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Abstract. Elementary translations between various kinds of recursive trees are presented. It is shown
that trees of either finite or countably infinite branching can be effectively put into one-one correspond-
ence with infinitely branching trees in such a way that the infinite paths of the latter correspond to the
“p_abiding” infinite paths of the former. Here ¢ can be any member of a very wide class of properties
of infinite paths. For many properties ¥, the converse holds too. Two of the applications involve (a) the
formulation of large classes of highly undecidable variants of classical computational problems, and in
particular, easily describable domino problems that are Il}-complete, and (b) the existence of a general
method for proving termination of nondeterministic or concurrent programs under any reasonable
notion of fairness.
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1. Introduction

In this paper we establish elementary recursive one-one reductions between various
kinds of infinite trees. Since the main appeal of these transformations is in their
corollaries, the paper is structured in a way that presents much of the background
and technical preliminaries for the applications before touching upon the results
themselves.

In Section 2 we discuss Wang's dominoes [36] and describe the more recent
bounded versions of Lewis [24] and van Emde Boas [35]. Both kinds of prob-
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lems are among the clearest and most easily describable combinatorial problems
suitable for exhibiting “bad” computational behavior, such as NP-hardness or
undecidability.

In Section 3 we describe the two levels of undecidability relevant to the paper:
the low Z9/I9 (recursively enumerable (r.e.)/co-recursively enumerable (co-r.e.))
level and the high 2i/II} (coinductive/inductive) level, and indicate their classical
recursive-well-founded-trees characterization.

In Section 4 the current research situation of the (seemingly unrelated) area of
fair computations is described. The main line of research is the search for seman-
tically complete methods for proving termination of nondeterministic or concur-
rent programs under increasingly more complex notions of fairness.

Sections 5 and 8 present the transformations on recursive trees. In the first of
these, a “recurrence lemma” is proved, establishing the recursive isomorphism of
well-founded w-trees and recurrence-free finitely-branching trees. A recurrence is
an infinite path containing infinitely many “marks.” This thin/fat tree correspond-
ence is then used in Section 6 to obtain simple highly undecidable domino
problems, as well as similar variants concerning Turing machine computations and
Post correspondences. In particular, deciding whether a set of dominoes T can tile
the plane with a certain d € T occurring infinitely often is shown to be Z}-complete.
An application of these to bounding validity problems from below appears in
Section 7.

In Section 8 a considerable strengthening of one of the directions of the recurrence
lemma is proved, showing that one-one effective transformations on w-trees exist,
mapping “¢-abiding” paths onto infinite paths. Here ¢ is any member of a broad
class of properties of infinite paths, describable in a language containing infinitary
quantifiers and infinitary Boolean connectives. Corresponding results concerning
Turing machines, dominoes, and Post correspondences follow. Section 9 then
applies the results of Sections 5 and 8 to the area of fair computations for
nondeterministic or concurrent programs. The connections yield a generic proof
method for the termination of programs under almost any conceivable notion of
fairness. This solves, in a certain technical sense, some open problems in the
literature on fairness.

Some of the corollaries to our tree transformations can be obtained by more or
less standard techniques in recursion theory. Despite this, the uniformity and
elementary nature of the present approach, coupled with the seemingly diverse
applications, seem to indicate that marked recursive trees, the central mathematical
objects of this paper, deserve more attention than they have received heretofore.

2. Dominoes

Domino or tiling problems, introduced by Wang [36] (with related independent
work done by Buchi [7]), appear repeatedly in the literature, mainly in connection
with negative results of undecidability or NP-completeness. The general setting of
such problems is the integer grid G = Z X Z and certain notched tiles or colored
dominos with which G or parts of it are to be tiled. We concentrate in this paper
on colored dominos.

Geometrically, a domino is a 1 X 1 square, fixed in orientation, with edges
parallel to the axes of G, and with colors associated with its edges. The fype of a
domino is the set of its four colors in the order, say, (left, right, up, down). Given
a finite set T of domino types and a portion P of the grid G, we say that T can tile
Pif it is possible to cover P using only dominos of the types appearing in 7, such
that adjacent edges are monochromatic. A domino problem is a decision problem
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characterized by the portion P to be tiled by the input set T, and often by some
additional constraints on the placement of certain dominos or colors.

Domino problems considered in the literature can be divided into two classes,
unbounded and bounded. The following are perhaps the “cleanest” versions in each
class:

Ul: Given T, can Ttile G?
Bi: Given T and 7 (in unary), can T tile an n X n subgrid of G?

Problem U1 is undecidable (cf. Berger [5], Robinson [31] and Lewis [25]). It is,
in fact, co-r.e., and hence, using the hierarchy notation of Rogers [32)], it is
I1%-complete. Problem B1 is NP-complete (cf. Lewis and Papadimitriou [26] and
van Emde Boas [35]).

This behavior generalizes as one runs through some of the other problems that
have been considered:

U2: Given T and d € T, can T tile the positive quadrant G* of G such that d
occurs at the origin?

U3: Given T and T’ C T, can T tile the positive quadrant G* of G such that all
dominos on the diagonal are from among T'?

B2: Given T, n (in unary) and two colors ¢, ¢;, can T'tileann X n subgrid of G
such that the leftmost colors of the top and bottom of the tiling are ¢ and ¢,?

B3: Given T, n (in unary) and two colors ¢, and ¢;, can T tile some m X n subgrid
of G such that the leftmost top and bottom colors are ¢, and ¢;?

Problems U2 and U3 are both I%-complete (cf. Wang [37] and Kahr et al.
[20]), as are many variants with octants or half-grids replacing quadrants, color
constraints on rows or columns instead of diagonals, restrictions on the appearance
of combinations of colors and/or dominos rather than single dominos, etc. Problem
B2 is NP-complete and B3 is PSPACE-complete (cf. van Emde Boas [35]); many
similar-bounded variants are complete in these and in other complexity classes.

Domino problems are geometrically very appealing and are of sufficiently simple
combinatorial character to make them easily describable and formalizable. They
thus serve as excellent candidates for reductions in proofs of “bad” computational
behavior, for example, undecidability or NP-completeness. Indeed, unbounded
variants have been used in [15a], [20], [25], and [37] and elsewhere to prove
undecidability of various subclasses of the predicate calculus, and in [35] to prove
undecidability of the solvability of exponential Diophantine equations. Bounded
variants have been used in [24], [26], and [35] to show NP-completeness of various
problems, including the original NP-complete problem of satisfiability in the
propositional calculus. In [33] and [35], van Emde Boas makes a strong case for
adoption of both kinds of domino problems as “master-reduction” problems for
use in such cases.

The main idea used in establishing lower bounds on the complexity of domino
problems involves designing the domino sets 7 in such a way as to force tilings to
correspond to legal computations of Turing machines (TMs), with successive rows
of dominos representing successive configurations. The horizontal axis thus repre-
sents space and the vertical one time. It is not too hard, for example, to establish
the undecidability of problem U2: the origin constraint, as it is sometimes called,
can be used to force the first row to encode a start configuration on a blank tape,
and then the positive quadrant G can be tiled iff the given TM does not halt. (As
it turns out, U1 is considerably more subtle, since there is no apparent way 1o force
the appearance of any fixed part of any configuration, not even the very existence
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of a state. See [5] and [31].) The bounded versions are proved complete for their
complexity classes by similarly considering time- or space-bounded computations.
So much for background on domino problems.

3. Two Levels of Undecidability

Although there exist many different levels of undecidability, there seem to be
mainly two that stand out as being fundamental and naturally occurring: The
29/118 (i.e., the r.e./co-r.¢.) level, and the Z}/I1! (sometimes called the comductxve/
inductive) level The former is the first level of the arithmetical hierarchy and is
characterized by formulas over arithmetic with one number quantifier and a
recursive matrix, and the latter is the first level of the analytical hierarchy,
characterized by formulas over arithmetic with one function (or predicate) quan-
tifier and an arithmetical matrix.

We do not attempt to convince the reader of the special role these two levels
play by a review of undecidability results in general. However, we do point out
that the theoretical computer science community has repeatedly seen examples of
undecidable problems that, with few exceptlons, turn out to be actually on one of
these two levels. A striking example is in the field of logics of programs where
numerous entirely different-looking logical systems have been shown in recent
years (by almost as many methods) to have IT}-complete validity problems. Some
examples are first-order dynamic logic, context-free propositional dynamic logic,
two-dimensional temporal logic, and global process logic (see [16]).

There have been essentially two ways of viewing the Z!/II} level of undecida-
bility, and these have served almost exclusively as the bases of proofs of IIl- or
Zi-hardness in the past. The first is simply to consider the syntactic form of
formulas over N used to define sets on this level. For example, 3f VxR and
V/3xR are normal forms for | and II} sets, respectively, where franges over total
functions from N to N and R is recursive. The second way involves infinite trees
and is the approach we are interested in here.

Informally, I} is generally associated with the set of recursive well-founded

w-Irees, that is, with computable trees W with (at most) w-branchmg, containing
no infinite paths. Here we take “computable” to mean that there is an effective
procedure for determining whether or not a given potential node is in W, and if
it is, then whether or not it is a leaf. The set of (notations for) such trees is
II}-complete. Accordingly, the set of non-well-founded recursive w-trees, that is,
those that contain at least one infinite branch, is =}-complete. This characterization
of the E./II‘ level is central to Rogers’ treatment of the subject [32, chap. 16] and
has given rise to such well-known ITj-complete sets as the set of (notations for)
constructive ordinals [32] and the set of everywhere-halting programs that employ
unbounded nondeterminism [2, 8].

The tree characterization is clearly in line with the analogous view of the =$/I1?
level: recursive well-founded b-trees (with b standing for bounded-branching) char-
acterize Z0; these are simply the computation trees of NTMs, which do not diverge
on some ﬁxed input and are thus complete for r.e.

4. Fairness

Much effort has gone recently into the investigation of the behavior of nondeter-
ministic or concurrent programs under the assumption of fairness (e.g., [1, 11, 12,
14, 15, 22, 23, 27-30]). In a nondeterministic program P with many possibilities
(or directions) to choose from at certain points, an infinite computation is fair if
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each direction is taken infinitely often; P fairly terminates if it admits no infinite
fair computations, that is, if it always terminates assuming it acts fairly.

We refer in this paper to the following simple bidirectional nondeterministic
program, cf. [9]:

DO A — a0B— 0D N

(= “repeatedly, if 4 is true, execute a; if B, execute §; if both, toss a coin to choose
one; if neither, halt”). Here a direction is enabled in a state if its guard (A or B) is
true, and it is zaken if its action (a or B) is executed.

The main direction of research in this area (as is évident from Francez’s
encyclopedic survey [11]) is the search for semantically complete proof methods
for fair termination under increasingly more complex notions of fairness, notably,
those notions that take into account disabled directions and those that relativize
fairness to given sets of states.

Here are three examples of the many notions of fairness that have been consid-
ered:

Weak fairness. An infinite computation is weakly fair if each direction that is
enabled continuously from some point on is taken infinitely often.

Strong fairness. An infinite computation is strongly fair if each direction that
is enabled infinitely often, is taken infinitely often.

Extreme fairness. An infinite computation is extremely fair if, for every first-
order state formula p, if p is true infinitely often, each direction is taken infinitely
often in states satisfying p.

For the first two notions, there are known complete proof methods for fair
termination (cf. [1, 11, 15, 23, 27]), but for the third, introduced in [29] (as well as
for a host of others (cf. [11, 30])), the problem has been left open.

One of the difficulties with devising semantically complete methods lies in the
fact that the natural numbers do not suffice as the ordinals associated with fair
termination. The two commonly used and closely related approaches for overcom-
ing this are both connected with so-called unbounded nondeterminism, that is,
with programs allowing assignments of the form x « ?, setting x to any natural
number. We describe one here. ' '

Starting in [1] and later also in [3], [11], and [27], it is shown in this approach
how to transform programs, such as program (1), that utilize bounded nondeter-
minism (bnd) into equivalent ones with unbounded nondeterminism (und), called
explicit schedulers. The latter use the x « ? assignments to pick arbitrary finite
priorities for scheduling the directions to be taken in the former, and terminate
everywhere iff the original programs terminate fairly. Now, since there are complete
methods for proving conventional termination of programs with und, albeit using
all constructive ordinals (see [2], based on ideas of [6] and [8]), this yields a
complete method for fair termination of programs with bnd.

As an example, the following are the explicit schedulers associated with program
(1) by the methods of [1] and [11] for proving, respectively, weak and strong fair
termination.

Weak fairness:

a—TbeT,
DO(A/\(BDasb))—+(a;a<—-—?(ithhenb(—-b—lelseb<——?)) (2)
D(B/\(A3b<a))——+(ﬁ;b(——?(ifAthena<—a—lelseae—?))OD,
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Strong fairness:
ae—"Nbe"?

DO(AA(BDasb)—(a;a«?(if Bthen b e b— 1)) 3)
O(BA(ADb<a)«—(B8;b«?(if A thena —a — 1)) OD.

The reader should be able to convince him/herself that program (2) (respectively,
(3)) everywhere-terminates iff program (1) fairly terminates under weak (respec-
tively, strong) fairness. As mentioned, the proof system of [2] can be used to prove
ordinary termination of (2) or (3); that system is, in fact, complete, relative to an
underlying p-calculus-like language and might require any constructive ordinal in
the proof.

Without going into the details of the other approach to proof methods for fair
termination (represented, for example, by the results in [23]), we can say that it
yields Floyd-like methods in which the prover is required to find some well-founded
set and prove certain properties of the program with respect to that set. Showing
completeness of such methods involves associating with the original bnd program
a computation tree with infinite outdegree, and then using the ordinals correspond-
ing to nodes in the tree as the well-founded set.

Upon reading the literature on fairness (see e.g., the extensive survey in Francez
[11]), one gets the feeling that the connections, exposed by these methods and their
completeness proofs, between the infinite paths of the computation trees of und
programs and the fair infinite paths of those of bnd programs, are more fundamen-
tal, and that they should generalize.

5. A Lemma on Infinite Trees

The lemma we are about to prove illustrates a fundamental connection between
the two kinds of infinite trees that were discussed above and that are defined below.

Definition 5.1. The full w-tree is simply N*; it is just the set of finite sequences
of natural numbers. The empty sequence X is its root. For u € N* and n, m € N,
the sequence u-n is an offspring of u, and u-n and u-m are siblings. For u, v € N*
we say that u is a descendant of v, denoted v < u, if u = v-w for some w. An w-tree
is a subset W of N* closed under <; that is, if u < vand v € W, then u € W, A
node with no offspring is a /eaf. A path is a finite or infinite sequence wuo, u;, us,
... such that for each i, ;4 is an offspring of ¥;. An w-tree W is recursive (strongly
recursive in [32]) if its extended characteristic function xu is recursive, where, by
definition,

0, ug w;
xwlu) =4 1, u€ W, uis a leaf;
2, u € W, uis not a leaf,

An w-tree is well founded if it contains no infinite paths. We subsequently
associate a node u with its Godel encoding, and a recursive w-tree W with an
encoding of some TM that computes x .

Definition 5.2. Forany k>0,letk=1{0, 1,...,k— 1}. The full k-tree is simply
k*, and a k-tree is a subset of k* closed under <. Other tree notions are defined
for k-trees just as for w-trees. A b-tree U (b for bounded) is a k-tree for some k (the
smallest such k being the width of U); U is a marked b-tree if some of its internal
(i.e., nonleaf) nodes are marked. A recursive marked b-tree U is one for which the
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following function is recursive.

0, uée¢ U
Quv) =<1, u € U, uis marked;
2, u € U, uis not marked.

(Note that leafhood here can be checked recursively too by testing the presence
of any of a node’s k offspring.) A recurrence in a marked b-tree is an infinite path
containing infinitely many marked nodes; the tree is recurrence free if it contains
no recurrences. Here we associate a recursive marked b-tree U with the pair
consisting of its width and some TM that computes Qu.

INFINITE TREE RECURRENCE LEMMA. The set A of recursive well-founded
w-trees and the set B of recursive marked recurrence-free b-trees are recursively
isomorphic.

PROOF. By a result of Myhill [32, theorem 7.VI], it suffices to show that 4 and
B are one-one equivalent, denoted 4 =, B; that is, that there are recursive 1-1
(but not necessarily onto) functions g: 4 — B and h: B— A with VW (W € A iff
g(W) € B)and VU (U € Biff (V) € A).

First, to reduce 4 to B, let 1° = A and 1"*' = 1".1. Define v: N* — {0, 1}* by
~(\) =\, y(u-n) = v(u)-0-1". Now, given a tree W € A, define the tree U = g(W)
by

—

if u=vy@0), xw»=2
2 if u=X\, or
Qu(u) = if u=+v@-n), n>0, xw(v)=2, or
if u=+y@0), xw(v=1
0 if none of the above.

It is easy to see that U is a 2-tree, and that Qy is recursive whenever xw is.

A pictorial illustration of the construction of g(W) is given in Figures 1 and 2,
and an “operational” way of viewing it is to traverse W, branching for each nonleaf
of W downward to the (possibly absent) 0-offspring, and then indefinitely rightward
from one (possibly absent) sibling to its immediate next. For a leaf of W only the
downward step is made. Marked nodes are 0-offspring of nonleaves. This construc-
tion is a generalization of the “natural correspondence between [finite] forests and
binary trees” of Knuth [21, p. 333].

The reader can easily verify that W contains an infinite path iff g(W) contains a
recurrence, so that we are left with having to show that g is 1-1. Indeed, let
W % W’. Then, without loss of generality, either W = & and W’ # @ (in which
case, by definition, g(W) = {A} but 0 € g(W’)), or else there is some node
u.n € W', with u € W but u-n & W. But then v(u-n-0) € g(W'), whereas
~(u-n-0) & g(W). Thus gis 1-1, and hence 4 <, B.

To reduce B to 4, let there be given a sequence u C k*. Define u to be its index
in the “breadth-first” ordering of k*, defined so that u is smaller than u’ iff either
jul<|u'lor|u|l=|u’|butuis lexicographically smaller than u’. This ordering
corresponds to traversing k* level by level starting each level from the “left”; see
Figure 3. Clearly ¥ can be found effectively from u, and vice versa.

Given a marked b-tree U of width k, the w-tree W = A(U) is constructed as
follows (see Figures 3 and 4)). The root has exactly k offspring 0, ..., k— 1, to
indicate the breadth, and the main part of the tree is rooted at the node 0. We
need the following notion: The slice of U at a node u is defined to be the subtree
of U rooted at u (excluding u) with all descendants of marked nodes (within that
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FiG. 1. Part of an w-tree W. Absent nodes are denoted by broken arrows.
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F1G. 2. Part of the 2-tree g(W). Marked nodes are doubly circled.
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FiG. 3. Part of a 3-tree U. Marked nodes are doubly circled.
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F1G. 4. Part of the w-tree A(U).

subtree) deleted. In other words, the slice contains all nodes reachable from u
without moving below a marked node. As shown in Figure 3, the slice of U at A
includes 0, 1, 10, 2, 21, and 22 and excludes the subtrees rooted at 0 and 21. The
slice at O includes 00, 02, 020, and 022. '

Returning to the construction of W, the slice of U at \ is “attached” to the virtual
root 0 of W, in linearized breadth-first order; that is, node u of that slice is

k]
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associated with node 0-u™ of W. If u is unmarked in U, then 0- 4™ is a leaf of w,
and if u is marked, then the slice of U at  is considered and similarly “attached”
to 0-u™ in W, This process is repeated indefinitely for all marked nodes of U.
Clearly W is an w-tree.

To see that it is also recursive, consider a potential node u = O, nm,...,n)e
N*. (The case where the first component is nonzero is trivial.) To compute x u(u),
one uses k to calculate the unique v, such that v{ = n,. If Qu(v;) = 0, then
xw(u) = 0; otherwise, the ancestors of v, are checked to determine whether any
one of them was marked in U. If so, v, is not in the slice of U at X; hence
xw(u) = 0. If no ancestor was marked and if j# 1 and Qu(v) = 2, then
xw{u) = 0. Otherwise, attention is shifted to n,. Again v, is found in the slice at v,,
with v{9 = n, and a similar procedure is carried out, etc. Finally, if »; is reached
with all such tests having positive results, xw(u) is set to 2 or 1, depending on
whether the most recently considered node in U was marked or not.

Here too, it is straightforward to see that U contains a recurrence iff W contains
an infinite path. To see that /4 is 1-1, one observes that the 0,..., k-1 offspring
of X in W determine the width, and given k, the rest of W uniquely determines the
structure of U. O

This “fat/thin tree” correspondence lemma was stated informally at the end of
[16]. A very similar result, though with different motivation and applications, was
proved independently by Arnold [4, proposition 3.4].

COROLLARY 5.3. The set of (notations for) recursive marked recurrence-free
b-trees is I1}-complete.

ProOOF. Follows immedfately from the IIj-completeness of the set 4 [32, theo-
rem 16.XX] and the lemma. [0

6. Recurring Dominos

We first derive a machine-oriented version of the Recurrence Lemma. Let C be
the set of (notations for) NTMs, which on a blank tape admit no infinite compu-
tations that infinitely often enter the start state go.

LEMMA 6.1. A = C. (Here “=" stands for recursive isomorphism.)

ProOOF. Consider the proof of 4 <, B in the previous section. The construction
of g(W) therein can be thought of as traversing W with an NTM M, which
nondeterministically decides whether to proceed to the leftmost offspring or the
right-hand-side sibling of a node and signals by entering g whenever the former
option is chosen. The machine M can carry out all necessary tests (membership
and “leafship” in W) by appealing to the TM defining W, This establishes 4 <, C,

On the other hand, the computation tree (on a blank tape) of a machine M in C
is just a b-tree whose width is bounded by the number of states in M. This
observation can be used to show C =, B, by marking nodes representing a
configuration of M whose state is go, and by including an appropriate encoding of
the NTM in some “harmless” portion of the resulting tree. Hence, A=B=C, O

COROLLARY 6.2. C is I1}-complete.

Variants of this corollary have already been established in [10], [13], [17], and
[34]. We subsequently use the corollary in the form that states that the following
decision problem is Z{-complete, where M ranges over NTMs.

Cl: Given M, does M, when started on a blank tape, admit an infinite computation
that reenters its start state go infinitely often?
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Consider now the following simple recurring domino problem:

R1: Given Tand d € T, can T tile G with d occurring infinitely often in the tiling?
THEOREM 6.3. R is Zi-complete.

PrOOF. To see that Rl isin Z!, let Tand d € T be given. Construct a NTM M
that starts on a blank tape by initially constructing the empty 0 X 0 tiling of G. At
each step, M considers the next position in G in a spiral movement around the
current tiling and nondeterministically tries to tile that position with some domino
from T. M rejects if colors fail to match, and signals a successful use of the domino
d by reentering go. Otherwise, it never enters go. Clearly, M has property C1 iff the
pair (7, d) has property R1.

To show that R1 is Z|-hard we proceed in three steps. Consider first the
following:

R2: Given T and d € T, can T tile the positive quadrant G* of G with d occurring
infinitely often and with the borderlines colored white?

CLAaM 1. R2 is Zi-hard.

ProoF OF CLAIM. Consider C1’ in which the recurring activity of M is its
entering from the right onto a blank cell and into state go. This is easily shown to
be Z}-hard by appropriately changing the signaling activity of the machines in the
first part of the proof of Lemma 6.1.

We now construct, for each M, a domino set T such that (T, d) has property R2
iff M has property C1’. This is very similar to standard practice in the domino
literature. Let M be given, with B the blank symbol, p and g ranging over states,
o and r ranging over tape symbols, and the transition table given in the form of
quantuples (g, o, R, 7, p) and (g, o, L, 7, p). T is constructed to consist of the
following groups of dominos, with colors taken to be combinations of symbols:

do B "
© * *
' ’ ‘
g
1. for each o;
g
po PO
(2) |p* P | for each p, o;
g ) g
T
(3) p#| whenever (g, o, R, 7, p) is present;
qO0
T
“4)]p whenever (g, o, L, 7, p) is present.
q0

Dominos from group (0) are the only ones possible along the bottom row of G*
owing to the white boundary constraint; they force the initial goBB ... configura-
tion. Those from group (1) allow propagation of unaltered tape symbols from one
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configuration to the next, and dominos from groups (2), (3), and (4) combine to
transfer state movement and state/tape changes according to the rules of M. The *
symbol in (2) and (3) prevents the two dominos of (2) from combining to create a
new tape head. Consequently, each row has precisely one occurrence of a state.
Thus G* can be tiled with T adhering to the boundary condition iff M admits an
infinite computation starting at ¢, BB . . . . Accordingly, with d taken to be

v% B 1

(T, d) satisfies R2 iff M satisfies Cl’. This completes the proof of Claim 1. [
Now consider the following, in which there is no boundary condition:

R3: Given Tand d € T, can T tile G* with d occurring infinitely often?
CLamM 2. R3is Zl-hard.

PROOF OF CLAIM. First, one notes that the boundary condition above was used
to force the initial g,BB ... configuration, which in turn forced at least (and at
most) one state per row. Here we consider the following machine problem:

C2: Given M, is there some tape upon which M can be started in some state at
some location, so as to admit an infinite computation that reenters g, from
the right onto a blank cell infinitely often?

C2 is easily seen to be =}-hard since the machines in the proof of Lemma 6.1
can be made oblivious of everything that happens from their initial configuration
up to the first time (if any) that they enter go. Now we slightly change the
construction of T from M by adopting the following domino groups:

T o
(1) =X~ <+ X=| foreach ¢;
o , o
PO g
@ 12 X~ > foreach p, o;
o ’ o
T
Q) |- X | whenever (g, o, R, 7, p) is present;
qo
T
4) 'p' <~| whenever (g, o, L, 7, p) is present.
q0
Here d is

The point is that an appearance of any state in any row in the tiling forces
a -+ ——<—<—¢— ... pattern of the arrow symbols on that row and thus prevents
the appearance of more than one state along the row. The tiling mechanism forces
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the neighboring rows to contain a state too. Thus & occurring even once forces
exactly one state per row, and consequently (7, d) satisfies R3 iff M satisfies C2.
This completes the proof of Claim 2. O

To complete the proof of the theorem, we have to extend these ideas from
G* to G. The extension to the positive half-grid poses no problem; the
NTMs are simply thought of as operating on two-way infinite tapes and the
.-+ ——>e—e—e . - - tiling pattern is extended to the left. However, the presence of
the bottom half-grid poses two (dual) problems: (i) the possibility that M admits
no infinite “backward” computations, so that the tilings as described above will
not be downward extendible, and (ii) the possibility that a tiling exists in which 4
occurs infinitely often downward, but appears nowhere above some given row.
This would correspond to some infinite recurring backward computation of M,
but to no forward computation. '

Problem (i) is easily solved by adding to the machines M of Lemma 6.1 some
fixed trivial backward loop not involving go. This will enable a trivial backward
tiling of G. To solve problem (ii), the machines of Lemma 6.1 are modified as
follows. There is a second track on the tape upon which there will be a positive
integer at all times. Whenever the machine is about to enter its signaling situation
(depicted by d), it first checks deterministically that this track indeed contains such
an integer and then increases it by 1. A tiling of G with infinitely many appearances
of ¢go in a Jower half-grid would entail an infinite backward computation that
infinitely often verifies the presence of increasingly smaller positive integers—an
impossibility. Thus, for these modified machines (which constitute an effectively
computable subset of all NTMs), M satisfies C2 iff (T, d) satisfies R1. This
completes the proof of the theorem. O

Many variants of R1-R3 are also Z|-complete. We mention three useful ones
(cf. [16]) in particular;

R4: Given T and a color ¢, can T tile G with ¢ occurring infinitely often?

R5: Given T and d € T, can T tile G* with d occurring infinitely often in the first
column?

R6: Given T and d € T, can T tile the strict upper positive octant G** =
{(i, /)10 = i < j} with d occurring at least once in each ith row-column
combination G; = {(j, i) |0 = j < iy U{(i, )) | > i}?

THEOREM 6.4. R4-R6 are all Z-complete.

Proor. Similar to the previous proof. In R4, color c is taken to be the symbol
go; in R5, M is simply required to move to the extreme left before signaling; in R6,
M is programmed to signal only after having checked that the least i for which the
partial tiling of G; does not yet contain d has just been (perhaps implicitly) increased.

The Z}-hardness direction of R6 requires additionally modifying the NTMs of
Lemma 6.1 (first part), so that their tapes are extended by one square at each step
(hence the octant being tiled), and so that the signaling is carried out at strictly
increasing squares on the tape, skipping none. Details of this case are straightfor-
ward and are omitted. [0

This is an appropriate place to describe a Z3-complete domino problem that is
used in [16]. The problem is not as “clean” as the others and the idea does not
seem to extend naturally to higher levels.

U*. Given T and two colors ¢, ¢, can T tile G* such that the sequence of colors
on the bottom of the first row is of the form cf§c¢{ for some n?



Effective Transformations on Infinite Trees 237

THEOREM 6.5. U* is Z9-complete.

PrOOF. The special form of colors on the bottom row is used to encode a start
configuration of M in which the input is the nonnegative integer » in unary. Thus,
(T, co, ¢1) is shown to satisfy U* iff there is some input n upon which M does not
halt. We omit details. O

We close this section by noting that along these lines one can define Z}-complete
versions of the well-known Post Correspondence Problem [cf., 19, sec. 8.5]. For
example, given n and two vectors X = (x,, . .. »Xn)and Y = (y, ..., y,), where
each of the x; and y; is a nonempty finite word over some finite alphabet =.
Consider the problem of deciding whether there is some infinite sequence
i1, Iz, . . . of indices from among {1, . . ., n}, containing the index 1 infinitely often,
and such that the infinite words x;x,, ... and y,y, ... are equal. It can be shown
by methods similar to those used herein that this problem is Z}-complete.

7. An Application of Recurring Dominoes

In the interest of further promoting domino problems as a tool for exhibiting “bad”
computational behavior, we have presented a detailed series of transparent proofs
of all known I1{-hardness results for validity in various logics of programs in [16].
Here we give a short example of this by repeating the three-part proof of the lower
bounds on the complexity of the validity problems for propositional, predicate,
and infinitary or dynamic logics.

In the following reductions let the input set T = {do, ..., dm}, involve colors
{co, . . ., ck—1} where k is a power of 2. We employ symbols LEFT% RIGHT", UP,
and DOWNY, for 1 < u < logk;, to stand for propositional variables or (binary)
predicates as needed,; in the propositional case we subscript these as in, for example,
LEFT}, for 1 < i, j = n. By convention, the unsuperscripted versions of these
symbols stand for the ordered and appropriately signed sets of the log k super-
scripted ones. In this way, identifying color ¢; with the binary representation of /,
we write, say, LEFT;; = ¢, to stand for the appropriate conjunction asserting that
the LEFT};, 1 < u < logk, encode color cr; similarly for LEFT(x, y), etc. For a
domino dj, we write LRUD,; = d; to stand for the conjunction of LEFT;; = lefi(d}),
RIGHT;; = right(d}), etc.; similarly for LRUD(x, y). Here, for example, lefi(d)) is
the left color of domino d,.

THEOREM 7.1

(1) Satisfiability in the propositional calculus is NP-hard.
(if) Satisfiability in the predicate calculus is I9-hard.
(iif) Satisfiability in both infinitary and (quantified) dynamic logic is Z}-hard.

PRrROOF
(1) (cf. [26]). Given T and 7, construct Pr,, as the conjunction
A A(V LRUD;; = d,) 4)
im1 je=] \ /=0
and
n-=1 n
A A (RIGHT,; = LEFTi1,; A UP;; = DOWN;..). (5)

i=] jm=1

Clearly the size of Pr,, is a polynomial in n + m, and it is satisfiable iff the pair
T, n satisfies B1. The latter is seen by observing that (4) associates a domino from
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T with each point of [1 --- n] X [I --. n], and (5) asserts correct matching of
Colz)i;& Given T, construct ¥ as the conjunction of
Vx(f(x) # z A Vy(f(x) = f()) D x = y)), (6)
\7’)c‘v'y<l\_";o LRUD(x, y) = d;), (7)
and

VxVy(RIGHT(x, y) = LEFT(/(x), y) A UP(x, y) = DOWN(x, f())). (8)

The claim is that ¥7 is satisfiable iff T satisfies Ul. The if direction is trivial
since, if a tiling of G exists, then a tiling of G* exists and ¥ is satisfied in N with
z interpreted as 0 and f as successor. Conversely, the domain of any structure
satisfying ¥, must contain, by clause (6), an infinite set S constituting the values
of z, f(2), f(f(2)), .... The grid G* matches S X S, with (i, j) corresponding to
(f(2), fA2)). Clauses (7) and (8) behave as in part (i), yielding a tiling of G*. A
well-known application of Konig’s Lemma (see [31]) yields a tiling of G.

(1)) Given T, construct ¥ as the conjunction of ¢ from part (ii) above and
either

Vx V (LRUD(, f{x)) = o) ©)

or
Vx < (x « f(x))* > (LRUD(z, x) = db), (10)

for infinitary or dynamic logic, respectively. The claim is that yr is satisfiable iff
(T, dp) satisfies RS. The if direction is as before, but now clause (9) or (10) holds
by virtue of the recurrence of dy. Conversely, if (9) or (10) holds, dy occurs
arbitrarily high up in the first column {(z, f/(2))}iew of G*. O

Recurring domino problems thus serve as examples of highly undecidable, easily
decribable combinatorial problems, and complete the picture of naturally occurring
levels of difficulty: bounded = decidable, unbounded = weakly undecidable,
recurring = highly undecidable.

8. A Generic Transformation on Trees

In this section the B to A direction of the Recurrence Lemma of Section 5 will be
considerably strengthened. First, we modify the terminology somewhat. Marked
trees will be more general, and markedship will apply to w-trees too.

Let = be some fixed (possibly infinite) alphabet. A marked tree is one in which
nodes are labeled with (possibly infinitely many) letters from Z; that is, W comes
complete with a marking predicate My C W X Z. A marked tree will be said to be
recursive if it is a recursive tree and if, in addition, My is recursive. Let T, T,
Tt, Ty stand, respectively, for the sets of recursive w-trees (i.e., with w-branching),
recursive marked w-trees, recursive marked f-trees (i.e., with finite but possibly
unbounded branching), and recursive marked b-trees (i.e., with finite and bounded
branching).

We now define a language L for stating properties of infinite paths in marked
trees. An atomic formula is an expression of one of the forms 3a, Va, 3%a, or V=g,
where a € Z is a mark. Define L, to be the set of atomic formulas. For each i = 0,
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let L be the closure of L; under finite conjunctions and disjunctions, and under
denumerable recursive conjunctions (i.e., if {#;} is a recursive sequence of formulas
of L{, then A; ®;isin L!). L,,, is taken to be the closure of L; under denumerable
recursive disjunctions. Let L = U, L,. Here we talk about L with the convention
that each formula ¢ € L is given together with the least # for which ¢ € L,. This
n is called ©’s type.

(Note: L is (superficially) similar to the “3fullpath” fragment of Emerson and
Clarke’s [10] language CTF, for which they provide a translation into fixpoint-
theoretic terms.)

Informally, each ¥ € L is interpreted over a given infinite path p by interpreting
Ja as “there is a node on p marked with 4,” and 3% as “there are infinitely many
nodes on p marked with a” Va and V=a denote the appropriate duals. This |
meaning is then extended up through the Boolean and infinitary connectives.

For example, consider playing chess on an infinite board (but with the standard
set of 32 pieces) where moving rules are generalized in some reasonable way. An
infinitely long game is a draw iff both players call “check” infinitely often; otherwise,
it is a win for the player with the most calls. The game tree can be regarded as an
element of T (or T¢ if pieces are not allowed to move too far) with, say Dor®
marking nodes where player 1 or 2 checks, respectively. The draw criterion is then
given simply by the formula of L: 3*® A 3= @,

For ¢ € L, an infinite path is said to be ¥-abiding if it satisfies ¢, and a tree
is $-avoiding if it has no ¥-abiding infinite paths. Note that the recursiveness of
markings and trees allows referring in effect to ancestors of nodes, as in the
following (liberally formulated) formula of L,

®:3*a A A(V*(number of nodes between two
! most recent a’s from root > f(i))),

for some recursive £ Here the ¥-abiding paths have infinitely many nodes marked
a and the distances between these “grow” in the special manner described. Clearly,
each of the countably many right-hand conjuncts can be associated with a recusive
mark.

Note that by definition a tree is well founded iff it is (3%true)-avoiding, for the
trivial everywhere-occurring mark true.

Another important special formula in L is 3°®, where ® is any fixed mark in
2. A 37®-abiding path is simply a recurrence, and the recurrence lemma of Section
5 can be written as follows: :

INFINITE TREE RECURRENCE LEMMA. The set of well-founded trees in T is
recursively isomorphic to the set of 3°®-avoiding trees in T7.

The main result of this section is

THEOREM 8.1. Let ¥ be an arbitrary formula of L. The set of ¥-avoiding trees
in T* (and hence also those in TF and T?) is one-one reducible to the set of well-
Jounded trees in T,

PROOF. We actually establish the following stronger claim:

(+) Let ¥ be an arbitrary formula of L. There is a recursive 1-1 function
n: T* — T which, for each W € T*, induces a recursive transformation from
the infinite paths of n(W) onto the ¥-abiding (infinite) paths of W.
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FIGURE $

FIGURE 6

Note that the ¥-abiding paths of Ware thus required to be recursively isomorphic
to the elements of a partition of the infinite paths of n(W). As a special case, of
course, W has no ¥-abiding paths iff n(W) has no infinite paths; bence the theorem.

The proof proceeds in three steps and is illustrated by the following table.

| Step 1 Step 2 Step 3

Tree W - W - W, — 2(W)
Class T T T T
Path property | ¢ I*® ERC) I~ true

In Step 1, the main step in the proof, one shows, by induction on the structure
of @, how to construct for each WE T*atree W, ET" containing only the single
mark ®, with the ¢-abiding paths of W corresponding to the recurrences of W,.
The w-branching W, is then turned into a binary tree W2, preserving recurrences.
Finally, the proof of the =, direction of the Recurrence Lemma, is used to obtain
'~ the final unmarked tree (W) € T, with recurrences in W, corresponding to the
infinite paths of n(W). All transformations are one—one and recursive, and the
path correspondences of the two last steps are actually recursive isomorphisms; it
is the first step that yields the one-many aspect of the combined path correspond-
ence.

The third step is subsumed by the second half of the proof of the Recurrence
Lemma in Section 5. For the second step, simply replace each node in W, of the
form of Figure 5 by one of the form of Figure 6, in an inductive fashion with the
newly introduced nodes unmarked. The new infinite path, being unmarked from
u onward, does not affect recurrences.

Let us now concentrate on the first step. For each ¥ € L, we have to describe a
recursive one—one procedure taking a tree W € T*toatree W, ET" involving
the mark ® (assumed not to mark W), with the recurrences of W, being associated
in 2 many-one fashion with the @-abiding paths of W. For ease of exposition, and
since W, depends on ¥, we denote the desired W, by We.

First, define the mark-free version of We, denoted W, as follows. Given
W e T, denote by WO the tree obtained by duplicating each subtree of W in the
manner illustrated in Figure 7. Formally, for a node x = (xi, . - - » Xn) € N¥, let
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FIGURE 7

FIGURE 8

x+1=0a+1,...,x,+1),andlet W+ 1 ={x+ | | x € W}. W’ is then defined
as ,

WMW=Ww+1U UW{(u+ DOy|uy € W, y € N*.
ue

Referring to Figure 7, the node u is actually replaced by u + 1, and its leftmost
offspring is (v + 1)0. We call these, respectively, the old and new u’s, and use this
terminology for their subtrees too. Thus, in W?, each node has one old occurrence
and an old and new subtree. The new subtree remains unchanged (and hence,
paradoxically, it is just the “old” one), whereas all nodes of the old subtree get
modified in the same way. Moreover, given a node x € W?, it is easy to determine
whether or not x is old (x has no 0’s), and if it is not, it is equally easy to find its
old root, that is, its nearest old ancestor, since in this case we have x = (¥ + 1)0y.
In either case, each x € W? corresponds effectively to a unique £ € W. This
' correspondence preserves ancestorship. Now, for every i = 0, Wi*! is defined as

Witl=\xu U j.x
j€w
xew!

and is illustrated in Figure 8. The jth subtree from the left is called the jth
copy of W'

Given W € T™ and a formula ¢ € L of type 7 (i.e., n is the least interger such
that ¢ € L,), take Wy to be simply W™,

We now describe the marking of Wy with ®, yielding We(= W), by induction
on the structure of ¥. The base case of the induction is the four atomic formulas,
all of whose types are 0, and the tree to be marked in each case is, therefore, W°.

For the 3%a case, simply mark x € W?° with ® iff X € W was marked a. For the
Ja case (respectively, the Va case) mark x € WP iff some ancestor (respectively,
all ancestors) y of X in W was (were) marked a. Clearly, recurrences of ® in W?°
are associated, as required, with the appropriately abiding paths of W.

For the V*a case, no old nodes of W are marked ®, and a new node is marked
iff for every one of its new ancestors x, the corresponding X is marked with a in W.



242 DAVID HAREL

Assume that p is a recurrence of @ in WP, By the construction, p = g(u + 1)r,
where u + | is old and r is an infinite path in #’s new subtree; moreover, for r to
contain infinitely many ®’s it has to be universally marked ®. Consequently, in
the corresponding path p = guf in W, 7 is universally marked a, and hence p
satisfies V*a. The argument for the converse is similar.

Assume now that ¥ =y, V ¢», and that ¥ is of type n. By the definition of type,
at least one of ¥, and -, is of type n, say, without loss of generality, ;. Given
W € T" we can effectively find W,, and W,, and by our assumption Wy
(the unmarked version of W, ) is W”, whereas, say, W, is W™, with m < n. First,
upgrade W to W™, by carrying out the w-duplication of Figure 8 n — m times,
with each copy of W™ retaining the ® marking of W, The resulting trees,
W, = Wy, and W}, are now identical in structure. The desired tree W, for
U1 V s is simply W7 with a node marked ® iff it is marked in either W, or W,.

For the case ¥ = ¢, A y», first upgrade the simpler tree to yield W}, and W,
from the inductive hypothesis as before, both being now of type n. Now to obtain
W, nodes in W are marked inductively as follows: the root A is marked, and a
node x = (xi, ..., X;) is marked iff there are m =< i, j <, where (xi, . .., X.) is the
closest marked ancestor of x, with (x,, ..., x;) marked in Wy and (x;, ..., X))
marked in W,. In short, one marks a node in W, by checking that there has been
at least one mark in each of W}, and W, since the most recent marking of a node
in W, along the present path. This procedure is clearly recursive in the markings
of W, and W}, and can easily be seen to yield the correspondence between
recurrences required by the conjunction.

The case ¢ = Ay, is treated similarly, with each tree W, from the inductive
hypothesis being first upgraded to be of type W”. Here, though, a node x =
(x1, ..., x)in W& is marked just when there are m =< iy, iz, ..., i <1, with m as
before, and (xy, ..., x;) is marked in W}, for each 0 = j = k, and where k is the
number of nodes along the path from A to x already marked. In this way, a
recurrence in W, can occur just when the path is marked in the W, by some
sequence consistent with {0}, {0, 1}, {0, 1, 2}, . ... Hence, the marking in each of
the I, is represented infinitely often in the path of We, and vice versa.

For the case ¢ = V., the type of ¢ is n + 1, and, consequently, the trees W,
from the inductive hypothesis can be upgraded to be marked versions of W". Now
W, is simply taken to be W"*! marked by having the ith copy of W in it inherit
the marking from W,,, for each | € w. It is easy to see that the recurrences
correspond as required. [

As an immediate corollary, we have

COROLLARY 8.2 For every ¥ € L, the sets of (notations for) P-avoiding trees in
each of T*, T#, or T3, is in I1}.

Obviously, many ¥ € L are equivalent to trivial formulas (like 3®) that give rise
to classes of trees much simpler than I1}, and in this sense Theorem 8.1 is but an
upper bound. It is of interest that even V*®, the dual of 3”®, resides much lower
down, at least for finite branching.

THEOREM 8.3.  The Y*®-avoiding trees in T (respectively, in T}) form a 113
sel (respectively, T19).

Proor. Consider the statement S: “d node x Vidy (» on the ith level of x’s
subtree and Vz on path from x to y, inclusive, z is marked ®).” It is easy to see
that S is 29 or 29, depending, respectively, on whether the tree is of bounded or
merely finite outdegree (i.e., whether or not the 3y quantifier is bounded or not).
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We show that .S is equivalent, for trees in T}, to “3path V*®”, and the result
follows directly. One direction is obvious. Conversely, consider a tree satisfying S,
and let x be the node whose existence is guaranteed by S. We show that there is a
path rooted at x and universally marked with ®. The argument proceeds in a
Konig-like fashion by inductively proceeding down levels of x’s subtree along
nodes for which infinitely many #’s satisfy the “3 y +--7 part of S. At each level
there are finitely many offspring, and so one of them at least must account for
infinitely many of the /’s; in particular, § guarantees that the node itself is
marked ®, [

Providing more general lower bound information on ¥-avoiding trees for various
® € L seems like an interesting topic for future work, especially in view of
Section 9,

Theorem 8.1 can apparently be generalized in several ways. The bounded-depth
restriction can be removed, and the theorem proved for a language L’, which is
simply the closure of the atomic formulas under the Boolean and recursive—infinite
conjunctions and disjunctions. Also, one can actually close the language under the
3, V, 3%, and V™ quantifiers, so that is it possible to write, say, 3 A;¥;. Both
these extensions seem to require a more delicate argument and, for our applications,
do not seem to justify the additional work.

Another kind of generalization is important for the applications in Section 9,
and so we present it here. Let an arithmetical tree be a tree whose membership,
leafship, and markedship predicates are arithmetical (i.e., not necessarily recursive
but expressable in first-order arithmetic). Denote the resulting classes of trees a-T,
a-Tt, a-Ty, a-T*, etc. Also let a-L be the langauge L in which the infinite
conjunctions and disjunctions are also allowed to be arithmetical. Theorem 8.1
holds for this richer language with these richer trees.

THEOREM 8.4. For every ¢ € a-L, the set of P-avoiding trees in a-T* (and
hence also those in a-T} and a-T}) is one-one arithmetically reducible to the set
of well-founded trees in a-T.

PrOOF. Identical to the proof of Theorem 8. 1, but with “arithmetical” replacing
“recursive” throughout. [J '

COROLLARY 8.5. For every ¢ € a-L, the set of (notations for) P-avoiding trees
ineach of a-T*, a-T} or a-T}, is in I\,

PrOOF. The set of well-founded arithmetical trees is also I1}-complete,
(cf. [30)). O

The results of this section yield immediate corollaries concerning Turing ma-
chines. Post correspondences, dominoes, etc. Just as, for example, the 3”® formula
of L expresses the recurrence property of the domino problems of Section 6, so do
other formulas of L express complex properties of the required tiling that enforce
recurring or effectively growing patterns, distances, etc. A generic corollary of
Theorem 8.1 is the fact that determining whether any of these can occur is within
the Zi/I1} level of undecidability. For sofne cases, such as 3"®, it is no better, and
for others, such as V*®, it is significantly better.

THEOREM 8.6.  For any ¢ € L, the following problems are in Z):

(i) does an NTM admit an infinite ¥-abiding computation?
(if) does a set T of dominoes admit an infinite ¥-abiding tiling?
(iii) does a Post instance (%), (y) € ({0, 1}*)" admit an infinite ¥-abiding corre-
spondence?
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TueoREM 8.7. For @ = Y°®, the problems of Theorem 8.6 are in 28.

As an example, whether or not T can tile Z X Z with d occurring only finitely
often is in =%, that is, no worse than the totality problem for TMs.

We note that Theorem 8.6 (but not 8.7) holds also for NTMs with infinitely
many states and/or an infinite alphabet, Post problems over an infinite alphabet
and with infinite input sets, and infinite sets of domino types. In these cases the
trees are in 7%, not T'g.

Another corollary of Theorem 8.1 concerns the topological characterizations of
infinite behaviors of the transition systems (TSs) of Arnold [4]. In {4], a result
similar to the recurrence lemma was (independently) proved in a different setting,
and was used to establish the fact, stated now in the present terminology, that the
class of sets of recurrences in T is a Souslin set (see [4] for definitions). Since the
proof of Theorem 8.1 involves correspondences between the ¥-abiding paths of W
and the infinite paths of n(#) one concludes:

PRrOPOSITION 8.8. For each ¥ € L and for each W € T+, the set of ¢-abiding
infinite paths in W is a Souslin set.

9. Applications to Fairness

Let us fix some arbitrary conventional programming language PROG with non-
determinism (even unbounded) and/or concurrency, such as those in [9] and
[18]. Each program « in PROG can be associated with a formal computation tree
C, that consists essentially of all possible sequences of the atomic actions and tests,
with common prefixes identified. In a given start state s (i.e., s provides initial
values for all variables, etc.), one obtains the induced computation tree at s, C.(s),
in which each node u corresponds to an actual state reachable from s by performing
the actions and passing the tests along the path from the root to u. False tests or
other impassable parts of a program encountered during execution entail truncation
of the subtree rooted at the appropriate node.

Given that conventional languages employ recursive (in the recursion-theoretic,
not the programming sense) atomic actions and tests (although we allow even
arithmetical ones), and given that the finitary nature of the programs results in a
finite (albeit possibly unbounded) amount of state information relevant to each
point in the computation, one sees that C(s), for each « and s, is a tree in a-7.
For most languages, it will actually. be in T, that is, recursive and boundedly
branching, but we can afford to be liberal here. Here we are tacitly assuming that
the structures over which programs run are standard arithmetic or some effective
enrichment thereof (this is in line with all reasonable applications of programming
languages). With this established, we can now assume we ar¢ given an effective
enumeration So, 51, . . . of all possible start states, and can consider the universal
computation tree C,, illustrated in Figure 9, consisting of Cu(So), Cals1), - -.
connected to a common root. X

A state property p of interest can be modeled as a mark marking nodes of C,,
and if it is first-order definable, the marked version of ¢, will be in a-T*. What we
are saying, in more general terms, is that given any ¥ € L or ¢ € a-L, where the
marks involved model properties of states of the computation of a program
a € PROG, the appropriately marked tree C? is in a-T* and therefore is a
candidate for application of (the proofs of) Theorems 8.1 and 8.4. Ladner [22] has
also considered various notions of fairness as “path restrictions” on the appropriate
computation trees, leading naturally to the present treatment.
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FiGURE 9

Applying these proofs to C? results in a tree 7(C?) in a-T, whose infinite paths
correspond to the ¥-abiding paths of C*.

Definition. Given « € PROG and ¢ € L, we say that o ©-fairly terminates if
for all start states s, « admits no #-abiding infinite computations starting in s.

The discussion above and the Corollaries 8.2 and 8.5 hence yield

THEOREM 9.1. For each « € PL, ¢ € a-L, the problem of whether a ©-fairly
terminates is in 11}.

We now observe that L and g-L can express every previously proposed notion
of fairness and many more. In fact, it is hard to imagine any notion of fairness, or
unfairness, or any other property of infinite computations that might be of interest
for programs in such languages, that is not expressible in L or a-L. For example,
weak, strong, and extreme fairness for the program (1) of Section 3 can be written
as follows (with liberal formulation of the arithmetical or recursive meanings of
marks):

Weak fairness:

(V™4 true) D 3™(a executed)) \ Y=(B true) D 3%(B executed)),
and, more generally,

N (V® i-enabled > 3= i-taken).

1<isn
Strong fairness:
(3™(4 true) D 3”(a executed)) A 3%(B true) O 3*(8 executed)),
and, more generally,
A (3" i-enabled S 3= i-taken).

1sisn

Extreme fairness (Here {g;} is an effective enumeration of all formulas in first-
order arithmetic, for example):

N (3=(g, true) D (3™(a executed with q; true) A 3%(B executed with g; true))),
j

and, more generally,
A (37(g; true) D A (3™(i-taken with q; true)).
J

Isi=n

How can Theorems 8.1 and 8.4 help in actual proofs of fair termination? We
venture the following:

STATEMENT. For each ¥ € a-L, Theorems 8.1 and 8.4 and their proofs provide
a semantically complete proof method for ¢-fair termination.
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JUSTIFICATION OF STATEMENT. The claim in the statement can be justified in
several ways. In a pure mathematical sense, given an arbitrary fixed ¥ € a-L and
a program o« € PL, the tree C * is an arithmetical (or recursive) marked tree, and
hence its translate 5(C}) with respect to ¥ can be represented by some finite
machine (perhaps with arithmetical oracles). This machine can be thought of as a
program with und (i.e., unbounded nondeterminism; actually the correct term
should probably be w-nondeterminism). The proof method of [2] for example, can
then be used to prove the new programs’s termination, i.e., the translate-tree’s well-
foundedness. Since the method of [2] is complete relative to an appropriate
program-free language, the method outlined (translation via 7; then proof of
termination) is semantically complete, and in fact also complete relative to the
same underlying language.

In a more pragmatic sense, one can consider the formal computation tree C.,
expand it by duplicating nodes for each mark, one copy being marked and the
other not, and then carry out the 5 translation before considering the various start
states 5;. Again, this tree can be written as a program with und, but now the result
is a uniform explicit scheduler S,, which can then be applied to the various s;. It
seems reasonble to suppose that S, can be written, in general, in terms of the basic
actions and tests of « and the marks of ¥, with some insignificant extra recursive
machinery. Fully exploiting this possibility, however, would seem to require
additional work beyond our general Theorems 8.1 and 8.4. O

We have worked through the proof of Theorem 8.1 in the cases of weak and
strong fairness for program (1) of Section 4, and have indeed been able to exhibit
explicit explicit schedulers Sa, written in terms of the original program, which are
the (indirect) result of the 5 translation. As mentioned above, however, this
procedure justifies further work and can, we believe, be generalized in the spirit of
Theorems 8.1 and 8.4 to all ¢ € a-L."

The new explicit schedulers for program (1) are the following, and the reader

should have no difficulty proving that they terminate iff program (1) fairly termi-
nates with the appropriate notion of fairness:

Weak fairness:

(If B— BIF)*; while A V Bdo (IF 4 » a0 4 — skip FI)*
(IF B— 0B — skip FI)* od,

Strong fairness:

(IF A — a0 B — B FI)*;

while A V B do ((if 4 then o)* (if B then 8)*
or (if "4 then 8)
or (if —B then a)) od.

Here v* = Uizoyi is short for i <2 v', and y* = Uo7’ is short for i <
i—i+ 19"

10. Conclusion

We have presented elementary recursive translations between classes of recursive
(or arithmetical) trees, yielding applications to high undecidability and fairness.
We feel that characterizing I} in terms of “thin” ¢-avoiding trees for some
appropriate ¥ is more beneficial for computer science than using well-founded
w-trees. This is because computer science deals with finite objects (programs,

! Note added in proof: Such a generalization has recently been obtained by 1. Dayan and the author and
appears in “Fair termination with cruel schedulers,” Fundamenta Informatica IX, 1, 1986, to appear.
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machines, graphs, combinatorical objects such as finite sets of dominoes, etc.)
which usually give rise to finite branching. A detailed account of one aspect of this
apparent advantage is given in [16].

As mentioned at the end of Section 9, there is still much work to be done, in the
spirit of [1], [11], [12], [14], [15], [23], and [27] in finding clean and useful special-
purpose proof methods for fair termination of various kinds, since, even if the
uniform explicit schedulers S. described in Section 9 are worked out generally,
they might more often than not turn out to be quite unwieldy.

As another direction for further work, we suggest generalizing the results to
languages for describing properties of certain infinite subtrees, not merely paths,
This would parallel the investigation of branching-time versus linear-time formal-
isms for reasoning about programs,
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