSC is supplemented with a method for building the scenario-

based specification over a real or a mock-up GUI of the sys-
tem – the play-in method [12, 14, 15], which is implemented
in the Play-Engine, LSC’s development environment. With
play-in, the user specifies the scenarios in a way that is
close to how real interaction with the system occurs. For
example, to implement the scenario described in Figure 1,
the user clicks the brake (represented by a button in the
GUI model of the cruise control), and then manipulates the
brake, accelerator, and cruise unit, to obtain the actions in
the main chart. Using this direct interface programming
method, users who are not familiar with LSC (or even with
other programming languages) can program the behavior of
an artifact relatively easily.

2.3 The play-out method
LSC has an operational semantics that is implemented by

the play-out method (originally introduced in [15]). It too is
included in the Play-Engine. Play-out makes the specifica-



tion directly executable/simulatable. When simulating the
behavior, the programmer is responsible for carrying out the
actions of the potential end-user and of the system environ-
ment. Play-out keeps track of the user/external actions, and
responds to them according to the specification. The play-
out algorithm interacts with the GUI to reflect the state of
the system on the fly. For more details see [14].

3. THE STUDY
In this section we present an empirical study conducted as

the first part of a larger research effort, in which we investi-
gate educational issues involved in the learning of LSC and
scenario-based programming. Our objective in this phase
is to get a deeper understanding of the research subject.
Thus, our methodology is purely qualitative and follows the
ideas of grounded theory [10], in the sense that we do not
obligate ourselves to look at specific phenomena, but collect
rich data, from which interesting phenomena can emerge.

3.1 The research question
The research question that is the focus of this paper is in

what ways programming experience that is mainly procedu-
ral, object-oriented, and sequential, affects the learning and
use of scenario-based decomposition and other abstraction
mechanisms of LSC.

3.2 Research setting
The setting of the study was based on the course “Exe-

cutable Visual Languages for System Development”, given
by the fourth-listed author in the Fall term of 2010-2011 at
the Weizmann Institute of Science 1. This course presented
various aspects of reactive system development, and concen-
trated on two approaches to the specification, design and im-
plementation of systems: the intra-object approach (through
Statecharts) and the inter-object approach (through LSC).
About half of the course was devoted to Statecharts and
the intra-object approach, and about half to LSC and the
inter-object approach.
Course assignments included an implementation project

to be carried out using LSC. The students were directed to
choose a system (of reasonable complexity) that they find
appropriate, and implement it in LSC. Student projects in-
cluded, among other things, modeling the blood’s glucose
level control system, modeling animal behavior, and mod-
eling a variety of electronic devices. With some variations,
this course is given for the third time. A report on the first
experience of teaching the course can be found in [13].

3.2.1 Research population
The student population was composed of graduate stu-

dents studying towards an MSc or PhD in computer sci-
ence. Nine students taking the course participated in this
study. Among these, six were CS graduates, two majored in
Biology/Bioinformatics, and one majored in Electrical En-
gineering (EE).

Previous programming experience.
We characterize students’ previous experience with re-

spect to procedural and object-oriented programming. In
the following sections we refer to this characterization when
analyzing students behavior in the light of their previous

1http://www.wisdom.weizmann.ac.il/∼michalk/VisLang2011/

programming experience. All of our students learned pro-
cedural programming on early stages of their programming
studies – through Pascal (in high school), C, or C++ (learned
as a procedural language, without getting into object-oriented
programming). All of the six CS graduates also took ad-
vanced courses in object-oriented programming (OOP), and
had a few years of programming experience in industry,
mainly with C++ and Java. We define the group of the CS
graduates as group A, and refer to their experience as type A
experience. The three non-CS graduates had less significant
programming experience (in general, and specifically with
OOP). The EE graduate was familiar with procedural pro-
gramming in C. From the two biology graduates, one took
two C++ courses in university – one introductory course us-
ing the language as a procedural language, and a more ad-
vanced course teaching object-oriented programming. The
other’s experience was mainly with scripting languages. We
define the group of the non-CS graduates as group B, and
refer to their more limited experience as type B experience.

3.2.2 Data collection tools
i) Pre-interviews: These were mainly used to characterize

the student’s previous programming experience. The stu-
dents were also given a programming task, which is less rel-
evant in the context of this paper.
ii) Learning styles questionnaires: These were used to char-
acterize students’ learning preferences, in order to see if
there are connections between the individual preferences and
the learning process.
iii) Student projects: The projects that the students imple-
mented in LSC.
iv) Post interviews: In the interviews we asked each student
about the LSC project. The post interviews were semi-
structured and were divided into two parts. The first in-
cluded questions such as: “Why did you choose this spe-
cific project?”, “Why did you take these specific design deci-
sions?”, and also questions on the semantics of the language
constructs. Regarding each topic, we used follow-up open
questions when we felt that more interesting information
could be revealed, or to verify that our interpretation of the
answer was correct. The second part, which is less relevant
in the context of this paper, included solving a programming
task.

3.3 Findings
From our data, a number of interesting phenomena emerged.

We focus here on a subset thereof, and we intend to report
on the remaining phenomena in a future publication.

3.3.1 Perception of LSC as a programming language
In several cases and situations, some students expressed

their perception that working with LSC is ‘not really pro-
gramming’. This seemed to be related to the gap between
the lower abstraction level of the languages with which these
students were experienced, and the higher abstraction level
of LSC.

Among these cases, we concentrate on a somewhat ex-
treme example that included also a negative attitude, which
was observed in the interview held with student #2. The
main experience of this student in his graduate studies was
with Java. He then worked few years in industry, mainly
developing drivers in C. His professional experience also in-
cluded writing HDL code in Verilog.



The student expressed dissatisfaction with the fact that
the language did not allow accessing low level details:

“S: What you can do with LSC is very limited because
LSC does not elevate everything up [...]. You can’t make
computational things. You can’t interact with the com-
puter [...]. When you program [with a ‘real’ language],
you have access to the memory, you can play with bits,
etc.”.

The student wanted control:

“S: I am in favor of giving power to the creator [i.e., the
programmer]”.

He felt that LSC does not give him this level of control. Ob-
viously, higher abstraction means less control on low-level
details. However, the freedom obtained by the higher ab-
straction was interpreted by the student as a negative thing:

“S: It is not good to have degrees of freedom in your
system. You shouldn’t have them”.

These claims were raised when questioning the student on
his final project, in which he modeled the behavior of a house
pet. This project actually did not require any low level
operations of the kind that the student was missing. Still, he
looked for these operations, and was uncomfortable with the
fact that they were not natively supported by the language.
Moreover, it seemed that the absence of control led to

a negative attitude, which eventually affected his perfor-
mance. In some way, the student interpreted the degrees
of freedom as permission to be inaccurate. In a few cases,
the student mentioned that he didn’t bother too much about
being accurate in modeling the pet’s behavior. He said that
anyway the system will simulate some behavior, and since
animals are complex, this simulation could be referred to (in
retrospect) as a natural behavior:

“S: [...] even if there is a bug, let’s say the delivery arrives
and the cat is sleeping and doesn’t run away, I can say
yes, it didn’t hear it, so it continues to sleep”.

The student’s concluding remark was:

“S: This is programming for people who do not want to
know programming”.

For this student, accessing the memory, manipulating bits,
and in general doing low level operations, are the most fun-
damental aspects of programming. Thus, knowing how to
program means knowing to use these operations. Since LCS
does not have these kinds of operations, the student per-
ceived it as a language that can be used without knowing
how to program.

3.3.2 Procedural and sequential design
The second phenomena found was the echo of students’

experience with procedural programming in their patterns
of design in LSC.
The basic idea behind procedural programming is to de-

compose the programming task into a series of procedures
(aka functions or subroutines). Modularity is achieved by
breaking long procedures into smaller ones, encapsulated in
autonomous pieces of code that can be reused. This al-
lows arranging the program in a hierarchical structure that

reflects the abstraction layers. The ideas of procedural pro-
gramming also reside in the object-oriented paradigm and
languages that support it (such as C++ or Java). In the
context of this section, by procedural programming we refer
not only to the paradigm itself, but also to the procedural
components that reside in languages that support object-
oriented programming (OOP).

There are a few differences between the execution model
of LSC and the standard execution model of procedural pro-
gramming. We focus here on two major differences:
Sequential vs. concurrent execution: The execution
of a sequential procedural language proceeds one step at a
time. At each point of the execution, there is no choice re-
garding which step to take next, and only one subroutine
progresses. The caller subroutine (which was called by an-
other subroutine, and so forth) does not progress until the
callee finishes. LSC’s execution model is totally different:
All the active charts can progress simultaneously. Once a
chart is activated by another chart, both charts are indepen-
dent and none of them needs to wait for the other (unless
they have inter-dependencies. See below).
Unification of events: In procedural languages, actions
are executed in a local scope. This means, among other
things, that if a function has multiple active copies (e.g., in
a recursive call), actions that refer to the same source item
in the code are independent – they are different entities in
the ‘world’. LSC semantics is very different. LSC is a declar-
ative language, and uses the concept of unification. Unifica-
tion is a principle concept of declarative languages and logic
programming: Essentially, unification means that identical
actions that appear in different charts, or in different active
copies of the same chart, are considered the same action.
Entities in the code are only references to the real entities in
the ‘world’ (for more details, see [14]). At run-time, identical
actions are constantly unified in all the active charts, and
executed together. It is a single action/execution, and all
the active charts that contain this action progress simulta-
neously. Also, the semantics of LSC requires that an action
can be executed only if all its occurrences can be executed.
Very roughly, this means that this action is (one of) the next
action in all the charts in which occurrences of this action
appear. So, as opposed to the local scope of the actions in
procedural languages, actions in LSC are considered within
a scope that contains all the active charts, and this creates
inter-dependencies between the charts.

One recurring pattern found in students’ projects was the
imitation of functions using dedicated charts. By that, we
mean that students tended to break behavioral scenarios
into smaller functional pieces, encapsulate these pieces in
dedicated charts, and call these charts from ‘higher level’
charts. We refer to this as the function pattern. Indeed,
some students actually called these charts ‘functions’, and
their explanation for this structuring were code reuse, mod-
ularity, etc. This structuring, and the motivation behind it,
are the essence of procedural programming, which all of our
students were experienced with.

The function pattern is not the natural kind of decom-
position encouraged by LSC. Scenario-based programming
with LSC encourages decomposing the system into behav-
ioral and stand-alone pieces, encapsulated in charts that are
activated as a response to system/user events. Students’
function charts had very different characteristics. We de-
fine a chart as a function chart if it meets all the following



conditions: i) the chart does not represent autonomous be-
havior of the system. ii) the chart is activated by another
chart (and not as a response to system/user events); iii) the
activation condition of the chart contains a single dedicated
event, that is used only for this purpose.
From seven projects (some students worked in pairs), five

projects contained this pattern. Here we did not see any
difference between group A and B. Indeed the students in
both groups had procedural experience. We note that this
pattern is not necessarily bad – code reuse and modularity
are desirable objectives. However, using it without consider-
ing the operational consequences of the differences between
LSC execution model, and the sequential procedural execu-
tion model from which this pattern is borrowed, can lead to
an erroneous behavior. The programming behavior of using
functions is the result of previous experience, as it has not
been taught or discussed as part of the LSC language.
A typical example can be seen in Figure 2, taken from

the project of student #3. The left chart is the caller (only
a piece of the chart, which contains the relevant actions, is
shown). The two charts on the right are the callees – the
function charts. The event ‘incRPM(7)’ in the left chart
activates the upper right chart, and the following event,
‘Log()’, activates the lower right chart (the events and the
activated charts are marked with arrows).
The student used a top-down design strategy and built a

procedural structure that goes from higher to lower abstrac-
tion levels. The caller chart represents a higher level flow,
that calls two sub-routines. In the abstraction level of the
caller, the student perceived the two calls as atomic opera-
tions, black-boxes, and intended that the second will happen
only after the first is finished. However, because the charts
can progress simultaneously, there is no guarantee that this
will actually happen. The caller chart can emit the event
‘incRPM’, and then emit the event ‘Log’ immediately after.
As a result, the two function charts will be opened, and from
this point there is no necessary order between them. This
interpretation was verified with the student.
So, the student encapsulated a low level computation in

a function chart, and called this chart from another chart
that describes a higher level flow. The student perceived the
function call as an atomic operation (as happens in a pro-
cedural execution), but due to the simultaneous execution,
this led to an erroneous behavior.
Some of the students, including student #3, did identify

the potential problem of simultaneous execution. However,
their solution was quite surprising – they chose a somewhat
Gordian knot (aka Alexandrian) solution, and bypassed the
problem by imposing a sequential execution over the run.
This pattern, which we will call the sequentialization pat-
tern, is exemplified in Figure 3 (it is also taken from the
project of student #3). The figure contains two charts. The
left chart is the caller, and the calling event (‘increment()’)
is marked with an ellipse. The right chart is the function
chart, invoked when the event ‘increment()’(in its prechart,
marked with an ellipse) is emitted. The student used the
unification rules described above. After calling to the right
chart, the caller chart must wait for the event operation-
Done() that the callee chart emits when it finishes, in order
to progress. This design imposes a sequential procedural-
like execution. Sequentializing the run in order to bypass
the problems raised by simultaneous execution was also seen
in the projects of three other students, and in the projects

Figure 2: Imitating a function call.

of students taking this course in the past. This is a poor use
of LSC – the students did not fully exploit the richness and
novelty of the language, and embedded a sequential program
into the structure of a concurrent language.

In some sense, this behavior is reminiscent of the behavior
seen in the ‘Perception’ pattern (section 3.3.1). The previ-
ous experience not only led the students to misunderstand
or misinterpret the new concepts, but it also led them to
actively look for the known concepts and ways to imitate
them in the new language.

3.3.3 Interpretation of the new abstraction concept
of symbolic instances

One of the concepts introduced by LSC is that of sym-
bolic instances. This is a principle abstraction concept of
LSC, which enables defining general behavior for instance/s
of a certain class. The concept of symbolic instances relies
on the existence of class:instance relationships. Like classes,
symbolic instances enable defining behavior for multiple in-
stances of a specific class. However, symbolic instances ex-
tend the expressivity power of class:instance relationships.
The symbolic instance includes a binding expression and has
the universal/existential modality. The binding expression
is evaluated at run-time for all the class objects, and the ones
that match it are bound according to the following rule: If
the symbolic instance is universal, all of them are bound, and
if it is existential, only one of them is bound. Then, the be-
havior that was defined for the symbolic instance is applied
to the bound object/s. An example is given in Figure 4.
It is taken from the project of student #4, who modeled
a traffic junction. It defines the behavior of a pedestrian



Figure 3: Forcing a sequential execution.

who is waiting to cross the road. Once the pedestrian clicks
on the crossing button, the walkers traffic light sends a mes-
sage to the cars traffic light to turn red (in another chart, not
shown here, the cars traffic light then sends a message to the
pedestrians traffic light to become green). The pedestrian is
represented by the the symbolic object ‘Walker’, which is an
existential symbolic instance (indicated by a dashed frame),
and has the binding expression ‘Wait=True’. This means
that this behavior will be applied to one of the pedestrians
who are waiting to cross the road. The rationale behind
using an existential symbolic instance in this case is that it
is enough that one pedestrian will push the button, and it
does not matter which pedestrian.

Figure 4: Symbolic instances.

The extended power of symbolic instances over classes is
expressed by: i) the binding expression allows applying the
behavior only to the specific objects that match the binding
rule. ii) the universal/existential modality allows applying
this behavior to all or one of the objects. iii) the scenario-
based decomposition allows defining the behavior with re-
spect to a specific scenario, according to the chart in which
the symbolic instance is defined. Interestingly, students from
group A (the group of students which had a significant pro-
gramming experience with OOP) seemed to have problems
with using the first two:
The binding expression: The binding expression ‘chooses’

dynamically a subset of objects (the objects that match the

expression). In case the expression is trivial (i.e., ‘id >=
0’, where all the id’s have non-negative values), it always
chooses all the objects of the class. We call this a meaning-
less expression. We consider a binding expression as mean-
ingful if it uses an expression that relies on a dynamic prop-
erty that changes during the run, and chooses only a subset
of the objects. Three out of nine students did not use mean-
ingful expressions at all. All of these students were from
group A. One of them indeed said that he did not under-
stand the semantics of symbolic instances. The other two
were not asked about it (since the phenomena emerged from
the data, we analyzed it after the interview). In group B,
all the students used meaningful binding expressions.

Universal vs. existential: This modality also seemed
to be confusing for students with type A experience. While
all the students in group B used it in both ways, and backed
it up with a rational explanation, students in group A had
some difficulties understanding it. For example, student #3
said:

“S: The truth is that I don’t really remember the dif-
ference [between universal/existential]. [...] We didn’t
consider the option of universal, the existential was the
default for us”.

Student #5 was asked “And what was the difference if this
item was made universal?”, and answered:

“S: Ah, maybe that’s the way it went, and it worked.
It’s hard for me, maybe I didn’t... [the student feels
uncomfortable]”.

Another indication for this misunderstanding was given by
an odd use pattern seen only in the projects of students
from group A. The students used a symbolic instance that
always chooses exactly one object (usually by using an im-
plicit binding; not describe above), and marked it as exis-
tential. However, the existential has no special meaning in
this case. Existential means choosing one of the matching
objects, but if only one object matches, then there is no
choice. We note that this is not an error in itself, but it
seems that none of the students who had this pattern in
their code noted this delicate semantic issue. Two of them
actually said that they did not notice it. Their explanations
led us to think that they used existential in these cases be-
cause they think that existential means ‘one’, and missed
the idea of ‘one of..’.

4. DISCUSSION
Our conceptual framework is based upon constructivism,

and the schema theory of learning. Combining these two
theories implies that learners will interpret new program-
ming concepts through the prism of their previous program-
ming knowledge. This knowledge is arranged in schemas
that encapsulate abstract solutions to programming prob-
lems. When solving a problem using a new programming
language, learners will try to apply their existing schemas.
Here we concentrate on specific effects of applying schemas
that were acquired in the context of procedural and object-
oriented programming.

4.1 The effect of working on a low abstraction
level

Working on a high abstraction level means concentrating
more on what the program does, and less on how it does



it. A straightforward implication is that the programmer
has less control on the execution of operations that lie on
an abstraction level that is below the one on which the pro-
grammer works.
In section 3.3.1 we presented findings related to how some

of the students perceived the high abstraction level of LSC.
We showed that some felt that the high abstraction level
does not give them enough control, though the goals of
their program were achieved without getting into lower level
details. We believe that this subjective feeling is strongly
related to our students’ previous programming experience.
Since the students were used to working on lower abstrac-
tion levels, it determined their perception of what the ‘right
abstraction level’ is. When moving to a higher abstraction
level, they could not control things that they used to control
before, and thus felt that they lose power.
For example, student #2 mentioned the kind of operations

that he missed in LSC. These exist in the languages that
he was familiar with. On the other hand, he did not men-
tion operations that were not supported by the languages he
was familiar with. Thus, it is more likely that his expecta-
tions were the result of his experience, rather than the result
of a basic observation about what programming languages
should include.
Learning abstraction is known to be difficult, in general

and in the context of computer science and software engi-
neering. In studies that deal with abstraction in the context
of programming, the setting is usually a specific program-
ming language, used on different abstraction levels. See for
example the work of Haberman [11] (and references thereof).
Also, it is believed that abstract thinking evolves with ex-
pertise in programming, and that this is one of the abilities
that distinguish novices from experts (see [11] and others).
Our findings suggest that the difficulties involved in mov-
ing between abstraction levels exist also when moving from
a lower level programming language to a higher level one,
and that in this case increasing the abstraction level causes
difficulties for experts.
With LSC, it might be that the dissonance between the

familiar abstraction level and the higher abstraction level
of LSC was strengthened by the fact that LSC is a visual
programming language. According to Petre [17], visual lan-
guages usually describe information on a higher abstraction
level and are viewed as less formal than textual languages.
For example, student #2 was convinced that the visual

notations are actually translated into textual code (they are
not; in the Play-Engine, the visual notations are executed
directly). When the interviewer asked him“and did it bother
you that there is no [textual] code here?”, he answered: “Yes.
Well, there is code, but it is hidden”. According to Hazzan
[16], learners cope with unfamiliar concepts by reducing the
abstraction level of the new concepts, in order to make them
more concrete and familiar. Through this interpretation, the
student’s assumption that there is textual code beneath the
visual code can be seen as an attempt to lower the abstrac-
tion level in his perception. In this case, assuming that there
is hidden textual code makes things more concrete for him
in two ways – first, it reduces the abstraction level of the
notations; second, the textual notations are more familiar,
and are thus more concrete for the student.
Of course, individual characteristics can also affect one’s

programming behavior. Felder and Silverman suggest Learn-
ing styles [8] as a framework for classifying learners accord-

ing to their individual learning preferences. Since our stu-
dents filled a learning styles questionnaire at the beginning
of the course, we checked out student’s #2 questionnaire. It
turned out that he had some preference for the ‘sensory’ and
the ‘visual’ poles (7 in each). However, these preferences are
considered moderate according to the questionnaire’s scale.
Also, Felder suggested that most engineering students are
visual and sensory. Hence, it seems that learning styles do
not supply a significant alternative explanation here.

This observed phenomenon seems relevant not only to the
narrow context of LSC and other visual languages, but also
to other contexts in which one learns a higher level language
after lengthy experience with a lower level one. For exam-
ple, we could probably hear most of the above quotes from
someone learning Java (as the high-level language) after C
(as the low-level language). Our findings indicate an atti-
tude of resistance rooted in the change of abstraction level
in such cases.

Attitudes play an important role in problem solving per-
formance, both in general (in the work of Schoenfeld [20] it
is categorized under beliefs), and in the context of program-
ming and other computer science oriented tasks. For exam-
ple, Armoni et al. [3] reported that students who perceive re-
duction as a non-legitimate problem solving tool show lower
performance in using it. Thus, we believe that these findings
will be of interest to researchers and practitioners involved
in computer science education in its wider context.

4.2 The effect of procedural programming
In section 3.3.2 we presented the function and the se-

quentialization patterns. We believe that these patterns are
strongly related to the students’ previous experience with
procedural and sequential programming. In [18], Rist anal-
yses the connection between the existence of plan schemas,
and the design strategy one uses. When a plan schema
that matches the problem at hand exists, a top-down de-
sign strategy is usually taken. When such a plan schema
does not exist, a bottom-up strategy is taken, and as a re-
sult a new schema is built and stored in memory. Thus, a
plan schema is developed in the context of a specific pro-
gramming language and paradigm, and is therefore based
on some underlying assumptions about the decomposition
method, the execution model, and so forth.

The retrieval of schemas from memory is based upon the
programmer’s previous experience with similar problems.
However, this model does not address the issue of using a
plan schema that was developed in the context of one pro-
gramming language when solving a problem in a different
language. In the case where the schema is represented on
an abstraction level that is higher than the relevant differ-
ences between the languages, the plan schema can be used as
is. Otherwise, using the plan schema as is can lead to erro-
neous program behavior. In the case where the programmer
is aware of the relevant differences, the model foresees that
the programmer will use a more bottom-up approach to ex-
pand the schema. Our findings show that in some cases a
different strategy is taken.

Since our students were experienced with procedural and
sequential languages, it is reasonable to believe that they
had a well-established execution model for procedural se-
quential languages, and that some of their plan schemas
were developed in the context of such languages. As noted
in Section 3.3.2, the LSC execution model is very different



from the sequential and procedural execution model. When
our students met familiar problems, they naturally tried to
retrieve and apply existing plan schemas. In some cases,
the assumptions underlying these schemas were not valid.
When the students did not identify this gap, the result was
an erroneous behavior. When the students did identify the
gap, they tried to fill it. However, instead of expanding their
schemas so they would fit the new paradigm and execution
model, some students narrowed the power of the new lan-
guage in a way that allowed them to use their plan schemas
as is (this is reminiscent of the Greek legend of Procrustean,
who either cut or stretched people’s legs, so they would fit
the size of an iron bed).

4.3 The effect of class:instance relationship
In section 3.3.3 we presented odd use patterns of symbolic

instances. These patterns were mainly observed with stu-
dents who had significant experience with C++/Java, which
use the class:instance relationship as a main abstraction
concept. We believe that the experience with this concept
significantly influenced students’ interpretation of symbolic
instances. To base this argument, we show that students
actually tended to interpret symbolic instances as an OOP
pattern, and that the problems they had are related to the
differences between the symbolic instances and classes.

Students’ interpretation.
Students from group A tended to interpret symbolic in-

stances as ‘object-oriented’. For example, the following ex-
cerpt shows a spontaneous connection made by student #8:

“I: And did the symbolic instances give you a convenient
option to do things?
S: Sure, it actually gave me a kind of object-oriented”.

Also, students with OOP experience who were asked whether
symbolic instances reminded them of any concept in another
language, said that it reminded them of OOP. Though an-
swers to direct questions might be biased, some students
added spontaneous remarks that might indicate that not
only did they couple the concepts, but they also perceive
OOP as a significant and positive concept that influences
their interpretation. Student #2:

“S: [...] the good in the symbolic is that it elevates the
object-oriented thing up, and that gives power..”.

And student #5:

“S: It [symbolic instances] is a little bit like class instan-
tiation. You shouldn’t think of it that way, but naturally
the thoughts go to the things you are familiar with. [...]
It’s disrupting to think this way [as you are used to]..”.

The EE student (experienced with procedural programming
but not with OOP) said that symbolic instances did not
remind her of anything.

Explaining the patterns.
The schema theory implies that experienced programmers

will first try to apply available schemas when solving a pro-
gramming problem. It is reasonable to believe that students
with type A experience have design schemas that use the
concept of class to achieve the goal of defining general behav-
ior. When using LSC, they naturally applied these design

schemas. One result was using the binding expression in a
way that resembles the behavior of classes – the behavior
is always applied to all the objects (what we call a mean-
ingless binding expression). Another result was not using
the concept of symbolic instances in a way that fully utilizes
the extended expressivity power that this feature suggests.
This was manifested in the meaningless use of the binding
expression, and in the odd use of the existential vs. universal
modality.

5. SUMMARY AND CONCLUSIONS
We have studied the influence of previous programming

experience on the learning of new concepts introduced by
the language of live sequence charts (LSC).

With respect to abstraction level, our findings indicate
that moving from a low to a high-level programming lan-
guage can lead programmers to feel that they lose power
and control, and this feeling can cause them to develop a
negative attitude that can affect their performance.

Our findings also demonstrate the long-lasting influence of
experience in procedural and sequential languages. Learners
not only interpret the new model through the prism of the
previous models they are familiar with (this is the straight-
forward implication of constructivism), but they actively try
to force the new model to behave like the model they are
familiar with, so they can use previously acquired program-
ming solutions. When the previous solutions do not behave
in the new model as the programmer expected, this can lead
to erroneous programs. The risk can be reduced if educa-
tors emphasize the execution model assumptions that un-
derlie specific programming patterns. Another consequence
is that when transforming from a sequential to a concurrent
language, learners might continue to ‘silently’ build sequen-
tial programs ‘under the hood’ of a concurrent language,
leading to poor use of powerful programming means. This
has direct implications on the teaching of concurrent pro-
gramming.

With respect to object-oriented programming, our find-
ings suggest that experience with the class:instance rela-
tionship can hamper the learning of new abstraction con-
cepts that aim for describing general behavior for groups of
items, such as the symbolic instances of the LSC language.

More generally, the findings reported here provide empir-
ical evidence and shed light on the ways in which previous
programming experience influences the learning and use of
new programming concepts.
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