
Evaluating a Natural Language Interface for
Behavioral Programming

Michal Gordon and David Harel
Weizmann Institute of Science

Abstract—In behavioral programming, scenarios are used to
program the behavior of reactive systems. Behavioral program-
ming originated in the language of live sequence charts (LSC), a
visual formalism based on multi-modal scenarios, and supported
by a mechanism for directly executing a system described by
a set of LSCs. In an exploratory experiment, we compare
programming using LSCs with procedural programming using
Java, and seek the best interface for creating the visual artifact
of LSCs. Several interfaces for creating LSCs were tested, among
them a novel interactive natural language interface (NL). Our
preliminary results indicate that even experts in procedural
programming preferred the LSCs NL interface over the Java
alternative, and their implementation times were comparable to
those of the other interfaces tested. The results indicate that the
NL interface, combined with the scenario-based essence of LSCs,
may be a viable alternative to conventional programming.

I. INTRODUCTION

The language of live sequence charts (LSCs) [1] is part of
a grand challenge to create a new paradigm for programming
that would allow more people to define system behavior, by
making programming closer to how they think [2]. In the new
paradigm of behavioral programming (BP) the user specifies
the system behavior in an incremental way by specifying
independent scenarios. The visual language of LSCs allows
specifying scenarios of what may happen, what must happen
and what must not happen. These scenarios are based on
classical sequence diagrams with the additional modalities
of must/may/forbid and they can be executed directly using
methods from validation and model-checking [3], [4].

Recent research in this developing programming paradigm
has focused on execution, debugging, and visualizations. An
attempt has also been made to understand how previous
programming experience affects the learnability of the lan-
guage by interviewing students learning the LSC language
[5]. Yet, the claim that the new paradigm may be useful to
programmers, and perhaps even to non-programmers, needs
to be evaluated. Since LSCs as a BP paradigm is conceptually
different from procedural languages, the usefulness of the
language to “procedural” programmers is still questionable.
Additionally, because LSCs are visual in nature, there are
many ways to create them: (i) drawing the diagram by
dragging and dropping elements; (ii) playing-in the scenario

This research was funded by an Advanced Research Grant from the
European Research Council (ERC) under the European Community’s 7th
Framework Programme (FP7/2007-2013). In addition, part of this research
was supported by The John von Neumann Minerva Center for the Develop-
ment of Reactive Systems at the Weizmann Institute of Science.

with a graphical user interface (GUI) of the system or with a
model thereof [3], [6]; (iii) typing the scenario in a controlled
natural language [7] and; (iv) a combination of the last two,
termed show&tell [8]. Figure 1 shows a sample LSC and some
toolbars and views for creating it.

In the current work we evaluate the LSCs language and
the available interfaces to create LSCs in a pilot study. Our
research questions include (i) Is the natural language interface
quickly learnable and how do the various interfaces to the LSC
language compare? (ii) How does the LSC language compare
with Java (as an example of a common procedural language)
in programming times and when considering user preferences?

Recent years have yielded much research comparing pro-
gramming languages; this comparison focuses on various
aspects, ranging from the language features and capabilities,
the type of applications the language is useful for, to assessing
the human factor criteria as we do [9], [10].

In the current work we focus on the scenario-based prop-
erties of the language that also allow the use of a natural
language interface, rather than only the visual aspect. Our
main contributions are a comparison of the various interfaces
for creating LSCs, and a pilot study of whether the natural
language interface is learnable and useful for programming
when compared with a procedural language like Java. Since
the LSC language is very different from procedural languages,
evaluation based on feature comparison, as is done for For-
tran or C [9], is less relevant. Another aspect is that the
tool we use for our evaluation, PlayGo [11], is still under
development and there are not many programmers who have
adequate expertise in using it. In the current study we explore
which of the interfaces is more useful for LSCs; therefore,
evaluating the language using the cognitive dimensions of
notation framework, as suggested by Green et al. [12], will
be relevant in future studies, considering one of the interfaces
rather than all of them. Historically, claims of new languages
being natural have been made, and they are usually hard to
prove [13]. In this sense, the current research is preliminary
and exploratory in nature. One objective is to collect initial
data for the available user interfaces and use the results to
improve the finer interfaces, and another is to explore the
naturalness or usefulness of the LSC language.

II. LSCS USER INTERFACES

LSCs are based on sequence diagrams and include a set of
vertical lines called lifelines that represent the objects in the



scenario, and horizontal arrows called messages that represent
the interactions between the objects in the scenario; see Figure
1. Time flows from top to bottom, and there is a partial
order between the messages. Additional elements, such as
synchronization or alternative constructs can be added (see
[1], [3] for a more thorough description of the language).

The fact that LSCs are both visual and scenario-based
results in multiple ways of creating them, each with its own
advantages. We elaborate on the interfaces evaluated in the
experiment, and they can also be viewed in an accompanying
video; see [14].

Diagram editing. Since LSCs are visual, they can be
created, like many other diagram tools, by adding elements
from a menu or dragging and dropping elements from a
toolbar, as in UML2Tools [15]. The toolbar includes a menu
for adding LSC elements (e.g., the LSC, a sync, an assertion,
a lifeline, a message, etc.) as shown in Figure 1. LSCs include
more information than sequence diagrams; e.g., they include
modalities of whether a message may happen or must occur.
This means the user creating the messages must also set the
modalities before adding the element, by selecting either the
blue C or the red H for may or must respectively, more details
in [1], [3]. We call this first interface diagram editing and it
is part of the toolbar shown in Figure 1.

Basic play-in. A second way of creating LSCs is the basic
play-in, first defined in [3], [6]. It permits the user to play
with the non-behaving system or a mock-up thereof to create
the LSC, similar to programming by example (PBE) [16].
For example, in our experiment, we provided the participants
with a GUI (see bottom right part of Figure 1), with which
the user can demonstrate an operation by simply clicking a
button in the GUI, rather than adding a message element
from a menu and entering the names of the objects and the
operation of “click”. The basic play-in method is very natural
and is made possible due to the scenario-based nature of
the LSC language; “demonstrate the scenario to create the
requirements”. However, it lacks the ability to demonstrate
what may happen rather than what must happen and additional
non-interactive constructs, e.g., conditions, which have to be
specified in more standard ways by menu selection. Play-in is
different from most PBE systems in that it is domain general
(when using a GUI for the specific domain) and is used to
specify rules explicitly rather than inferring them from an
example.

Natural language play-in (NL-play-in). Recently, we sug-
gested a natural language play-in interface for LSCs (NL-
play-in) [7]. This interface uses a context-free grammar to
create a controlled natural language for LSCs. Clearly, nat-
ural language may include multiple ways to specify the
same semantics, therefore the interface prompts the user to
resolve ambiguities when they exist. NL-play-in combined
with the scenario-based nature of LSCs creates the possibility
to “program” by writing separate requirement sentences in
(controlled) English. It can also be spoken rather than written,
however, the motivation is different than the motivation of
languages such as spoken Java [17] developed to help pro-

Fig. 1. PlayGo Environment, a sample LSC and the natural language that
created it. Also visible on the right is the experiment GUI and on the top the
editing menu.

grammers with repetitive strain injuries. While in spoken Java
it is necessary for the user to speak a programming language,
in NL-play-in the user writes behavioral requirements rather
than a program. For example, to create the LSC in Figure
1, one can write “when the user clicks the start, the display
shows “Hello World””.

The process includes a stage of grammatical parsing, with
the addition of asking the user to resolve any grammatical
ambiguities. This is followed by the analysis of the require-
ment, using the model that serves as a knowledge base, and
helps make the connection between the different requirements.
The modalities (may/must) indication and the conditions, are
added automatically by NL-play-in based on the sentence,
avoiding the need to specify them explicitly as in the previous
interfaces. For additional examples of the type of sentences,
refer to [14].

Show&Tell (S&T). An additional method recently devel-
oped is show&tell (S&T) [8]. This method is a combination of
basic play-in and NL-play-in. It is more than a naive combina-
tion; rather, the play-in interaction is interpreted based on the
textual context. A similar combination of voice and gestures
has been used for managing graphical spaces with “put-that-
there” [18]. Show&tell integrates text and GUI manipulation
to assist in the creation of system requirements. The user can
enter his/her requirements textually but also use the advantages
of play-in to interact with the system GUI. In the midst of the
requirement specification process, he/she can create parts of
the sentence (and later the respective diagram) by interaction
without explicitly writing object names or actions.

The interaction is interpreted depending on the current parse
of the text. Suggestions that make sense grammatically are
shown to the user, see [8] for additional details.

III. EXPERIMENT

The experiment we carried out was meant to test which of
the LSC interfaces is preferable and hence more natural to
programmers. Our hypothesis was that NL-play-in would be



TABLE I
PARTICIPANTS PREVIOUS EXPERIENCE

Java Exp. LSC exp. Java Exp. LSC exp.
1 > 5 years 2-5 projects 7 > 5 years Read only
2 1-2 years 2-5 projects 8 None 1 course project
3 > 5 years 2-5 projects 9 1-2 years 1 course project
4 > 5 years 2-5 projects 10 > 5 years 1 project
5 1-2 years Read only 11 1-2 years 1 course project
6 > 5 years > 5 projects 12 None Paper LSCs

preferable to diagram editing and basic play-in, and that the
combination of the two in S&T would be even better.

Since the language of LSCs and the scenario-based ap-
proach to programming is new to most programmers, we
wanted to also compare LSCs with a procedural language
like Java. We believe that BP will make programming simpler
and hypothesize that LSCs will be easier than Java, especially
when the GUI and the model are given, and the task is to
program the behavior of the system only and not its objects.

A. Experiment Design

Participants. Our preliminary experiment involved 12 pro-
grammers familiar with LSCs. All but three participants were
familiar with the LSC language, as they attended the 2009
graduate course on executable visual languages described in
[19] or a similar course given two years later, which included
the LSC language. The other three were familiar with LSCs by
researching or working on some aspect of them. Some of the
programmers had experience with the PlayGo tool, but none
were experienced with the NL-play-in method or the S&T.
Table I summarizes the participants’ previous experience.

Tool and Tasks. The experiment was designed to test the
objectives using the PlayGo tool, an Eclipse based product that
implements the LSCs approach over Java classes using UML
and AspectJ [11]. Java was chosen as the procedural language
to test, since the tasks were performed in the same IDE and
using the exact same GUI and classes, while only behavior
among the objects was implemented in LSCs or Java.

The experiment included a part in LSCs, and a part in Java
completed by seven participants with Java experience (order
was counterbalanced; three participants started with the Java
part first and the others started with the LSC part first). Both
parts included adding unknown behavior to a behaviorless
GUI pre-prepared for the task, a simple game for teaching
letters and colors. The required behavior programmed in each
task is shown in Table II and the GUI appears in Figure 1.
Tasks T1 and T2 were used in the LSC part only (except for
two participants in a pilot experiment, which helped establish
that programming all tasks in Java and LSC was too time
consuming). The objective of the first two tasks was to teach
all four interfaces to the participants by requiring them to
use all the interfaces and later to compare the interfaces. In
task T3 the participants chose their preferred interface method
in the LSC part, and seven of them implemented a similar
requirement in Java. The complete tasks description can be
found in [14].

During the experiment, participants were provided with
tutorials on all the interfaces and examples of natural lan-
guage sentences for a different example system. They were

TABLE II
SAMPLE TASKS

T1 The LSC in Figure 1.
T3a When the game starts, the display shows a random letter and

displays a random color, the player is expected to click on
the button with the displayed letter, and on a button with
the displayed color. When he’s successful, the display show
”Success”.

T3b When the user succeeds the score is increased, if he fails the
score is decreased.

T3c The game is won when the score reaches 5, at which point
the display shows ”You Win” with a yellow background.

encouraged to ask questions when they could not complete
a task or had problems understanding or using the interfaces.
They were also asked to explain the difficulty they encountered
when spending a long time on some task or part of it.

Evaluation. To evaluate the interfaces, we had participants
write down the time they started a task and the time when
they felt it was completed. These times were similar to times
measured by the experimenter. In addition, we asked the
participants to answer questionnaires following each task.

B. Results

Task Times. When comparing times for creating the same
LSCs using the various methods in T1, using a paired two-
tailed T-test, diagram editing took the longest time (7.6± 2.9
minutes) p < 0.05, comparing to S&T and NL-play-in,
and the other methods had no significant difference between
them (play-in 5.3 ± 3.5, NL-play-in 5.25 ± 3.6 and S&T
4± 1.7 minutes). A similar effect was found in T2 for those
participants who completed all four interfaces (five out of the
twelve, due to time constraints of the experiment).

We used a paired two-tailed T-test for additional compar-
isons. The Java T3 task took comparable time (29.6 ± 8.8
minutes) to the equivalent LSC T3 tasks (25.7± 5.5 minutes)
with p = 0.5, for the seven participants who completed all
tasks in both Java and LSCs. For those who started with
Java, the time to completion was longer, but not significantly
different (p = 0.125) than those who started with LSCs;
this is reasonable considering that the LSC-equivalent tasks
were preceded by the two teaching tasks, T1 and T2 that
introduced the system. Considering that all programmers were
experienced with Java, and less so with LSCs, this suggests
that the new interfaces and language are natural and easily
learnable.

Limitations We tested only three tasks in a simple appli-
cation. We did not require the participants to actually run
their code, which would consume more time, and therefore
we could not analyze errors. Nevertheless, the interviews and
questionnaires provided much insight.

Subjective Questions. When asked what their preferred
method was for creating LSCs for the third task, nine out of
twelve participants chose the NL-play-in, and said it was the
quickest. Of those that chose a different method, one chose the
S&T for T1 and NL-play-in for T2, and the other two preferred
diagram editing and basic play-in, while one mentioned she
did not understand what was expected from her, she did not
figure out the NL-play-in, did not ask the experimenter for
help and gave up on the Java part almost completely.



According to the verbal interview the NL-play-in felt quick-
est to almost all participants and did not require changing the
medium of entering data; i.e. they did not have to move their
hands away from the keyboard.

Regarding the LSC language in comparison to Java, ten out
of the twelve who completed almost all of the Java task, wrote
that the LSC language was easier for the given task than Java.
One participant could not decide which was better, and another
chose Java as the easiest. The latter participant did not use the
NL-play-in for the LSC T3 task, but rather the diagram editing
and basic play-in.

Several participants mentioned that the editing method gives
rise to more typing errors, and two mentioned that S&T could
be useful to avoid typing an object name and to avoid typos.

Analyzing the answers of the two participants who did
not prefer the NL-play-in shows that typing natural text that
translates automatically into LSCs felt uncomfortable because
of “uncertainty how to phrase the sentences”, and both men-
tioned that sentence templates or additional practice might
have made the task easier. They also mentioned that error-
fixing suggestions for NL-play-in were insufficient. The other
participants learned pretty quickly the suggested templates
and were able to resolve most errors in T3. A representative
participant mentioned “I was getting confused with NL” in T2,
explained later his choice of using NL: “When you get used
to its English, it’s quite fast to use”.

Additional Observations It seems that programmers who
are used to creating code by typing text appreciate a similar
interface even when creating diagrams. Second, switching
between the mouse and keyboard is not so convenient for
experienced programmers. Entering the diagram in edit mode,
selecting elements and then typing in element names or mes-
sages was more time-consuming, and required much switching
between interfaces. Basic play-in avoids some of the diagram
clicking, but still requires clicking on the GUI and in other
cases editing. S&T, which we thought would benefit from
the advantages of both basic play-in and NL-play-in, actually
suffered from the need to switch between them. Some of
this may also have been due to some performance difficulties
of PlayGo during the experiment. Most participants thought
that NL-play-in was quickest and simplest for them, since it
provided a means of creating the entire diagram by a single
action; many also mentioned it was “fun”. Diagram editing and
basic play-in required more specialization in LSCs by directly
setting the modalities and synchronization objects.

One of the key features of LSCs is that the order of events
matters in execution. In T3a, the order between the user
selecting a color and a letter was not mentioned specifically in
the requirements, which caused participants to avoid thinking
about it in the NL task, and thereby set a single order that was
accepted. In Java, many lines of code were required to check
that the player clicks on the two options, and the question of
order was discussed explicitly by three of the participants. In
the final implementation the order in the Java game did matter
for all but one participants. This we believe is linked to the fact
that LSCs can be underspecified, and allow the programmer

to avoid considering such issues unless explicitly required.

IV. CONCLUSION AND FUTURE WORK

This exploratory experiment demonstrates that the natural
language interface for LSCs is viable, quickly learnable and
most favorable to programmers than other interfaces. It also
confirms that the language of LSCs is comparable to Java
in ease of programming, for tasks similar to the ones given,
especially those requiring multiple GUI listeners.

In the future, we would like to test whether the S&T method
indeed suffered from the necessity to stop typing in order to
point and perform actions. It would also be interesting to test
the ease of use of LSCs in more complex tasks, and for non-
programmers.

ACKNOWLEDGMENT

The first-listed author would like to thank Jacob Kiwkowitz
and Shahar Maoz for their constructive comments.

REFERENCES

[1] W. Damm and D. Harel, “LSCs: Breathing Life into Message Sequence
Charts,” Formal Methods in Sys. Design, vol. 19, no. 1, pp. 45–80, 2001.

[2] D. Harel, “Can Programming Be Liberated, Period?” IEEE Computer,
vol. 41, no. 1, pp. 28–37, 2008.

[3] D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer-Verlag, 2003.

[4] S. Maoz, D. Harel, and A. Kleinbort, “A Compiler for Multimodal
Scenarios: Transforming LSCs into AspectJ,” ACM Trans. Softw. Eng.
Methodol., vol. 20, no. 4, 2011.

[5] G. Alexandron, M. Armoni, and D. Harel, “Programming with the User
in Mind,” in Proc. of Psychology of Programming Interest Group Annual
Conf. (PPIG), 2011.

[6] D. Harel and R. Marelly, “Specifying and Executing Behavioral Re-
quirements: The Play-In/Play-Out Approach,” Software and Systems
Modeling, vol. 2, no. 2, pp. 82–107, 2003.

[7] M. Gordon and D. Harel, “Generating Executable Scenarios from
Natural Language,” vol. 5449, 2009, pp. 456–467.

[8] ——, “Show-&-Tell Play-In: Combining Natural Language with User
Interaction for Specifying Behavior,” in Proc. IADIS Interfaces and
Human Computer Interaction, 2011, pp. 360–364.

[9] N. M. Holtz and W. J. Rasdorf, “An Evaluation of Programming Lan-
guages and Language Features for Engineering Software Development,”
Engineering with Computers, vol. 3, pp. 183–199, 1988.

[10] J. Howatt, “A Project-Based Approach to Programming Language
Evaluation,” SIGPLAN Not., vol. 30, pp. 37–40, July 1995.

[11] D. Harel, S. Maoz, S. Szekely, and D. Barkan, “PlayGo: Towards a
Comprehensive Tool for Scenario-Based Programming,” in Proc. of the
IEEE/ACM Int. Conf. on Automated Software Engineering (ASE), 2010,
pp. 359–360.

[12] A. F. Blackwell and T. R. G. Green, “A Cognitive Dimensions Ques-
tionnaire Optimised for Users,” in Proc. of the 12th Annual Meeting of
the Psychology of Programming Interest Group, 2000, pp. 137–152.

[13] S. Markstrum, “Staking Claims: A History of Programming Language
Design Claims and Evidence: A Positional Work in Progress,” in
Evaluation and Usability of Programming Languages and Tools, ser.
PLATEAU ’10, 2010, pp. 1–5.

[14] “Evaluating natural language lscs accompaning website,”
http://www.wisdom.weizmann.ac.il/∼michalk/Projects/EvalLSC2012.

[15] “Eclipse UML2 tools,”
http://www.eclipse.org/modeling/mdt/?project=uml2tools.

[16] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby,
B. A. Myers, and A. Turransky, Eds., Watch What I Do: Programming
by Demonstration. Cambridge, MA, USA: MIT Press, 1993.

[17] A. Begel and S. Graham, “Spoken programs,” in IEEE Symp. on Visual
Languages and Human-Centric Computing, 2005, pp. 99 – 106.

[18] R. A. Bolt, “‘put-that-there”: Voice and gesture at the graphics interface,”
SIGGRAPH Comput. Graph., vol. 14, no. 3, pp. 262–270, Jul. 1980.

[19] D. Harel and M. Gordon-Kiwkowitz, “On Teaching Visual Formalisms,”
IEEE Software, vol. 26, pp. 87–95, 2009.


