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Abstract. We describe a methodology for executing scenario-based requirements of
reactive systems, focusing on “playing-out” the behavior using formal verification tech-
niques for driving the execution. The methodology is implemented in full in ourplay-
enginetool1. The approach appears to be useful in many stages in the development of
reactive systems, and might also pave the way to systems that are constructed directly
from their requirements, without the need for intra-object or intra-component modeling
or coding.

1 Introduction

In the last few years, formal specification and verification techniques are beginning to be
applied to the development of complex reactive systems. Major obstacles that still prevent
even wider usage of such methods include the fact that errors are found relatively late in the
development process and that high expertise is required to correctly capture the properties to
be verified. Recently there has been a growing interest in the verification of software based
reactive systems, especially given the success in applying verification techniques to hardware.
Due to the size and complexity of such systems, it is desirable to understand all the system
requirements, and to make sure they are consistent, before moving to the implementation
phase. In classic verification, a model is first constructed and then verified against well defined
requirements, whereas one of the main points of this paper is that verification techniques can
be beneficially applied to the requirements too.

In this paper we suggest a methodology that addresses these obstacles. As our require-
ments language we use thelive sequence charts (LSCs)of [7], a visual formalism based on
specifying the various kinds of scenarios of the system — including those that are mandatory,
those that are allowed but not mandatory, and those that are forbidden. LSCs thus extend clas-
sical message sequence charts, which do not make such distinctions. The Unified Modeling
Language (UML) [33], which is the leading standard for specifying object oriented software
systems, uses a variant of classical message sequence charts (MSCs) [21], called sequence
diagrams, which can be viewed as a simple existential variant of LSCs.

A new approach for capturing behavioral requirements (proposed briefly in [12]) has been
developed recently, and is described in detail in [14]. In it the userplays inthe behavior using
a graphical interface (GUI) of the target system or an abstract version thereof. The formal
requirements in the language of LSCs are then automatically generated from the play-in by a
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1 Short animations demonstrating some capabilities of the play-engine tool are available on the web:
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tool called theplay-engine, without a need to explicitly prepare the LSCs or to write complex
formulas in, e.g., temporal logic.

Complementary to the play-in process isplay-out [14]. In the play-out phase the user
plays the GUI application as he/she would have done when executing a system model (or, for
that matter, the final system) but limiting him/herself to “end-user” and external environment
actions only. While doing so, the play-engine keeps track of the actions taken, and causes
other actions and events to occur as dictated by the universal charts in the specification (these
are charts describing mandatory behavior), thus giving the effect of working with a fully
operational system or an executable model. It is noteworthy that no code needs to be written
in order to play-out the requirements, nor does one have to prepare a conventional intra-
object system model, as is required in most system development methodologies (e.g., using
statecharts or some other language for describing the full behavior of each object, as in the
UML, for example). We should also emphasize that the behavior played out is up to the user,
and need not reflect the behavior as it was played in; the user is not merely tracing scenarios,
but is executing the requirements freely, as he/she sees fit.

This idea appears to have potential in many stages of system development [14]. In partic-
ular, the ability to execute such inter-object requirements without building a system model or
writing code could lead to a totally new way of building many kinds of reactive systems. The
play-engine would become a sort of “universal reactive machine”, which would run require-
ments that were played in via a GUI, or written directly as LSCs, timing diagrams or formulas
in an appropriate temporal logic. You provide the global, declarative, inter-object ways you
want your system to behave (or to not behave), and the engine runs the system directly from
them. It works a little like a perfect citizen, who does absolutely nothing unless it is called
for by the grand “book of rules”, and unless it doesn’t contradict anything else written in the
book. Thus, the engine does only those things it is required to do, while avoiding those it is
forbidden to do. This is a minimalistic, but completely safe way for a system to behave ex-
actly according to the requirements, and to make sure that the system doesn’t just sit around
doing nothing, it is up to the requirement engineers to make sure that any liveness properties
they want the system to satisfy should be incorporated into the requirements.

Play-out is actually an iterative process, where after each step taken by the user, the play-
engine computes asuperstep, which is a sequence of events carried out by the system as
response to the event input by the user. However, the original play-out process of [14] is rather
naive, for several reasons. For example, there can be many sequences of events possible as
a response to a user event, and some of these may not constitute a “correct” superstep. We
consider a superstep to be correct if when it is executed no active universal chart is violated.
By acting blindly by the “book” of requirements, reacting to a user-generated event with
the first action it encounters as a possible reaction to that event, the naive play-out process
could very well follow a sequence of events that eventually causes violation, although another
sequence could have been chosen that would have completed successfully. The multiplicity of
possible sequences of reactions to a user event is due to the fact that a declarative, inter-object
behavior language, such as LSCs, enables formulating high level requirements in pieces (e.g.,
scenario fragments), leaving open details that may depend on the implementation. The partial
order semantics among events in each chart and the ability to separate scenarios in different
charts without having to say explicitly how they should be composed are very useful in early
requirement stages, but can cause under-specification and nondeterminism when one attempts
to execute them.



The work we describe here, which we termsmart play-out, focuses on executing the
behavioral requirements with the aid of formal analysis methods, mainly model-checking.
Our smart play-out process uses model-checking to find a “correct” superstep if one exists, or
proves that such a superstep does not exist. Model-checking is applied anew at the occurrence
of each user event to examine the different potential supersteps and to find a correct sequence
of system reactions if there is one. Model-checking thus drives the execution. Another way of
putting it is that the “smartness” in smart play-out works as an aid, helping the objects in the
system cooperate in fulfilling the requirements. Experimental results we have obtained using
a prototype implementation of smart play-out are very promising.

Smart play-out illustrates the power of putting formal verification methods to use in early
stages of the development process, with the potential of impacting the development of reactive
systems. We believe that additional verification tools and technologies can be used to improve
the ability of the play-out framework to handle large systems efficiently. And, as mentioned
above, we also believe that for certain kinds of systems the play-out methodology, enhanced
by formal verification techniques, could serve as the final implementation too, with the play-
out being all that is needed for running the system itself.

The paper is organized as follows. Section2 gives a brief overview of the LSC language
using a cellular phone system which serves as a running example throughout the paper. Sec-
tion 3 discusses the Play-in/Play-out approach focusing on play-out and explaining the need
for ”Smart Play-Out”. Section4 shows examples from the cellular phone system illustrat-
ing where smart play-out is helpful. Section5 gives a high level description of the smart
play-out approach and how model-checking is used to achieve it, while section6 provides a
formal description of the translation that produces the input to the model-checker. Section7
describes experimental results obtained on the cellular phone system using our prototype tool
implementation of smart play-out. We conclude with a discussion of related work in Section
8.

2 LSCs

Live sequence charts (LSCs) [7] have two types of charts:universal(annotated by a solid bor-
derline) andexistential(annotated by a dashed borderline). Universal charts are used to spec-
ify restrictions over all possible system runs. A universal chart typically contains aprechart,
that specifies the scenario which, if successfully executed, forces the system to satisfy the sce-
nario given in the actual chart body. Existential charts specify sample interactions between
the system and its environment, and must be satisfied by at least one system run. They thus
do not force the application to behave in a certain way in all cases, but rather state that there
is at least one set of circumstances under which a certain behavior occurs. Existential charts
can be used to specify system tests, or simply to illustrate longer (non-restricting) scenarios
that provide a broader picture of the behavioral possibilities to which the system gives rise.

We will use the cellular phone system to illustrate the main concepts and constructs of the
language. In the LSC of Fig. 1, the prechart (top dashed hexagon) contains three messages
denoting the events of the user clicking the ‘*’ key, then clicking some digit (denoted by
X2), and then clicking theSEND button. Following this, in the chart body, the chip sends a
message to the memory asking it to retrieve the number stored in cell #X2.

After this message comes an assignment in which the variableNum is assigned the value
of theNumber property of the memory. Assignments are internal to a chart and were pro-
posed in [14] as an extension to LSCs. Using an assignment, the user may save values of the



Fig. 1. LSC Sample - Quick Dialing

properties of objects, or of functions applied to variables holding such values. The assigned-to
variable stores the value for later use in the LSC. It is important to note that the assignment’s
variable is local to the containing chart and can be used for the specification of that chart only,
as opposed to the system’s state variables, which may be used in several charts.

After the assignment comes aloop construct. This is a bounded loop, denoted by a con-
stant number (3 in this case), which means that it is performed at most that number of times.
It can be exited when acold conditioninside it is violated, as described shortly2. Inside the
loop of Fig. 1, the chip tries (at most three times) to call the numberNum. After sending the
message to the environment, the chip waits for a signal to come back from it.

The loop ends with acold conditionthat requiresSignalto beBusy. If a cold condition is
true, the chart progresses to the location that immediately follows the condition, whereas if it
is false, the surrounding (sub)chart is exited. Ahotcondition, on the other hand, must always
be true, otherwise the requirements are violated and the system aborts. In Fig. 1, the chip will
continue sending messages to the environment as long as the received signal isBusy, but no
more than three times. Note how the use of variables and assignments in the chart makes this
scenario a generic one, standing for many different specific scenarios.

Hot conditions can be used for many other things too. For example, a forbidden scenario
can be specified by putting it into a prechart with the main chart being a hot false condition.

In general, we consideropenreactive systems, and thus distinguish between the system
and its external environment. As can be seen in Fig. 1 the system’s environment is also com-
posed of a user operating the system (denoted by the like of a person) and an abstract entity
representing all other elements interacting with the system. The user interacts with the sys-
tem directly by operating its user interface, while the environment interacts with the system
in other ways (e.g., communicating over channels, controlling environmental settings etc.).

2 [14] defines alsounboundedloops anddynamicloops, which we will not describe here



The advantage in using LSC’s is that it is an extension of sequence chart formalisms
that are widely accepted and used by engineers, but is far more expressive than MSCs or
UML sequence diagram. LSC’s can be viewed as a visual front-end to a somewhat restricted
version of temporal logic, with mechanisms enabling convenient usage of the language. The
semantics of a restricted subset of LSC’s in terms of temporal logic are given in [13], and a
more complete treatment is in preparation. For a discussion on the advantages of LSCs as a
requirements specification language see, e.g., [7, 14].

3 The Play-in/Play-out Approach

The play-in/play-out approach is described in detail in [14]. Recognizing that [14] has not
yet been published, we give a brief overview here, sufficient for the purposes of the present
paper. As its name states, the approach consists of two complementary aspects. Play-in is a
method for capturing behavioral requirements (e.g., following the preparation of use cases)
in an intuitive way, using a graphical user interface of the target system or an abstract version
thereof. The output of this process is a formal specification in the language of LSCs [7].
Play-out is the process of testing the requirements by executing them directly. The input to
the play-out process is a formal LSC specification. Although, it is much more effective to
play out requirements that were played in, this is not obligatory, and the LSC specification
can be produced in any desired way.

It is worth noting that the behavior described in Fig. 1 was played in using a GUI of a
cellular phone and did not require any drawing or editing of elements in the generated chart.

Play-out is the process of testing the behavior of the system by providing user and en-
vironment actions in any order and checking the system’s ongoing responses. The play-out
process calls for the play-engine to monitor the applicable precharts of all universal charts,
and if successfully completed to then execute their bodies. By executing the events in these
charts and causing the GUI application to reflect the effect of these events on the system
objects, the user is provided with a simulation of an executable application.

Note that in order to play out scenarios, the user does not need to know anything about
LSCs or even about the use cases and requirements entered so far. All he/she has to do is to
operate the GUI application as if it were a final system and check whether it reacts according
to his/her expectations. Thus, by playing out scenarios the user actually tests the behavior of
the specified system directly from the requirements — scenarios and forbidden scenarios as
well as other constraints — without the need to prepare statecharts, to write or generate code,
or to provide any other detailed intra-object behavioral specification. This process is simple
enough for many kinds of end-users and domain experts, and can greatly increase the chance
of finding errors early on.

Note that a single universal chart may become activated (i.e., its prechart is successfully
completed) several times during a system run. Some of these activations might overlap, re-
sulting in a situation where there are several copies of the same chart active simultaneously.
In order to correctly identify the activation of universal charts, there is also a need to have
several copies of the prechart (each representing a different tracking status) monitored at the
same time.

A number of things happen during play-out. Charts are opened whenever they are acti-
vated and are closed when they are violated or when they terminate. Each displayed chart
shows a “cut” (a kind of rectilinear “slice”), denoting the current location of each instance.
The currently executed event is highlighted in the relevant LSCs. The play-engine interacts



with the GUI application, causing it to reflect the change in the GUI, as prescribed by the
executed event. The user may examine values of assignments and conditions by moving the
mouse over them in the chart. Whenever relevant, the effects show up in the GUI. Play-out
sessions can also be recorded and re-played later on.

So much for the universal charts, which drive the behavior and are activated when needed.
In contrast, existential charts can be used as system tests or as examples of required interac-
tions. Rather than serving to drive the play-out, existential charts aremonitored, meaning
that the play-engine simply tracks the events in the chart as they occur. When (and if) the
chart reaches its end, it is highlighted and the user is informed that it was successfully traced
to completion. These runs can be recorded as well, to provide testimonies (that can be re-
played) for fulfilling the promises made by existential LSCs. We thus run the system in such
a way as to seek satisfaction of existential promises while making sure we satisfy all universal
promises.

The premise of our present work is that the play-out algorithms described in [14] are
somewhat naive. For example, if there are several ways to linearize the partial order of events
in an LSC, the engine might choose one that leads to a contradiction with another LSC.
This, depending on the hot or cold nature of active elements, could lead to abortion of the
entire run. While such an occurrence is indeed a result of what the user played in, and is a
legal execution, we might want the engine to help avoid it. If in this example there is some
“correct” order (or several) that manages to run to completion successfully, we would like to
find it and guide the play-out accordingly.

4 Being Smart Helps : Examples

Consider the two charts LSC1 and LSC2 appearing in Fig. 2 and the following system reac-
tion performed in response to the user clicking on the ‘PWR’ button:

ChangeBackground(Green),ChangeBackground(Red),Open

This superstep satisfies LSC1 but LSC2 remains active with the conditionDisplayBack-

Fig. 2. Smart play-out helps

ground = Green false, because when it was activated by theOpen event the background
was already red. Notice that “locally” each event seems to be good, since it does not cause



violation and causes the execution to progress. However, “globally” these system moves do
not satisfy the second LSC.

In contrast, the following system reaction satisfies both LSCs:

ChangeBackground(Green),Open,ChangeBackground(Red)

After changing the color toGreen the system opens the antenna, thus causing the acti-
vation of LSC2. TheDisplay color is Green, so the condition holds and LSC2 is satisfied.
Then the color is changed toRed and LSC1 is satisfied. Smart play-out is designed to find a
correct superstep in such cases.

Similarly, consider the two chartsState First andBackground First in Fig. 3.
When the user opens the cover both charts are activated. However, there is no way to satisfy
them both since they require the eventsChangeBackground(Green) andSetState(Time)
to occur in contradicting order. While this is a very simple example, such contradictions
can be a lot more subtle, arising as a result of the interaction between several charts. In large
specifications this can be very hard to analyze manually. The smart play-out framework would
prove that in such a case no correct superstep exists, which by the semantics of LSCs means
that the requirements are inconsistent; see [13].

Fig. 3. Inconsistent LSCs

As discussed earlier, existential LSCs may be used to specify system tests. Smart play-out
can then be used to find a trace that satisfies the chart without violating universal charts on
the way. Fig. 4 shows a test in which user and external environment actions are performed
and expected system responses are described using conditions. In this chart, the user opens
the cover and enters the number911. In response, the display is expected to show the dialed
number. Next, the user clicks the ‘SEND’ button and the phone’s speaker is expected to ring.
Finally, when a signal from the environment indicating the accepting of the call (denoted by
the “ACK” reserved word) is received by the phone’s chip, the speaker turns silent.

5 Smart Play-Out: The General Approach

The approach we use is to formulate the play-out task as a verification problem, and to use a
counterexample provided by model-checking as the desired superstep. The system on which
we perform model-checking is constructed according to the universal charts in the specifi-
cation. The transition relation is defined so that it allows progress of active universal charts
but prevents any violations. The system is initialized to reflect the status of the application
just after the last external event occurred, including the current values of object properties,



Fig. 4. Using existential charts to specify system tests

information on the universal charts that were activated as a result of the most recent external
events, and the progress in all precharts.

The model-checker is then given a property claiming that always at least one of the uni-
versal charts is active. In order to falsify the property, the model-checker searches for a run
in which eventually none of the universal charts is active; i.e., all active universal charts com-
pleted successfully, and by the definition of the transition relation no violations occurred.
Such a counter-example is exactly the desired superstep. If the model-checker verifies the
property then no correct superstep exists. The next section provides details of how to con-
struct the input to the model checker.

It is important to note that smart play-out (at least as it stands today) does not backtrack
over supersteps. Thus, we may get to a situation where no correct super-step exists due to
moves the system made in previous super-steps, which could perhaps have been done differ-
ently. This demonstrates the difference between smart play-out, which looks one super-step
ahead, and full synthesis, which performs a complete analysis.

Another important thing that we have incorporated into the smart play-out is to find a
way to satisfy an entire existential chart (e.g. Fig. 4). Here we cannot limit ourselves to a
single superstep, since the chart under scrutiny can contain external events, each of which
triggers a superstep of the system. Nevertheless, the above formulation as a model-checking
problem can be used with slight modifications for this task too. Also, when trying to satisfy
an existential LSC, we take the approach that assumes the cooperation of the environment.

We should add that the method for satisfying existential LSCs can also be used to verify
safety properties that take the form of an assertion on the system state. This is done by putting
the property’s negation in an existential chart and verifying that it cannot be satisfied.

6 The Translation

In the original paper defining LSCs [7] and in later work that uses LSCs for testing reactive
systems [22], the semantics of LSCs is defined for a single chart. In the first one, a program-
matic style is used and in the second, an automaton having legal cuts3 as states is constructed.

3 A cut is a configuration indicating the location of each object along its instance line



In our work, the main focus is to find a correct behavior of the system according to several
charts acting together. To do that, we construct a transition system which has one process
for each actual object. A state in this system indicates the currently active charts and the lo-
cation of each object in these charts. The transition relation restricts the transitions of each
process only to moves that are allowed by all currently active charts. Note that our translation
does not explicitly construct the cuts for each chart (a construction which by itself causes an
exponential growth in the size of the initial representation).

We now provide some of the details on how to translate a play-out problem into a model-
checking problem.

An LSC specificationLS consists of a set of chartsM , where each chartm ∈M is exis-
tential or universal. We denote bypch(m) the prechart of chartm. Assume the set of universal
charts inM isMU = {m1,m2, ...,mt}, and the objects participating in the specification are
O = {O1, ..., On}.

We define a system with the following variables:

actmi
determines if universal chartmi is active. It gets value1 whenmi is active and0

otherwise.
msgs

Oj→Ok
denoting the sending of messagemsg from objectOj to objectOk. The value

is set to1 at the occurrence of the send and is changed to0 at the next state.
msgr

Oj→Ok
denoting the receipt by objectOk of messagemsg sent by objectOj . Similarly,

the value is1 at the occurrence of the receive and0 otherwise.
lmi,Oj

denoting the location of objectOj in chartmi, ranging over0 · · · lmax wherelmax is
the last location ofOj in mi.

lpch(mi),Oj
denoting the location of objectOj in the prechart ofmi, ranging over0 · · · lmax

wherelmax is the last location ofOj in pch(mi).

Throughout this paper, we use the asynchronous mode, in which a send and a receive are
separate events, but we support the synchronous mode too. We denote byf(l) the event
associated with locationl, and use the convention that primed variables denote the value of a
variable in the next state while unprimed variables relate to the current state.

We will now show the definition of the transition relation as it is affected by the different
features of the LSC language.

6.1 Messages

We first define the transition relation for the location variable when the location corresponds
to the sending of a message:

l′mi,Oj
=

{
l if lmi,Oj

= l − 1 ∧msgs
Oj→Ok

′ = 1
l − 1 if lmi,Oj

= l − 1 ∧msgs
Oj→Ok

′ = 0

Intuitively, if object Oj is at locationl − 1 in chartmi, and the next location ofOj

corresponds to the sending of messagemsg from Oj to Ok, then if in the next state the
message is sent, the location is advanced; otherwise it remains still. It is important to notice
that the eventmsgs

Oj→Ok
may not be allowed to occur at the next state due to some other

chart. This is one of the places were the interaction between the different charts becomes
important.



As for the receipt of events, given thatn is the location at which messagemsg is sent
from objectOj to objectOk, we define the transition relation as:

l′mi,Ok
=

{
l if lmi,Ok

= l − 1 ∧ lmi,Oj
≥ n ∧msgr

Oj→Ok

′ = 1
l − 1 if lmi,Ok

= l − 1 ∧ (lmi,Oj
< n ∨msgr

Oj→Ok

′ = 0)

If objectOk is at locationl−1 in chartmi, and the next location ofOk corresponds to the
receipt of the messagemsg sent by objectOj , and this message has already been sent , then
if in the next state the message is received, the location is advanced; otherwise it remains as
is.

We now define the transition relation for the variable determining the occurrence of a
send event (the receive case is similar):

msgs
Oj→Ok

′ =
{

1 if φ1 ∧ φ2

0 otherwise

φ1 =
∨

mi∈MU∧msgs
Oj→Ok

∈Messages(mi)

actmi
= 1

φ2 =
∧

mi∈MU∧msgs
Oj→Ok

∈Messages(mi)

(actmi
= 0 ∨ ψ(mi))

ψ(mi) =
∨

lt s.t.f(lt)=msgs
Oj→Ok

(lmi,Oj
= lt − 1 ∧ l′mi,Oj

= lt)

In order for the event of sendingmsg fromOj toOk to occur, we require two conditions to
hold, which are expressed by formulasφ1 andφ2 respectively. The first,φ1, states that at least
one of the main charts in which this message appears is active. The assumption is that message
communication is caused by universal charts that are active and does not occur spontaneously.
The second requirement,φ2, states that all active charts must “agree” on the message. For an
active chartmi in whichmsgs

Oj→Ok
appears we require that objectOj progress to a location

lt corresponding to this message, as expressed in formulaψ(mi). Formulaφ2 states that for
all chartsmi in whichmsgs

Oj→Ok
appears (that is,msgs

Oj→Ok
∈Messages(mi)) either the

chart is not active or the message can occur (that is,ψ(mi) holds). According to the semantics
of LSCs, if a message does not appear in a chart explicitly it is allowed to occur in-between
the messages that do appear, without violating the chart. This is reflected inφ2 by the fact
that the conjunction is only over the charts in whichmsgs

Oj→Ok
appears.

6.2 Precharts

A prechart of a universal chart describes a scenario which, if completed successfully, forces
the scenario described in the main chart to occur. (Fig. 1 has a prechart — the portion en-
closed in the dashed hexagon.) The main chart becomes active if all locations of the prechart
have reached maximal positions. In play-out it is often the case that a sequence of events
in a superstep causes the activation of some additional universal chart, and this chart must
now also be completed successfully as part of the super-step. For this purpose precharts are
monitored, and locations along instance lines are advanced while messages are being sent
and received.



The transition relation for a location variable in a prechart is similar to the one defined
for locations in the main chart, with one major difference; precharts may be violated. If a
message is sent or received while it is not enabled in the prechart, the prechart is “reset” by
moving all its instances back to their initial location. This reset action allows for the prechart
to start “looking” for another option to be satisfied. In fact, in many cases when the model-
checker searches for a “correct” super-step it tries to violate precharts in order not to get into
the “obligations” of having to satisfy the corresponding main charts. When all locations in
the prechart reach their maximal positions, they too are reset.4

Formally, if locationlpch(mi),Oj
= l− 1, and the next location corresponds to a message

sending, then its transition relation is given by:

l′pch(mi),Oj
=



l if msgs

Oj→Ok

′ = 1
0 msgs

Oj→Ok

′ = 0 ∧ Φ(mi)
l − 1 otherwise

Φ(mi) =
∨

msgs
Ox→Oy

∈Messages(mi)

Ψs(msgs
Ox→Oy

) ∨

∨
msgr

Ox→Oy
∈Messages(mi)

Ψr(msgr
Ox→Oy

) ∨

∧
Oj∈Obj(mi)

(lpch(mi),Oj
= lmax

pch(mi),Oj
)

Ψs(msgs
Ox→Oy

) =
{

1 if lmi,Ox
= lx − 1 ∧ f(lx) �= msgs

Ox→Oy
∧msgs

Ox→Oy

′ = 1
0 otherwise

Ψr(msgr
Ox→Oy

) =
{

1 if lmi,Oy
= ly − 1 ∧ f(ly) �= msgr

Ox→Oy
∧msgr

Ox→Oy

′ = 1
0 otherwise

Ψs/Ψr checks whether a send/receive event occurred while not enabled by its sender/receiver
instance in the chart.φ(mi) checks whether all locations reached their maximal position.

6.3 Activation of charts
For a universal chartmi, we define the transition relation foractmi

as follows:

act′mi
=




1 if φ(pch(mi))
0 if φ(mi)
actmi

otherwise

φ(mi) =
∧

Oj∈Obj(mi)

(l′mi,Oj
= lmax

mi,Oj
)

The main chartmi becomes active when all locations of the prechart reach maximal posi-
tions, and it stops being active when all locations of the main chart reach maximal positions.5

4 Our current treatment of precharts is still rather preliminary, and there are several issues we plan to
consider more fully in the future. They include figuring out whether or not (or when) to use model
checking to “help” precharts be successfully completed, and how to deal with loops and conditions
in precharts in light of the main goals of smart play-out.

5 When the chart body contains interactions with the user/environment, we cannot guarantee that all
maximal positions are reached, because the play-out cannot initiate moves by the environment. We



In order to identify the activation of a universal chart it is sometimes necessary to main-
tain several copies of the same prechart, each one being in a different stage of the prechart
scenario. A universal chart may also be reactivated before it has completed, causing several
copies of the main chart to be active simultaneously. It can be shown that in the absence
of unbounded loops, the maximal number of simultaneously active charts and precharts is
bounded and can be computed. Actually, we predict that in most practical cases these bounds
will be small.6

6.4 Object properties and conditions

Although the basic strength of scenario-based languages like LSCs is in showing message
communication, the LSC language has the ability to reason about the properties of objects
too. Object’s properties can be referenced in condition constructs, which can be hot or cold.
According to the semantics of LSCs, if a cold condition is true the chart progresses to the lo-
cation that immediately follows the condition, whereas if it is false the surrounding (sub)chart
is exited. A hot condition, on the other hand, must always be met, otherwise the requirements
are violated and the system aborts. To support this kind of reasoning, we have to update the
value of each property as the system runs.

More formally, letP t
Ok

denote thetth property of objectOk, defined over a finite domain
D. For many of the object properties there are simple rules — defined when the application
is being constructed — that relate the value of the property to message communication. Ac-
cordingly, suppose that messagemsg received byOk from Oj has the effect of changing
propertyP t of Ok to the valued ∈ D. We then add to the transition relation of processOj

the clause:

P t
Ok

′ = d if msgr
Oj→Ok

′ = 1

In this way, the values of the properties are updated as the objects send and receive mes-
sages.

Object properties can be referred to in conditions. In fact, we take a condition expression
to be a Boolean function over the domains of the object properties,C : D1 ×D2 · · ·×Dr →
{0, 1}, so that a condition can relate to the properties of several objects. Here, the properties
appearing in the condition areP1, P2, · · ·Pr.

A condition affects the transition relation of the location of a participating object. If object
Oj is at locationlj−1 and objectOk is at locationlk−1 in chartmi, and if their next locations
correspond to ahotconditionC, we define:

l′mi,Oj
=

{
lj if C(dj , dk)′ = 1 ∧ lmi,Oj

= lj − 1 ∧ lmi,Ok
= lk − 1

lj − 1 if lmi,Oj
= lj − 1 ∧ ((C(dj , dk)′ = 0 ∨ lmi,Ok

�= lk − 1)

ObjectOj moves to locationlj if both objects participating in the condition are ready to
evaluate the condition expression, being at locationslj − 1 andlk − 1, respectively, and the
conditionC holds. Heredj anddk are the values of propertiesP s

Oj
andP t

Ok
, respectively. The

therefore modify the transition relation to set a chart to be inactive when only user/environment
events are enabled.

6 This is because in order for the bound to be large there must be a very strong correlation between the
messages in the prechart and the main chart, and this is usually not the case.



transition relation thus ensures synchronization of the objects when evaluating the condition
and allows progress only if the condition expression holds, thus preventing violation of the
chart. In this definition, we assumed that we have two objects,Oj andOk, constrained by the
condition, whereas in the general case there could be a single object or several objects.

For a cold condition we define:

l′mi,Oj
=



lj if C(dj , dk)′ = 1 ∧ lmi,Oj

= lj − 1 ∧ lmi,Ok
= lk − 1

ls if C(dj , dk)′ = 0 ∧ lmi,Oj
= lj − 1 ∧ lmi,Ok

= lk − 1
lj − 1 if lmi,Oj

= lj − 1 ∧ ((C(dj , dk)′ = 0 ∨ lmi,Ok
�= lk − 1)

The difference between this and the definition for a hot condition is that if the objects are
ready for evaluating the condition but the condition does not hold, the smallest surrounding
(sub)chart is exited, as per the semantics of LSCs. Here,ls is the location of objectOj at the
end of the surrounding (sub)chart. In such a case, all the other objects will also synchronize
their exit of this (sub)chart. Note that this is a “peaceful exit”, and does not constitute a
violation of the universal chartmi.

6.5 Assignments

Assignments enable referring to system properties after they are set. An assignment of the
form x := d stores the valued in the variablex. In practice,d may be a constant value, a
property value of some object or the value obtained by applying some function. To handle
assignments we add a boolean variableassign(x, d) that is set to 1 exactly when the as-
signment is performed. Actually, these variables are used only for notational clarity, since
in the implementation they can be computed from the values of the location variables. The
translation is straightforward:

x′ =
{
d if lmi,Ok

= l − 1 ∧ lmi,Ok
= l ∧ assign(x, d)

x otherwise

Intuitively, if object Ok is at locationl − 1 in chartmi, and the next location ofOk

corresponds to the assignmentx := d the value ofx is set tod.
We also add to the system a boolean variablexbound, which determines whether variable

x is already bound to a concrete value. After an assignment is evaluatedxbound is set to1.
More information about this appears in the next subsection.

Assignments are local to a chart. Typically the variablex in the left hand side of the
assignment is used later in a condition or symbolic message.

6.6 Symbolic messages

Symbolic messages are of the formmsg(x), wherex is a parameter ranging over the finite
domainD . A symbolic message represents concrete messages of the formmsg(d), where
d ∈ D. Using symbolic messages it is possible to describe generic scenarios, which are
typically instantiated and bound to concrete values during play-out.

To handle symbolic messages we add a variable representing the parameterx, which can
be bound to a concrete value as the result of the occurrence of a concrete message or an
assignment. The binding of this variable also affects other messages in the same chart that
are parameterized byx, binding them to the same value. Once the variables of a symbolic



message are bound to concrete values, the usual rules concerning message communication
apply to it, so it affects the transition relation similarly to a regular message.

Formally, for a symbolic message of the formmsg(x) we add a variablex ∈ D and a
boolean variablexbound, which determines whether variablex is already bound to a concrete
value.

Initially we setxbound to 0 and define the transition relation as follows:

x′bound =
{

1 if φ1 ∨ φ2 ∨ xbound = 1
0 otherwise

φ1 = lmi,Oj
= l − 1 ∧ l′mi,Oj

= l ∧
∨

d∈D

msg(d)′ = 1

φ2 =
∨

lt s.t.f(lt)=assign(x)

(lmi,Ok
= lt − 1 ∧ l′mi,Ok

= lt)

According to the definitionxbound is changed to1 in the case of the occurrence of con-
crete messagemsg(d) whered ∈ D (As defined byφ1) or whenx appears in the left hand
side of an assignment that is being evaluated (As defined byφ2).

The transition relation for the variablex is defined:

x′ =
{
d if lmi,Oj

= l − 1 ∧ l′mi,Oj
= l ∧ (msg(d)′ = 1 ∨ assign(x, d)′ = 1)

x otherwise

The first case corresponds to binding ofx to valued as the result of the occurrence of con-
crete messagemsg(d) or as the result ofx being assigned the valued. Otherwisex remains
unchanged.

We now define the transition relation for the location variable when the location corre-
sponds to a symbolic message:

l′mi,Oj
=

{
l if lmi,Oj

= l − 1 ∧ ∨
d∈D (msg(d)′ = 1 ∧ x′bound = 1 ∧ x′ = d)

l − 1 if lmi,Oj
= l − 1 ∧ ∧

d∈D (msg(d)′ = 0 ∨ x′bound = 0 ∨ x′ �= d)

Intuitively, if object Oj is at locationl − 1 in chartmi, and the next location ofOj

corresponds to a symbolic message, then the location is advanced if the messagemsg(d)
occurs andx is bound to the valued ∈ D.

6.7 If-Then-Else

The transition relation of this construct is a variation on the way conditions are handled in
subsection 6.4. All participating objects are synchronized when the condition is evaluated and
when entering and exiting the Then and Else parts. We omit the details.

6.8 Loops

A loop is a sub-chart whose behavior is iterated, and all objects are synchronized at the
beginning and end of each iteration. Loops can be of two basic types, bounded or unbounded
[7, 14]. The transition relation synchronizes the objects at the beginning and end of each
iteration, and for the bounded case a counter variable is added to ensure that the given bound
is not exceeded. We omit the details.



6.9 Functions
As explained in the subsection dealing with object properties, message communication can
have an effect on the values of object properties. In cases where there is a simple rule relating
the value of a property to message communication, this can be fully handled in the transition
relation. In cases where more complex functions are used, the situation is more complicated.
We used a practical approach, creating a symbolic trace of events that is bound to actual
values at a later stage, iteratively. Here too, we omit the details.

6.10 The Model-Checking
To compute a super-step using a model checker, the system is initialized according to the
current locations of instances in precharts, while all locations in the main charts are set to 0.
The main chart’s activation state is also initialized to reflect the current state.7 We also set the
objects’ properties to reflect their current value.

The model checker is then given the following property to prove, stating that it is always
the case that at least one of the universal charts is active:

G(
∨

mi∈MU

(actmi
= 1))

As explained earlier, falsifying this property amounts to finding a run that leads to a point
in which all active universal charts have completed successfully, with no violations, which is
exactly the desired superstep.

7 Implementation and Experimental Results

We have implemented smart play-out as part of a prototype tool that links to the play-engine,
thus supporting the general play-in/play-out approach. During play-out, the tool translates
a play-out task into the corresponding model, runs the model checker and then injects the
obtained counter-example into the play-engine. Thus, smart play-out drives the execution.
We use the Weizmann Institute model-checker TLV [30] and the CMU SMV model-checker
[6], but we can easily modify the tool to use other model-checkers too.

Before constructing the model we perform a static calculation to identify those charts that
can potentially become active in the current super-step, and use only them when defining
the system transition relation. This static calculation appears to reduce the size of the model-
checking problem dramatically, since we have found that only a relatively small number of
charts are usually active together in a single super-step even when the LSC specification itself
is large.

The model-checkers we use are BDD based,8 where the ordering of variables has a critical
influence on running time. We use structural information from the LSC specification in order
to derive good variable ordering. We also noticed that the message variables described in the
translation section can be expressed in terms of the location variables, and can then be elim-
inated from the model. When obtaining the counter-example their values can be calculated
and used for constructing the “correct” super-step.

7 After each external event, the play-engine decides which precharts have completed and sets their
corresponding main charts to be active.

8 We have recently begun using bounded model checking based on SAT methods. In some cases, they
prove to be very effective for smart play-out, yet this work is only in its initial phase.



A cellular phone system we use for illustration has about 35 different charts, and handles
scenarios like dialing numbers, sending and receiving calls, opening the antenna, etc. It con-
sists of 15 objects and uses 40 different types of messages. Calculating a super-step using our
current implementation of smart play-out takes less than 1 second on a standard PC. This is
fast enough to give the user a seamless feeling of working with an conventional executable
model. The tool also manages to satisfy existential charts for which the counter-example has
more than 100 events, in less than 2 minutes. A satisfying scenario for the existential chart
shown in Fig. 4 was found by the play-engine in less then 7 seconds (including the translation,
model checking and construction of the run). The scenario consists of 19 events and involves
5 different universal charts, one of which is activated 3 times.

Besides these rather dry algorithmic/performance issues, using the smart play-out tool
seems to provide the user with an enhanced understanding of the behavioral requirements,
and a smooth and realistic execution framework for LSCs.

Given these results and the major progress verification and model-checking has made
in recent years, we are strongly believe that using such a methodology can be practical for
handling real-world applications. And, as we have repeatedly mentioned, it brings us one step
closer to the possibility of requirements-based code-less development of reactive systems.

8 Related Work

A large amount of work has been done on formal requirements, sequence charts, and model
execution. We briefly discuss the ones most relevant to our work.

There are commercial tools that successfully handle the execution of graphical models
(e.g., Statemate [16] and Rhapsody by I-Logix [20], ObjectTime [32], and Rose-RT by Ra-
tional [31]). However, they all execute an intra-object design model (statecharts) rather than
an inter-object requirement model.

LSC’s have been used for testing and verification of system models. Lettrai and Klose
[26] present a methodology supported by a tool called TestConductor, which is integrated
into Rhapsody [20]. The tool is used for monitoring and testing a model using a (rather re-
stricted) subset of LSCs. During execution of a Rhapsody model the TestConductor monitors
the charts and provides information on whether they have been completed successfully or if
any violations have occurred. [26] also mentions the ability to test an implementation using
these sequence charts, by generating messages on behalf of the environment (or other un-
implemented classes termed stubs). Their algorithm selects the next event to be carried out
at the appropriate time by the environment (or by unimplemented classes) based on a local
choice, without considering the effects of the next step on the rest of the sequence, or the
interaction between several charts.

Damm and Klose [8, 22] describe a verification environment in which LSCs are used
to describe requirements that are verified against a Statemate model implementation. The
verification is based on translating an LSC chart into a timed Buchi automaton , as described
in [22], and it also handles timing issues. In both this work and [26], the assumption is that a
system model whose reactive parts are described by statecharts has already been constructed,
and the aim is to test or verify that model. We might thus say that while our work here
focuses on putting together the information in the different charts, these papers treat each
chart independently.

In a recent paper [27], the language of LSCs was extended with variables and symbolic in-
stances. A symbolic instance, associated with a class rather than with an object, may stand for



any object that is an instance of the class. The information passed between the instances can
also be parameterized, using symbolic variables. A symbolic message may stand for any mes-
sage of the same kind, with actual values bound to its parameterized variables. The extension
is useful for specifying systems with unbounded number of objects and for parameterized
systems, where an actual instantiation of the system has a bounded number of objects, but
this number is given as a parameter. In [15], the language of LSCs is further extended with
powerful timing constructs, and the execution mechanism is modified so that real-time sys-
tems too can be specified and simulated directly from the requirements. We intend to extend
the smart play-out algorithms to deal with both symbolic instances and the timing extensions.

Application of formal methods to the analysis of software requirements captured with
SCR (Software Cost Reduction) is described in [17]. The SCR method provides a tabular no-
tation for specifying the required relation between system and environment variables. In [5]
model-checking methods are used to verify that a complete SCR model satisfies certain prop-
erties, by using SMV and Spin model-checkers. This work is very different from our work.
In [5] model-checking is used for verifying properties of a state-based model (which is the
traditional use of model-checking), while we use model-checking for driving the execution
of a scenario-based specification.

The idea of using sequence charts to discover design errors at early stages of develop-
ment has been investigated in [3, 28] for detecting race conditions, time conflicts and pattern
matching. The language used in these papers is that of classical Message Sequence Charts,
with semantics being simply the partial order of events in a chart. In order to describe sys-
tem behavior, such MSC’s are composed into hierarchal message sequence charts (HMSC’s)
which are basically graphs whose nodes are MSC’s. As has been observed in several papers,
e.g. [4], allowing processes to progress along the HMSC with each chart being in a differ-
ent node may introduce non-regular behavior and is the cause of undecidability of certain
properties. Undecidability results and approaches to restrict HMSC’s in order to avoid these
problems appear in [19, 18, 11]. In our work, the fact that LSC semantics requires that objects
are synchronized while iterating during (unbounded) loops prevents such problems.

Another direction of research strongly related to our work is synthesis, where the goal is
to automatically synthesize a correct system implementation from the requirements. Work on
synthesis from MSC-like languages appears in [23, 24, 2, 34, 10], and an algorithm for syn-
thesizing statecharts from LSC’s appears in [13]. Moreover, a lot of work has been done on
synthesis from temporal logic e.g., [9, 1, 29, 25]. The main difference is that in our work the
play-out algorithms search one super-step ahead (or several super-steps when satisfying ex-
istential charts), whereas synthesis algorithms do not have such restrictions; they can thus be
proven to behave correctly under all circumstances. Apart from the fact that smart play-out
deals with an easier problem and therefore solutions may be more practical, we believe that
play-out is complementary to synthesis. Making synthesis methodologies feasible requires
designers to have good ways to understand and execute the requirements, in order to make
sure that the input to the synthesis algorithm is exactly what is desired. Our approach is also
useful in an iterative development cycle, where many modifications of requirements and im-
plementations are performed; trying to run a synthesis algorithm after each modification, even
assuming that synthesis becomes feasible, does not seem like a particularly good approach.
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